
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2015

Generation and validation of optimal topologies for solid freeform Generation and validation of optimal topologies for solid freeform

fabrication fabrication

Purnajyoti Bhaumik

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons, Mathematics Commons, and the Mechanical Engineering

Commons

Department: Department:

Recommended Citation Recommended Citation
Bhaumik, Purnajyoti, "Generation and validation of optimal topologies for solid freeform fabrication"
(2015). Masters Theses. 7425.
https://scholarsmine.mst.edu/masters_theses/7425

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7425?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7425&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

i

GENERATION AND VALIDATION OF OPTIMAL TOPOLOGIES FOR SOLID

FREEFORM FABRICATION

by

PURNAJYOTI BHAUMIK

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

2015

Approved by

Ming Leu, Advisor

S.N. Balakrishnan

Robert Landers

iii

ABSTRACT

The study of fabricating topologically optimized parts is presented hereafter. The

mapping of topology optimization results for Standard Tessellation Language (STL)

writing would enable the solid freeform fabrication of lightweight mechanisms.

Aerospace leaders such as NASA, Boeing, Airbus, European Aeronautic Defense And

Space Company (EADS), and GE Aero invest in topology optimization research for the

production of lightweight materials. Certain concepts such as microstructural

homogenization, discretization , and mapping are reviewed and presented in the context

of topology optimization . Future biomedical applications of solid freeform fabrication

such as organ printing stand to save millions of lives through the robust development of

optimized technology. The ability of topologically optimized parts to perform

mechanically is presented using FEA and compression testing. A comprehensive user

input/output topology optimization software results from the investigation. Functions

such as accepting any user design volume, loading, constraining, performing

optimization, scaling, and writing an STL file are coalesced into one program named

optstl. The pre-existing publicly available software packages have been primarily for

graphical use, such as 3D plots, and thus cannot be directly interfaced with solid freeform

fabrication technology. The reduction of multiple software interfaces into a simplified

MATLAB program and the ability to write STL files of topologically optimized models

provides scientists and engineers this interfacing ability. The results of this study are

evaluated using finite element analysis (FEA), compression testing, and statistical testing.

iv

ACKNOWLEDGMENTS

I’d like to acknowledge my advisor, Dr. Ming Leu whose advice as a distance

student was valuable in completing and organizing this work. We have about 650 miles

between each other and still have generated and validated a cutting edge solid freeform

fabrication pre-processing method. Our school, Missouri University of Science and

Technology Mechanical and Aerospace Department and faculty have been very helpful

resources: Dr. S.N. Balakrishnan was helpful in encouraging my understanding of the

gradient based optimization. Dr. Xioaming He of the Missouri University of Science and

Technology Mathematics Department was helpful in the selection of the correct

discretization method. Dr. A. Tovar and Kai Liu of Purdue University’s Department of

Mechanical Engineering were helpful in review of my software package.

My family, friends, and co-workers helped me immensely in balancing work,

school, and community. I thank Erik Nieves PhD EE of Vanderlande Industries, George

Mathai PhD ME of Caterpillar, John Babish MS ME of Vanderlande Industries, and

Damon Padgett BS ME of Vanderlande Industries, and Vicki Hudgins of Missouri

University of Science and Technology’s Office of Graduate Studies for proofreading my

thesis.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... ix

SECTION

1. INTRODUCTION .. 1

2. BACKGROUND .. 6

3. PURPOSE .. 11

4. RESULTS ... 13

5. DISCUSSION .. 38

 5.1 CAPABILITY OF A SINGLE INTERFACE ... 38

 5.2 TOP3DFLEX ... 39

 5.3 MESHING, DISCRETIZATION, AND MAPPING ... 40

 5.4 SCALING .. 41

 5.5 STL WRITING .. 42

 5.6 TOPOLOGICALLY OPTIMIZED SOLID FREEFORM FABRICATION 42

5.7 ADAPTIVE PLACEMENT OF USER DEFINED LOAD(S) AND

CONSTRAINT(S) ON USER DEFINED VOLUMES ... 47

6. CONCLUSION .. 49

APPENDICES

A. OPTSTL MAIN SCRIPT .. 52

B. TOP3DFLEX FUNCTION .. 61

C. 3D ARRAY SCALING FUNCTION .. 66

D. MODEL SPACE NODE AND INDEX CODE .. 68

E. FIND THE TOP AND SIDE BOUNDARY ELEMENTS 71

F. OPTSTL TRAINING MANUAL .. 73

G. STL IMAGES .. 78

vi

H. SUPPLEMENTAL FEA ... 80

I. MATERIAL PROPERTIES ... 87

J. COMPRESSION TESTING RESULTS .. 89

K. LOAD AND CONSTRAINT DATA .. 95

BIBLIOGRAPHY ... 97

VITA… ... 100

vii

LIST OF ILLUSTRATIONS

Figure Page

4.1. optstl Program Flowchart.. 13

4.2. (Left) Optimal Cantilever Topology Under a -1N Distributed Force at the

Cantilever’s Tip Produced in top3D. ... 14

4.3. (Right) Optimal Platform Topology Under a -1N Point Force Along the Central

Vertical Axis Produced in top3D. .. 14

4.4. (Left) Mesh Made from generate_cube_m Function with an h_partition

Value of [10,10,10]. ... 16

4.5. (Right) Mesh Made from the generate_cube_m Function with an h_partition

Value of [5,5,5]. ... 16

4.6. Varying Computation Time as a Result of Increasing the Number of Elements

in the Design Volume .. 18

4.7. (Top Left) The Design Volume Point Cloud for the Cantilever. 21

4.8. (Top Right) The Optimized Design Volume Point Cloud for the Cantilever. 21

4.9. (Bottom Left) The Design Volume for the Platform. .. 21

4.10. (Bottom Right) The Optimized Design Volume for the Platform. 21

4.11. (Left) The Loaded and Constrained Cantilever. .. 24

4.12. (Right) FEA Displacement Plot of This Cantilever System Made in This

Study Using Linux Based Software Named ImpactFEA ... 24

4.13. (Left) STL File Made in This Study as Viewed Using XYZware. 25

4.14. (Right) Printed Optimal ABS Cantilever Prototyped in This Study Using a

DaVinci 1.0 FDM Machine ... 25

4.15. FEA Made in This Study of the Optimal Cantilever Prototype Model Using

Linux Based Software Salome Meca and Code Aster ... 26

4.16. (Left) The Force Diagram for the Platform. .. 27

4.17. (Right) The FEA Plot of This Platform System Made in This Study Using

Linux Based ImpactFEA.. 27

viii

4.18. (Left) STL File Made in This Study as Viewed Using XYZware. 28

4.19. (Right) Printed Optimal ABS Platform Prototyped in This Study Using a DaVinci

1.0 FDM Machine………………………………………………………………….28

4.20. FEA of the Optimal Platform Prototype Model Using Linux Based Software

Salome Meca and Code Aster……………………………………………………...29

4.21. An Example of the Compression Test Setup Employed in This Study. The 40

mm x 20 mm x 40 mm optimal platform sits on a level surface under

44,497 N of compressive weight……………………………………………………30

4.22. A 3D Scaled STL Made in This Study of the Optimal Platform

Prototype…………………………………………………………………………..33

4.23 Example FDM Tool………………………………………………………………...34

4.24 STL File of the FDM Tool as Viewed in the MATLAB Figure Window………….34

4.25 Voxelized FDM Tool as Viewed in the MATLAB Figure Window……………….35

4.26. FDM Tool Load and Constraint Diagram……………………….………………...36

4.27. (Left) Optimized FDM Tool as Viewed in MATLAB a Figure Window…………37

4.28 (Right) Optimized FDM Tool as Viewed at an Angle in XYZware……………….37

5.1. ABS Prototypes’ Performance vs Young’s Modulus of ABS and the Computed

FEA Result………………………………………………………………………...45

ix

LIST OF TABLES

Table Page

4.1 Variation in the Design Volume as a Result of Varying h_partition…………..17

4.2 Results of the Original and Optimized Point Clouds………………………………..22

4.3 Compression Test Results……………………………………………………………31

5.1 Prototype Compression Test Stress and Strain Results……………………………...44

5.2 p-values for χ^2 Test Comparison of Each Prototype Sample Against the

 Expected Behavior from Young’s Modulus…………………………………………….46

1

1. INTRODUCTION

Design engineering has always been mankind’s segue from the status quo. The

competition for natural resources necessitates this study of structural design [8] and

topology optimization. The result has been several evolutions of product lifecycle and

database management interfaces [6]. The industrial revolution catapulted the process of

design into a major business, and the advent of computer and internet technology brought

computational methods, AI, and data sharing to light [14]. The main goal of design

research is the resolution of shortcomings and obstacles. Preprocessors such as the one

developed in this study introduce the phenomenon of automated engineering design.

This study presents a computational method for mapping the solution of 3D

topology optimization for STL writing on a standard PC equipped with MATLAB. The

convergence of the optimization is illustrated. Studies have proven the regulated Solid

Isotropic Material Penalization (SIMP) gradient based descent used in this study is the

best method for topology optimization [1, 19, 20]. A MATLAB implementation of the

regulated SIMP is studied, developed, and supplemented using additional MATLAB

functions. The user is responsible for inputting the design volume, loads, simply

supported constraints, scaling, and mesh fineness. All computations in this study have

been computed using an Intel dual core i7 processor at 2.10 GHz and 2.70 GHz, 16 GB

RAM, 1 TB ROM, a 64 bit Windows 7 Pro OS, and 64 bit CAE Linux OS. STL photos

and triangulated volumes are from XYZware and GMesh. Validation FEA is provided

using ImpactFEA, Salome Meca, and Code Aster. All solid freeform fabrication in this

study is presented from fused deposition modeling using a DaVinci 1.0 machine.

2

Structures optimization advances from the use of topology optimization where

excess material in limited space can create negative effects. An example is the study of

poroelastic materials for the actuation of linear motors. Research in the study material

moduli filtered an iterative gradient based descent of elasticity, so the solution’s

convergence achieved the desired vertical and torsional deflections [3]. Another example

is the application of topology optimization in determining the bounds of viscoelastic

microstructures [4]. The negative stiffness of these dampers absorbs vibrations and shifts

the frequencies of an unconstrained beam [17]. Adequately mapping these results of

topology optimization for STL file writing is required for the application of solid

freeform fabrication methods [26].

The use of multiple software interfaces and manual re-renderings have hampered

the ability of businesses to physically manufacture topologically optimized parts.

Aerospace firms such as NASA, Boeing, Airbus, EADS, and GE Aero invest in topology

optimization research for the production of lightweight materials [10,11,24,25]. GE

predictions report an aircraft engine’s weight, assembled from subtractively machined

parts, can be reduced by potentially 1,000 pounds using additive manufacturing after the

year 2020 [12]. An estimate of the presidentially appointed U.S. Digital Manufacturing

and Design Innovation Institute concurs that the use of digital manufacturing technology

can save the aviation industry $30 billion by 2030 [5].

EADS, an aerostructure manufacturing company published a case study [25], and

the study explained that fabrication of optimal topologies required iterative cycles of

3

design in CATIA, meshing in HyperWorks, FEA in Obtistruct, topology optimization,

and finally STL smoothing in 3 Matic [25]. The results of EADS’ testing have been an

impetus in the mapping of optimal topologies for directly writing STL files.

This study focuses on unifying three of the five different functions demanded in

industry in one package named optstl: mesh, load, and constrain any user defined

volume, topologically optimize the volume, and then write an STL of the topologically

optimized volume. The meshing function can create a uniform mesh of user defined

density. The density is determined when the user inputs the discretization factor.

Discretization factors can range from one to any integer greater than one. Voxel cubes

are used in top3d which is the optimization engine modified in this study, so voxelization

was chosen as the method of discretization for this study. Voxelization required

discretization of the user defined system in this study via trilinear mapping to split the

model into a mesh of cubes or voxels. User defined loads and constraints are mapped to

the mesh using Booleans and nested loops. Loads and constraints can be distributed over

entire surfaces, mapped to a specific point, or a combination of each. These loads and

constraints are input via argument into the top3dFlex algorithm. The optstl code made

in this study improves upon the top3d code by allowing the use of Cartesian coordinates

instead of nodal indices. A simple example of the difference between Cartesian

coordinates and nodal indices comes from a 2 mm x 2 mm mesh example. The node at x

= 2 mm and y = 2 mm has a nodal index of 4. Most design volumes in this study are

significantly more complex, so calculation of the nodal index is pre-programmed into the

optstl package. All the user must do is correctly input Cartesian coordinates of each

4

load and constraint into the MATLAB command window after having loaded either an

STL model or a set of design volume parameters. Distributed loads can only be made

perpendicular to the xy, yz, and zx plane, and constraints are always simply supported

constraints for the optimization engine top3dFlex. Finite element analysis of the

voxelized system solves the displacement value of each node and the optimization

function optimizes the elasticity of each voxel. Displacement is controlled using weighted

filtering before each search for the set of optimal voxel densities. Users get a 3D

MATLAB plot and three choices: 1) to scale the result, 2) to make a point cloud from the

result, and 3) to write an STL file from the result.

A company requiring all these functions can save money otherwise spent on

purchasing separate software for each function. Scientists have considered the economics

of solid freeform fabrication [23], and a 2006 study has shown the benefits of this

technology exceedingly outperform subtractive, casting, and molding methods at low

volumes of production [23]. Even the nesting of multiple parts during solid freeform

fabrication means one machine can produce an entire assembly after just one iteration of

lowering the machine bed [23]. The use of optimal topology STL writing enables shifting

cost estimator variables of production time and material cost further in favor of solid

freeform fabrication.

The pre-existing publicly available software packages have been primarily for

.obj files and graphical displays and thus cannot directly interface with solid freeform

fabrication technology. The mapping of topology optimization results for STL writing

5

enables the solid freeform fabrication of lightweight mechanisms. Epistemic errors are

systemic and random in nature [18], and optstl can eliminate epistemic errors that are

encountered during manual mappings and re-renderings. One concern respecting these

computationally optimized parts pertains sufficient load bearing behavior, so validation is

required. FEA plots and compression testing from this study prove whether the optimized

parts exhibit acceptable mechanical behavior.

6

2. BACKGROUND

 The objective of topology optimization is the minimization of the model’s

volume given loads and constraints. The use of explicit functional parameters leads to an

impracticable state space solution [20]. Therefore, the structure should be expressed

implicitly non-parametrically for optimal results. The objective is minimization of the

design model’s volume:

 (Eq 1)

where Vs is the maximum user defined volume, and [0 ,1] is the normalized density

of each element in the final volume V. The normalized density, , relates to the

compliance of the model:

 (Eq 2)

where is the stiffness of an element, u is the displacement of this element, and f is

the force acting on this element. The value of for each element can be computed using

gradient-based descent [7, 20].

The optstl optimal topology STL writing program, which is developed in this

study, is based on Liu and Tovar’s top3D algorithm [19]. The regulated SIMP based

gradient descent, stiffness matrix, and display functions of top3d were used in optstl

via a modified version named top3dFlex:

function xPhys = top3dFlex(nelx,nely,nelz,volfrac,penal,rmin, loadnid,

fixednid, passive, Young, load_mag)

7

where loadnid and fixednid are the node indices for the loads and constraints. A node

is a vertex of a voxel, and nelx, nely, and nelz are the number of voxel elements in the

x, y, and z directions, respectively. Voxels in the design volume which should be void are

voided using passive. Voids represent areas such as holes for fasteners or other features

defined in the input STL file. All voids are determined computationally beforehand using

the results of the VOXELISE_FLEX function as discussed in later sections. The product of

nelx, nely, and nelz creates the design volume, and the variable volfrac [0,1] is the

desired fraction of the design volume for the final structure. Both the initial value of the

design volume and the midsection search Boolean employ volfrac:

x = repmat(volfrac,[nely,nelx,nelz]); xPhys = x;

Where the 3D array xPhys contains the current normalized density of each voxel,

and the initial value definition sets all element volumes in xPhys equal to volfrac.

if sum(xPhys(:)) > volfrac*nele, l1 = lmid; else l2 = lmid; end

 Where the volume nele is the product of number of elements in the x, y, and z

along the x, y, and z axes, and xPhys has been subjected to the regulated Solid Isotropic

Material Penalization method:

 (Eq 3)

Where E0 and Emin are the Young’s and minimum moduli of the material

respectively, and the MATLAB code for Equation 3 requires one line:

sK = KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin));

 KE(:)is the global stiffness matrix
 computed using the function lk_h8 as

explained in detail per [19]. Each element i of xPhys, is a voxel element’s normalized

density where i , and is a multiresolutional or regulated

8

density as a function of the neighboring normalized densities subject to the user defined

exponent penal > 1 for convergence. The variable xPhys equals the variable from

Equation 3. Researchers find maintaining a coarse FEA mesh while finely computing the

SIMP requires factoring in weighted contributions of neighboring elements to the

deformation of any single element [19, 20]. The neighboring normalized element

densities contribute weight as a function of the user input rmin:

sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2+(k1-k2)^2));

 (Eq 4)

Where element2 is nearest element to element1 within the distance R = rmin, and

(i1-i2), (j1-j2), and (k1-k2) are the differences between the x, y, and z coordinates of

element1 and element2.

 (Eq 5)

xPhys(:) = (H*xnew(:))./Hs);

Where the denominator Hs is the initial weighted contribution of the neighboring

elements of all the normalized element densities initially set to 0.5, and H*xnew(:) is

the updated contribution of the neighboring normalized element densities after

calculating each xnew via gradient based descent, and the convergence is checked using a

midsection search method:

 l1 = 0; l2 = 1e9; move = 0.2;
 while (l2-l1)/(l1+l2) > 1e-3
 lmid = 0.5*(l2+l1);
 xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-

dc./dv/lmid)))));
 xPhys(:) = (H*xnew(:))./Hs;
 if sum(xPhys(:)) > volfrac*nele, l1 = lmid; else l2 = lmid; end
 end

where the variables dc and dv are defined,:

9

dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;
 dv = ones(nely,nelx,nelz);

where dc is the first derivative of the SIMP computation and where ce is the constitutive

matrix, and the product of the constitutive matrix, the normalized elements’ moduli, and

the E0 is the system’s stiffness, k, as defined in Hooke’s Law:

 (Eq 6)

where k is the system’s stiffness and can be related to the modulus in terms of axial stress

and strain:

 (Eq 7)

where E is Young’s modulus, is stress on the area, and is strain in the direction of the

stress.

 (Eq 8)

where F is the force exerted on area A and is the change of l in the direction of the

force f. Equation 6 can be rearranged to resemble equation 2:

 (Eq 9)

where EA/l equals the stiffness k, equals the displacement x, and Eq 9 now resembles

the function in Eq 2 for meshing discretization of i elements with modulus E as defined in

Eq 3. Varying the elasticity value inversely varies the displacement. Locations where the

model is not strained signify areas of little to no force transmission, so the modulus can

be revised to zero in these locations only. The SIMP model from equations 1 – 3 allows

for penalizing such locations until there are only sufficient voxels left for mechanical

compliance. If the voxel’s normalized density is less than unity, then subjecting this

density to any exponent greater than one causes the modulus to approach zero. Only

10

voxels having a density equal to one can remain unchanged after SIMP. Penalization

converges through each iteration and the updated values for are inputs into the next

iteration of the constitutive matrix, ce.

Several supplemental functions are added in optstl for top3dFlex such as the

ability to read in any model space via STL, adjust mesh density, scale the result, make a

point cloud, and write an STL. Reading in any STL file is the function of VOXELISE_FLEX

which returns a binary 3D array where the any element in the array can have either a 0 or

1 value. Voxels on the inside of the model are given a value of 1, and voxels outside the

model are given a value of 0. Such valuation is known as binary homogenization. Voxel

size is determined during this homogenization, so the user is first asked for the

discretization factor before proceeding. The minimum discretization factor is one voxel

per millimeter. Scaling is permitted after top3dFLEX produces an optimal result, so the

user can choose to optimize a small scale model of his or her system and then scale the

result. An option is given, so the user can then generate a point cloud in the dxf format

for inspection in AutoCAD. A final option is given for the user to write an STL file for

solid freeform fabrication, so the user can fabricate the optimized topology. If the user

decides not to use any of these supplements such as input an STL file, then the user can

still use top3dFlex via a secondary set of requests for the user to define only the length ,

width, and height of the volume. The iterative solver as recommended in Liu and Tovar’s

paper [17]for optimizing a large volume is fully implemented in optstl, so no restriction

is placed on the size of the user defined design volume or input STL model.

11

3. PURPOSE

The purpose of this study is to advance the fabrication of light weight or spatially

optimized mechanisms for solid freeform fabrication that can be applicable to vehicle

development, bionics, consumer electronics, and civil structures. Scientists have studied

optimal topologies for force inverters [10], interiors of sandwich panels [26], and

building infrastructure [15, 21]. Optimizing these mechanisms involves minimizing

volume while maintaining mechanical performance. Any volume eliminated during this

process reduces the amount of material for fabrication and energy required for work and

heat transfer, and the eliminated volume presents space for embedding hardware.

A major constraint of the existing top3d is the definition of the user’s design

volume as just a rectangular block specified as a length, width, and height. Liu and Tovar

do describe a method for adding features using active and passive voxels [19], yet the

user would have to explicitly parameterize each active and passive voxel. Active voxels

represent voxels within the model while passive voxels represent voxels inside the design

volume yet outside the model. Defining these active and passive voxels parametrically

requires formulation of feature geometry into functional notation. Used in this study is a

simplified means where the user can save any solid CAD model into an STL format.

Any structure having already been saved in the STL format can be voxelized via use of

the VOXELISE_FLEX function in optstl for top3dFLEX, so the voxel format of the

original top3d algorithm is retained in optstl. Passive voxel assignments of 0 are then

assigned to any voxel outside the solid, and active voxel assignments of 1 are assigned to

12

any voxel within the solid. Voxelization of the input STL file produces this binary array

for input into top3dFlex, yet these binary voxels are returned having any value in the

continuous distribution [0, E0]. Fabrication of this continuous distribution is highly

technical and requires machinery capable of depositing or binding materials of varying

moduli. A DaVinci 1.0 printer which is employed in this study is capable of extruding

only a single filament of material, so optstl is made to homogenize the continuous

moduli distribution back to a binary voxel format via the CONVERT_voxels_to_stl

function. Researchers have studied the voxels as the base units of structural

homogenization [16]. Voxels can tessellate readily, so larger structures can be made from

a voxel microstructure. Using voxels as homogenous building blocks this way is known

as microstructural homogenization much like a brick wall is made from the homogenous

assembly of bricks. Making one load bearing microstructure can scale to that of a larger

system of homogeneous microstructures. The user can now decide whether to optimize

and fabricate any system of components or any component within the system.

13

4. RESULTS

One primary result of this study was the development of one software package,

optstl for which a process diagram is shown in Figure 4.1.

Figure 4.1: optstl Program Flowchart

 The resulting program requires the user to input optstl into the MATLAB

command window. There are sixteen .m MATLAB files which contain function scripts

that the user must have in the current working MATLAB directory. A series of questions

follow the command line function call to proceed to determine the design volume. Either

an STL or just the length, width, and height parameters are acquired. If the user does

14

input an STL, then the user is still responsible for inputting the model length, width, and

height of model as well as a discretization factor for meshing. Load and constraint inputs

are required following the determination of the design volume. Topology optimization

can then proceed and then binary homogenization. The resulting 3D array contains only

0’s and 1’s. All of the 0’s represent space outside the optimal model, and all of the 1’s

represent space within the optimal model. Should the user prefer to scale these results

before writing a point cloud or an STL file, the user asked for a scaling factor. Appendix

E contains a user’s training manual for practicing three examples studied here.

The topology optimization engine named top3DFlex here was developed from

Liu and Tovar’s top3D script [19]. Liu and Tovar presented several examples of how to

use top3d. Figures 4.2 and 4.3 here show adapted results from these examples:

Figure 4.2: (Left) Optimal Cantilever Topology Under a -1N Distributed Force at the

Cantilever’s Tip Produced in top3D. Figure 4.3: (Right) Optimal Platform Topology

Under a -1N Point Force Along the Central Vertical Axis Produced in top3D.

Figures 4.2 and 4.3 are MATLAB figures shaded as functions of each voxel’s

moduli [19]. Figure 4.2 contains a model which has overall dimensions of 30 mm x 10

15

mm x 2 mm, and Figure 4.3 has overall dimensions of 12 mm x 6 mm x 12 mm. Each

voxel in both figures represents a 1 mm x 1 mm x 1 mm volume. The modulus of each

voxel is stored in the variable xPhys of top3d. Locating any single voxel in xPhys is

outlined in [19], and the location of a voxel is known as its index. Mechanical loading

and constraint functions require the computer to have the index for each voxel and each

voxel’s vertices. A result of this study is automated mapping based on user defined

coordinate information. Every possible vertex coordinate in the design volume is

generated using generate_cube_M. Mapping the voxels of these vertices is dependent

of the type of discretization found. Trilinear discretization connects vertices using cubes

while cubic discretization connects vertices using triangular pyramids. Connectivity

within cube voxel elements correlates with the trilinear discretization, so each voxel is

assigned eight rows in the connectivity list generated from generate_cube_M.

function [M,T] =generate_cube_M(left, right, bottom, top, back, front,

h_partition,scale)

where the variables left, right, bottom, top, back and front together define the width,

depth, and height of the overall design volume from the user defined inputs of optstl.

The variable h_partition is a 3x1 array for defining the fineness or coarseness of nodal

map, and the variable scale applies when the user wishes to scale the model. An

h_partition value of [1,1,1] means the element voxels of the system will have

dimensions of 1 mm x 1 mm x 1 mm. If a finer mesh is required, then the user must

decrease the value for each element of h_partition. Two examples are shown below.

Reducing the h_partition value in half increases the point cloud fineness eight times

for the stl. There are 1000 elements in Figure 4.4 and 8000 elements in Figure 4.5. The

16

design volume is initially appearing made from an h_partition value of

[10,10,10]meaning each voxel has dimensions of 10 mm x 10 mm x 10 mm.

Decreasing the coarseness of the design volume means each resulting voxel should

occupy less space thereby making more voxels necessary for meshing. Decreasing the

value of h_partition causes the indirectly proportional change in the quantity of

elements without changing the overall scale of the design volume:

h = h_partition;

n_hor = scale*(right - left)/h(1); %parallel to the x-axis
n_vert = scale*(top - bottom)/h(3); %parallel to the y-axis
n_depth = scale*(front - back)/h(2); %parallel to the z axis

where n_hor, n_vert, and n_depth are the number of elements along the x, y, and z axes

respectively. The changed coarseness seen in Figures 4.3 and 4.4 below is the result of

decreasing the value of h_partition to [5,5,5]. An even finer point cloud for stl has

been computed in this study using a value of h_partition [4,4,4]. Further decreasing

each value of h_partition increases the amount time required in computing the point

cloud, triangulations, and normal vectors for these binary stl files. Each value of

h_partition can be different, so the mesh has a unique density in each axial direction.

Figure 4.4: (Left) Mesh Made from generate_cube_m Function with an h_partition

Value of [10,10,10]. Figure 4.5: (Right) Mesh Made from the generate_cube_m

Function with an h_partition Value of [5,5,5].

17

The dimensions of the cube in Figure 4.4 and Figure 4.5 are equal: width = 100

mm, depth = 100 mm, and height = 100 mm, yet the number of elements and ensuing

computations are different. Further decreasing the value of h_partition to [4, 4, 4]

results in 15,625 voxel elements for the same100 mm x 100 mm x 100 mm design

volume. All of the vertex information for each voxel is stored a nodal index matrix M, and

the trilinear discretization connectivity of each vertex composing each voxel is stored in

an element index matrix T. The size of matrix M for the cube shown in Figures 4.4 – 4.5 is

(s+1)
3
/(h+1)

3
 x 3, and the size of matrix T for the same figures is (s/h)

3
 x 8 where s is the

length of one side and h equals h_partition. Variation in the number of voxels of a

given design volume due to varying h_partition is shown in Table 4.1.

Table 4.1: Variation in the Design Volume as a Result of Varying h_partition

h_partition Length, width, and

height of design

volume (mm)

Number of Elements

10 100 x 100 x 100 1000

5 100 x 100 x 100 8000

4 100 x 100 x 100 15625

The amount of time required for writing an STL file without voxelization varies

proportionally with the number of elements. A regression analysis is presented below in

Figure 4.6 for estimating the time of computation. Time for writing the STL’s

corresponding with the values of h_partition in Table 1has been calculated using the

18

MATLAB cputime variable. The variable cputime is reserved for recording the running

time of the MATLAB application. Solving for the difference between the value of

cputime before starting the meshing and stl writing scripts and the value of cputime

after running these scripts is the running time required. The time study here is the result

of timing only with the generate_cube_m and xyzstlwrite functions. The R
2

regression coefficient equals 1 for measuring the squared residuals of a second order

polynomial best fit to this data, so the correlation between the computer’s behavior and

expected behavior is predictable.

Figure 4.6: Varying Computation Time as a Result of Increasing the Number of

Elements in the Design Volume

If the h_partition is further reduced to [2,2,2] in the hopes of increasing the

fineness of the design volume, then the resulting number of elements becomes 125,000.

y = 6E-07x2 - 0.0007x + 1.2275
R² = 10

50

100

150

200

0 5000 10000 15000 20000

Ti
m

e
 fo

r
W

ri
ti

n
g

an
 S

TL
 (s

e
co

n
d

s)

Number of Elements

Computation Time vs Number of
Elements

Time (sec)

Poly. (Time (sec))

19

The estimated computation time then becomes 9288.7 seconds or 2 hours and 35 minutes

for running only the generate_cube_m and xyzstlwrite functions.

Proving these discretization and mapping algorithms worked was necessary for

saving time and materials to be invested in the fabrication of the results. Mapping and

discretization directly influenced the storage and application of user defined constraints

and loads, so these numerical models of the system had to represent the real system

accurately. Discretization and mapping were hence tested using the results of top3d

shown in Figure 4.2 and Figure 4.3. The test consisted of creating and identifying the

vertices of each voxel element in the system and then removing those vertices that had

been removed during the topology optimization. The required alogorithm for this process

was written during this study and named optcoordinates:

function Mopt = optcoordinates (M,T, scaled_weight_mat)

zero_weights= find(scaled_weight_mat<=0.95);

where the input arguments are the nodal coordinates M, the node to element connectivity

list T, and the 3D array of voxel moduli with any scaling named scaled_weight_mat,

and the output is the array Mopt. Creating this output array requires the MATLAB

function find which returns only the indices of elements in scaled_weight_mat greater

than or equal to the set threshold value. A threshold value of 0.95 appears in the example

above, so only elements with a density greater than 0.95 would remain for the STL.

Using a single threshold to filter data is known as binary homogenization. Varying the

binary homogenization threshold varies the amount of data passed through this type filter.

If more points are required after filtering, then the filter should be re-run using a lower

20

threshold value. The indices of scaled_weight_mat and the column indices of the T

matrix represent the same elements, so identifying the index of voxel element in the

scaled_weight_mat correlates with a column of the same index in the T matrix. Vertex

information is additionally available in the T matrix, so if the voxel element must be

removed after filtering then removing the entire corresponding column from T removes

the voxel and its vertices from the system. All the elements that do not meet the threshold

value require only MATLAB empty brackets [] for removal:

T(:,zero_weights') = [];

The remaining columns of T represent elements that meet the threshold. Many of

the resulting columns can contain repeating values because a vertex can be shared

amongst eight voxel elements. Eliminating any repeating values requires the standard

MATLAB unique function:

non0_elnodes = unique(T)';

where non0_elnodes is the output of the unique function applied to T and contains the

index of every node for each element of a density meeting the threshold set in the find

function. Finally, Mopt is the return argument and contains the point cloud of all the

nodes for elements meeting the density threshold.

Mopt = M(:,non0_elnodes);

where the number of elements in Mopt can be varied using varied the is top3d’s result and

the MATLAB find functions imposed the homogenization threshold. The threshold used

was 0.5, so any voxel existing under the threshold was assigned a 0 value. Voxels above

this threshold were assigned a 1 value.

21

Examples of point clouds using optcoordinates from this study before and after

optimization are shown in Figure 4.7-4.10. Each point in these point clouds is a vertex of

a voxel in the original design volume.

Figure 4.7: (Top Left) The Design Volume Point Cloud for the Cantilever. Figure 4.8:

(Top Right) The Optimized Design Volume Point Cloud for the Cantilever. Figure 4.9:

(Bottom Left) The Design Volume for the Platform. Figure 4.10: (Bottom Right) The

Optimized Design Volume for the Platform.

The optimized point clouds appear to the right of their respective original design

spaces. The original design volume for the cantilever is 600 cm
3
. The optimized design

volume for the cantilever is 250 cm
3
 as a result of -1N loads distributed at the tip and

simply supported as shown in Figure 4.8. The platform’s original design volume is 4000

cm
3
. The platform’s optimized design volume is 1412 cm

3
 as the result of a -1N point

force placed at the top dead center and simply supported as shown in Figure 4.10. The

22

time required for generating these point clouds through the sequential use of top3d,

generate_cube_M, and optcoordinates is shared in Table 4.2. Each computation time

is the total time between inputting the design parameters and outputting the point cloud

file. Computation time increases expectedly with the number of voxel elements involved.

Topology optimization is found to increase the computation time as well:

Table 4.2: Results of the Original and Optimized Point Clouds

Mechanism
Original

Volume (cm
3
)

Computing

Time for the

Original Point

Cloud (sec)

Optimized

Volume (cm
3
)

Computing

Time for the

Optimized

Point Cloud

(sec)

Cantilever 600 0.1872 250 31.8242

Platform 4000 0.6396 1412 123.5216

Times for the original volume hence are shorter than the times for the optimized

volumes because these latter volumes required running the topology optimization

function. The difference in computing times between the original and optimized

cantilever is 31.637 seconds. The difference in computing times between the original and

optimized platform is 122.882 seconds. The cantilever’s optimization achieved a 58.33%

reduction in volume and consequently required 170 times longer than the computing time

for the original cantilever point cloud. The platform’s optimization has achieved a 64.7%

23

reduction and consequently required 193 times longer than the computing time for the

original platform’s point cloud.

The tradeoff between topology optimization and computation time is meaningful

only in the event that these topologically optimized light weight models are as stiff as the

original models. If these optimal models are not compliant in terms of sustaining the user

defined loads, then the original models are sufficient. Mechanical stiffness or the ability

of a mechanism to sustain a load given constraints is critical to the quality of the end

user’s safety and experience. Each optimized model is thus subjected to validation using

FEA to compute the strained displacements incurred under the given loading and

constraint conditions.

A 30 mm x 10 mm x 2 mm simply supported cantilever was loaded with 100N

uniformly distributed as shown in Figure 4.11. The coordinates of the loads and

constraints are shared in Appendix K. The maximum volume of Vs for the objective

function in equation 1 was set to 0.3 meaning 30% of the entire 30 mm x 10 mm x 2 mm

original volume. Therefore, the objective was to find at most a 180 mm
3
 design which

supported the 100N distributed load while simply supported. The value of Vs is the

determining factor in the optimization, so too low of a Vs could produce a design that

does not support its load. Too high of a Vs may not decrease the volume sufficiently. The

FEA displacement plot of this system shows displacement existing primarily near the

loading point in the green and red regions of Figure 4.12. The majority of the cantilever

24

was left un-strained as shown in the large blue region. The maximum displacement in the

red region was 0.000480 m, so the overall design envelop did not show necking.

Figure 4.11: (Left) The Loaded and Constrained Cantilever. Figure 4.12: (Right) FEA

Displacement Plot of This Cantilever System Made in This Study Using Linux Based

Software Named ImpactFEA

Regulated SIMP based topology optimization of the cantilever subject to the

loads, constraints, and objective which were discussed immediately before Figure 4.11

removed 286 mm
3
 from the original 600 mm

3
 design. The resulting 314 mm

3
 STL model

shown in Figure 4.13 was printed during this study using a DaVinci 1.0 printer to make

the prototype shown in Figure 4.14. The ruler shown in juxtaposition with the prototype

of the optimal cantilever proves the topology optimization did not adversely alter the

scale of the 30 mm length dimension. The width and height dimensions were preserved in

the optimization as well. All of the removed material was only removed from within the

original design envelop, so if this prototype were part of a larger assembly of

components, then assembly fit would not be affected.

-100N

-100N

25

Figure 4.13: (Left) STL File Made in This Study as Viewed Using XYZware. Figure

4.14: (Right) Printed Optimal ABS Cantilever Prototyped in This Study Using a DaVinci

1.0 FDM Machine

The print time was under 30 minutes. The 314 mm
3

volume of the STL file

matched the volume as computed in top3D. If any discrepancy had occurred between

these two volumes, then an issue would have been revealed in the discretization and

mapping functions discussed earlier. Tetrahedral meshing was imposed on a solid step

file converted from the STL file shown in Figure 4.13 for testing the optimal cantilever

model using FEA. File conversion from the STL file to step file (.stp) in this study was

executed using Linux based FreeCAD. Meshing and FEA in this case were executed in

Linux based Salome Meca and Code Aster plug-ins respectively. The maximum

displacement in the red region of Figure 4.15 is 0.00406 mm which is an order of

magnitude larger than the original model. The strain in this red region is only 0.041% of

the original 10 mm cantilever height.

Therefore, topology optimization, using equations 1-3, the loads, constraints, and

objectives as defined immediately before Figure 4.11, decreased the volume 52.3%, yet

strain has not even passed 0.1%. There is a way to reduce the volume here even further.

26

Figure 4.15: FEA Made in This Study of the Optimal Cantilever Prototype Model Using

Linux Based Software Salome Meca and Code Aster

Recalling the topology optimization results in a 3D array of moduli for each

voxel, and the moduli belong to a continuous range [0, E0]. The only means of writing the

STL file in Figure 4.13 was setting a binary threshold, so the moduli under the threshold

were eliminated leaving only moduli above the threshold in the model. Increasing the

threshold value slightly should eliminate slightly more material and cause a slightly

further reduction in the prototype’s volume without increasing the strain much.

A 40 mm x 20 mm x 40 mm simply supported platform was loaded with a 100N point

force in the top dead center as shown in Figure 4.16. The volume constraint Vs for

equation 1 was set to 0.5 or 50% of the 40 mm x 20 mm x 40 mm original volume.

Therefore, the objective was to find at most a 16000 mm
3
 design which supported the

100N distributed load while simply supported. The coordinates of the loads and

constraints are shared in Appendix K. The FEA displacement plot of this system shows

displacement existing primarily near the loading point in the red region of Figure 4.17.

Most of the platform was left un-strained as shown in the blue region. The maximum

27

displacement in the red region was 0.00000399 m in the z-direction only, and no buckling

was observable.

Figure 4.16: (Left) The Force Diagram for the Platform. Figure 4.17: (Right) The FEA

Plot of This Platform System Made in This Study Using Linux Based ImpactFEA

Regulated SIMP based topology optimization of the platform subject to the load,

constraints, and the objective volume constraint as defined immediately before Figure

4.16 removed 25616 mm
3
 from the original 32000 mm

3
 design. The resulting 6384 mm

3

STL file shown in Figure 4.18 was printed during this study using a DaVinci 1.0 printer

to make the prototype shown in Figure 4.19. The ruler shown in juxtaposition with the

prototype of the optimal cantilever proves the topology optimization did not adversely

alter the scale of the 40 mm length dimension. The width and height dimensions are

preserved after the optimization as well, so any assembly fit requirements for this part are

still preserved.

The print time during this study was under 60 minutes for printing the prototype

in Figure 4.19 from the STL file in Figure 4.18 using a DaVinci 1.0 FDM machine. The

-100N

28

6384 mm
3

volume of the STL file matched the volume as computed in top3D, so again,

the discretization and mapping functions which were made in this study and discussed

earlier were accurate.

Figure 4.18: (Left) STL File Made in This Study as Viewed Using XYZware. Figure

4.19: (Right) Printed Optimal ABS Platform Prototyped in This Study Using a DaVinci

1.0 FDM Machine.

Tetrahedral meshing was imposed on a solid step file converted from the STL file

shown in Figure 4.18 for testing the optimal cantilever model using FEA. File conversion

from STL to stp in this study was executed using Linux based FreeCAD. Meshing and

FEA in this case were executed in Linux based Salome Meca and Code Aster plug-ins

respectively. The maximum displacement in the red region is 0.0341 mm which is an

order of magnitude larger than the original model. The strain in this red region, shown in

Figure 4.20, is only 0.171% of the original 20 mm platform height.

29

Figure 4.20: FEA of the Optimal Platform Prototype Model Using Linux Based Software

Salome Meca and Code Aster

Therefore, topology optimization, using equations 1-3, the loads, constraints, and

objective function volume constraint as defined immediately before Figure 4.16,

decreased the volume 80%, yet strain had not even passed 0.1%. An in depth study of the

strain behavior required physical compression testing of this optimal 40 mm x 20 mm x

40 mm platform. Five platforms were printed using a DaVinci 1.0 FDM printer. The

DaVinci 1.0 prints quasi-hollow models using a honey comb lattice. Lattice density can

be varied using the XYZware software of the DaVinci 1.0. Density can range from 30%

to 90%. The 90% density setting was used in fabricating the platforms tested in this

study.

Each platform was placed on a level plane and compressive forces were added

using free weights to a top surface placed over the platform. An example compression

test setup was photographed and shown in Figure 4.21. The photographed platform was

optimized for a 100 N load, and the compression test range was 0 N to 178 N.

30

Compression occurred on the vertical axis of the platform. The initial height was 20 mm,

and initial load was 0 N.

Figure 4.21: An Example of the Compression Test Setup Employed in This Study.

The 40 mm x 20 mm x 40 mm optimal platform sits on a level surface under 44,497 N of

compressive weight.

A General UltraTech digital caliper with a resolution of 0.01 mm was used for

measuring the height of each platform three times for each compressive load. One inside

jaw was placed against the top level and the other inside jaw was rested against the

Caliper

measures the

difference

between the

upper and lower

levels.

Upper

Level

Lower

Level

Prototype

31

bottom level. The resulting measurement equals the height of the prototype under

compression. The average of three such height measurements for each prototype per

compressive load is shown in Table 4.3 and all the individual measurements are shared in

Appendix J.

Table 4.3: Compression Test Results

Compressiv
e Force (N)

Average
Height of

Prototype 1
after

compressio
n

Average
Height of

Prototype 2
after

compressio
n

Average
Height of

Prototype 3
after

compressio
n

Average
Height of

Prototype 4
after

compressio
n

Average
Height of

Prototype 5
after

compressio
n

0 20.577 20.000 20.013 20.000 19.997

44.5 20.557 19.987 20.007 19.997 19.987

66.75 20.550 19.983 20.003 19.990 19.977

89 20.543 19.973 20.000 19.983 19.973

111.25 20.537 19.970 19.990 19.980 19.963

133.49 20.523 19.960 19.983 19.970 19.963

177.99 20.513 19.953 19.973 19.967 19.953

 The results of compression testing in Table 4.3 are discussed in terms of stress-

strain behavior in Section 5.6.

The results of 40 mm x 20 mm x 40 mm optimization were scaled using a scale

factor of 5 to assess practicality of fabricating larger optimal objects. Scaling 5 times in

each direction made the 20 mm x 10 mm x 20 mm original design volume into a 200 mm

x 100 mm x 200 mm envelope. Meshing this new volume meant increasing the number of

32

voxels 125 times, yet the computational time required for optimization on this scale

would require 34 hours extrapolating from the results of Table 2. Scaling directly the

results of optimizing these small volumes required the development of scaletop3D

which scales the voxel moduli n x n x n array and returns a scaled sn/h x sn/h x sn/h array

where s is the scaling factor scale and h is the mesh discretization factor h_partition.

The scale is user defined in the function call for scaletop3D:

optmodel = scaletop3D(optmodel,scale, h_partition)

where the argument weight represents the modulus of each voxel element in the design

volume and the argument scale is a 1x3 vector representing the user’s desired 3D scale

factor for each direction. If the user enters a scale factor less than unity for any direction,

then scaletop3D does not work. The scale factor is used in this study for the purpose of

magnification only, so the expected value of each scale factor is greater than or equal to

unity. MATLAB does not directly provide a means for scaling 3D arrays like weight, so

the scaletop3d function replaces each voxel with its own s/h x s/h x s/h array named

del_V.

del_V = zeros(scale/h_partition(1),scale/h_partition(2),scale/h_partition(3));

for z=1:size(weight, 3)

 for y=1:size(weight, 2)

 for x = 1:size(weight, 1)

 for z_scale = 1:scale/h_partition(3)

 for y_scale = 1:scale/h_partition(2)

 for x_scale = 1:scale/h_partition(1)

 del_V(x_scale, y_scale, z_scale) =weight(x,y,z);

 end

 end

 end

 scaled_weight_arr{x,y,z}=del_V;

 end

 end

end

33

Every element of del_V equals the modulus of the previously single element from

the weight array. The single element has thus been successfully scaled. Each del_V array

is then stored in a structure, and then a new del_V array is made for the next voxel

element in weight. The resulting structure must be concatenated along all three

dimensions, so the result is transformation of the original 3D array into a structure and

finally into a scaled 3D array. Appendix C contains the full code required in this

transformation.

The number of elements in the scaled array is inversely proportional to the

discretization factor h_partition and directly proportional to the scaling factor scale.

The 704000 mm
3
 optimized platform occupies only 17.6% of the overall design

envelope’s volume as shown in Figure 4.22.

Figure 4.22: A 3D Scaled STL Made in This Study of the Optimal Platform Prototype

34

 Finally, the capability of optstl to read in and optimize a pre-existing STL file

was tested. Figure 4.23 shows an example of a model FDM tool:

Figure 4.23: Example FDM Tool

An stl file was made after rendering a model of the tool shown in Figure 4.23. The

stl file image is shown in Figure 4.24. The length and width of the tool were modified to

4 inches by 6 inches, so the tool would fit inside the FDM platform of the DaVinci 1.0

printer used in this study.

Figure 4.24: STL File of the FDM Tool as Viewed in XYZware

35

The stl file shown in Figure 4.24 was loaded into the optimization engine using a

modified version of the publicly available VOXELISE MATLAB function. The modified

version of this function made as a result of this study is VOXELISE_FLEX:

function [gridOUTPUT,varargout] = VOXELISE_FLEX(gridX,gridY,gridZ,

discretization, filename)

where gridX, gridY, and gridZ are the overall x, y, and z dimensions of the model

rounded up to the nearest millimeter, filename is the file path of the STL model, and

discretization is the number of voxel lengths per millimeter. A discretization

factor of 1 would produce a mesh of 1 voxel per mm
3
. Voxelising the stl shown in Figure

4.24 using a discretization factor of 1 yielded 875000 voxels. The stl file was then scaled

down by a factor of 10 on each side, so the discretization factor could be increased and

computation time decreased. Figure 4.25 shows an image of the voxelised model before

optimization.

Figure 4.25: Voxelised FDM Tool as Viewed in the MATLAB Figure Window

36

A 100N point force and simply supported constraints were placed on the model as

shown in Figure 4.26, and the volume constraint, Vs, for the objective function in

equation 1 was set 0.5 meaning 50% of 30 mm x 48 mm x 15 mm envelope of the design.

The locations of the loads and constraints are shared in Appendix K :

Figure 4.26: FDM Tool Load and Constraint Diagram

Figure 4.13 and 4.18 show the optimized model to have significantly different

surface topology from the original model of each. Surfaces are often key components in a

products function, so preserving the surface of the top and sides of the tool was studied.

A boundaryelements function was written to find all the voxels on the top and sides of

a model:

function boundaryelements = findboundary(gridOUTPUT, nelx, nely, nelz)

where gridOUTPUT, nelx, nely, and nelz are the original voxelised model, the

number of elements in the x direction, the number of elements in the y direction ,and the

number of elements in the z direction. Three Booleans are used to determine whether a

-100N

37

voxel is on the boundary of the model. First, the voxels at the bounds of the design

volume can be found using this Boolean:

(gridOUTPUT(i,j,k)==1)&& ((i~=length(nelx) || (i==length(nelx) &&

((j==1) || (j==length(nely)) || (k==1) || (k==length(nelz))))))

Voxels not at the boundary of the design volume yet at the boundary of the model can be

found using these two Booleans in order:

gridOUTPUT(i,j,k)==1) && (i~=1) && (i~=length(nelx)) && (j~=1) &&

(j~=length(nely)) && (k~=1) && (k~=length(nelz))

gridOUTPUT(i+1,j,k)==0 || gridOUTPUT(i-1,j,k)==0 ||

gridOUTPUT(i,j+1,k)==0 || gridOUTPUT(i,j,k+1)==0 ||gridOUTPUT(i,j,k-

1)==0

Figure 4.27 shows the resulting optimized model which from the top and sides is

identical to topology of the original voxelised model in Figure 4.26. The resulting STL

file was scaled up by a factor of 10 in each direction to produce the topologically

optimized STL of the original STL shown in Figure 4.26. Figure 4.28 reveals the optimal

interior of the model.

Figure 4.27: (Left) Optimized FDM Tool as Viewed in a MATLAB Figure Window.

Figure 4.28: (right) Optimized FDM Tool as Viewed at an Angle in XYZware.

38

5. DISCUSSION

5.1 CAPABILITY OF A SINGLE INTERFACE

 The optstl interface provides a vast array of STL modification functions:

meshing via VOXELISE_FLEX, mapping via generate_cube_m, topology optimization via

top3dFlex, scaling transformation via scaletop3D, binary homogenization via

optcoordinates, user input/output, point cloud generation, and stl writing. The

VOXELISE_Flex function was adapted and modified from the publicly available

VOXELISE Matlab function. Modifications to this function include the ability for the user

to change the discretization factor and mesh density in the x, y, and z direction

individually. The generate_cube_m was made originally in this study for trilinear

discretization of the design volume for mapping into the optimization engine. The

top3dFlex function was modified from the top3d function, so user no longer needs to

know parametric functions to describe the surface of the input design volume. The

original top3d function required explicit parameterized representation of the design

volume’s surface to map loads and constraints. Explicit parameterization of more

complex design volume may not be feasible, so the modified top3dFlex function was

developed in this study to allow a user to input just the Cartesian coordinates of the loads

and constraints. Optimization increased the point cloud computation time by a minimum

factor of 170 times, so a scaletop3D function was developed in this study to allows a

user to optimize a small scale system and the scale up the results. Getting the results of

the topology optimization required homogenization from the continuous distribution of

moduli to a binary distribution, so the optcoordinates function was made originally in

39

this study to find all the vertices of voxels which met and did not meet a threshold value.

Voxels which met the threshold value were assigned a 1, and voxels which did not meet

the threshold value were assigned a 0. The optstl script passes this binary homogenized

data into a copy of the publicly available dxfpoint function for generation of a point. A

copy of the publicly available CONVERT_voxels_to_stl MATLAB function similarly

interprets the binary distribution of voxels as those voxels with a 0 value were outside the

stl while voxels with a 1 value were inside the stl.

5.2 TOP3DFLEX

 Two of the three examples accompanying the top3D software were tested

and worked successfully for this study. One example was the cantilever beam and the

second was a platform [18]. The loads were changed in this study for testing the

practicality of the software in fabricating ABS prototypes. The cantilever load in this

study was a -100 N/mm distributed load putting the tip in shear, and the platform load in

this study with a -100 N point force in the center of the platform. The Young’s modulus

used for ABS was 2150 MPa, and a table of the material properties appears in Appendix

I. Liu and Tovar used a Young’s modulus of 1 MPa and load magnitudes of -1N/mm and

-1N for the cantilever and platform respectively [18]. The topology optimization

produced a 58.3% reduction in cantilever’s volume and a 92% reduction in the platform’s

volume. Liu and Tovar’s software required the user to adjust values directly within the

script [19]. The top3dFlex script operates within the optstl main script, so the user is

allowed to input values for the Young’s modulus, loads, and constraints on a case by case

basis without risking corruption of the optimization engine. The loads and constraints of

40

Liu and Tovar’s script required surface parameterization [19]. The optstl main script

has user input/output which allows the user to input only the Cartesian coordinates of the

loads and constraints, and then optstl maps these coordinates to voxel vertices using the

trilinear discretization information of the generate_cube_m function. The optstl main

script then passes these arguments directly into the top3dFlex script. The potential for

the user to input large stl files for topology optimization meant a large number of voxel

elements could be involved in the computation. Liu and Tovar discussed a fast iterative

solver option for top3d [19], so top3dFlex included this iterative solver as a default

solver.

5.3 MESHING, DISCRETIZATION, AND MAPPING

A user can now directly input any design volume via stl such as FDM tool model

shown in Figure 4.23 to voxelized as shown in Figure 4.24 for input into the optimization

engine. The VOXELISE_Flex function reads and meshes the input stl file as a 3D array of

elements. The original VOXELISE function assigns 0’s to all voxels in the design volume

yet outside the stl and 1’s to all the voxels inside the stl. Each voxel from the VOXELISE

function represented 1 mm
3
 of the model. Modifying the 1mm

3
 mesh density may be a

user priority especially when working with complex surface geometry, so the

VOXELISE_Flex function was developed in this study. Mesh density in the

VOXELISE_Flex function is determined using a user defined discretization factor where

the user is allowed to input the number of voxels required per millimeter.

41

The meshed design volume from the VOXELISE_Flex function is passed through

optstl for mapping the user defined loading and constraints. User defined Cartesian

coordinates of the loads and constraints are mapped to mesh indices using the

generate_cube_m function. The first voxel in the system is located in the top back left

and the last voxel is location in the bottom front left. Indexing first traverses top to

bottom, then left to right, and finally back to front. Trilinear discretization in the

generate_cube_m mapping algorithm was tested for two abilities. Simply mapping

indices of all the voxel vertices in the design volume and connecting the vertex indices in

order to create each associated voxel was one test. Figure 4.4 and Figure 4.5 proved the

generate_cube_m function with optcoordinates can correctly map the topology

optimization results from MATLAB figures to voxels for the stl files. The second feature

tested was the capacity for adjusting the mesh fineness. Figures 4.4 and 4.5 illustrated the

different discretization and mesh density possible through manipulation of the

h_partition argument in generate_cube_m. Varying the values of h_partition

indirectly varies the mesh density, so low values of h_partition create the most dense

voxel meshes.

5.4 SCALING

 Figure 4.22 illustrated the ability of optstl to scale an optimized model.

Successfully overcoming the problem of scale here required the implementation of a

scaling algorithm. MATLAB only has a scaling algorithm for 2D arrays, yet users can

require scaling length, width, and height dimensions simultaneously. The scaling of each

dimension was accomplished using scaletop3D. Any 3D array can be scaled using this

42

function, and the output mesh density can be adjusted using the user defined

h_partition. Adjusting the value of h_partition indirectly changes the mesh density just

the like in the case of generate_cube_m.

5.5 STL WRITING

 Figures 4.13, 4.18, and 4.28 illustrated optstl’s ability to write stl files. A 3D

array of 1’s and 0’s is passed via optstl to the publicly available

CONVERT_voxels_to_stl function. The 1’s indicate a voxel element is located within the

model while the 0’s indicate the voxel element is outside the model. All of the voxel

elements are processed through a set of binary homogenization instructions from the

optimization engine. Binary homogenization is the process of preparing the data for the

stl writing function. Processing the data is a matter of having a set binary homogenization

threshold value as discussed in paragraphs preceding Figure 4.7-4.10. Images for Figures

4.13, Figure 4.18, and Figure 4.28 use a binary homogenization threshold of 0.5.

Topology optimization produced a 3D array with a continuous distribution of moduli

from [0, E0] where E0 is the Young’s modulus of the material used in fabrication. Finding

all of the resulting values above the threshold and setting these values equal to 1

determined the interior of the stl models. Values below the threshold were set to 0

determining the outside of the stl models. Completing the binary homogenization was the

last step required before writing the stl files.

5.6 TOPOLOGICALLY OPTIMIZED SOLID FREEFORM FABRICATION

 The STL for each optimal model example was printed successfully during this

study as illustrated in Figure 4.14 and Figure 4.19. A DaVinci 1.0 printer extruding ABS

43

filament was used in fused deposition modeling of each print in this study. None of these

prototypes required over 1 hour to print. Volumes for each printed model matched the

volumes of the computed models revealing no error in the discretization, meshing, and

mapping functions discussed earlier. Testing the integrity of the printed STL was

paramount after analyzing the FEA plots of the optimized models. Each model showed

less than 0.1% strain after optimization as illustrated in Figure 4.15 and Figure 4.20.

Only physical testing could validate the true mechanical compliance evident in these

results, so the printed optimal ABS platform was subjected to compression testing. Data

from this compression test was shared in Table 4.3, and the raw data is shared in

Appendix J. Table 5.1 and Figure 5.1 display the prototype’s behavior under

compression, the theoretical behavior based on the Young’s modulus of ABS, and a light

blue line indicates the design load of 100 N.

Strains were calculated for each data point from Table 4.3 was calculated using

Eq 10:

 (Eq 10)

where the ith strain value is the difference between the prototype’s initial height h0 and

the height after the ith load divided by the prototype’s initial height h0. Forces from Table

5.1 are the numerator for the stress calculated in Pascals for Figure 5.1 using Eq 11:

 (Eq 11)

where the ith stress value is the ratio of the ith compressive force to the prototype’s

constant load bearing surface area, A = 4.75 x 10
-4

 m
3
. Substituting values for each load

44

into Eq 5 produces the control strain distribution shown in the second column of Table

5.1:

 (Eq 12)

where the ith control strain is the ratio of the ith strain to the constant Young’s

modulus of ABS, E = 2150 MPa. The results were tabulated in Table 5.1.

Table 5.1 Prototype Compression Test Stress and Strain Results

Compressive
force (N)

Control
Strain

Strain 1 Strain 2 Strain 3 Strain 4 Strain 5

0 0 0 0 0 0 0

4.450E+01
2.069E-08

0.001
6.667E-

04
3.331E-04 1.667E-04

5.001E-
04

6.675E+01
3.104E-08

1.296E-
03

8.333E-
04

4.997E-04 5.000E-04
1.000E-

03

8.900E+01
4.139E-08

0.002
1.333E-

03
6.662E-04 8.333E-04

1.167E-
03

1.112E+02
5.174E-08

1.944E-
03

1.500E-
03

1.166E-03 1.000E-03
1.667E-

03

1.335E+02
6.209E-08

2.592E-
03

2.000E-
03

1.499E-03 1.500E-03
1.667E-

03

1.780E+02
8.278E-08

3.078E-
03

2.333E-
03

1.999E-03 1.667E-03
2.167E-

03

The calculated values from Table 5.1 are plotted in Figure 5.1, so the typical

compression behavior can be observed. Compression testing occurred in the elastic

region of ABS, so the Young’s modulus could be chosen a control. The plot in Figure 5.1

shows the compression testing stress strain behavior of the five prototypes. One line in

Figure 5.1 shows the theoritical stress-strain behavior as modelled using Young’s

modulus, and another line shows the stress-strain behavior as predicted using the FEA in

45

Figure 4.20. No fractures were observed after the final load step. Wave like behavior in

Figure 5.1 is attributed to the experiment setup and instrument resolution in Figure 4.21.

Figure 5.1: The ABS Prototype’s Performance vs the Young’s Modulus of ABS and the

Computed FEA Result

 The FEA shown in Figure 4.20 computed that the maximum strain should be

0.171%. A one sample t-test of the compression test data near the design load at

234,082.6 Pa yielded a t value of -2.615. If t < tcritical,α for the one-sided one sample t-test,

then there is a statistical directional difference from the expected mean value. A one-

tailed 95% confidence tcritical,α one tailed value computed in MS Excel was -2.132, so the

compression testing results were significantly less than the FEA’s result with 95%

confidence. However, the one tailed 99% confidence tciritical,α value computed in MS

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.0005 0.001 0.0015 0.002

St
re

ss
 (

P
a)

Strain

Compression Test for ABS Prototypes

E = 2.15 GPa

Prototype 1

Design Load

Prototype 2

Prototype 3

Prototype 4

Prototype 5

FEA

46

Excel was -3.747, so the differences between the prototypes and FEA are not signficantly

different at the 99% confindence level.

The test was selected for testing the difference between the observed

prototypes’ behavior under compression and the Young’s modulus as shown in Table 5.2.

If the p-value is less than 0.01, then the two behaviors are different with 99.99%

confidence.

Table 5.2: p-values for χ^2 Test Comparison of Each Prototype Sample Against

the Expected Behavior from Young’s Modulus

Prototype

p-Value of χ^2
Comparison

Prototype and
Control

1 6.24947E-97

2 3.15124E-54

3 2.24923E-27

4 3.13694E-23

5 3.33495E-48

All of the p-values are less than 0.01, so the prototypes’stress-strain behavior

under compression was signfiantly different from the Young’s modulus. The reason for

this difference is the change in cross sectional area. Cross sections of the control

modelled using Young’s modulus were uniform while the cross sections of the prototype

shown in Figure 4.18 are non-uniform. The second area moment of inertia is directly

proportional to cross sectional area and measures the amount of resistance an object may

have to a given static load. Therefore, decreasing cross sectional areas from the model in

47

the prototype reduced the second area moment of inertia in the prototype and caused the

decrease in the stress-strain relationship from the Young’s modulus behavior.

5.7 ADAPTIVE PLACEMENT OF USER DEFINED LOAD(S) AND

CONSTRAINT(S) ON USER DEFINED VOLUMES

 Images shown in Figures 4.2-4.5, 4.7-4.10, 4.13-4.14, 4.18-4.19, 4.22 and 4.27-

4.28 were all made in this study using optstl. The optstl loading and constraint

instructions allow the user to input Cartesian coordinates of loads and constraints.

Loading this information using coordinates is not permitted in the original top3d. Load

and constraint information in top3d required explicit surface parameterization meaning

the user had to know how to calculate the index of a voxel at an (x,y,z) coordinate. Using

optstl the user can input just (x,y,z) coordinate of a point load or constraint, and the

optstl alogorithm uses the generate_cube_m function made in this study. Use of the

generate_cube_m function generates both a list of all the (x,y,z) voxel vertice

coordinates in the design volume and a list of the order in which to connect these

vertices. Trilinear discretization dictates the programmed order in which these vertices

are connected to produce the voxelized space. Surface constraints and uniformly

distributed loads can be applied as well. If the user wishes, then optstl holds a user

defined dimension constant in order to load or constrain an entire 2D plane of active

voxels. Active voxels were stored in the memory as voxel elements with a value of

1using the binary homogenization instructions of optcoordinates discussed earlier.

Passive voxels would have a value of 0. Setting loads and constraints based on Cartesian

coordinates simplifies the surface parameterization step. A resulting list of loaded and

constrained vertices are passed to top3dFlex along with the Young’s modulus and an

48

array of passive elements. Passing the passive elements into the topology optimization

engine forces the computation to retain any features such as holes [19]. Large quantities

of passive or active elements could cause long computation times [19], so the top3dFlex

algorithm was adapted to implement the MATLAB pcg solver. Liu and Tovar

recommended the pcg solver for the fastest computation speed [19]. Implementing the

pcg solver allows MATLAB to determine the best solution for system of linear equations

at hand. Adapting top3d into top3dFlex and supplementing this function using the

optstl main script decreases the amount of hard coding the user must do in order to

modify the program to differenct design requirements. Supplementing the script further

with an STL reading function allows the user to load and constrain any design volume.

Figure 4.17 demonstrates the ability of any STL to be voxelized for input into the

optimization engine. If the model’s function requires that certain voxels be preserved

such as the outermost layer of voxels, then the boundaryelements function can be used

as demonstrated in Figure 4.28.

49

6. CONCLUSION

The fabrication of topologically optimized parts is realizable using optstl .

Topology optimization was shown in this study to produce parts of significantly less

elastic modulus than unoptimized parts of the same load and constraint parameters. ABS

parts were fabricated in this study using optstl and a DaVinci 1.0 FDM machine.

Fabrication required the adaption of Liu and Tovar’s top3d algorithm and several

supplemental functions. Adapting the top3d algorithm resulted in a user input/output

interface for optimizing any stl input subject to user defined load and constraint

coordinates. Output from this adapted program named optstl can be a scaled model,

point cloud, and/or an stl file. Each optimized prototype was analyzed using FEA, and

one optimized prototype was subjected to compression testing. Supplemental FEA’s of

the original models are shared in Appendix H. An order of magnitude increase in the

strain was observed in the optimized prototypes when compared with the original models.

Statistical testing of the compression test results did reveal a significant statistical

difference between a theoretical solid ABS volume’s behavior and the optimized

prototype’s behavior. The actual stress-strain behavior resembles that as predicted in the

FEA result in Figure 4.20.

Solid freeform fabrication users now have a MATLAB preprocessor for loading,

optimizing, and writing the STL’s of design volumes. Unification of these engineering

design processes is provided in optstl. The publicly available top3D, VOXELISE, and

CONVERT_voxels_to_stl algorithms were found, modified, and coalesced

50

algorithmically in optstl. Added functionality such as scaling, discretization, binary

homogenization, and user defined volumes required supplemental functions and

modifications of the pre-existing function arguments. Adjusting a 3D array’s scale was a

matter of applying fundamentals from the 1D and 2D mathematical transformations for

the scaletop3D function. All of the results produced in this study can be scaled using a

scaling algorithm for 3D MATLAB arrays developed successfully during this study.

Optimizing the smaller design envelope and then scaling the result can save computation

time of a large volume. MATLAB did not previously have a 3D scaling function in the

MATLAB library or on the internet. Using MATLAB structures, arrays, and

concatenation in a combination of nested for loops yielded the sufficient scaling

transformation for this study. Mapping required knowledge of FEA techniques for

solving partial differential equations in a trilinear discretized system for the

generate_cube_M function. Trilinear discretization produces finite element mesh

comprised of cubes which can map 1 to 1 with voxels. Indexing the trilinear discretized

mesh for this study was already discussed in Liu and Tovar’s paper, so the indexing

process was simply automated for user’s of optstl. Automating and storing the index

data mapping of the voxelized system enables the user to input an (x,y,z) coordinate and

return an array element index for the optimization functions. Allowing the user to

communicate using the Cartesian coordinate system simplifies the process of translating

the real data into the computer, for example a user could use CMM or point cloud data.

All of optstl is written in MATLAB. Core components of optstl are shared in

Appendix A- Appendix D, and converting these scripts to a C based programming

language or parallel computing algorithms can increase computation speed.

51

The optstl package coalesced the functions of model loading, constraining,

topology optimization, scaling, mapping, and stl writing. Using optstl for solving

equations 1-3 for design volumes did reduce the amount of raw material required for the

fabrication of load bearing structures. Material costs and fabrication times were in turn

reduced because of the decrease in the volume and amount of material required.

Compression testing showed that the optimized parts deformed significantly more than

unoptimized parts, yet each prototype in this study did support its design load. Any user

defined stl could be optimized using equations 1-3, loads, and simply supported

constraints in optstl, and the function of the model could be preserved using the

boundaryelements function of optstl.

52

APPENDIX A:

OPTSTL MAIN SCRIPT

53

%%%

%%%
%%Purnajyoti Bhaumik wrote this for topology optimization of any 3D

model

function optstl

prompt = 'Would you like to input an STL file or optimize a rectangular

prism? Enter Y or N. ';
source_type = input(prompt,'s');
if isempty(source_type)
 return
end
if source_type == 'Y'
 prompt = 'What is the source STL filename (include file path and

extension ex: C:\test.stl)? ';
 STLin = input(prompt,'s');
 if isempty(STLin)
 return
 end
 gridX = input('What is the overall height (in mm)?');
if isempty(gridX)
 return
end

gridY = input('What is the overall width (in mm)?');
if isempty(gridY)
 return
end

gridZ = input('What is the overall depth (in mm)?');
if isempty(gridZ)
 return
end
end

if source_type == 'N'
 gridX = input('What is the overall width (in mm)?');
if isempty(gridX)
 return
end

gridY = input('What is the overall height (in mm)?');
if isempty(gridY)
 return
end

gridZ = input('What is the overall depth (in mm)?');
if isempty(gridZ)
 return
end

54

 nelx = 1:1:gridX;
 nely = 1:1:gridY;
 nelz = 1:1:gridZ;

 for k = 1:gridZ
 for i = 1:gridX
 for j = 1:gridY
 gridOUTPUT(i,j,k) = 1;
 end
 end
 end
 %gridOUTPUT(:,:,:)=1;
 gridOUTPUT= permute(gridOUTPUT, [2,1,3]);
 display_3D(gridOUTPUT)
end

if source_type == 'Y'
 prompt = 'How many voxels per millimeter? ';
 discretization = input(prompt);
 if isempty(discretization)
 returns
 end
[gridOUTPUT,nely,nelx,nelz] = VOXELISE_FLEX(gridX, gridY, gridZ,

discretization,STLin);
gridX = length(nelx);
gridY = length(nely);
gridZ = length(nelz);
display_3D(gridOUTPUT)
end

passive = find(~gridOUTPUT);
active = find(gridOUTPUT);

[M, T] = generate_cube_M(0, length(nelx), 0, length(nely), 0,

length(nelz), [1,1,1],1);

load_answer = 'Y';
i=0;
while load_answer == 'Y'
prompt = 'Would you like a distributed load or a point force? Enter D

or P: ';
load_type = input(prompt, 's');
if isempty(load_type)
 return
end
i = i+1;
if load_type == 'D'
 prompt = 'Would you like this load distributed in a perpindicular

to the width, depth, or height of the model? Enter w, d, or h: ';
 load_plane = input(prompt, 's');
 if load_plane == 'h'
 prompt = ('At what distance from the bottom would you like

this distributed load? Enter this distance in whole millimeters.');
 load_plane_width = input(prompt);

55

 if isempty(load_plane_width)
 return
 end
 for z = 1:gridZ
 for x = 1:gridX
 for m = 1:length(active)
 if active(m)== load_plane_width+(x-

1)*(gridY)+(z-1)*(gridY*gridX)
 loadnid{i} =

unique(T([5,6,7,8],active(m)));
 i = i+1;
 end
 end
 end
 end
 i = i-1;
 elseif load_plane == 'd'
 prompt = ('At what distance from the back would you like

this surface constraint? Enter this distance in whole millimeters.');
 load_plane_width = input(prompt);
 if isempty(load_plane_width)
 return
 end
 for x = 1:gridX
 for y = 1:gridY
 for m = 1:length(active)
 if active(m)==(x-

1)*gridY+y+load_plane_width*(gridY*gridZ)
 loadnid{i} =

unique(T([1,2,7,8],active(m)));
 i = i+1;
 end
 end
 end
 end
 i = i-1;
 elseif load_plane == 'w'
 prompt = ('At what distance from the left would you like

this surface constraint? Enter this distance in whole millimeters.');
 load_plane_width = input(prompt);
 if isempty(load_plane_width)
 return
 end
 for z = 1:gridZ
 for y = 1:gridY
 for m = 1:length(active)
 if active(m)==(z-

1)*(gridX*gridY)+y+load_plane_width*gridY
 loadnid{i} =

unique(T([1,4,5,8],active(m)));
 i = i+1;
 end
 end
 end
 end
 i = i-1;

56

 end
elseif load_type == 'P'
 prompt = ('You will be asked for the 3D coordinates of this point

force. What is the x-coordinate in millimeters?');
 pforcex = input(prompt);
 prompt = ('What is the y-coordinate in millimeters?');
 pforcey = input(prompt);
 prompt = ('What is the z-coordinate in millimeters?');
 pforcez = input(prompt);
 for k = 1:size(M,2)
 if M(1,k)==pforcex && M(2,k)==pforcey && M(3,k)==pforcez
 loadnid{i} = k;
 end
 end
end
prompt = ('Would you like to enter another load? Enter Y or N');
load_answer = input(prompt, 's');
if isempty(load_answer)
 return
end
end

final_load = loadnid{1};
for j = 2:i
final_load = cat(1, final_load, loadnid{j});
end

prompt = 'What is the magnitude of the load?';
load_mag = input(prompt);
if isempty(load_mag)
 return
end

constraint_answer = 'Y';
i=0;
while constraint_answer == 'Y'
prompt = 'Would you like a surface or a point constraint? Enter S or P:

';
constraint_type = input(prompt, 's');
if isempty(constraint_type)
 return
end
i = i+1;
if constraint_type == 'S'
 prompt = 'Would you like this load distributed perpindicular the

width, depth, or height of the model? Enter w, d, or h: ';
 constraint_plane = input(prompt, 's');
 if constraint_plane == 'h'
 prompt = ('At what distance from the bottom would you like

this surface constraint? Enter this distance in whole millimeters.');
 constraint_plane_width = input(prompt);
 if isempty(constraint_plane_width)
 return
 end
 for z = 1:gridZ
 for x = 1:gridX

57

 for m = 1:length(active)
 if active(m)== constraint_plane_width+(x-

1)*(gridY)+(z-1)*(gridY*gridX)
 constraintnid{i} =

unique(T([5,6,7,8],active(m)));
 i = i+1;
 end
 end
 end
 end
 i = i-1;
 elseif constraint_plane == 'd'
 prompt = ('At what distance from the back would you like

this surface constraint? Enter this distance in whole millimeters.');
 constraint_plane_width = input(prompt);
 if isempty(constraint_plane_width)
 return
 end
 for x = 1:gridX
 for y = 1:gridY
 for m = 1:length(active)
 if active(m)==(x-

1)*gridY+y+constraint_plane_width*(gridY*gridZ)
 constraintnid{i} =

unique(T([1,2,7,8],active(m)));
 i = i+1;
 end
 end
 end
 end
 i = i-1;
 elseif constraint_plane == 'w'
 prompt = ('At what distance from the left would you like

this surface constraint? Enter this distance in whole millimeters.');
 constraint_plane_width = input(prompt);
 if isempty(constraint_plane_width)
 return
 end
 for z = 1:gridZ
 for y = 1:gridY
 for m = 1:length(active)
 if active(m)==(z-

1)*(gridX*gridY)+y+constraint_plane_width*gridY
 constraintnid{i} =

unique(T([1,4,5,8],active(m)));
 i = i+1;
 end
 end
 end
 end
 i = i-1;
 end
elseif constraint_type == 'P'
 prompt = ('You will be asked for the 3D coordinates of this point

force. What is the x-coordinate in millimeters?');
 pconstraintx = input(prompt);

58

 prompt = ('What is the y-coordinate in millimeters?');
 pconstrainty = input(prompt);
 prompt = ('What is the z-coordinate in millimeters?');
 pconstraintz = input(prompt);
 for k = 1:size(M,2)
 if M(1,k)==pconstraintx && M(2,k)==pconstrainty &&

M(3,k)==pconstraintz
 constraintnid{i} = k;
 end
 end;
end
prompt = ('Would you like to enter another constraint? Enter Y or N');
constraint_answer = input(prompt, 's');
if isempty(constraint_answer)
 return
end
end

final_constraint = constraintnid{1};
for j = 2:i
final_constraint = cat(1, final_constraint, constraintnid{j});
end
final_constraint = unique(final_constraint);

t = cputime

prompt = ('What is the modulus of elasticity in MPa?');
Young_answer = input(prompt);
if isempty(Young_answer)
 return
end

active = findboundary(gridOUTPUT, nely, nelx, nelz);
test = gridOUTPUT;
test(~active) = 0;
test(active) = 1;
clf;
display_3D(test)
optmodel = top3dFlex(length(nelx),length(nely),length(nelz), 0.3, 3,

1.5, final_load, final_constraint, passive, Young_answer,

load_mag,active);

prompt = ('Would you like to scale this model? Please enter Y or N');
scale_answer = input(prompt, 's');
if isempty(scale_answer)
 return
end

if scale_answer == 'Y'

59

 prompt = 'How many voxels per millimeter? (recommended at least 1

voxel per millimeter) ';
 discretization = input(prompt);
 if isempty(discretization)
 return
 end

 prompt = ('Please enter a scale factor for the x-axis: Only whole

numbers greater than or equal to 1');
 x_scale = input(prompt);
 if isempty(x_scale)
 return
 end
 for i = 1:x_scale*length(nelx)/discretization
 nelx(i) = min(nelx)+(i-1)*(discretization);
 end
 prompt = ('Please enter a scale factor for the y-axis: Only whole

numbers greater than or equal to 1');
 y_scale = input(prompt);
 if isempty(y_scale)
 return
 end
 for i = 1:y_scale*length(nely)/discretization
 nely(i) = min(nely)+(i-1)*(discretization);
 end
 prompt = ('Please enter a scale factor for the z-axis: Only whole

numbers greater than or equal to 1');
 z_scale = input(prompt);
 if isempty(z_scale)
 return
 end
 for i = 1:z_scale*length(nelz)/discretization
 nelz(i) = min(nelz)+(i-1)*(discretization);
 end
 scale = [x_scale, y_scale, z_scale];
 h_partition = [discretization, discretization, discretization];
 optmodel = scaletop3D(optmodel,scale, h_partition)
end

opt_passive = find(optmodel<=0.5);
opt_active = find(optmodel>0.5);
optmodel(opt_passive) = 0;
optmodel(opt_active) = 1;
optmodel(active) = 1;
clf;
display_3D(optmodel)

prompt = ('Would you like to make a point cloud? Please enter Y or N');
cloud_answer = input(prompt, 's');
if isempty(cloud_answer)
 return
elseif cloud_answer == 'Y'
 point_cloud = optcoordinates(M,T, optmodel)
 prompt = ('What is the destination dxf filename (include file path

and extension ex: C:\test.dxf)? ');
 cloud_answer = input(prompt, 's');

60

 if isempty(cloud_answer)
 return
 end
 FID = dxf_open(cloud_name);
 dxf_point(FID,point_cloud(3,:), point_cloud(1,:),

point_cloud(2,:));
 dxf_close(FID);
end

prompt = ('Would you like to make an STL file? Please enter Y or N');
stl_answer = input(prompt, 's');
if isempty(stl_answer)
 return
elseif stl_answer == 'Y'
prompt = ('What is the destination STL filename (include file path and

extension ex: C:\test.stl)? ');
STLout = input(prompt,'s');
CONVERT_voxels_to_stl(STLout, optmodel, nely, nelx, nelz,'ascii');
end
cputime - t
end
% DISPLAY 3D TOPOLOGY (ISO-VIEW)is copied from Liu and Tovar's top3d
function display_3D(rho)
[nely,nelx,nelz] = size(rho);
hx = 1; hy = 1; hz = 1; % User-defined unit element size
face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8];
set(gcf,'Name','ISO display','NumberTitle','off');
for k = 1:nelz
 z = (k-1)*hz;
 for i = 1:nelx
 x = (i-1)*hx;
 for j = 1:nely
 y = nely*hy - (j-1)*hy;
 if (rho(j,i,k) > 0.5) % User-defined display density

threshold
 vert = [x y z; x y-hx z; x+hx y-hx z; x+hx y z; x y

z+hx;x y-hx z+hx; x+hx y-hx z+hx;x+hx y z+hx];
 vert(:,[2 3]) = vert(:,[3 2]); vert(:,2,:) = -

vert(:,2,:);

patch('Faces',face,'Vertices',vert,'FaceColor',[0.2+0.8*(1-

rho(j,i,k)),0.2+0.8*(1-rho(j,i,k)),0.2+0.8*(1-rho(j,i,k))]);
 hold on;
 end
 end
 end
end
axis equal; axis tight; axis off; box on; view([30,30]); pause(1e-6);
end

61

APPENDIX B:

TOP3DFLEX FUNCTION

62

%P. Bhaumik's Oct 2014 optimization code based on code by LIU AND TOVAR

(JUL 2013)
function xPhys = top3dFlex(nelx,nely,nelz,volfrac,penal,rmin, loadnid,

fixednid,passive, Young, load_mag,active)
% USER-DEFINED LOOP PARAMETERS
maxloop = 200; % Maximum number of iterations
tolx = 0.01; % Termination criterion
displayflag = 1; % Display structure flag
% USER-DEFINED MATERIAL PROPERTIES
E0 = Young; % Young's modulus of solid material titanium

alloy
Emin = 1e-9; % Young's modulus of void-like material
nu = 0.3; % Poisson's ratio
% USER-DEFINED LOAD DOFs
loaddof = [3*loadnid(:) - 1]; % DOFs
% USER-DEFINED SUPPORT FIXED DOFs
fixeddof = [3*fixednid(:); 3*fixednid(:)-1; 3*fixednid(:)-2]; % DOFs
% PREPARE FINITE ELEMENT ANALYSIS
nele = nelx*nely*nelz;
ndof = 3*(nelx+1)*(nely+1)*(nelz+1);
F = sparse(loaddof,1,load_mag/size(loadnid,1),ndof,1);
U = zeros(ndof,1);
freedofs = setdiff(1:ndof,fixeddof);
KE = lk_H8(nu);
nodegrd = reshape(1:(nely+1)*(nelx+1),nely+1,nelx+1);
nodeids = reshape(nodegrd(1:end-1,1:end-1),nely*nelx,1);
nodeidz = 0:(nely+1)*(nelx+1):(nelz-1)*(nely+1)*(nelx+1);
nodeids = repmat(nodeids,size(nodeidz))+repmat(nodeidz,size(nodeids));
edofVec = 3*nodeids(:)+1;
edofMat = repmat(edofVec,1,24)+ ...
 repmat([0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -1 ...
 3*(nely+1)*(nelx+1)+[0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -

1]],nele,1);
iK = kron(edofMat,ones(24,1))';
jK = kron(edofMat,ones(1,24))';
% PREPARE FILTER
iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for k1 = 1:nelz
 for i1 = 1:nelx
 for j1 = 1:nely
 e1 = (k1-1)*nelx*nely + (i1-1)*nely+j1;
 for k2 = max(k1-(ceil(rmin)-1),1):min(k1+(ceil(rmin)-

1),nelz)
 for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-

1),nelx)
 for j2 = max(j1-(ceil(rmin)-

1),1):min(j1+(ceil(rmin)-1),nely)
 e2 = (k2-1)*nelx*nely + (i2-1)*nely+j2;
 k = k+1;
 iH(k) = e1;
 jH(k) = e2;

63

 sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-

j2)^2+(k1-k2)^2));
 end
 end
 end
 end
 end
end
H = sparse(iH,jH,sH);
Hs = sum(H,2);
% INITIALIZE ITERATION
x = repmat(volfrac,[nely,nelx,nelz]);
x(passive)=0;
xPhys = x;
loop = 0;
change = 1;
% START ITERATION
while change > tolx && loop < maxloop
 loop = loop+1;
 % FE-ANALYSIS
 sK = KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin));
 K = sparse(iK(:),jK(:),sK(:)); K = (K+K')/2;
 tolit = 1e-8;
 maxit = 8000;
 %M = diag(K);
 M = diag(diag(K(freedofs, freedofs)));
 U(freedofs,:)=pcg(K(freedofs, freedofs),F(freedofs,:), tolit, 1000,

M);
 %[num_nodes, num_loads] = size(U);
% for i = 1:num_loads
% U(freedofs,i)=pcg(K(freedofs, freedofs),F(freedofs,i), tolit,

1000, M);
% end
 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
 ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),[nely,nelx,nelz]);
 c = sum(sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce)));
 dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;
 dv = ones(nely,nelx,nelz);
 % FILTERING AND MODIFICATION OF SENSITIVITIES
 dc(:) = H*(dc(:)./Hs);
 dv(:) = H*(dv(:)./Hs);
 % OPTIMALITY CRITERIA UPDATE
 l1 = 0; l2 = 1e9; move = 0.2;
 while (l2-l1)/(l1+l2) > 1e-3
 lmid = 0.5*(l2+l1);
 xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-

dc./dv/lmid)))));
 xnew(passive) = 0;
 xPhys(:) = (H*xnew(:))./Hs;
 if sum(xPhys(:)) > volfrac*nele, l1 = lmid; else l2 = lmid; end
 end
 change = max(abs(xnew(:)-x(:)));
 x = xnew;
 % PRINT RESULTS
 fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.3f

ch.:%7.3f\n',loop,c,mean(xPhys(:)),change);

64

 % PLOT DENSITIES
 if displayflag, clf;
 %display_3D(xPhys);
 end
end
clf; display_3D(xPhys);
end
% ===================== AUXILIARY FUNCTIONS

===============================
% GENERATE ELEMENT STIFFNESS MATRIX
function [KE] = lk_H8(nu)
A = [32 6 -8 6 -6 4 3 -6 -10 3 -3 -3 -4 -8;
 -48 0 0 -24 24 0 0 0 12 -12 0 12 12 12];
k = 1/72*A'*[1; nu];
% GENERATE SIX SUB-MATRICES AND THEN GET KE MATRIX
K1 = [k(1) k(2) k(2) k(3) k(5) k(5);
 k(2) k(1) k(2) k(4) k(6) k(7);
 k(2) k(2) k(1) k(4) k(7) k(6);
 k(3) k(4) k(4) k(1) k(8) k(8);
 k(5) k(6) k(7) k(8) k(1) k(2);
 k(5) k(7) k(6) k(8) k(2) k(1)];
K2 = [k(9) k(8) k(12) k(6) k(4) k(7);
 k(8) k(9) k(12) k(5) k(3) k(5);
 k(10) k(10) k(13) k(7) k(4) k(6);
 k(6) k(5) k(11) k(9) k(2) k(10);
 k(4) k(3) k(5) k(2) k(9) k(12)
 k(11) k(4) k(6) k(12) k(10) k(13)];
K3 = [k(6) k(7) k(4) k(9) k(12) k(8);
 k(7) k(6) k(4) k(10) k(13) k(10);
 k(5) k(5) k(3) k(8) k(12) k(9);
 k(9) k(10) k(2) k(6) k(11) k(5);
 k(12) k(13) k(10) k(11) k(6) k(4);
 k(2) k(12) k(9) k(4) k(5) k(3)];
K4 = [k(14) k(11) k(11) k(13) k(10) k(10);
 k(11) k(14) k(11) k(12) k(9) k(8);
 k(11) k(11) k(14) k(12) k(8) k(9);
 k(13) k(12) k(12) k(14) k(7) k(7);
 k(10) k(9) k(8) k(7) k(14) k(11);
 k(10) k(8) k(9) k(7) k(11) k(14)];
K5 = [k(1) k(2) k(8) k(3) k(5) k(4);
 k(2) k(1) k(8) k(4) k(6) k(11);
 k(8) k(8) k(1) k(5) k(11) k(6);
 k(3) k(4) k(5) k(1) k(8) k(2);
 k(5) k(6) k(11) k(8) k(1) k(8);
 k(4) k(11) k(6) k(2) k(8) k(1)];
K6 = [k(14) k(11) k(7) k(13) k(10) k(12);
 k(11) k(14) k(7) k(12) k(9) k(2);
 k(7) k(7) k(14) k(10) k(2) k(9);
 k(13) k(12) k(10) k(14) k(7) k(11);
 k(10) k(9) k(2) k(7) k(14) k(7);
 k(12) k(2) k(9) k(11) k(7) k(14)];
KE = 1/((nu+1)*(1-2*nu))*...
 [K1 K2 K3 K4;
 K2' K5 K6 K3';
 K3' K6 K5' K2';
 K4 K3 K2 K1'];

65

end
% DISPLAY 3D TOPOLOGY (ISO-VIEW)
function display_3D(rho)
[nely,nelx,nelz] = size(rho);
hx = 1; hy = 1; hz = 1; % User-defined unit element size
face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8];
set(gcf,'Name','ISO display','NumberTitle','off');
for k = 1:nelz
 z = (k-1)*hz;
 for i = 1:nelx
 x = (i-1)*hx;
 for j = 1:nely
 y = nely*hy - (j-1)*hy;
 if (rho(j,i,k) > 0.5) % User-defined display density

threshold
 vert = [x y z; x y-hx z; x+hx y-hx z; x+hx y z; x y

z+hx;x y-hx z+hx; x+hx y-hx z+hx;x+hx y z+hx];
 vert(:,[2 3]) = vert(:,[3 2]); vert(:,2,:) = -

vert(:,2,:);

patch('Faces',face,'Vertices',vert,'FaceColor',[0.2+0.8*(1-

rho(j,i,k)),0.2+0.8*(1-rho(j,i,k)),0.2+0.8*(1-rho(j,i,k))]);
 hold on;
 end
 end
 end
end
axis equal; axis tight; axis off; box on; view([30,30]); pause(1e-6);
end

66

APPENDIX C:

3D ARRAY SCALING FUNCTION

67

%%Author: Purnajyoti Bhaumik
%%This code outputs a scaled version of the top3D results
%%******************************** Thesis

Requirement*****************************

function scaled_weight_mat = scaletop3D(weight,scale)

scaled_weight_arr = {zeros(size(weight,1)), zeros(size(weight, 2)),

zeros(size(weight, 3))};
del_V = zeros(scale,scale,scale);

for z=1:size(weight, 3)
 for y=1:size(weight, 2)
 for x = 1:size(weight, 1)
 for z_scale = 1:scale
 for y_scale = 1:scale
 for x_scale = 1:scale
 del_V(x_scale, y_scale, z_scale) =weight(x,y,z);
 end
 end
 end
 scaled_weight_arr{x,y,z}=del_V;
 end
 end
end

for z = 1:size(weight, 3)
 for y = 1:size(weight, 2)
 scaled_weight_mat = scaled_weight_arr{1,y,1};
 for x=1:size(weight, 1)-1
 scaled_weight_mat =

cat(1,scaled_weight_mat,scaled_weight_arr{x+1,y,z});
 end
 smat{z,y}=scaled_weight_mat;
 end
end

for z_cat = 1:z
 scaled_weight_mat2 = smat{z_cat,1};
 for y_cat = 1:y-1
 scaled_weight_mat2 =

cat(2,scaled_weight_mat2,smat{z_cat,y_cat+1});
 end
 smat2{z_cat}=scaled_weight_mat2;
end

scaled_weight_mat3 = smat2{1};

for z_cat = 1:z-1
 scaled_weight_mat3 = cat(3, scaled_weight_mat3, smat2{z_cat+1});
end
 scaled_weight_mat = scaled_weight_mat3;

68

APPENDIX D:

 MODEL SPACE NODE AND INDEX CODE

69

%%Author: Purnajyoti Bhaumik
%%This code outputs the node and index matrices for 3D linear FEA
%%******************************** Thesis

Requirement*****************************

function [M,T] =generate_cube_M(left, right, bottom, top, back, front,

h_partition,scale)

h = h_partition;

n_hor = scale*(right - left)/h(1); %parallel to the x-axis
n_vert = scale*(top - bottom)/h(3); %parallel to the y-axis
n_depth = scale*(front - back)/h(2); %parallel to the z axis

total_nodes = (n_hor+1)*(n_vert+1)*(n_depth+1);
total_elements = (n_hor)*(n_vert)*(n_depth);

M = zeros(3, total_nodes);
T = zeros(8, total_elements);

count = 1;
count2 = 1;

%while count <= total_nodes
 for k = 1: n_depth+1 %transverses z-axis (depth)
 for j = 1:n_hor+1 %transverses x-axis (horizontal)
 for i = 1:n_vert+1 %transverses y-axis (vertical)
 M(1,count)= (j-1)*h(1);
 M(2,count)= n_vert-(i-1)*h(2);
 M(3,count) = (k-1)*h(3);
 count = count+1;
 end
 end
 end
%end

%while count2 <= total_elements

 for k = 1: n_depth %transverses z-axis (depth)
 for j = 1:n_hor %transverses x-axis (horizontal)
 for i = 1:n_vert %transverses y-axis (vertical)
 T(1,count2)= i+(j-1)*(n_vert+1)+(k-

1)*(n_vert+1)*(n_hor+1);
 T(2,count2) = i+(j-1)*(n_vert+1)+(k-

1)*(n_vert+1)*(n_hor+1)+(n_vert+1)*(j);
 T(3, count2) =

i+(k)*(n_vert+1)*(n_hor+1)+(n_vert+1)*(j);
 T(4, count2) = i+(k)*(n_vert+1)*(n_hor+1);
 T(5, count2) = i+(k)*(n_vert+1)*(n_hor+1)+1;
 T(6, count2) =

i+(k)*(n_vert+1)*(n_hor+1)+(n_vert+1)*(j)+1;

70

 T(7, count2) = i+(j-1)*(n_vert+1)+(k-

1)*(n_vert+1)*(n_hor+1)+(n_vert+1)*(j)+1;
 T(8, count2) = i+(j-1)*(n_vert+1)+(k-

1)*(n_vert+1)*(n_hor+1)+1;
 count2 = count2+1;
 end
 end
 end

71

APPENDIX E:

FIND THE TOP AND SIDE BOUNDARY ELEMENTS

72

function boundaryelements = findboundary(gridOUTPUT, nelx, nely, nelz)

a=1;

for i = 1:length(nelx)
 for j = 1:length(nely)
 for k = 1:length(nelz)
 if (gridOUTPUT(i,j,k)==1) && (i~=1) && (i~=length(nelx)) &&

(j~=1) && (j~=length(nely)) && (k~=1) && (k~=length(nelz))
 if gridOUTPUT(i+1,j,k)==0 || gridOUTPUT(i-1,j,k)==0 ||

gridOUTPUT(i,j+1,k)==0 || gridOUTPUT(i,j,k+1)==0 ||gridOUTPUT(i,j,k-

1)==0
 boundaryelement{a} = i+(j-1)*length(nelx)+(k-

1)*length(nelx)*length(nely);
 a = a+1;
 end
 elseif (gridOUTPUT(i,j,k)==1)&& ((i~=length(nelx) ||

(i==length(nelx) && ((j==1) || (j==length(nely)) || (k==1) ||

(k==length(nelz))))))
 boundaryelement{a} = i+(j-1)*length(nelx)+(k-

1)*length(nelx)*length(nely);
 a = a+1;
 end
 end
 end
end

boundaryelements = boundaryelement{1};
for j = 2:a-1
boundaryelements = cat(1, boundaryelements, boundaryelement{j});
end

73

APPENDIX F:

OPTSTL TRAINING MANUAL

74

Please note: all dimensions are millimeters, all forces are Newtons, so all moduli are

MPa.

EVERYTHING HERE IS CASE SENSITIVE. MAKE SURE ALL OF THE FILES ARE

IN THE CORRECT FOLDER.

Example 1: Cantilever

1. Enter optstl into the command window
2. When asked for an STL, input N for no
3. When asked for the overall width, input 30
4. When asked for the overall height, input 10
5. When asked for the overall depth, input 2
6. When asked for a distributed or point force, enter P
7. When asked for a x coordinate, input 30
8. When asked for a y coordinate, input 0
9. When asked for a z coordinate, input 0
10. When asked for another load, input Y
11. When asked for a distributed or point force, input P
12. When asked for a x coordinate, input 30
13. When asked for a y coordinate, input 0
14. When asked for a z coordinate, input 1
15. When asked for another load, input Y
16. When asked for a distributed or point force, input P
17. When asked for a x coordinate, input 30
18. When asked for a y coordinate, input 0
19. When asked for a z coordinate, input 2
20. When asked for another load, input N
21. When asked for the magnitude of these loads, input -1
22. When asked for a surface or point constraint, input S
23. When asked to perpendicular to which axis, input w
24. When asked for distance from the left, input 0
25. When asked for another constraint, input N
26. When asked for a modulus, input 2150 (Young’s modulus of ABS)
27. When asked to scale the model, input N
28. When asked respecting boundary elements, enter N
29. When asked to create a point cloud, input N
30. When asked to write an STL, input Y
31. When asked for a filename, enter a full file path ex: C:\example.stl

75

Example output: (Left) matlab figure and (Right) STL file

Example 2: Platform

1. Enter optstl into the command window
2. When asked for an STL, input N
3. When asked for the overall width, input 40
4. When asked for the overall height, input 20
5. When asked for the overall depth, input 40
6. When asked for a distributed or point force, enter P
7. When asked for a x coordinate, input 20
8. When asked for a y coordinate, input 20
9. When asked for a z coordinate, input 20
10. When asked for another load, input Y
11. When asked for the magnitude of these loads, input -1
12. When asked for a surface or point constraint, input P
13. When asked for a x coordinate, input 0
14. When asked for a y coordinate, input 0
15. When asked for a z coordinate, input 0
16. When asked for another constraint, input Y
17. When asked for a surface or point constraint, input P
18. When asked for a x coordinate, input 40
19. When asked for a y coordinate, input 0
20. When asked for a z coordinate, input 0
21. When asked for another constraint, input Y
22. When asked for a surface or point constraint, input P
23. When asked for a x coordinate, input 40
24. When asked for a y coordinate, input 0
25. When asked for a z coordinate, input 40
26. When asked for another constraint, input Y
27. When asked for a surface or point constraint, input P
28. When asked for a x coordinate, input 0
29. When asked for a y coordinate, input 0

76

30. When asked for a z coordinate, input 40
31. When asked for another constraint, input N
32. When asked for a modulus, input 2150 (Young’s modulus of ABS)
33. When asked to scale the model, input N
34. When asked respecting the boundary, enter N
35. When asked to create a point cloud, input N
36. When asked to write an STL, input Y
37. When asked for a filename, enter a full file path ex: C:\example1.stl
Example output: (Left) matlab figure and (right) STL file

Example 3: Input Any STL File in this case an FDM tool

1. Enter optstl into the command window
2. When asked to input an STL, enter Y
3. When asked the STL filepath use FDMtool2.stl, for example C:\FDMtool2.stl.

FDMtool2.stl is scaled down for decreasing the number of elements and
computation time.

4. When asked the height, enter 5
5. When asked the width, enter 11
6. When asked the depth, enter 16
7. When asked for a discretization factor, enter 3. You should get a MATLAB figure of

the voxelised model.
8. When asked for a load, enter P
9. When asked for the x-coordinate, enter 16
10. When asked for the y-coordinate, enter 14
11. When asked for the z-coordinate, enter 24
12. When asked for another load, enter N.
13. When asked for the load’s magnitude, enter -100
14. When asked for constraint, enter P
15. When asked for the x-coordinate, enter 0
16. When asked for the y-coordinate, enter 0
17. When asked for the z-coordinate, enter 0
18. When asked for another constraint, enter Y
19. When asked for constraint, enter P
20. When asked for the x-coordinate, enter 33
21. When asked for the y-coordinate, enter 0
22. When asked for the z-coordinate, enter 0
23. When asked for another constraint, enter Y
24. When asked for constraint, enter P
25. When asked for the x-coordinate, enter 33

77

26. When asked for the y-coordinate, enter 0
27. When asked for the z-coordinate, enter 48
28. When asked for another constraint, enter Y
29. When asked for constraint, enter P
30. When asked for the x-coordinate, enter 0
31. When asked for the y-coordinate, enter 0
32. When asked for the z-coordinate, enter 48
33. When asked for another constraint, enter N
34. When asked for the modulus, enter 2150 for ABS (e.g. 2150 MPa) . You should then

get an optimized model.
35. When asked to scale the model, enter N.
36. When asked respecting the boundary, enter Y. You should then get the optimized

model plus the boundary elements.
37. When asked to write an STL file, enter Y.
38. When asked for the file path, enter a full path for example C:\optFDMtool.st
Original STL Topologically Optimized STL

78

APPENDIX G:

STL IMAGES

79

Increasing Cantilever Discretization

Increasing platform discretization

Testing discretization and scaling of a 1 mm

3
 unit cube

80

APPENDIX H:

 SUPPLEMENTAL FEA

81

Figure H.1: The original cantilever’s plot for displacement in the X direction

Figure H.2: The original cantilever’s plot for displacement in the Y direction

Figure H.3: The original cantilever’s plot for displacement in the Z direction

82

Figure H.4: The original cantilever’s plot for resultant 3D strain

Figure H.5: The original cantilever’s plot for strain in the X direction

Figure H.6: The original cantilever’s plot for strain in the Y direction

83

Figure H.7: The original cantilever’s plot for strain in the Z direction

Figure K.8: The original platform’s plot for displacement in the X direction

84

Figure K.9: The original platform’s plot for displacement in the Y direction

Figure K.10: The original platform’s plot for displacement in the Z direction

Figure K.11: The original platform’s plot for resultant 3D strain

85

Figure K.12: The original cantilever’s plot for displacement in the X direction

Figure K.13: The original platofrm’s plot for displacement in the Y direction

86

Figure K.14: The original platform’s plot for displacement in the Z direction

87

APPENDIX I:

 MATERIAL PROPERTIES

88

Material
Young's Modulus

(GPa)
Density
(g/cc)

Poisson’s
Ratio

ABS 2.15 Gpa 1.07 0.3

Titanium
Alloy

115 GPa 4.03
0.3

89

APPENDIX J:

COMPRESSION TESTING RESULTS

90

Mass for

Compress

ing

Prototype

Compress

ive force

(N)

height

(mm)

1st

Measure

ment

height

(mm)

2nd

Measure

ment

height

(mm)

3rd

Measure

ment

height

(mm)

Average

Std. Dev

(mm)

Prototype

's Strain

(ε)

Stress, Pa
Control

Strain (ε)

Design

Load

0 0 20.53 20.76 20.44 20.57667 0.165025 0 0 0 210420

10 44.49816 20.53 20.54 20.6 20.55667 0.037859 0.000972 93633.03 4.36E-05 210420

15 66.74724 20.58 20.51 20.56 20.55 0.036056 0.001296 140449.5 6.53E-05 210420

20 88.99632 20.54 20.52 20.57 20.54333 0.025166 0.00162 187266.1 8.71E-05 210420

25 111.2454 20.56 20.52 20.53 20.53667 0.020817 0.001944 234082.6 0.000109 210420

30 133.4945 20.52 20.52 20.53 20.52333 0.005774 0.002592 280899.1 0.000131 210420

40 177.9926 20.51 20.5 20.53 20.51333 0.015275 0.003078 374532.1 0.000174 210420

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.001 0.002 0.003 0.004

St
re

ss
 (

P
a)

Strain

Compression Test for ABS Prototype 1

E = 2.15 GPa

Prototype

Design Load

91

Mass for

Compress

ing

Prototype

Compress

ive force

(N)

height

(mm)

1st

Measure

ment

height

(mm)

2nd

Measure

ment

height

(mm)

3rd

Measure

ment

height

(mm)

Average

Std. Dev

(mm)

Prototype

's Strain

(ε)

Stress, Pa
Control

Strain (ε)

0 0 20 19.99 20.01 20 0.01 0 0 0

10 44.49816 19.99 19.98 19.99 19.98667 0.005774 0.000667 93633.03 4.36E-05

15 66.74724 19.98 19.99 19.98 19.98333 0.005774 0.000833 140449.5 6.53E-05

20 88.99632 19.96 19.98 19.98 19.97333 0.011547 0.001333 187266.1 8.71E-05

25 111.2454 19.97 19.97 19.97 19.97 0 0.0015 234082.6 0.000109

30 133.4945 19.95 19.96 19.97 19.96 0.01 0.002 280899.1 0.000131

40 177.9926 19.94 19.96 19.96 19.95333 0.011547 0.002333 374532.1 0.000174

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.0005 0.001 0.0015 0.002 0.0025

St
re

ss
 (

P
a)

Strain

Compression Test for ABS Prototype 2

E = 2.15 GPa

Prototype

Design Load

92

Mass for

Compress

ing

Prototype

Compress

ive force

(N)

height

(mm)

1st

Measure

ment

height

(mm)

2nd

Measure

ment

height

(mm)

3rd

Measure

ment

height

(mm)

Average

Std. Dev

(mm)

Prototype

's Strain

(ε)

Stress, Pa
Control

Strain (ε)

Design

Load

0 0 20 20.02 20.02 20.01333 0.011547 0 0 0 210420

10 44.49816 20.01 20.01 20 20.00667 0.005774 0.000333 93633.03 4.36E-05 210420

15 66.74724 20.01 20 20 20.00333 0.005774 0.0005 140449.5 6.53E-05 210420

20 88.99632 20.01 19.99 20 20 0.01 0.000666 187266.1 8.71E-05 210420

25 111.2454 19.99 19.99 19.99 19.99 0 0.001166 234082.6 0.000109 210420

30 133.4945 19.99 19.98 19.98 19.98333 0.005774 0.001499 280899.1 0.000131 210420

40 177.9926 19.97 19.98 19.97 19.97333 0.005774 0.001999 374532.1 0.000174 210420

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.0005 0.001 0.0015 0.002 0.0025

St
re

ss
 (

P
a)

Strain

Compression Test for ABS Prototype 3

E = 2.15 GPa

Prototype

Design Load

93

Mass for

Compressing

Prototype

Compress

ive force

(N)

height

(mm)

1st

Measure

ment

height

(mm)

2nd

Measure

ment

height

(mm)

3rd

Measure

ment

height

(mm)

Average

Std. Dev

(mm)

Prototype

's Strain

(ε)

Stress, Pa
Control

Strain (ε)

Design

Load

0 0 20 20 20 20 0 0 0 0 210420

10 44.49816 19.99 20 20 19.99667 0.005774 0.000167 93633.03 4.36E-05 210420

15 66.74724 20 19.98 19.99 19.99 0.01 0.0005 140449.5 6.53E-05 210420

20 88.99632 20 19.98 19.97 19.98333 0.015275 0.000833 187266.1 8.71E-05 210420

25 111.2454 19.99 19.98 19.97 19.98 0.01 0.001 234082.6 0.000109 210420

30 133.4945 19.98 19.97 19.96 19.97 0.01 0.0015 280899.1 0.000131 210420

40 177.9926 19.97 19.97 19.96 19.96667 0.005774 0.001667 374532.1 0.000174 210420

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.0005 0.001 0.0015 0.002 0.0025

St
re

ss
 (

P
a)

Strain

Compression Test for ABS Prototype 4

E = 2.15 GPa

Prototype

Design Load

94

Mass for

Compress

ing

Prototype

Compress

ive force

(N)

height

(mm)

1st

Measure

ment

height

(mm)

2nd

Measure

ment

height

(mm)

3rd

Measure

ment

height

(mm)

Average

Std. Dev

(mm)

Prototype

's Strain

(ε)

Stress, Pa
Control

Strain (ε)

Design

Load

0 0 19.99 20 20 19.99667 0.005774 0 0 0 210420

10 44.49816 19.99 19.98 19.99 19.98667 0.005774 0.0005 93633.03 4.36E-05 210420

15 66.74724 19.97 19.98 19.98 19.97667 0.005774 0.001 140449.5 6.53E-05 210420

20 88.99632 19.97 19.97 19.98 19.97333 0.005774 0.001167 187266.1 8.71E-05 210420

25 111.2454 19.97 19.96 19.96 19.96333 0.005774 0.001667 234082.6 0.000109 210420

30 133.4945 19.96 19.96 19.97 19.96333 0.005774 0.001667 280899.1 0.000131 210420

40 177.9926 19.95 19.95 19.96 19.95333 0.005774 0.002167 374532.1 0.000174 210420

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.0005 0.001 0.0015 0.002 0.0025

St
re

ss
 (

P
a)

Strain

Compression Test for ABS Prototype 5

E = 2.15 GPa

Prototype

Design Load

95

APPENDIX K:

 LOAD AND CONSTRAINT DATA

96

Cantilever loads and constraints

Load Location: point force at (x = 30 mm , y = 0 mm, and z = 0 mm)

Load Location: point force at (x = 30 mm , y = 0 mm, and z = 1 mm)

Load Location: point force at (x = 30 mm , y = 0 mm, and z = 2 mm)

Load magnitude = -100 N (program will distribute this load across the thre nodes above

which represent the tip of the cantilever, so each load is -33.333 N)

Simply Supported Constraints at x = 0 mm, 0 mm ≤ y ≤ 10 mm, and 0 mm ≤ z ≤ 2 mm

Platform loads and constraints

Load Location: point force at (x = 20 mm , y =20 mm, and z = 20 mm)

Simply Supported Constraints at (x=0mm, y = 0mm, z = 0mm), (x=40mm, y = 0mm, z =

0mm), (x=40 mm, y = 0 mm, z = 40 mm), and (x=0mm, y = 0mm, z =40 mm)

FDM Tool loads and constraints

Load Location: point force at (x = 15mm , y = 14 mm, and z = 24 mm)

Load Magnitude: -100N

Simply Supported Constraints at (x=0mm, y = 0mm, z = 0mm), (x=33mm, y = 0mm, z =

0mm), (x=33mm, y = 0mm, z = 48mm), and (x=0mm, y = 0mm, z =48 mm)

97

BIBLIOGRAPHY

[1] Amir, O., Aage, N., and Lazarov, B. S., 2014, “On multigrid-CG for

efficient topology optimization,” Structural and Multidisciplinary

Optimization, Vol 49, No.5, pp 815-829.

[2] Andreassen, E. and Andreasen, C. S., 2014, “How to determine composite

material properties using numerical homogenization,” Computational

Materials Science, Vol. 83, pp 488-495.

[3] Andreasen, C. S. and Sigmund, O., 2012, “Multiscale modeling and

topology optimization of poroelastic actuators,” Smart Materials and

Structures, Vol. 21, No. (6).

[4] Andreasen, C. S., Andreassen, E., Jensen, J. S., and Sigmund, O., 2014,

“On the realization of the bulk modulus bounds for two-phase viscoelastic

composites,” Journal of the Mechanics and Physics of Solids, Vol 63, pp

228-241.

[5] Digital Manufacturing & Design Innovation (DMDI) Institute, 2013,

“Awardee Announced”. US National Network for Manufacturing

Innovation. http://manufacturing.gov/dmdi.html. Last visited on 6/20/2014

[6] Banerjee, J., Chou, H. T., Garza, J. F., Kim, W., Woelk, D., Ballou, N.,

and Kim, H. J., 1987, “Data model issues for object-oriented

applications,” ACM Transactions on Information Systems (TOIS), Vol 5,

No. 1, pp 3-26.

[7] Bendsoe, M. P. and Sigmund, O. 2003. Topology optimization: theory,

methods and applications. Springer.

[8] Bereiter, C., 2002, “Design Research for Sustained Innovation”. Cognitive

Studies, Bulletin of the Japanese Cognitive Science Society. Vol 9. p 321

– 327.

[9] Brackett, D., Ashcroft, I., and Hague, R., 2011, “Topology optimization

for additive manufacturing,” In Proceedings of the 24th Solid Freeform

Fabrication Symposium (SFF11 ׳). pp. 6-8.

[10] Chu, J., Engelbrecht, S., Graf, G., and Rosen, D. W., 2010, “A comparison

of synthesis methods for cellular structures with application to additive

manufacturing,” Rapid Prototyping Journal, Vol. 16, No. 4, pp 275-283.

http://manufacturing.gov/dmdi.html.%20Last%20visited%20on%206/20/2014

98

[11] Emmelmann, C., Sander, P., Kranz, J., & Wycisk, E. 2011. Laser additive

manufacturing and bionics: redefining lightweight design. Physics

Procedia, 12, pp 364-368.

[12] General Electric, 2014,“Transforming Manufacturing One Layer at a

Time”. Additive Manufacturing is Reinventing the Way We Work.

http://www.ge.com/stories/additive-manufacturing. Last visited

10/27/2014.

[13] Gere, J.M., Goodno, B.J., 2009, Mechanics of Materials, 7
th

 ed, pp 23-24.

[14] Gero, J. S. 1990. “Design prototypes: a knowledge representation schema

for design,” AI magazine, Vol. 11, No. 4, pp 26.

[15] National Science Foundation, 2014, “GOALI: Building Engineering

Through Topology Optimization”. National Science Foundation Where

Discoveries Begin.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1335160 . Last

visited on 6/20/2014.

[16] Hiller, J., and Lipson, H. 2009, “Design and analysis of digital materials

for physical 3D voxel printing,” Rapid Prototyping Journal, 15(2), pp

137-149.

[17] Kashdan, L., Seepersad, C. C., Haberman, M., and Wilson, P. S. 2012,

“Design, fabrication, and evaluation of negative stiffness elements using

SLS,” Rapid Prototyping Journal, 18(3), pp 194-200.

[18] Kiureghian, A. D. and Ditlevsen, O. 2009, “Aleatory or epistemic? Does it

matter?,” Structural Safety, 31(2), pp 105-112.

[19] Liu, K., and Tovar, A, 2014, “An efficient 3D topology optimization code

written in Matlab.” Structural and Multidisciplinary Optimization.

[20] Nguyen, T. H., Paulino, G. H., Song, J., and Le, C. H. 2010. A

computational paradigm for multiresolution topology optimization

(MTOP). Structural and Multidisciplinary Optimization, 41(4), pp 525-

539.

[21] Oded A., 2014, “Oded Amir”, http://tx.technion.ac.il/~odedamir/ , Last

visited on 6/20/2014.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1335160

99

[22] AM News, 2014 “Pitt Reserachers Receive America Makes Grant to

Develop Computational “Latticework” for Additive Manufacturing”.

Additive Manufacturing.

http://additivemanufacturing.com/2014/02/12/pitt-researchers-receive-

america-makes-grant-to-develop-computational-latticework-for-additive-

manufacturing/ , Last visited on 6/20/2014.

[23] Ruffo, M., Tuck, C., and Hague, R. 2006. Cost estimation for rapid

manufacturing-laser sintering production for low to medium volumes.

Proceedings of the Institution of Mechanical Engineers, Part B: Journal

of Engineering Manufacture, 220(9), pp 1417-1427.

[24] Taminger, K. M., and Hafley, R. A. 2003. Electron beam freeform

fabrication: a rapid metal deposition process. In Proceedings of the 3rd

Annual Automotive Composites Conference, pp. 9-10.

[25] Tomlin, M. and Meyer, J. 2011. Topology optimization of an additive

layer manufactured (ALM) aerospace part. In The 7th Altair CAE

Technology Conference, Gaydon, UK, 10th May.

[26] Wang, H. V., & Rosen, D. W. 2001. Computer-aided design methods for

the additive fabrication of truss structure (Master's thesis, School of

Mechanical Engineering, Georgia Institute of Technology).

100

VITA

 Purnajyoti Bhaumik is 28 year old full time Mechanical Project Engineer for

Vanderlande Industries. He has 2.5 years of experience as an engineer and served in the

United States Marine Corps Reserve for 6 years. He has a Bachelor of Science degree in

Mechanical Engineering from the Georgia Institute of Technology, an Engineer

Intern/Engineer in Training Certificate in Mechanical Engineering, a Lean Six Sigma Black

Belt, and a Graduate Certificate in CAD/CAM and Rapid Prototyping.

 He started school at the Missouri University of Science and Technology in the Fall of

2012. He completed my graduate certificate work in the Spring of 2013 with a 3.25 GPA. He

decided to try the Master of Science in Mechanical Engineering degree program and

maintained a 3.28 GPA. He studied state space controls, optimization, DFMA, solid freeform

modeling, solid freeform fabrication, and FEA.

 He shall begin studying for his PE exam in 2015. At work, he shall be responsible for

optimizing engineering design specifications based on functional requirements, quality, cost,

and time. He shall look forward to traveling and visiting my extended family across the

globe. He shall consider undertaking a PhD in Mechanical Engineering.

101

	Generation and validation of optimal topologies for solid freeform fabrication
	Recommended Citation

	II

