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ABSTRACT 

The effect of sulfur on glass structure and the conversion process of bioactive 

CaO-LhO-B203 glasses were studied. One glass without and two glasses with different 

amounts of sulfur were made using conventional melting and dry quenching techniques. 

These glasses reacted with a phosphate solution and converted to hydroxyapatite. 

Particles (150-355J..Lm) were reacted in 0.25 and 0.5 molar K2HP04 solutions at 37°C for 

2 to 96 hours. The weight loss of the particles and the final pH of the solution were 

measured. The weight loss measurements indicated that the reaction rate increases with 

increasing the sulfur content. Sulfur was released from the glass, causing the pH of the 

solution to decrease, but was absent in the reacted layer. 

In the in-vivo studies, the effect of sulfur and phosphorus on the conversion of 

two different bioactive borate glasses was studied, in-vivo. Discs made from two sulfur­

free glasses (CaLB-0 and 93B3-0) and two sulfur-containing glasses (CaLB-12 and 

93B3-6) were implanted in a subcutaneous site in rats for 2, 4, and 12 weeks. Each rat 

remained healthy during the experiment and there were no sign of infection or necrosis at 

the implantation site. 

The CaLB glass discs reacted with the body fluids and formed a thin calcium 

phosphate reacted layer on their surface, but the 93B3 glass discs reacted to form a 

thicker calcium phosphate reacted layer with an onion-skin structure. Compared the 

phosphorus-free CaLB implants to phosphorus-containing 93B3 implants the CaLB 

implants absorbed 2 times more phosphorus from the body fluids to form the calcium 

phosphate reacted layer. 

Compared to the CaLB implants, the connective tissue attached to the 93B3 

implants was -3 times thicker, and contained more blood vessels and collagen. For all of 

the sulfur-containing implants sulfur released to the body fluids and was not presented in 

the reacted materials. 
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Regeneration, Missouri 
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§ Department of Biological Sciences, Center for Bone and Tissue Repair and Regeneration, 

Missouri 
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Abstract 

The effect of sulfur on glass structure and the conversion process of bioactive CaO-

LizO-B203 glasses were studied. One glass without and two glasses with different 

amounts of sulfur were made using conventional melting and dry quenching techniques. 

Calcium lithium borate glasses containing dissolved sulfur were made by substituting 

CaS04 for CaC03 in the glass batch. Using CaS04 improved glass formation. Sulfur 

containing glasses formed without crystallization or phase separation. 

X-ray fluorescence was used to measure the sulfur content of each glass. Up to 22 wt% 

sulfur in the form of sulfate ions was incorporated in the glass structure. Micro-Raman 

analysis identified sol- units in the sulfur-containing glasses and showed that 

substituting more CaS04 increased the dissolved sulfur content in the borate glass. Sulfur 



2 

was found to participate in the glass structure by reacting with non-bridging oxygens and 

cross-linking the boron-oxygen network. 

These glasses reacted with a phosphate solution and converted to hydroxyapatite. 

Particles (150-355J.lm) were reacted in 0.25 and 0.5 molar K2HP04 solutions at 37°C for 

2 to 96 hours. The weight loss of the particles and the final pH of the solution were 

measured. The weight loss measurements indicated that the reaction rate increases with 

increasing the sulfur content. Sulfate was released from the glass, causing the pH of the 

solution to decrease, but was absent in the reacted layer. 

I. Introduction 

Inorganic glasses were introduced for biomedical use with the discovery of the 45S5 

glass by Hench et al. in 1971 1
• The 45S5 glass is a bioactive and biocompatible silicate 

glass with silica content of 45 wt%. It has been studied extensively in-vitro and in-vivo 

over decades2
-
6

. Despite several good properties, 45S5 does not have a wide working 

range and it crystallizes quickly when sintered above ~ 700°C. Bone healing and 

regeneration varies with several parameters (i.e. type of bone, age, etc.) so matching the 

degradation rate of the glass implant to the bone for regeneration becomes critical. There 

have been many efforts to control the conversion rate ofbioactive glasses5
-
10 by changing 

the composition of the glass. 

Borate glasses are known to react faster both in in-vitro and in-vivo as compared to 

silicate glasses8
-
13 and in biomedical applications they have been found to provide good 

biological activity and compatibility9
; 

13
-
15

• The difference between borate and silicate 

glasses in the way they dissolve is that silicate glasses follow selective leaching 
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dissolution and form a silica-rich layer, but borate glasses dissolve more rapidly by bulk 

dissolution6
; 

7
• 

Modifying the composition of borate glasses can also control their reaction rate. Adding 

more CaO to the glass causes the glass to react more slowly in phosphate solutions 16
• It 

has been shown that increasing the local calcium content, in-vivo, in bone regeneration 

can have a positive effect on the differentiation of osteoblasts 17
• Also, in making 

hydroxyapatite (HA) microspheres by reacting borate glasses in a phosphate solution, a 

higher calcium content could enhance the mechanical strength of the micro spheres since 

solid HA rather than hollow microspheres can be formed 16
; 

18
; 

19
• Having more calcium in 

the glass could be promising in enhancing the mechanical properties of the converted 

borate glass reacted either in-vitro or in-vivo. Higher CaO could also improve the in-vivo 

biological response, but it reduces the reaction rate. Increasing the over-all reaction rate 

of the glass by other compositional changes to compensate for the higher CaO content 

could be very beneficial. 

Sulfur is the key in three amino acids in the human body; two essential amino acids 

cysteine, methionine, and one non-essential amino acid, taurine. Sulfur also found in 

many other compounds in the body i.e. heparin, insulin, thiamin, and biotin20
. Sulfur has 

a long history in the treatment of different dermatological disorders21
; 

22
. One of the most 

important roles of sulfur in the body is forming disulfide bridges. A disulfide bridge is a 

strong covalent bond of two sulfur-containing groups, which is responsible for the 

rigidity and toughness of hair and nails. Keratin, which contains a large amount of 

cysteine, is the key component of skin, hair, and nail. Sulfur helps in wound healing via 

the formation keratin22
• 
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Sulfate (SO/-) also has a long history in biomedical science. Calcium sulfate (CaS04) 

is a FDA approved material that was one ofthe first materials used in orthopedic surgery, 

over 100 years ago. Calcium sulfate is an effective bone graft material, and is completely 

resorbed by the body in 5 to 7 weeks23
; 

24
. It does not cause inflammation, foreign body 

reaction or rejection of the implant. Calcium sulfate is an osteoconductive and angiogenic 

material, which makes it a good candidate for bone scaffolds24
; 

25
. It has been reported 

that when CaS04 is used as a in-vivo bone regeneration implant, it reduces the local pH 

and makes the environment more acidic by releasing sulfate. This causes the adjacent 

bone to demineralize and release matrix-bound bone growth factor, which stimulates 

bone growth26
. 

Sulfur has been used as a refining agent and melt accelerant in glass technology for 

years27
-
29

• For instance, adding sulfur to a silicate glass accelerates its melting since in the 

silica rich region, sulfates decompose and release sodium (assuming sulfate added as 

Na2S04) which reacts with silica particles and forms sodium metasilicate which is a fluid 

liquid29
. Usually it is not possible to add more than 1-2 wt% sulfur to a silicate glass. 

Sulfate released in the batch during the melting stage stirs the melt and homogenizes the 

melt. Also, when gasses form in the melt they help remove small bubbles by 

consolidating them on their way to the surface29
. 

The addition of sulfur to a borate glass is easier due to its more open structure as 

compared to a silicate glass. Adding sulfur to a glass in the form of CaS04 is assumed to 

not only increase the reaction rate, but to also improve the glass formation tendency of 

compositions of higher calcium content compared to conventional bioactive glasses like 

45S5 (24.5 wt% CaO). 
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A main goal of this work was to determine how much sulfur could be incorporated into 

a Ca0-Lh0-B20 3 glass by gradually replacing portions of the CaC03 raw material by 

CaS04. The effect of sulfur on the structure of lithium borate glasses was also 

investigated. In addition, the effect of sulfur on the conversion rate and formation of 

hydroxyapatite was studied in vitro. Lithium borate glasses were chosen because their 

physical, chemical, and biological properties have been studied previously16
; 

18
; 

19
• These 

glasses have been shown to convert to hydroxyapatite in phosphate solutions at 37°C 16
; 

18
; 

19
, which should make them biocompatible. By adding sulfur to the glass, it was expected 

to be more reactive. It was also expected that if the sulfur was released to the solution 

during the reaction of the glass, the pH of the solution would be reduced (more acidic) if 

H2S04 was formed. 

II. Experimental Procedure 

(1) Glass Compositions and Preparation 

The compositions of the Ca0-Lh0-B20 3 glasses investigated are shown in Table 1. 

The CaLB glasses are identified as CaLB-X% where X denotes the S03 content in weight 

percent. For instance, the calcium lithium borate glass containing 12.5 wt% S03 is 

identified as CaLB-12%. 

The raw materials used were reagent grade H3B03, LhC03, CaC03, and CaS04, which 

was the source of sulfur in the sulfur-containing glasses. For CaLB-12% one quarter and 

for CaLB-22% half of CaO supplied from CaS04 and the rest supplied from CaC03. 
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When CaS04 reacts in the batch, it decomposes to CaO and S03. The S03 ideally 

dissolves in the glass so the composition of the glass changes by considering the sulfur as 

a batch component. Glasses with higher sulfur content, CaS04 was substituted for 3/4 and 

all of the CaC03, were also attempted, but when the melt was quenched between copper 

plates crystallization could not be prevented so these compositions were not investigated. 

To improve the homogeneity, of the batch materials they were mixed wet ustng 

acetone. The slurry was dried overnight at 90°C, crushed and mixed again using a mortar 

and pestle. The CaLB glasses were melted in a platinum crucible at 11 OOOC in an electric 

furnace for 1 hour, air atmosphere. The melt was then poured and quenched between 

copper plates. Pieces of the quenched glass were crushed using mortar and pestle and 

particles between 150 to 355 J.lm were separated by screening. These particles were used 

for in-vitro experiments in a phosphate solution. 

(2) XRF Measurements 

Glass particles, 150 to 355 J.lm in diameter, were chemically analyzed by XRF (Spectro 

Xepos ED X-Ray Fluorescence) 1
• The sulfur and calcium content of each glass (in wt%) 

was measured by XRF in terms of absolute values and were not standardized to 100 wto/o. 

The estimated error in the CaO and S03 content is ± 5%. Elements like boron and lithium 

cannot be detected by XRF, so the assumption was made that none of these elements 

were lost during the melting process. 

1 Mo-Sci Corporation Rolla MO 
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(3) Density and Molar Volume 

The density of each glass was measured by the Archimedes technique. The samples 

were weighed using a Mettler Toledo X5105 Dual Range scale. Water at room 

temperature (-22°C) was used as the suspension media and the density of at least 10 

separate pieces were measured for each glass. The density reported in Table 1 is the 

average density and the measured error (standard deviation) is ±0.01 glcm3
. 

The molar volume ( Vm) of each glass was calculated from equation (1 ), 

v =_p_ 
m M (1) 

w 

Where p is the average density and Mw IS the molecular weight of the glass, as 

calculated from the batch composition. 

(4) Differential Thermal Analysis (DTA) 

The glass transition temperature (T g) and crystallization temperature (T x) for each glass 

was measured using a Perkin Elmer DT A 7 (Perkin Elmer Life and Analytical Sciences 

Inc., Waltham, MA). Each glass was heated from room temperature to I 050°C at a rate of 

I OOC/min. To identify the phases crystallizing from the glass, particles were heated at 

1 OOC/min to their crystallization temperature (T x) and held at T x for 20 minutes. 

(5) Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy 
(EDS) 

A Field Emission Hitachi S-4 700 SEM was used for microstructural analysis. This 

microscope was equipped with a Silicon Drift Detector (SDD) (EDAX Inc. Mahwah, NJ) 
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which was used for elemental and phase mapping analysis of the glass particles reacted in 

the phosphate solution. All samples were coated with carbon to reduce charging and the 

accelerating voltage ranged from 5 to 15 kV. 

(6) X-Ray Diffraction 

The identification of crystalline phases was done using a Philips X-Pert with Cu Ka of 

(A.= 0.15405 nm) radiation and a 29 step size of 0.025° from 10 to 70 degrees. The 

absence of crystalline phases in the quenched glass was determined by XRD. 

(7) Micro-Raman Spectroscopy 

To identify vibrational modes associated with sulfur, phosphorus, and boron bond with 

oxygen in the samples, the micro-Raman spectrum of at least 10 pieces of each CaLB 

glasses was measured (LabRAM ARAMIS, Horiba Jobin Yvon) from 200 to 3000 cm- 1
• 

The device was calibrated prior to measuring the spectra of each CaLB glass with a 

silicon wafer. The intensity of the micro-Raman peaks depends on several variables, but 

ifthe device settings are kept constant, the intensity of the peaks should be approximately 

proportional to the concentration of the species producing it. The micro-Raman spectra 

for each glass were collected at the same instrument settings in order to compare the 

concentration of sulfur and bridging and non-bridging oxygen in the borate glass. 

(8) Glass Conversion in Phosphate Solution 

Particles (150-355 J..Lm) of each glass were reacted in a phosphate solution at 37°C for 

up to 96 hours. The phosphate solution was made by dissolving reagent K2HP04 (Fisher 

Scientific, Pittsburgh P A) in deionized (DI) water to produce 0.25 and 0.5 M K2HP04 
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solutions. Two molar NaOH was added to the phosphate solution to adjust the pH to 1 0.0. 

A 0.25 M phosphate solution was chosen based on previous studies 15
; 

16 while a 0.5 M 

solution was chosen to study the effect of phosphate solution concentration. 

Glass particles ranging from 150-355 J..Lm were washed with acetone prior to being 

placed in phosphate solution to remove any small fragments adhering to the larger 

particles. The glass particles were reacted with the phosphate solutions in either plastic or 

glass containers in the amount of 5 mg of glass/ml of solution (250 mg of glass in 50 ml 

of solution). The containers holding the phosphate solution were placed on a sand-bath at 

37°C that provided agitation through an orbital shaker set at 40 rpm. All experiments 

were done in duplicates. 

After reaction, the pH of the solution was measured at 3 7°C and then the particles were 

filtered from the phosphate solution. The particles were washed three times with DI water 

and dehydrated by washing twice with ethanol. Then they placed in an oven and dried 

overnight at 11 0°C. 

The weight of the particles after being dried in the oven was measured and the 

difference in weight compared to the initial weight ( --250 mg) was calculated as the 

percent weight loss. 

III. Results 

(1) Glass Formation, Composition, and Properties 

It was difficult to prevent crystallization of the sulfur-free melt (CaLB-0%) except by 

quenching it between copper plates. Replacing a portion of the CaC03 in the batch with 
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CaS04 reduced the crystallization tendency and a glass was obtained when the melt 

quenched between copper plates. 

The absolute calcium (CaO) and sulfur (S03) content of each glass was measured using 

XRF. It was assumed that no B20 3 or LhO was lost during the melting. The total amount 

of CaO and S03 measured by XRF was subtracted from 1 00 and the difference was 

assumed to be the amount of B203 plus LhO. The amount of B203 and LhO were then 

calculated by assuming the LhO to B20 3 ratio (wt/wt) was 1:7 as in the starting batch. 

As an example, the amount of CaO and S03 measured by XRF for the CaLB-12o/o glass 

was 11.4 and 35.7 wt%, respectively. The B20 3 plus LhO would be 52.9 wt% (100-(11.4 

+ 35.7)). Since LhO/ B203 ratio is 1:7 then LhO would be 118 and B20 3 would be 7/8 of 

this amount or 6.6 and 46.3 wto/o, respectively. 

The XRF measurements show that sulfur was present in the two glasses when CaS04 

was substituted for CaC03 in the batch, see Table 1. The density and molar volume of the 

glasses did not change significantly with increasing sulfur content. 

(2) Glass Micro-Raman Analysis 

Sulfur can be incorporated in a glass as sol·, S03, S2-, etc.30-37. Micro-Raman 

spectroscopy of each glass was used to identify sulfur dissolved in the CaLB glasses. The 

spectra in Fig 1 show three distinguishable peaks, at 1000, 620, and 460 cm- 1 which have 

been attributed to sulfur in a glass as tetrahedral sol· groups3; 34; 36; 37. The peak at 1000 

cm-1 (vi) is S-0 stretching, the peak at 460 cm- 1 (v2) is symmetric 0-S-0 bending, and the 

peak at 620 cm- 1 (v4) is asymmetric 0-S-0 bending mode36. Another peak at 1100 em·• 
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(v3), has been attributed to asymmetric S-0 stretching vibration35
, but this peak was not 

detected in the two CaLB sulfur-containing glasses. The broad peak from 1250 to 1600 

cm- 1 in Fig 1 is related to B-0- bond (0- =Non-Bridging Oxygen)38
; 

39
. 

(3) DTA and Crystallization 

Figure 2 shows the DTA pattern for each glass. With the addition of sulfur to the glass 

the glass transition temperature (T g) shifted by 25°C to a higher temperature, see Fig 2. 

The crystallization temperature {T x) also shifted higher in the sulfur containing glasses 

and a peak {T x 1 ), associated with the crystallization of CaS04 appeared in the spectra for 

the CaLB-22% glass. Table 2 shows the crystalline phases present after the glasses were 

heat treated at T x 1 and T x2 for 20 minutes. X-ray diffraction spectra for each crystalized 

glass are given in Fig 1 and 2 of the appendix. 

An endothermic peak, attributed to melting, is present in the spectra at -800°C for the 

CaLB-0% and CaLB-22% glasses, see Fig 2. This peak could not be related to the 

melting of any particular crystal that had formed during the crystallization of these 

glasses. However, crystalline LiB02 and LhB40 7 melt around 850°C and 915°C 

respectively40-42 . For unknown reasons, no endothermic peak is seen around 800°C in the 

DT A pattern for the CaLB-12o/o glass in Fig 2. The DT A measurement was repeated for 

this glass and the spectrum in Fig 2 was reproduced, see Fig 3 in the appendix. Neither 

LiB02 nor LhB40 7 was identified by XRD, even as a minor phase, in the CaLB-12% 

glass when it was crystalized. 
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(4) Conversion in Phosphate Solution 

The weight loss data of the glass particles as they reacted in the 0.25M and 0.5M 

K2HP04 solutions are shown in Fig 3. 

The two glasses containing sulfur (CaLB-12% and CaLB-22%) undergo a greater 

weight loss at any given time compared to that for the sulfur-free glass, CaLB-0%. Also, 

the CaLB-22o/o glass has a greater weight loss in both solutions than the CaLB-12% 

glass. It can be seen that the sulfur-containing glasses react faster compared to the sulfur­

free glass and the weight loss becomes nearly constant after -48 hours. When reacted in 

the 0.5M K2HP04 solution at 3 7°C for 48 hours, the weight loss for the CaLB-12o/o and 

CaLB-22% compositions is more than 4 and 6 times greater, respectively, than the weight 

loss for the CaLB-0%, the sulfur-free glass. 

(5) Phase Identification 

a. X-Ray Diffraction 

XRD was used to identify the crystalline phases in the particles after they had reacted in 

the phosphate solutions, see Fig 4. All of these glasses formed hydroxyapatite 

(CatO(P04)6(0H)2) in either 0.25M or 0.5M phosphate solution, although the degree of 

crystallinity of these particles is different. The XRD spectra for the particles reacted in 

0.25M K2HP04 solution are given in Fig 4 in the appendix. 
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b. Micro-Raman 

· In Fig 5 the micro-Raman spectra of particles reacted in 0.5 M phosphate solution for 

96 hours is shown along with the spectrum for crystalline HA (Fisher Scientific, StLouis 

Mo ). The micro-Raman spectra for particles reacted in 0.25 M phosphate solution are 

given in Fig 5 in the appendix. 

Hydroxyapatite has four bands related to Pol- vibrations (see bottom curve in Fig 5), 

doubly degenerate bending of 0-P-0 bending is v2 at ~420 cm- 1
, triply degenerate 

bending of 0-P-0 bending bond is v4 at ~560 em-', symmetric stretching of P-0 is v 1 at 

~960 cm- 1
, and asymmetric stretching ofP-0 bond is v3 at ~1018 cm-1

• 

The micro-Raman spectra for the sulfur-containing glasses reacted in the 0.5M 

phosphate solution for ~96 hours (Fig 5) do not contain any peaks related to sulfate but 

contain all four peaks related to Pol-. The spectrum in Fig 5 for the sulfur-free glass 

after being in the 0.5M phosphate solution for ~96 hours, is identical to the unreacted 

glass spectrum in Fig 1, the only slight difference is the barely detected peak at ~960 cm- 1 

which is related to phosphate v 1• 

(6) SEM and Energy Dispersive Spectroscopy (EDS) 

It is of interest to track the sulfur when the sulfur-containing glasses react in the 

phosphate solution. Energy dispersive spectroscopy technique was used to map the 

different elements present in the reacted particles. Fig 6 shows EDS results for a CaLB-

12% particle reacted in the 0.5M phosphate solution for 96 hours. A glass particle starts 

reacting from its outer surface inward as shown in Fig 6, the center of the CaLB-12% 
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particle examined is composed of un-reacted glass as indicated by the presence of Ca and 

sulfur. The indicated reacted layer of the particle in Fig 6 contains Ca and P indicating 

that Ca from the glass has reacted with Pin the solution to form a hydroxyapatite material 

(HA), no sulfur(< 2 At%) is present in the reacted HA layer. Energy dispersive analysis 

of CaLB-0% and CaLB-22% reacted in 0.5 M phosphate solution for 96 hours are given 

in Fig 6 and 7 ofthe appendix, respectively. 

IV. Discussion 

(1) Sulfur in the Glass and Glass Structure 

a. Sulfur in the Glass 

The CaLB-0°/o composition was difficult to obtain as a glass except by quenching 

between copper plates due to the amount of LhO and CaO in the glass (56.1 molo/o). 

Sulfur dissolved in the glass improved the glass-forming tendency compared to the 

CaLB-Oo/o. As sulfur was added to the composition, the relative amount of LhO and CaO 

decreased in the glass (47.4 mol% in CaLB-22o/o) and this change helped improve glass 

formation. 

There are many studies65
; 

66
; 

76
; 

77 describing the dissolution of sulfur in silicate and 

borosilicate glasses, although the sulfur concentration in these glasses is below 1 or 2 

wt%35
; 

36
. Based on the XRF data (Table 1) and the micro-Raman (Fig 1) measurements 

much larger amounts of sulfur (up to 22wt% S03) were present in the CaLB glasses and 

more than 90% of the sulfur in the batch was present in the glass. The sulfur content of 

the glass also directly depends on how much of CaO in the glass was supplied by CaS04 • 
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Sulfur can be dissolved in a glass in several different forms 30-37. Micro-Raman 

spectroscopy showed that the sulfur was present as sol- units in the CaLB glasses (Fig 

1 ). When CaS04 decomposes to CaO and S03 during the melting process the S03 

dissolves in the glass and is present as a sol- tetrahedron. 

b. Borate Glass Structure 

Vitreous boron oxide is composed of 3-coordinated boron (B03 triangles) which are 

connected at all three comers by B-0 bonds to form a three dimensional, cross-linked 

network29. Adding R20 or RO to a borate glass causes 3-coordinated boron to change to 

4-coordinated boron (B04 tetrahedral) up to 33 mol% alkali or alkaline earth, Fig 7 (A). 

This increases the network connectivity and leads to an increases in a property like T g 
43 . 

This is called the borate anomaly. 

Adding more R20 or RO (>33 mol%) to the glass eventually causes non-bridging 

oxygen ions to form. When the alkali concentration reaches 75 mol% it is assumed that 

all of the B04 units ideally converted to B020- groups (Fig 7 (B)), which are boron 

oxygen triangles with one or more NBO (0-). As soon as the NBOs start forming, the 

change in properties reverses i.e. T g decrease. 

c. CaLB Glasses Structure 

The CaLB glasses studied in the present work contain more than 50 mol% LhO plus 

CaO, which means that these glasses contain B04 tetrahedra and B03 triangles with 

NBOs. 
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Fig 7 (C) shows the structure of these glasses without sulfur and how sulfur is 

incorporated in the structure as So/- units. When CaS04 decomposes to CaO and S03, 

the latter is dissolved in the melt and combines with a NBO to form a SO/- tetrahedron. 

In this case, some of the Lt or Ca2
+ ions, which were associated with the NBOs, balance 

the charge by forming B04 groups. 

In the micro-Raman spectra of these glasses (Fig 1), the intensity of the NBO bands 

(1250 to 1500 cm- 1
) decreases with increasing sulfur content of the glass; which suggests 

that the NBOs are converting to bridging oxygens. The conversion of NBO to BO causes 

the glass network to become more cross-linked, which could explain the slightly higher 

T g for the sulfur containing glasses. 

(2) Glass Conversion 

A schematic of the conversion process for a CaLB glass is shown in Fig 8. When a 

CaLB glass is immersed in a phosphate solution it begins to react. Unlike silicate glasses 

with the dissolution of single species, dissolution of borate glasses is controlled by bulk 

dissolution6
; 

7 with an equivalent loss of B, Li, and Ca. That is also why borate glasses 

react faster than silicate glasses. 

Borate glasses in a phosphate solution (K2HP04) undergo a dissolution-precipitation 

reaction. In this process, all of the ions are released to the solution, which produces a 

weight loss. However, when the Ca2
+ ions are released, they react with either Pol­

and/or OH- in the solution and form an insoluble amorphous calcium phosphate (ACP) on 

the surface of the glass particle, which produces a weight gain. 
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Eventually the amorphous calcium phosphate layer crystallizes to form a porous layer 

of hydroxyapatite (Ca10(P04)6(0H)2) as the solution continues to penetrate through the 

HA and ACP layer, the conversion process continues until all of the starting glass has 

reacted/converted. After 96 hours in the 0.5 M phosphate solution, the reacted layer on 

the CaLB-Oo/o glass particles (150-355J..Lm) was only 10-15J..Lm thick. For the same time 

(96 hours), more of the CaLB-22o/o particles were fully reacted compared to the CaLB-

12% particles. 

Overall, the weight loss of the glass exceeds the weight gain due to the formation of 

HA. So the net result is a weight loss is shown as Fig 3. 

In hydroxyapatite some of the Ca2+, Pol-, or OH- can be replaced by other ions. Sulfur 

was not present in the HA layer (see Fig 6) nor did it precipitate as another phase. Phase 

mapping analysis (Fig 6) confirms that there is little, if any, sulfur in the reacted layer. 

The peaks due to sulfur are absent in the micro-Raman spectra of the reacted particles 

(Fig 5) and the spectra are identical to the HA spectrum. 

Therefore, the results suggest that the sulfur in the glass is released to the solution 

during the glass conversion reaction. The pH of the phosphate solution for the sulfur-free 

glass increased while the pH stayed constant or decreased slightly for the solution 

containing the CaLB-12% and CaLB-22% glasses, respectively due to release of sulfate 

lOllS. 
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To determine the reaction kinetics of the CaLB glasses in the phosphate solution the 

normalized weight loss (a) was compared to several reaction models including 

Contracting Volume Model (CVM) and 3D diffusion model for the glasses reacted in 

0.25M and 0.5M K2HP04 at 37°C. 

The normalized weight loss (a) defined as the weight loss over the maximum weight 

loss that measured during the experiment. It was assumed that the reaction was complete, 

where the maximum weight loss occurs, which in this set of experiments was 48 hours 

for CaLB-0% and CaLB-22% and 96 hours for CaLB-12%. 

Comparing different models for the reaction kinetic (data not shown here), the 

contracting volume model was the best fit for glasses reacted in the phosphate solution, 

while the 3D diffusion model fits to the weight loss data very closely to the CVM. For the 

CVM and 3D diffusion, a was calculated using these equations: 

CVM: 1-(1- a) 113= kt 

3D Diffusion Model: (1-(1- a) 113
)

2 
= kt 

in which the "k" is the reaction rate constant and "t" is time. In this equation the relation 

of(l-(1- a) 113
) or (1-(1- a) 113

)
2 with "t" should be linear with the slope of"k". 

The results are shown in Fig 9 for the sulfur-containing CaLB glasses reacted in 0.25M 

and 0.5M K2HP04 at 37°C. The results for the sulfur-free CaLB-Oo/o was not shown 

because the sulfur-free CaLB-0% did not react compared the sulfur-containing CaLB 

glasses so the measured weight loss varies in a very small range and the reaction model 

does not fit the normalized weight loss data points. In another words the data for the 
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sulfur-free CaLB-0% glass is not suitable for the modeling purposes due to the slow 

reaction. The analysis was done just for the first 24 hours of the reaction because it was 

assumed that the phosphate solution properties like pH and concentration of different ions 

might affect the reaction rate/mechanism. 

However, the reaction mechanism for sulfur-containing glasses could be fitted to either 

CVM or 3D diffusion model. Previously8
, it was shown that the reaction mechanism for 

the borate glasses reacted in K2HP04 solution fits the CVM better during the span of the 

experiment while the silicate or borosilicate glasses show a deviation in reaction 

mechanism after ~48 hours of reaction from CVM to the 3D diffusion model and could 

be due to the formation of thick silica gel layer. 

In this work, as it can be seen in Fig 9, the CVM model fits the normalized weight loss 

data of CaLB-22% reacted in either 0.25M or 0.5M phosphate solution, but for the 

CaLB-12o/o reacted in 0.25M phosphate solution the 3D diffusion model provide a better 

match compared to the CVM while the CVM fits the reaction in 0.5M phosphate 

solution. The rate constant for CaLB-22°/o is 2 times bigger than that for the CaLB-12% 

showing that the reaction rate_ for the glass with 22 wt0/o is 2 times higher than the glass 

with 12 wt% sulfur. 

It has been reported that the reaction rate of similar borate glasses increased with 

decreasing calcium content of the glass 16
• Adding ~12 and ~22 wto/o sulfur to the glass 

reduced the CaO content from 39.9% to 35% and from 39.9o/o to 31.1 wt%, respectively 

for the CaLB-12o/o and CaLB-22% glasses (Table 1 ). This small reduction in CaO content 

could also explain the greater reaction rate for the sulfur-containing CaLB glasses. 
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In theory, all the B3
+ and Lt ions in the glass were released and all the calcium in the 

glass reacted with phosphate and hydroxide ions in the solution to form stoichiometric 

hydroxyapatite Ca10(P04)6(0H)2 (Ca!P= 1.67) following these reactions: 

HP0 2
- ---7 P0 3

- + H + 
4 4 

10Ca2 1 + 6PO~- + 20H- ---7 Ca
10

(P0
4

)
6
(0H)

2 

Knowing how much CaO is in the glass, the weight of the HA resulting from the above 

reaction can be calculated thus the change in weight could be calculated. This change 

would be a weight loss, which called the theoretical weight loss. In most cases, the glass 

reacting in a phosphate solution does not attain its theoretical weight loss. One reason is 

that a perfectly stoichiometric HA is not formed. Usually calcium deficient HA (CaDHA) 

is formed which has essentially the same XRD pattern as stoichiometric HA, but has a 

lower Ca/P ratio (1.2-1.4). 

The theoretical weight loss values calculated for the CaLB glasses are shown in Fig 1 0 

along with the weight loss measured after 48 hours in the 0.25 and 0.5 M K2HP04 

solutions at 3 7°C. The difference between the theoretical weight loss and the measured 

weight loss for the CaLB-Oo/o glass is due to incomplete reaction. Fig 11 (A) shows a 

SEM image of a CaLB-0% glass particle reacted in the 0.5 M K2HP04 solution for 96 

hours at 37°C. A high magnification image, Fig 11 (B), of the CaLB-Oo/o glass particle 

shows that not more than 10J..Lm of the particle reacted (d= 150-355J..Lm). 

On the other hand, while most of the CaLB-12°/o and CaLB-22% glass particles are 

completely reacted there are some particles that have an unreacted glass core, see Fig 11 

(C). The weight loss curve becomes nearly constant after 48 hours of reaction. The 
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difference between the measured and theoretical weight loss could be due to the 

formation CaDHA with lower Ca/P compared to synthetic HA. Sulfur-containing glasses 

reacted more compared to the sulfur-free glass but they formed CaDHA. 

The Ca/P ratio of a CaLB glass similar to CaLB-22% reacted in K2HP04 solution 

(pH=9) at 37°C has been measured previously16 and reported a value of ~ 1.6. The 

difference could be because of difference in sulfur content of the glass or the reaction 

parameters like pH. 

Another reason for the difference between the measured and theoretical weight loss for 

CaLB-12% and CaLB-22% glasses could be that not all B3+ and Li+ ions are released to 

the solution. In the other words, the sulfur-containing CaLB glasses did not react 

completely with the phosphate solution. 

V. Conclusion 

Substituting CaS04 for CaC03 in the batch materials improved the glass-forming 

tendency of the CaLB glass containing 40 wt% CaO. XRF analysis showed that sulfur (as 

S03) was present in the CaLB glasses at concentration up to 20 wt% S03. Micro-Raman 

spectra also indicated that sulfur was present in glass in the form of sol- groups. 
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The base glass (CaLB-0%) contains more CaO and LhO (56.1 mot<%) compared to the 

sulfur-containing CaLB glasses (<51 mot<%) so, ideally, the glass network contains more 

B03 triangles with one NBO. The dissolved sulfur in the borate glass converts some of 

the NBOs to BOs as the sulfate tetrahedrons are formed. This way sol- cross-linked with 

boron-oxygen network and reduces NBOs. Sulfate ions in the glass structure did not 

affect the density or molar volume, but did increase T g slightly. 

Sulfur-containing glasses (CaLB-12% and CaLB-22%) reacted 4 to 6 times faster than 

the sulfur-free glass (CaLB-0%). The reaction rate also depends on sulfur content of the 

glass. The sulfur-containing CaLB-22% reacts 2 times faster than the other sulfur­

containing glass CaLB-12%. 

Sulfur was not detected by EDS, or micro-Raman in the reacted layer and no sulfur­

containing phase was identified using XRD after the reaction in the K2HP04 phosphate 

solution. During reaction the sulfur in the glass was released to the phosphate solution as 

indicated by the decrease in pH. 

Hydroxyapatite formed for both sulfur-free and sulfur-containing glasses reacted in the 

K2HP04 solution at 37°C. Sulfur-containing glasses developed a reacted layer with a 

lower Ca/P ratio (---1.2±0.2) compared to the sulfur-free glass (---1.5±0.2), which is an 

indication ofCaDHA. 

In the biomedical application, increasing the reaction rate of the glass could be 

beneficial in hard tissue (bone) regeneration when there is a time constraint like 

pediatrics orthopedics or athletic injuries or soft tissue regeneration (wound healing) for 

skin bums when the healing time is crucial. Sulfur participates in different biological 
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processes so a glass that releases sulfur in the in-vivo environment could be helpful in 

different dermatological and orthopedic applications. 
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Table 1. As-Batched composition, analyzed* (XRF) composition, density (p) and molar 
volume (V m) for glasses melted at 11 OOOC for one hour. The values in ()are Molo/o. 

so3 CaO LhO B203 p Vm 
Glass 

wto/o 
Identifier 

glcm3 cm3/mol 
(mol 0/o) 

0.0 40.0 7.5 52.5 
..s:::: u 

~ 
~ 

(0) ( 41.5) (14.6) (43.9) co 
0 

2.64 22.0 I 

co 
......:~ 0.0 39.9 7.5 52.6 ro 
u 

~ (0) ( 41.5) (14.6) (43.9) 

12.5 35.0 6.6 45.9 
..s:::: u 

~ ~ 
(9.4) (37.6) (13.3) (39.7) N co 

........ 2.64 22.8 I 

co 
11.4 35.7 6.6 46.3 ......:~ ro 

~ u 
>< (8.5) (38.3) (13.3) (39.9) 

22.3 31.1 5.8 40.8 
..s:::: u 

~ ~ 
(17.3) (34.4) (12.0) (36.3) N co 

N 2.62 23 .6 I 

co 
20.5 32.0 5.9 41.6 ......:~ ro 

~ u 
(15.8) (35.2) (12.2) (36.8) 

w 

Analyzed for 803 and CaO only. L120 and B20 3 concentration deternuned by difference from 
100°/o. 



Table 2. DT A data. Minor phases formed at T x 1 for CaLB-0% and CaLB-12% and at 
T x2 for CaLB-22%. 

Glass Tx1 (C)/ Tx2 (C)/ 
Minor Phases 

Tg(C) Identified by 
Identifier Crystal Crystal 

XRD 

CaLB-0% 477 
598/ 

CaO.B203 
2CaO.B203 

-

608/ 
2CaO.B203 

CaLB-12o/o 492 
CaO.B203 

- CaS04 
CaS03 

653/ 
2CaO.B203 

CaLB-22% 502 559/ CaS04 
CaO.B203 

LhO.B203 
LhS04 

30 
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Figure 1. Micro-Raman spectra for CaLB-0%, CaLB-12%, and CaLB-22% glasses. 
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Figure 2. Typical DT A spectra for CaLB-0%, CaLB-12%, and CaLB-22% glasses. T g 

= Glass transition temperature, T X = Crystallization temperature, T m = Melting, Heating 
rate= 1 0 o C/min. 
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Figure 3. Percent weight loss for a sample CaLB glass reacted in (A) 0.25M and (B) 
0.5M K2HP04 solutions at 37°C with initial pH= 10. The final pH of the solution after 
,....,96 hours of reaction is given for each glass. The lines are for guidance. The arrows for 
each glass point to the weight loss after reaction for -96 hrs. The error bars are estimates 
based on weighing measurements. 
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• 009-0432 Ca10(P04)6(0H)2 Hydroxyapatite 
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Figure 4. XRD pattern for the CaLB-Oo/o, CaLB-12%, and CaLB-22o/o glass particles 
(150-355f..Lm) after reaction in the O.SM K2HP04 solution at 37°C for 96 hours. 
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Figure 5. Micro-Raman spectra of particles (150-355~m) reacted in a O.SM K 2HP04 

solution at 3 7°C for 96 hours. Bottom curve is HA (Fisher Scientific St Louis MO- Cat#: 
C133-212) 



36 

Ca 

p s 
Figure 6. Phase mapping analysis for calcium (Ca), oxygen (0), phosphorus (P), and 

sulfur (S) for a CaLB-12o/o glass particle that had reacted in the 0.5M K2HP04 solution at 
37°C for 96 hours. 
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(A) 

(B) 

+RO 

(C) 

Figure 7. Schematic of incorporation of sulfate ions in the borate glass structure. (A) 
Shows how vitreous B20 3 converts to a cross-linked 3 dimensional structure with No 
non-bridging oxygen ion at 33 mol% R20+RO. (B) Shows how 66.67 B203 . 33.33 
R20+RO structure converts to 50 B20 3 • 50 R20+RO structure (The CaLB glasses). (C) 
Adding sulfur to 50 B20 3 . 50 R20+RO structure (The sulfur-containing CaLB glasses). 
R= Alkali or alkali earth metal. 0= Bridging oxygen, o-=Non-bridging oxygen, S= 
Sulfur, B= Boron 
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Figure 8. Schematic of the conversion process of CaLB glasses to Hydroxyapatite. 
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Figure 9. Reaction kinetic modeling of sulfur-containing CaLB glasses reacted in (A) 
0.25M and (B) 0.5M K2HP04 solution at 37°C with initial pH= 10. Horizontal axis is 
time (hours) and vertical axes are CVM and 3D Diffusion model equations. The 
normalized weight loss is "a". The equation for each fitted line is provided along with the 
coefficient of determination for linear regression (R 2). 
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Figure 10. Comparison of the measured weight loss at 48 hours for CaLB glasses 
reacted in 0.25 and 0.5 molar K2HP04 solution at 3 7°C with their theoretical weight loss 
(assuming stoichiometric HA forms). 
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Figure 11. SEM image ofthe cross section of a CaLB-0% (A and B), CaLB-12% (C), 
and CaLB-22% particle reacted in 0.5M K2HP04 solution at 3 7°C for 96 hrs. (B) is a 
magnified image of the black box showed in (A). 
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APPENDIX: SUPPLEMENTARY DATA FOR PAPER 1 
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Figure 1. XRD spectra for (A) CaLB-0% glass particles crystallized at 598°C and (B) 
CaLB-12% glass particles crystallized at 608°C. 



44 

+ 01-072-0503- CaS04 
+ 

+ 

10 20 3C 40 50 60 70 80 

29 (degree) 

Figure 2. XRD spectra for (A) CaLB-22% glass particles crystallized at 559°C and (B) 
CaLB-22o/o glass particles crystallized at 653 °C. 
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Temperature ("C) 

Figure 3. Two typical DT A spectra for CaLB-12% glass showing that this spectrum is 
reproducible. The endothermic peaks ,...., 700°C and the endothermic peak ,....,950°C is 
repeated after running this sample again using the same DT A. 
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Figure 4. XRD pattern for the CaLB-0%, CaLB-12%, and CaLB-22o/o glass particles 
(150-355J..Lm) after reaction in the 0.25M K2HP04 solution at 37oC for 96 hours. 
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Figure 5. Micro-raman spectra of particles (150-355J.!m) reacted in a 0.25M K2HP04 
solution at 3 7°C for 96 hours. Bottom curve is HA (Fisher Scientific St Louis MO- Cat#: 
C133-212) 
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Figure 6. Phase mapping analysis for calcium (Ca), oxygen (0), and phosphorous (P) 
for a CaLB-Oo/o glass particle that had reacted in the 0.5M K2HP04 solution at 3 7oC for 
96 hours. 



49 

Figure 7. Phase mapping analysis for calcium (Ca), oxygen (0), and phosphorous (P) 
for a CaLB-22% glass particle that reacted in the 0.5M K2HP04 solution at 37°C for 96 
hours. 
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Abstract 

The effect of sulfur and phosphorus on the conversion of two different bioactive borate 

glasses was studied, in-vivo. Discs made from two sulfur-free glasses (CaLB-0 and 93B3-

0) and two sulfur-containing glasses (CaLB-12 and 93B3-6) were implanted in a 

subcutaneous site in rats for 2, 4, and 12 weeks. Each rat remained healthy during the 

experiment and there were no sign of infection or adverse reaction at the implantation 

site. 

The CaLB glass discs reacted with the body fluids and formed a thin calcium phosphate 

reacted layer on their surface, but the 93B3 glass discs reacted to form a thicker calcium 

phosphate reacted layer with an onion-skin structure. The phosphorus-free CaLB 

implants compared to phosphorus-containing 93B3 implants, the CaLB implants 
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absorbed 2 times more phosphorus from the body fluids to form the calcium phosphate 

reacted layer. 

Compared to the CaLB implants, the connective tissue attached to the 93B3 implants 

was ---3 times thicker, and qualitatively contained more blood vessels and collagen. For 

all of the sulfur-containing implants sulfur released to the body fluids and was not 

presented in the reacted materials. Sulfur had only a small effect on the in-vivo reaction 

of the CaLB glasses but the sulfur-containing 93B3-6 glass had a 2 to 3 times greater 

reaction rate compared to the sulfur-free 93B3-0 glass in-vivo. 

I. Introduction 

Sulfur is the key in three amino acids in the human body; two essential amino acids 

cysteine, methionine, and one non-essential amino acid, taurine. Sulfur also found in 

many other compounds in the body i.e. heparin, insulin, thiamin, biotin, and chondroitin 

sulfate1
• Methionine is an essential amino acid that is not synthesized in the body so it 

must be supplied from external sources. Methionine is responsible for the formation of 

cysteine, which participates in most of sulfur-containing reactions in the body. Cysteine 

is a precursor in the production of antioxidant glutathione and also in the formation of 

disulfide bridges. A disulfide bridge is a covalent bond of two sulfur-containing groups. 

This is the bond that gives rigidity and toughness to human hair and nails. Keratin, which 

contains a large amount of cysteine, is the key component of skin, hair, and nail. Sulfur 

has a long history of treating different dermatological disorders2
; 

3 and helps in wound 

healing via the formation of keratin2
. 
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Another sulfur-containing material, which plays an important role in cartilage and bone 

function, is chondroitin sulfate. Chondroitin sulfate is a major component of extracellular 

matrix (ECM) and cartilage. The resistance behavior of cartilage tissue to compression is 

because of packed sulfate groups in chondroitin sulfate. 

Sulfate has a long history in biomedical science. Calcium sulfate is a FDA approved 

material that was one the first materials used in orthopedic surgery, more than I 00 years 

ago. Calcium sulfate is an effective bone graft material that is completely resorbed in­

vivo in 5 to 7 weeks4
; 

5
. It does not cause inflammation, foreign body reaction or rejection 

of the implant. Calcium sulfate is an osteoconductive and angiogenic material, which 

makes it a good candidate for use in bone scaffolds4
; 

6
-
8

. It has been reported that when 

CaS04 is used in-vivo as bone regeneration implant, it reduces the local pH and makes the 

environment more acidic by releasing sulfate ions. This causes the adjacent bone to 

demineralize and release matrix-bound bone growth factor, which stimulates the growth 

of new bone9
• 

Bioactive glasses were discovered in 1971 10
• The most used bioactive glass, 45S5, is a 

silicate glass with a low silica content (compared to other more durable silicate glasses) 

and a high calcium to phosphorus ratio (......, 1 0). It is biocompatible as well as bioactive in­

vivo. It bonds to adjacent bone via a carbonated hydroxyapatite layer on the glass surface. 

Over the last 40 years the mechanism of how Bioglass® reacts with body fluid and bonds 

to bone have been studied in detail 11
-
13

• 

Recently it has been shown that other glass forming systems like borate glasses are also 

bioactive14
-
17

• Borate glasses, like silicate glasses, convert to hydroxyapatite (HA) either 
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be controlled by changing the composition of the glass i.e. adding Si02, alkali, and/or 

alkaline earth. 

Studying the release of ionic dissolution products from inorganic materials plays an 

important role in understanding their bioactivity as well as their angiogenic and 

antimicrobial behavior20
. For instance ionic dissolution products of 45S5 and other 

silicate glasses have been shown to stimulate the expression of several genes of 

osteoblastic cells21
. 

Bioactive glasses have the ability to contain several different inorganic ions in their 

structure and release them while converting to HA. By altering the composition of a 

bioactive glass, it is possible to deliver different ions that have anabolic effects on bone 

·metabolism like Cu, Zn, Sr, etc.22
-
25

• Several studies have investigated the effect of such 

elements on bone and tissue regeneration25
• Several promising results indicate that 

scaffolds made from bioactive glasses have the potential to deliver, in a controlled 

manner, elements that are required for bone regeneration. 

Although calcium sulfate has a long history in bone regeneration, doping a glass with 

sulfur for biological purposes has never been reported, nor has the effect of sulfur in-vitro 

or in-vivo on the glass degradation rate, conversion products, and body response. In the 

present work, two calcium lithium borate glasses were doped with sulfur by using CaS04 

to supply a quarter of the CaO in the glass composition and the remainder from CaC03. 
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Since this is the first time (to the authors knowledge) that a glass doped with sulfur was 

tested in-vivo any evidence of toxicity such as tissue necrosis or mast cell, was also of 

interest in the present work. 

Based on prevtous work (evaluation of sulfur-doped borate glasses in-vitro) it was 

expected that adding sulfur to the glass would also affect its reaction in-vivo. The effect 

of sulfur on the conversion rate, the conversion products, and the structure of the reacted 

materials were investigated by implanting these glasses subcutaneously in rats for up to 

12 weeks. 

Histological studies were done to investigate the possible toxicity or inflammatory 

response in the animal. In this study, the effect of sulfur on the formation of new micro 

vessels was studied by evaluating tissue sections stained with H&E and CD3 1 staining. 

Collagen formation is important either in soft or hard tissue repair and regeneration so the 

sulfur-containing glasses were compared with sulfur-free glasses in terms of collagen 

formation by evaluating histology sections stained with Masson's Trichrome. 

II. Experimental Procedure 

(1) Glass Compositions and Preparation 

The compositions of the bioactive glasses investigated are shown in Table 1. The raw 

materials used were reagent grade H3B03, CaC03, CaS04, LhC03, K2C03, Na2C03, 

MgC03, and NH4H2P04. Calcium sulfate was the source of sulfur in the sulfur-containing 

glasses. One quarter of the CaO content in the CaLB glass and 93-B3 glass was supplied 

by CaS04, and the remainder by CaC03• The glasses were melted in a platinum crucible 
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in an electric furnace for 1 hour at 11 OOOC, for the CaLB glasses and at 1 050°C for the 

93-B3 glasses. Each melt was then poured and quenched between two copper plates. 

Cylindrical rods, 9mm in diameter were made from the 93B3-0 and 93B3-6 glasses. 

(2) In-vivo Experiment 

a. Implant Preparation and Sterilization 

Rods, 9mm in diameter, were cast from the 93B3-0 and 93B3-6 melts, annealed at 

550oC for 2.5 hour, and then cut with a diamond saw into 2mm thick discs. Small pieces 

of the quenched CaLB-0 and CaLB-12 glass were annealed at 595°C and 615°C, 

respectively, and then polished with SiC polishing papers (180, 320, 600 grit) to smooth 

the sharp edges and comers to form discs about 7mm in diameter and 2-3 mm thick. 

These discs were selected to be about the same size as the 93 B3 discs but were not 

exactly the same shape. Each disc was washed with acetone and ethanol and then placed 

in glass vials covered with aluminum foil and sterilized in an oven at 300°C overnight. 

b. Subcutaneous Implantation in Rats 

Six female SD rats between the ages of 16 to 18 weeks were used in this experiment. 

Two rats ( 4 implants per animal) were used for each time period of 2, 4, and 12 weeks. 

Out of the two rats for each time period, the implants in one rat were used in histology 

studies and implants in the other rat were used for X-Ray Diffraction (XRD), Scanning 

Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and micro-Raman. 

The implants used for histology analysis were decalcified (dissolved the glass 

completely) so they could not be used for XRD or similar analysis. 



56 

Each rat was pre-anesthetized with a mixture of C02/02 gas prior to an intraperitoneal 

injection of anesthetic (ketamine/xylazine 0.1 mill OOg). Each rat was shaved with a razor 

from the base of its tail to its neck and then cleaned with iodine solution to remove the 

hair and disinfected the incision sites. Four 1 em incisions were made on the back and a 

sample of each glass was implanted in the pocket under each incision, as shown in Fig 1. 

After implantation, the incision was closed with 9mm wound clips and each rat 

received 0.2ml of penicillin intramuscular (0.1 ml in each hind leg). After surgery, each 

rat was kept warm in a recovery cage until it regained complete consciousness 

whereupon it was moved to a separate cage. The glass implants remained in the rats for 2, 

4 and 12 weeks. 

c. Implant Removal and Processing 

The rats were euthanized in a sealed container with C02 gas. The back of each rat was 

shaved and cleaned and the implants were then removed from the subcutaneous tissue. 

For each glass, the implant was put in 70o/o ethanol and then moved to 100% ethanol. 

These implants were evaluated by SEM, micro-Raman, and XRD. The other implant of 

each glass was fixed in a 10% formalin solution at 3 7°C for 3 days. Each implant was 

washed with running distilled water and then decalcified in 15ml of CalEx II (Fisher 

Scientific St. Louis MO) up to 12 hours. After decalcification each sample was washed 

with running distilled water again and then dehydrated with a series of ethanol solutions 

from 70% to 100% in a microwave tissue processor (EBSciences H2850 Microwave 

Processor) operating at 65% power for two and a half minutes. Each implant remained in 

the ethanol solution for 13 more minutes. 
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The implants were kept in xylene for another hour and then placed in warm tissue 

paraffin at 65°C for 3 hours. To complete the paraffin infiltration, tissues were infiltrated 

with the warm paraffin under vacuum. 

The scaffold was then mounted in a parrafin block for histological sectioning with a 

paraffin mounting system (Leica EG 1150H). 

Sections lOJ.!m and 5J.!m thick were cut with a low profile microtome blade (Thermo 

Scientific MB35) and floated on a water bath (Lipshaw Electric Tissue Float, model 

number 375, Detroit Ml) at 45°C prior to mounting on a glass slide (Fisher Brand 

Superfrost microscope slides, St. Louis MO). Three or four tissue sections were placed on 

each slide, and dried overnight on a slide dryer (Fisher Scientific slide warmer, St. Louis 

MO). 

(3) Sample Analysis 

a. X-Ray Diffraction 

All phase identification of in-vivo implants (one sample for each glass for each time 

period) was done with either a Panalytical X'Pert Pro (MPD) or a Panalytical X'Pert 

Materials Research Diffractometer (MRD). Both diffractometers used Cu Ka 

radiation. The MPD used a minimum step size of 0.026° while the MRD had the incident 

angle fixed at one degree and a step size Of 0.03° with a counting time of 1.5 seconds. 

The MPD was usually used for a bulk sample while the MRD was used for thin films and 

the surface of the samples. The XRD patterns obtained from each instrument were 

compared and the pattern with the most distinguishable and sharper peaks was chosen. 
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The spectra were collected from 10 to 80 degrees (28), but only the spectra from 25 to 70 

degrees (28) are shown herein. 

b. Micro-Raman 

To identify the different phases across the cross-section of the disc implants the micro-

Raman (LabRAM ARAMIS, Horiba Jobin Yvon) spectra were measured from 200 to 

2000 cm-1 at several points using a diode laser (585 nm). The device was calibrated prior 

to measuring the spectra for each sample with a piece of a silicon wafer. 

c. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy 
(EDS) 

A field emission Hitachi S-4 700 SEM was used for microstructural analysis. This 

microscope was equipped with a Silicon Drift Detector (SDD) (EDAX Inc. Mahwah, NJ) 

which was used for elemental and phase mapping. The uncertainty in EDS analysis could 

be considered as ±5% through out this work. 

Each implant was put in xylene for 1 hour and then infiltrated with Poly(methyl 

methacrylate), PMMA. The samples were then polished with SiC polishing papers (180 

to 1200 grit). The cross-section of each implant was analyzed by SEM. 

Elemental mapping of the reacted layer was collected to distinguish between the 

different phases that formed from the in-vivo conversion of the glass disc. 

The thickness of the reacted layer was measured by ImageJ software and the average 

thickness value of at least 10 measurements is reported while standard deviation of the 

data set is calculated as the uncertainty. The thickness of the reacted layer was measured 
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around the center of the disc where the thickness is relatively uniform as opposed to the 

comers where the thickness varies (see Fig 2). 

d. Histology 

The tissue sections were stained by Hematoxylin and Eosin (H&E), 

immunohistochemical CD31, and Trichrome, at the Pathology Laboratory at the Phelps 

County Regional Medical Center (PCRMC), Rolla MO. 

(4) In-vitro Experiment 

In order to compare the in-vivo results with the in-vitro environment, discs of each 

glass were reacted in simulated body fluid (nSBF) for one week. The formulation of the 

different SBF solutions and blood ion concentration are given in Table 2. The nSBF has a 

composition slightly different from that of the commonly used SBF solution26 in terms of 

ion concentration. The difference between these two SBF compositions is mostly in the 

carbonate concentration. The new SBF (nSBF) contains 127 mM of C03
2

-, which is not 

only more than the Kokubo SBF27
, but it matches the carbonate concentration in human 

blood. After one week, the glass discs were washed with DI water and ethanol and dried 

at 90°C. The reaction products that formed on the surface of the disc were identified by 

XRD. 
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III. Results 

(1) Implant Recovery and Tissue Examination 

All six animals were in good general health and showed no outward sign of distress 

before euthanizing. The tissue around each implant was visually assessed at the time of 

removal and its general appearance before and after surgery is shown in Fig 3 and 4. No 

change in the size or shape of the implant was obvious after 2, 4, or 12 weeks of 

implantation. There was also no visual sign of necrosis, or any type of adverse reaction. 

Comparing the 2 week column in Fig 3 with the 4 week column and the 12 week 

column indicates no significant difference in the redness at the surface of the implants, 

probably due to vascularity, for the CaLB-0 and CaLB-12 implants. However in Fig 4, 

the 93B3-0 implants show more redness after two weeks, which diminishes at four weeks 

and vanishes at 12 weeks (last column). In contrast, in the 93B3-6 implants, the redness 

remains even after 12 weeks. 

(2) SEM and EDS 

A schematic of a glass disc reacted inside a rat is shown in Fig 2. The glass disc was 

partially reacted and the subcutaneous tissue was attached to it. The cross-section was 

examined using SEM and micro-Raman spectroscopy to identify the different elements 

present and the phases formed in the reacted layer. 
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a. Backscattered Electron Microscopy 

The implant cross-section was examined by SEM and the reaction layer thickness was 

measured after 2, 4, and 12 weeks in-vivo. The average reaction rate was calculated for 

each glass and is reported in Table 3. The reaction rate of the 93B3 glasses, sulfur-free or 

sulfur-containing, was 4 to 10 times greater than that for the comparable CaLB glasses. 

The reaction rate for all of the glasses decreased with the time in-vivo. 

The reaction rate for the sulfur-containing CaLB-12 glass was not significantly 

different from that for the sulfur-free CaLB-0 glass. However, the sulfur-containing 

93B3-6 glass reacted about 3 times faster than the sulfur-free 93B3-0 glass in the first 2 

weeks. The reaction rate decreased for both 93B3 glasses after 4 and 12 weeks, but the 

sulfur-containing 93B3-6 glass still reacted faster than sulfur-free 93B3-0 glass. 

Figure 5 shows the reacted layers that formed in-vivo on the CaLB and 93B3 implants. 

A thin solid reacted layer formed on both of the CaLB implants when they reacted with 

the body fluids in-vivo (Fig 5 A and B). However, the reacted layer on the 93B3 implants 

was a layered structure, which was highly porous since the PMMA was able to penetrate 

to the space between the layers, all the way to the unreacted glass (See Fig 5 C, D, E, and 

F). This type of structure was more distinct for the 93B3-6 implant (Fig 5 D and F) than 

for the 93B3-0 implant. 

b. Elemental Mapping Analysis 

All four implants exhibit the same behavior in terms of elemental mapping over the 12 

week experiment. The results presented here are for the implants after 12 weeks in the 
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subcutaneous site and the remainder of the elemental mapping data are given in Figures 1 

and 2 in the Appendix. 

Elemental mapping analysis of CaLB-0 and CaLB-12 glass implants after 12 weeks in­

vivo are shown in Fig 6. The elements that were identified by elemental mapping analysis 

of these implants are: Calcium (Ca), Phosphorus (P), Oxygen (0), Sulfur (S), and Carbon 

(C). Boron and lithium were not detected because of their low atomic number. Calcium 

was found in the unreacted glass (G) and the reacted layer (RL). As expected, phosphorus 

was only found in the reacted layer while sulfur was detected in the unreacted CaLB-12 

glass only. Carbon was an indication ofPMMA (PM). No map for oxygen is shown since 

oxygen was found everywhere as expected, in the unreacted glass, reacted layer, and 

PMMA. 

Figures 7 and 8 show the elemental maps for the 93B3-0 and 93B3-6 implants, 

respectively, after 12 weeks in the subcutaneous site in a rat. Elemental mapping analysis 

of these glasses identified Ca, P, S, Na, K, Mg, 0, and C. Boron was not detected because 

of its low atomic number. The reacted layer contains calcium and phosphorus as 

expected. The phosphorus was more concentrated in the extreme outer surface of the 

reacted layer in both 93B3-0 and 93B3-6 implants. Sodium (Na) and K were detected in 

the unreacted 93B3-0 and 93B3-6 glass while Mg was detected in both the unreacted 

glass and the reacted layer, see Figures 7 and 8. Sulfur only detected in the unreacted 

93B3-6 glass, see Fig 8. 

The molar calcium to phosphorus ratio was measured at several points in the reacted 

layer of each glass after 12 weeks in-vivo. As already mentioned, the most outer surface 



63 

of the reacted layer of the 93B3 implants was richer in phosphorus. The Ca/P ratio of the 

most outer, phosphorus-rich layer for the 93B3-0 and 93B3-6 implants was I. 7 and 1.6, 

respectively (Ca/P ratio for stoichiometric HA is 1.67). The Ca/P ratio for the reacted 

layer containing less phosphorus for the 93B3-0 and 93B3-6 glasses was about 4 

compared to 6.3 and 6.5, respectively, for the as-melted glasses. The Ca/P ratio for the 

reacted layer on both of the CaLB glasses was ~ 1. 7, but it increased to about 10 to 11 

very close to the unreacted glass. 

(3) Micro-Raman Analysis 

The micro-Raman spectra of the reacted layer formed on the CaLB-0 implant after 12 

weeks in-vivo are shown in Fig 9. The spectra at four selected points, which included the 

reacted layer (RL), are shown in Fig 9. The spectrum for point #1 is that for the unreacted 

glass, which matches the spectrum for the as-made CaLB-0 glass (Part I of this thesis). 

Point #2, which is within the reacted layer close to the glass, represents material that is 

newer than that at point #3, which corresponds to the older material at the outer surface 

of the reacted layer. The phosphate peaks at 960, 570, and 420 cm- 1 are more intense at 

point #3, while the carbonate peaks at 1085 and 711 cm- 1 are more intense at point #2. 

Similar results for the sulfur-containing CaLB-12 glass are shown in Fig 10. The main 

difference in the spectra for the CaLB-0 and CaLB-12 implants is that even the older 

material (point #3 ), which is farther from the unreacted glass surface, appears to be more 

carbonated compared to the same region (point #3 in Fig 9) of the reacted layer of the 

sulfur-free, CaLB-0, implant. The micro-Raman spectra for the 93B3 implants are given 

in Figures 3 and 4 in the Appendix. 
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(4) XRD 

The XRD patterns for the implants after 12 weeks in-vivo are shown in Fig 11. 

Hydroxyapatite and calcite (CaC03) were identified in all the implants after 12 weeks in­

vivo. The peaks for the CaLB implants are more intense and more easily distinguishable 

than those for the 93B3 implants. The XRD pattern for CaLB-12 (second curve from the 

bottom in Fig 11) shows that the primary phase is calcite (peaks for calcite (CaC03) are 

more intense than those for HA). 

Prior to this in-vivo experiments a similar in-vivo study was performed as a pilot study 

in which CaLB-0 and CaLB-12 glass discs were implanted subcutaneously in a rat for 2 

weeks. The XRD patterns showed that the sulfur-free CaLB-0 glass converted to 

hydroxyapatite while the sulfur-containing glass (CaLB-12) transformed to calcite (see 

the spectra in Fig 5 in the Appendix). The CaLB and 93B3 glasses were also reacted in 

the nSBF solution for 1 week at 3 7°C. The XRD patterns in Fig 12 show that the CaLB 

glasses reacted to form calcite (CaC03), whereas, the 93B3 glasses reacted to form an 

amorphous material. 

(5) Histology- Stained Tissue Sections 

Due to over decalcification of the 12 week implants, the quality of the tissue sections 

was poor so no histology results for the 12 week implants are presented in this work. 
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a. H&E Staining 

i. CaLB Glasses 

Figure 13 shows the tissue sections stained with H&E for the CaLB-0 and CaLB-12 

implants after 4 weeks in-vivo. H&E staining is helpful in differentiating different cells 

by staining the nuclei and the cytoplasm. The attached (red/pink) tissue consists of 

connective tissue close to the unreacted glass along with connective tissue and adipose 

(fat) tissue farther from the unreacted glass, which may or may not contain micro blood 

vessels. 

In the H&E stained sections of the sulfur-free glass (CaLB-0), reacted for 2 weeks in­

vivo (see Fig 13 (A)) there was no sign of blood vessels; only a narrow band of 

connective tissue about 50-1 OOJ.!m thick surrounded the unreacted glass. After 4 weeks 

in-vivo, the surrounding tissue was about 60J.!m thick (see Fig 13 (B)) and no blood 

vessels were observed. 

For the sulfur-containing glass (CaLB-12) several blood vessels were observed in the 

surrounding tissue, after both two (Fig 13 (C)) and four weeks (Fig 13 (D)) in-vivo. The 

connective tissue layer was also thicker (-300J..1m) compared to that for the sulfur-free 

CaLB-0 glass. 

ii. 93B3 Glasses 

Figure 14 shows representative H&E stained tissue sections for the 93B3-0 ((A) and 

(B)) and 93B3-6 ((C) and (D)) implants. The sulfur-free 93B3 glass has been reported to 

be angiogenic28
• The H&E stained sections in Fig 14 (AA), (BB), (CC) are magnified 
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images of the area in the black box in (A), (B), and (C), respectively. Several blood 

vessels were observed in the tissue surrounding the implant after 4 weeks in-vivo. 

The tissue surrounding the sulfur-containing 93B3-6 implant at 2 and 4 weeks in-vivo 

appeared similar to that for the sulfur-free 93B3-0 implant. Several micro vessels 

surrounded the implant after 2 or 4 weeks in-vivo, see Fig 14 (C, CC, D). 

b. CD31 Staining 

To confirm the presence of blood vessels, tissue sections were stained with CD31, 

which is an immunohistochemistry staining for endothelial cells that is used to detect 

endothelium tissue. Endothelium is the first interior layer (thin layer) of a blood vessel, 

which in CD31 sections is stained brown as where the connective tissue is stained blue. 

In the present work, human antibodies in the staining materials are used against rat 

tissue (antigen). Antibodies from humans cross-link with rat antigens and make an 

antibody-antigen bond, which stains brown in the CD31 staining. 

Figure 15 shows a CD31 stained section from a sulfur-free 93B3-0 implant, along with 

a tissue section from the same spot stained by H&E. As can be seen, the points denoted 

by the arrows in the H&E stained section are stained brown in the CD31 section, 

confirming that blood vessels are present at these points. 

The CD31 stained sections of all 4 compositions had a visible brown layer adjacent to 

the unreacted glass. As an example, a CD31 stained section of all 4 glasses implanted in­

vivo for 4 weeks is shown in Fig 16. This brown layer does not have the morphology of 

the endothelium (thin circular shape) and it is more like a sheath surrounding the implant. 



67 

c. Trichrome 

To detect collagen formation, selected sections were stained with Masson Trichrome. 

In this stain, cell nuclei are stained black, keratin and muscle fibers are stained red, and 

collagen is stained blue. 

There was no sign of collagen around any of the implants at 2 weeks, but after 4 weeks 

in-vivo collagen (blue) was present in the tissue adjacent to all of the implant as shown in 

Fig 17. There was more collagen surrounding the 93B3 implants than the CaLB implants. 

The tissue surrounding the 93B3-0 and 93B3-6 implants contains similar amount of 

collagen, but the tissue surrounding the CaLB-12 implants appeared to contain more 

collagen than the tissue surrounding the CaLB-0 implant. 

IV. Discussion 

(1) Reaction of Glasses In-Vivo 

a. Reaction Rate and Reacted Layer Structure 

The reaction rate of borate glasses in-vivo and in-vitro (part one of this thesis) depends 

on the composition of the glass as well as the structure of the reacted layer (dense or 

onion-skin layered) or the experimental conditions like glass to solution ratio could affect 

the reaction rate. The effect of these parameters on the reaction rate of the CaLB and 

93B3 glass implants in-vivo will be discussed in this section. 

The reaction rate for the two 93B3 glasses was 4 to 10 times higher than for the CaLB 

glasses (see Table 3). This difference in reaction rate was expected since the CaLB 
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glasses contain twice as much CaO as the 93B3 glasses, while both glasses contain 

almost the same amount of B20 3. The reaction rate of borate glasses in-vitro in 

phosphate-containing solutions such as SBF was reported to increase by decreasing the 

Ca content of the glass29
• The amount of CaO is important because as the Ca2

+ ions 

dissolve from the glass they react with any nearby phosphate to form an amorphous or 

crystalline calcium phosphate precipitate. 

Assuming that the reaction rate in-vivo also increases by decreasing theCa content of 

the glass it was expected that the 93B3 glass implants (-,20 wto/o CaO) would react faster 

than the CaLB glass implants (35-40 wt% CaO). 

The average in-vivo reaction rate decreased for all of the glasses from 2 to 12 weeks. 

The average reaction rate for the CaLB glasses decreased 4 to 5 times in 12 weeks, 

whereas it decreased only 2 times for the 93B3-0 glass and ~3 times for the 93B3-6 glass. 

The decrease in reaction rate is attributed to the composition of the glasses and/or the 

structure of the reacted layer. The CaLB glass implants contains 35-40 wt% CaO and 

they developed a single, relatively dense reacted layer on their surface that could slow the 

body fluids from reaching the unreacted glass (see Fig 5 (A,B)). In contrast, the 93B3 

glass implants contained ~20 wt% CaO and the reacted layer was a more open (onion­

skin) structure (see Fig 5 (E,F)) that could allow the body fluids to reach the unreacted 

glass easier. In bone repair and regeneration (especially in load bearing bones), the 

structure of the reacted layer on the CaLB glasses is expected to be mechanically stronger 

compared to the reacted layer of the 93B3 glasses. 
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The CaLB-12 glass reacted ---4 times faster than the CaLB-0 glass in-vitro in a 0.5M 

K2HP04 phosphate solution at 37°C (Part I of this thesis Fig 3). However, the average 

reaction rate of the CaLB-12 glass is roughly the same as that for the CaLB-0 glass in­

vivo (see Table 3). 

The difference between the in-vitro and in-vivo reaction rate could be due to the 

difference in the glass to available solution ratio. The glass to solution ratio was much 

less (5mg/ml) in-vitro compared to in-vivo (---12mg/ml, estimated from the weight of the 

implanted glasses and total amount of extra cellular fluids in a 400g rat). Also, the 

phosphorus content of the K2HP04 solution (0.25M or 0.5M) was 250 or 500 times 

greater than the phosphorus content of the body fluids (0.001M) in the rat. In addition, 

the denser reacted layer (---- 15 J.lm thick) could limit the flow of body fluids to the implant 

and thus slow the reaction. 

b. Effect of Sulfur 

Sulfur did affect three parameters, (a) the reaction rate of the 93B3 implants, (b) the pH 

of the body fluids, and (c) the composition of the reacted layer. In the next few 

paragraphs the effect of sulfur on these parameters will be discussed. 

Sulfur did not affect the average reaction rate of the CaLB glasses but it had a large 

effect on the 93B3 glasses. The sulfur-containing 93B3-6 implants reacted 2 to 3 times 

faster than the sulfur-free 93B3-0 implants. During the 12 week period, the average 

reaction rate for the sulfur-containing 93B3-6 implants decreased less (one-third after 12 

weeks) than that for the sulfur-free 93B3-0 implants (one-half after 12 weeks). 
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The pH of the body fluids was not measured directly in the present work but it was 

assumed that the sulfur that was released from the sulfur-containing glasses (see Figures 

6 and 8), locally decreased the pH of the body fluids based on the in-vitro experiments, 

which were explained in part one of this thesis. 

In part one of this thesis (Figure 3 ), it was also shown that the pH of the K2HP04 

solution decreases slightly in-vitro, which is consistent with the presence of sulfate in the 

solution. Assuming that the release of sulfur in-vivo reduces the pH of the body fluids 

slightly, then sulfur in bioactive glasses could be beneficial by counteracting the increase 

in pH which can occur when bioactive glasses such as 4585, 1393, CaLB, and 93B3 

glasses react with body fluids and release alkali ions like Na+, K\ and Mg2+. 

Calcite (CaC03) was formed in the CaLB-12 implant after 12 weeks in-vivo (Fig 11). 

The inhibition of hydroxyapatite formation and the formation of calcite could be due to 

several factors. Certain proteins, such as Osteopontin, inhibit the nucleation and growth 

of hydroxyapatite crystals30
. Chondroitin sulfate (sulfated glycosaminoglycan), which is 

mostly found in cartilage and extracellular tissue, is also known to inhibit the formation 

ofhydroxyapatite31
; 

32
. 
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Calcite was also formed in the CaLB-0 and CaLB-12 glasses in-vitro after 1 week in 

the nSBF solution. While formation of HA is mostly reported for the bioactive glasses 

reacted in a phosphate solution like SBF, formation of calcite in-vitro, has been also 

reported previously3
; 

34
, due to (a) the depletion of phosphorus in the solution, (b) the 

saturation of the solution with Ca2
+ ions due to the dissolution of a glass with high (> 35 

mol%) CaO content and/or the glass to solution ratio (wt/vol), or (c) the increasing the 

carbonate content of the solution could favor calcite formation. 

The localized depletion of phosphorus due to the reaction of the CaLB-12 glass with 

the body fluids and the high content (~38 mol%) of CaO in the CaLB-12 glass could 

explain the calcite that is formed instead of HA. The role of any biological species or 

specific proteins on the inhibition of HA formation was not studied in the present work 

and cannot be determined at this time. 

While calcite formed for the sulfur-containing CaLB-12 implants after 12 weeks in­

vivo, the XRD pattern of the other sulfur-containing 93B3-6 glass showed no sign of 

calcite formation in-vivo (Fig 11 ). This might be due to the lower sulfate content ( ~6 

wt%) and/or the lower CaO content of this glass compared to the CaLB-12 glass. 

However, micro-Raman analysis of the sulfur-containing 93B33-6 implants showed that 

the reacted layer formed on the surface of the implant was more carbonated than that of 

the sulfur-free 93B3-0 implants (see Figures 3 and 4 in the Appendix). 

c. Role of Phosphorus 

Phosphorus has been present in bioactive glasses from the beginning. Bioglass® ( 45S5) 

and 1393 glass, which are both FDA approved and used in bioactive glass research 
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contain 6 wt% and 4 wt% P20 5, respectively. These glasses convert to HA in-vivo where 

the source of phosphorus in the conversion process could be either from the glass or from 

the body fluids (blood contains 27 mM HPol- ions). To the authors' knowledge, the role 

that the phosphorus in the conventionally melted bioactive glass may play in the 

formation of HA or other Ca-P compounds has not been investigated in-vivo. 

In the present work, the 93B3 borate glasses contain 4 wto/o P205, while P205 is absent 

in the CaLB glasses. The presence or absence of phosphate is not the only difference in 

the composition of these glasses, but the data for the phosphorus-free CaLB glasses 

provide an opportunity to evaluate how they react in comparison to the phosphorus­

containing 93B3 glasses. The only source of phosphorus available to form calcium 

phosphate from CaLB glasses is from the body fluids. 

In another effort to analyze the phosphorus distribution in the glass implant using EDS, 

a straight line was scanned for calcium and phosphorus over the cross-section of each 

implant, from the adjacent soft tissue to the unreacted glass. This analysis yielded a better 

understanding of how the present glass compositions react in-vivo plus how phosphorus 

may affect the reaction process. The data for the sulfur-free glasses is similar to the 

sulfur-containing glasses so only the sulfur-free CaLB-0 and 93B3-0glasses will be 

discussed. The calcium and phosphorus spectra for each sulfur-free glass are shown in 

Fig 18 along with the SEM image of the region where the spectra were collected along 

the white horizontal line shown in each SEM image in Fig 18. Figure 18 (B) (93B3-0 

implant) is the same spot that was shown in Fig 7. 
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Phosphorus content varied across the calcium phosphate reacted layer for both 

phosphorus-free CaLB and phosphorus-containing 93B3 implants. The reacted layer for 

these implants has two regions; the most outer region/layer was richer in phosphorus 

while the inner region contained less phosphorus, see Fig 18. The variation of the 

phosphorus content across the reacted layer (Ca/P molar ratio of 1.3-1.6 near the outer 

edge and Ca/P molar ratio of 2.0-3.0 in the inner layers) was reported for scaffolds of 

randomly oriented 93B3-0 glass fibers doped with Cu, Sr, Zn, and Fe that were implanted 

in the subcutaneous site of a rat for 4 and 6 weeks28
. 

For the phosphorus-free CaLB-0 glass there are two distinct regions in the reacted 

layer; a layer farthest from the glass (region 2 in Fig 18 (A)) which contains both 

phosphorus and calcium with molar Ca/P ratio of 1.8±0.2. Region 3, closest to the 

unreacted glass in Fig 18 (A), contains mostly calcium and the molar Ca/P ratio is 

11.7±5.3, see circled numbers in Fig 18 (A). 

For the phosphorus-containing 93B3-0 glass, the reacted layer also contains two 

regions; a layer farthest from the glass (region 2 in Fig 18 (B)) with a Ca/P ratio of 

1.6±0.2, and the layer closer to the glass (region 3 in Fig 18 (B)) which contains 

significantly less phosphorus and has a molar Ca/P ratio. of 4.3± 1.5. As shown by the 

phosphorus spectrum in Fig 18 (B), each peak (usually broad) in the reacted layer region 

corresponds to one of the calcium phosphate layers (onion-skin layer), that were shown in 

Fig 7 as well. 

The Ca/P ratio was measured at least 10 times for each region and the average value is 

shown in the circles inside each region in the SEM image in Fig 18. EDS cannot measure 
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the Ca/P ratio for the unreacted 93B3 glasses because B in the glass is not detectable so 

EDS cannot provide the right composition. The Ca/P ratio of 6.3 for the unreacted 93B3 

glass in Fig 18 was calculated from the starting glass composition. Since the CaLB-0 

glass did not contain phosphorus, no Ca/P value is given in Fig 18 (A). The PMMA 

(region 1) did not contain any calcium or phosphorus so no value is given for this region. 

Region 2, which represents the older material (first formed), in the CaLB-0 and 93B3-0 

implants (also the same for sulfur-containing glasses) has a molar Ca/P ratio of about 1.6-

1.8 ± 0.2, which is close to that of stoichiometric HA (1.67). The material in region 3 for 

both glasses had a higher Ca/P ratio, 4.3 and 11.7 for the 93B3-0 and CaLB-0 glasses, 

respectively. 

The Ca/P ratio for region 3 could be used to estimate how much phosphorus this region 

contains and how much of it could be provided by the body fluids. Based on the calcium 

content of each glass, see Table 1, and arbitrarily assuming 100 mol of glass, the 

phosphorus-free CaLB-0 glass contains 41.5 mol of calcium and the phosphorus­

containing 93B3-0 glass contains 23.9 mol of Ca. Total amount of phosphorus can be 

calculated by dividing the calcium content by the Ca/P ratio (measured for the HA layer 

(region 2) in Fig 18 (A,B)) for each glass, see Fig 19. 

The phosphorus-containing glass (93B3-0) contains 3.8 mol of phosphorus (in 100 mol 

of glass) and the phosphorus-free CaLB-0 does not have any phosphorus. So the total 

amount of phosphorus in the reacted layer of the implants was divided into the amount 

that the glass contains and what the body provided. Since the 93B3-0 glass contains 3.8 

mol of phosphorus (in 100 mol of glass), it is assumed that 3.8 mol of the total 
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phosphorus (14.9 mol) came from the glass and the rest (11.1 mol) came from the body 

fluids. All of the phosphorus in the reacted layer of the CaLB-0 implant had to be 

provided from the body. The phosphorus absorbed from the body fluids in the reacted 

layer of the CaLB-0 implant was about two times more than that absorbed by the 9383-0 

implant (see the last row in Fig 19). 

The 9383-0 glass reacted 10 times faster than the CaLB-0 glass after 12 weeks in-vivo. 

It is also important to point out that the thin HA layer with molar Ca/P of 1.6-1.8 (see 

region 2 in Fig 18 (A,B)) is almost the same thickness (10-15J..Lm) for both CaLB-0 and 

93B3-0 implants. By dividing the amount of phosphorus absorbed from the body by the 

average reaction rate at 12 weeks, the amount of phosphorus absorbed by the body per 

J..Lm per week of reacted material would be 11.5 (moli(J..Lmlweek)) for the CaLB-0 implant 

and 0.75 (moli(J..Lm/week)) for the 9383-0 implant. This value, along with the amount of 

phosphorus absorbed from the body, represents the effect of phosphorus between these 

two glasses. 

As can be seen, the phosphorus-containing 9383-0 glass needed only about one half as 

much phosphorus from the body fluids (11.1 mol) than that of phosphorus-free CaLB-0 

glass (23.0 mol). Also, the rate of phosphorus absorption (0.75 moli(J..Lmlweek)) for the 

phosphorus-containing 9383-0 glass from the body fluids was about 15 times less than 

that of the phosphorus-free CaLB-0 glass (11.5 mol/(J..Lm/week)). 

(2) Biological Response 

The biological response of all four glasses at 12 weeks in-vivo was considered 

satisfactory in terms of biocompatibility. There was no visual evidence of necrosis or 
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adverse reaction near the implants regardless of the presence or absence of sulfur in the 

two glasses. However, the attached connective tissue could be an inflammatory response 

to the implants. 

Inflammatory response of the body to a foreign object could be first identified by 

presence of neutrophils and macrophages and then fibroblasts. Fibroblasts are the type of 

cells that synthesize extra-cellular matrix (ECM), collagen or basically the connective 

tissue. Attachment of the connective tissue to the implants could be an inflammatory 

response but no neutrophils, macrophages, mast cells, or any other type of cells that are 

responsible· for an inflammation response were identified in any of the stained sections. 

Considering the possibility of inflammation in form of attached connective tissue when 

comparing the thickness of the attached tissue is advised to the reader. 

Sulfur did affect the bioactivity of the borate glasses as well as formation of new blood 

vessels and new collagenous tissue. In the next few paragraphs the effect of sulfur on 

these aspects will be discussed. 

Based on the thickness of the reacted layer and the thickness of the surrounding tissue 

the 93B3 glasses were more bioactive than the CaLB glasses. The reacted layer for the 

93B3 implants was about 10 times thicker and the surrounding tissue was about 3 times 

thicker than that for the CaLB implants. 

At 2 and 4 weeks in-vivo, the connective tissue around the sulfur-free CaLB-0 implant 

was not thicker than that around the sulfur-containing CaLB-12 implant, see Fig 13 

(A,B)). There were also fewer blood vessels identified in the surrounding tissue of the 

CaLB-0 implants. The tissue surrounding the CaLB-12 implant, on the other hand, was 
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thicker and contained more blood vessels at 2 and 4 weeks in-vivo (see the black arrows 

in Fig 13 (C,D)). 

Both 93B3-0 and 93B3-6 implants developed a thick layer ( ~600J..Lm) of connective 

tissue that contained several blood vessels. Sulfur did not affect the 93B3 glasses in terms 

of connective tissue formation or formation blood vessels. 

Sulfur showed an impact on the formation of collagen around the CaLB implants. It is 

important to see if the implants improve collagen formation. Also, it is essential to know 

how long it takes to form collagen and how much collagen forms with specific implants. 

The extracellular matrix (ECM) 1s a part of tissue that holds cells and provides 

structural support for them. It also provides an environment for intercellular 

communication and supplies certain growth factors35
. Proteins, and glycosaminoglycans 

(GAGs) are the key components of the ECM. Collagen is the most abundant protein in 

the body and the most abundant protein that makes ECM36
; 

37
• Collagen can be found in 

skin, tendon, ligament, cartilage, bone, blood vessels, and many other tissues. Collagen 

accounts for 90% of bone matrix protein38 and gives bone its tensile strength. Collagen is 

biocompatible, biodegradable, and improves cellular penetration and wound repair39
. As 

the key component of ECM, collagen is one the best candidates as a carrier for different 

variety of drugs, cells, and biological factors4047
. 

As shown in Fig 17 (blue represents collagen), the tissue adjacent to the sulfur-free 

CaLB-0 implant contains little if any collagen after 4 weeks in-vivo whereas the tissue 

attached to the sulfur-containing CaLB-12 implant contains noticeable collagen fibers 

after 4 weeks. 
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The biocompatibility, bioactivity, and angiogenic behavior of 93B3-0 glass was studied 

before but collagen formation was not investigated for these implants in the previous 

studies29
. Trichrome stained sections of the 93B3 implants (Fig 17) showed that there was 

more collagenous tissue formed around the 93B3 implants compared to the CaLB 

implants. The higher bioactivity of the 93B3 implants could be the reason for the 

formation of the more collagen around these implants. However, there is no 

distinguishable difference between the sulfur-free 93B3-0 and sulfur-containing 93B3-6 

implants in terms of collagen formation. 

V. Conclusion 

For the first time, a sulfur-containing bioactive glass has been implanted in-vivo to 

study the effect of sulfur in reaction materials, angiogenesis, and collagen formation. 

Solid glass discs of four different borate glass compositions, two of which contained 

sulfur, were implanted in subcutaneous tissue of rats and reacted with body fluids for 2, 

4, and 12 weeks. Each rat remained healthy during the experiment and there were no sign 

of infection or adverse reaction at the implantation site. 

As the sulfur-containing CaLB-12 and 93B3-6 reacted in-vivo the sulfur was released to 

the body fluids and was absent in the reacted carbonated HA layer. 

The structure of the reacted materials varied for different glasses. The faster reacting 

93B3 glass implants developed an onion-skin reacted layer structure while the slower 

reacting CaLB glass implants formed a denser but thinner calcium phosphate layer on 

their surface. The average reaction rates for the 93B3 implants were ~ 10 times faster than 

that of CaLB implants. While the sulfur did not affect the reaction rate of the two CaLB 
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glasses, the reaction rate for sulfur-containing 93B3-6 glass was 2 to 3 times faster than 

that ofthe sulfur-free 93B3-0 glass. 

For CaLB implants, sulfur did not have much of an effect on the reaction rate and the 

structure of the reacted layer rather than formation of a more carbonated calcium 

phosphate layer around the sulfur-containing CaLB-12 implant. However, more 

collagenous tissue and more blood vessels were seen in the surrounding tissue of the 

sulfur-containing CaLB-12 glass implants compared to the sulfur-free CaLB-0 glass 

implants. Sulfur affected the reaction rate of the 93B3 glasses by increasing it for the 

sulfur-containing 93B3-6 glass implants but it did not have much of an effect on the 

thickness of the surrounding tissue, blood vessel and collagen formation. 

In a comparison between phosphorus-free (CaLB) and phosphorus-containing (93B3) 

glass implants it was shown that the phosphorus-containing 93B3 implants absorbed half 

as much phosphorus from the body fluids than the phosphorus-free CaLB implants. Since 

these implants have a different reaction rate, in another comparison, it was shown that the 

phosphorus-containing 93B3 implants absorbed 15 times less phosphorus/(J . .unlweek) 

than the phosphorus-free CaLB implants. 
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Table 1. As-Batched composition for the CaLB and 93B3 glasses in wt%. The values 
in ( ) are in Mol0/o. 

Glass 
B203 CaO Na20 K20 MgO P20s Li20 so3 

wt% 
Identifier (mol%) 

CaLB-0 
52.5 40 7.5 

(43.9) (41.5) - - - - (14.6) 
-

CaLB-12 
45.9 35 6.6 12.5 

(39.7) (37.6) 
- - - -

(13.3) (9.4) 

93B3-0 
53 20 6 12 

5 (8.3) 4 (1.9) 
(50.9) (23.9) (6.5) (8.5) 

- -

93B3-6 
49.5 18.7 5.6 11.2 4.7 3.7 6.7 

(46.9) (22) (6) (7.9) (7.6) (1.7) - (7.9) 
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Table 2. Ion concentration (mM) ofhuman blood plasma, nSBF, and Kokubo-SBF. 

Ion Human Blood Plasma nSBF Kokubo-SBF 
Na+ 142 142 142 
K+ 5 5 5 

Mgz+ 1.5 1.5 1.5 
Ca2+ 2.5 2.5 2.5 

HP042
- 1 1 1 

HC03
2

- 27 27 4.2 
cr 103 125 147.8 

so4z- 0.5 0.5 0.5 
Buffering Agent - Tris Tris 
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Table 3. Reaction rate (J .. unlweek) as calculated from the thickness of the reacted layer 
and time, in-vivo. The thickness of the reacted layer was measured on the flat surface of 
each implant where the thickness is relatively uniform as opposed to the comers where 
the thickness varies (see Fig 5). 

Glass 2 weeks 4 weeks 12 weeks 
Identifier (J.-Lm/week) 
CaLB-0 9±2 7±2 2±<1 

CaLB-12 11 ± 3 5±2 2 ± <1 
93B3-0 40±2 34 ± 9 20 ± 3 
93B3-6 125 ± 25 40 ± 10 36 ± 8 
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139383-6% 

Figure 1. Schematic figure showing the subcutaneous site, where one sample of each 
glass was implanted in six rats. 
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Figure 2. A schematic figure of the disc removed from the subcutaneous site of a rat 
showing the reacted surface layer and unreacted glass in the cross section of the disc. 
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Figure 3. Appearance of the as made implants before removal after 2, 4, and 12 weeks 
in a subcutaneous site in a rat. The view shows the implant surface adjacent to the muscle 
tissue. 
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Figure 4. Appearance of the as made implants before removal after 2, 4, and 12 weeks 
in a subcutaneous site in a rat. The view shows the implant surface adjacent to the muscle 
tissue. 
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Figure 5. Backscattered SEM image of the cross section of the glass implants after 12 
weeks in a rat. (A): CaLB-0, (B): CaLB-12, (C,E): 93B3-0, (D,F): 93B3-6. A thin layer 
of soft tissue (ST) is faintly visible between the reacted layer (RL) and the PMMA (PM). 
The unreacted glass is designated as G. 
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Figure 6. Elemental mapping analysis of the Implants after 
reaction in the subcutaneous site of a rat for 12 weeks and impregnated with PMMA 
(PM). SE= Secondary Electron, Ca= Calcium, P= Phosphorus, C= Carbon, S= Sulfur, 
RL= Reacted Layer, G= Unreacted Glass. Dark lines in PMMA regions are formed 
during the EDS scan due to degradation of PMMA. 
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Figure 7. Elemental mapping analysis of 93B3-0 reacted in subcutaneous site of a rat 
for 12 weeks impregnated with PMMA (PM). SE= Secondary Electron, Ca= Calcium, P= 
Phosphorus, C= Carbon, N a= Sodium, K = Potassium, Mg= Magnesium, RL= Reacted 
Layer, and G= Unreacted Glass. 
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Figure 8. Elemental mapping analysis of 93B3-6 reacted in subcutaneous site of a rat 
for 12 weeks impregnated with PMMA (PM). SE: Secondary Electron, Ca: Calcium, P: 
Phosphorus, C: Carbon, Na: Sodium, K: Potassium, Mg: Magnesium, PM: PMMA, RL: 
Reacted Layer, and G: Unreacted Glass. 
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Figure 9. Optical micrograph (1 OOX) of the polished cross-section of the CaLB-0 
implanted subcutaneously in a rat for 12 weeks (A). Micro-Raman spectra (B) were 
collected for the point showed with squares. Carbonate ion (CO/-) has 2 peaks at 711 
cm- 1 and 1085 cm- 1

• Phosphate ion (Pol-) represents HA which has 3 major peaks at 420 
cm-1

, 570 cm-I, and 960 cm-1
• The HA spectrum showed as a reference. The lines across 

the cross section are due to polishing. G: Unreacted Glass, RL: Reacted Layer, ST: Soft 
Tissue, PM: PMMA, HA: Hydroxyapatite 
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Figure 10. Optical micrograph (1 OOX) of the polished cross-section of the CaLB-12 
implanted subcutaneously in a rat for 12 weeks (A). Micro-Raman spectra (B) were 
collected for the point showed with squares. Carbonate ion (CO/-) has 2 peaks at 711 
cm- 1 and 1085 cm- 1

• Phosphate ion (Pol-) represents HA which has 3 major peaks at 420 
cm- 1

, 570 cm-1
, and 960 cm-1

• The sulfate ion (SO/) has a primary peak at 1000 cm- 1
• 

The HA spectrum showed as a reference. G: Unreacted Glass, RL: Reacted Layer, ST: 
Soft Tissue, PM: PMMA, HA: Hydroxyapatite 
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Figure 11. X-Ray diffraction patterns for the glass implants after 12 weeks in the 
subcutaneous site in a rat. The spectra were collected from 10 to 80 degrees, but only that 
portion from 25 to 70 degrees are presented here. 
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Figure 12. X-Ray diffraction patterns for glass discs reacted in-vitro in nSBF for 1 
week at 3 7°C. 
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Figure 13. H&E stained sections of the tissue attached to a CaLB-0 and a CaLB-12 
implant after 2 and 4 weeks in a rat. (A): CaLB-0, 2W, (B): CaLB-0, 4W, (C) CaLB-12, 
2W, (D): CaLB-12, 4W. G: Unreacted (decalcified) Glass. Black arrows point to blood 
vessels. 
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Figure 14. H&E stained sections of the tissue attached to 93B3-0 and 93B3-6 implants 
after 2 and 4 weeks in a rat. (A,AA): 93B3-0, 2W, (B,BB): 93B3-0, 4W, (C,CC): 93B3-6, 
2W, (D): 93B3-6, 4W. G: Unreacted (decalcified) Glass. Black arrows point to blood 
vessels. 
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Figure 15. CD31 (A) and H&E (B) stained section of 93B3-0 after 4 weeks in a rat. A 
sample of 4 blood vessels selected and identified by arrows with assigned numbers. 
Brown in CD31 section shows platelets or endothelial cells. CD31 identified that these 
are blood vessels because they stained brown. This confirms that the regions marked with 
black arrows in the H&E stained section are indeed blood vessels. G= Unreacted 
(decalcified) Glass. 
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Figure 16. CD31 stained sections of CaLB and 93B3 glasses after 4 weeks in the 
subcutaneous site in a rat. (A): CaLB-0, (B): CaLB-12, (C): 93B3-0, (D): 93B3-6. Brown 
color denotes endothelial cells or platelets in CD31 staining and blue is connective tissue. 
G: Unreacted (decalcified) Glass. 
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Figure 17. Masson's Trichrome stained sections ofthe tissue attached to each glass 
after 2 (left column) and 4 (right column) weeks in a subcutaneous site in a rat. (A,B): 
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CaLB-0, (C,D): CaLB-12, (E,F): 93B3-0, (G,H): 93B3-6. Red= Keratin, Muscle Fibers, 
Cytoplasm, and Blue= Collagen 
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Figure 18. Line-scan (white line) EDS analysis for Ca (red) and P (green) across the 
reacted layer for a (A) CaLB-0 and (B) 93B3-0 glass implanted subcutaneously for 12 
weeks in a rat. G= Unreacted Glass, RL= Reacted Layer, ST= Soft Tissue, and PM= 
PMMA. The figure shows the intensity of the signal for Ca and P is shown along the 
scanned line. Ca/P ratio for each region is shown in blue and circled. 
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Figure 19. Proposed determination of the source and amount of phosphorus (P) in the 
reacted layer on CaLB-0 and 93B3-0 implants after subcutaneous implantation for 12 
weeks in a rat. 
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APPENDIX: SUPPLEMENTARY DATA FOR PAPER 2 
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CaLB-0 
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Figure 1. Elemental mapping analysis of the CaLB-0 and CaLB-12 implants after 
reaction in the subcutaneous site of a rat for 4 weeks and impregnated with PMMA (PM). 
SE= Secondary Electron, Ca= Calcium, P= Phosphorus, C= Carbon, S= Sulfur, RL= 
Reacted Layer, G= Unreacted Glass. Dark lines in PMMA regions are formed during the 
EDS scan due to degradation of PMMA. 
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Figure 2. Elemental mapping analysis of 93B3-0 and 93B3-6 reacted in subcutaneous 
site of a rat for 4 weeks impregnated with PMMA (PM). SE: Secondary Electron, Ca: 
Calcium, P: Phosphorus, C: Carbon, Na: Sodium, K: Potassium, Mg: Magnesium, PM: 
PMMA, RL: Reacted Layer, and G: Unreacted Glass. 
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Figure 3. Optical micrograph (1 OX) of the polished cross-section of the 93B3-0 
implanted subcutaneously in a rat for 12 weeks (A). Micro-Raman spectra (B) were 
collected for the point showed with squares. Carbonate ion (CO/-) has 2 peaks at 711 
cm- 1 and 1085 cm-1

• Phosphate ion (P04
3

) represents HA which has 3 major peaks at 420 
cm- 1

, 570 cm-1
, and 960 cm-1

• G: Unreacted Glass, RL: Reacted Layer, PM: PMMA, HA: 
Hydroxyapatite. 
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Figure 4. Optical micrograph (1 OX) of the polished cross-section of the CaLB-12 
implanted subcutaneously in a rat for 12 weeks (A). Micro-Raman spectra (B) were 
collected for the point showed with squares. Carbonate ion (CO/- ) has 2 peaks at 711 
cm-1 and 1085 cm-1

• Phosphate ion (Pol-) represents HA which has 3 major peaks at 420 
em-•, 570 em-•, and 960 cm-1

• The sulfate ion (SO/-) has a primary peak at 1000 cm- 1
• G: 

Unreacted Glass, RL: Reacted Layer, PM: PMMA, HA: Hydroxyapatite 
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• Calcite (CaC03) 047-1743 

• Hydroxyapatite: 01-072-1243 
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Figure 5. X-Ray diffraction patterns for the CaLB-0 and CaLB-12 glass implants after 
2 weeks in the subcutaneous site in a rat. The spectra were collected from 1 0 to 80 
degrees, but only that portion from 20 to 70 degrees are presented here. 
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