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ABSTRACT 

The study of fabricating topologically optimized parts is presented hereafter. The 

mapping of topology optimization results for Standard Tessellation Language (STL) 

writing would enable the solid freeform fabrication of lightweight mechanisms. 

Aerospace leaders such as NASA, Boeing, Airbus, European Aeronautic Defense And 

Space Company (EADS), and GE Aero invest in topology optimization research for the 

production of lightweight materials. Certain concepts such as microstructural 

homogenization, discretization , and mapping are reviewed and presented in the context 

of topology optimization . Future biomedical applications of solid freeform fabrication 

such as organ printing stand to save millions of lives through the robust development of 

optimized technology. The ability of topologically optimized parts to perform 

mechanically is presented using FEA and compression testing.  A comprehensive user 

input/output topology optimization software results from the investigation. Functions 

such as accepting any user design volume, loading, constraining, performing 

optimization, scaling, and writing an STL file are coalesced into one program named 

optstl. The pre-existing publicly available software packages have been primarily for 

graphical use, such as 3D plots, and thus cannot be directly interfaced with solid freeform 

fabrication technology. The reduction of multiple software interfaces into a simplified 

MATLAB program and the ability to write STL files of topologically optimized models 

provides scientists and engineers this interfacing ability. The results of this study are 

evaluated using finite element analysis (FEA), compression testing, and statistical testing. 
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1. INTRODUCTION 

 

 

Design engineering has always been mankind’s segue from the status quo. The 

competition for natural resources necessitates this study of structural design [8] and 

topology optimization. The result has been several evolutions of product lifecycle and 

database management interfaces [6]. The industrial revolution catapulted the process of 

design into a major business, and the advent of computer and internet technology brought 

computational methods, AI, and data sharing to light [14]. The main goal of design 

research is the resolution of shortcomings and obstacles. Preprocessors such as the one 

developed in this study introduce the phenomenon of automated engineering design. 

 

This study presents a computational method for mapping the solution of 3D 

topology optimization for STL writing on a standard PC equipped with MATLAB. The 

convergence of the optimization is illustrated. Studies have proven the regulated Solid 

Isotropic Material Penalization (SIMP) gradient based descent used in this study is the 

best method for topology optimization [1, 19, 20]. A MATLAB implementation of the 

regulated SIMP is studied, developed, and supplemented using additional MATLAB 

functions. The user is responsible for inputting the design volume, loads, simply 

supported constraints, scaling, and mesh fineness. All computations in this study have 

been computed using an Intel dual core i7 processor at 2.10 GHz and 2.70 GHz, 16 GB 

RAM, 1 TB ROM, a 64 bit Windows 7 Pro OS, and 64 bit CAE Linux OS. STL photos 

and triangulated volumes are from XYZware and GMesh. Validation FEA is provided 

using ImpactFEA, Salome Meca, and Code Aster. All solid freeform fabrication in this 

study is presented from fused deposition modeling using a DaVinci 1.0 machine. 
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Structures optimization advances from the use of topology optimization where 

excess material in limited space can create negative effects. An example is the study of 

poroelastic materials for the actuation of linear motors. Research in the study material 

moduli filtered an iterative gradient based descent of elasticity, so the solution’s 

convergence achieved the desired vertical and torsional deflections [3].  Another example 

is the application of topology optimization in determining the bounds of viscoelastic 

microstructures [4]. The negative stiffness of these dampers absorbs vibrations and shifts 

the frequencies of an unconstrained beam [17]. Adequately mapping these results of 

topology optimization for STL file writing is required for the application of solid 

freeform fabrication methods [26].   

 

The use of multiple software interfaces and manual re-renderings have hampered 

the ability of businesses to physically manufacture topologically optimized parts. 

Aerospace firms such as NASA, Boeing, Airbus, EADS, and GE Aero invest in topology 

optimization research for the production of lightweight materials [10,11,24,25]. GE 

predictions report an aircraft engine’s weight, assembled from subtractively machined 

parts, can be reduced by potentially 1,000 pounds using additive manufacturing after the 

year 2020 [12]. An estimate of the presidentially appointed U.S. Digital Manufacturing 

and Design Innovation Institute concurs that the use of digital manufacturing technology 

can save the aviation industry $30 billion by 2030 [5]. 

 

EADS, an aerostructure manufacturing company published a case study [25], and 

the study explained that fabrication of optimal topologies required iterative cycles of 
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design in CATIA, meshing in HyperWorks, FEA in Obtistruct, topology optimization, 

and finally STL smoothing in 3 Matic [25]. The results of EADS’ testing have been an 

impetus in the mapping of optimal topologies for directly writing STL files.  

 

This study focuses on unifying three of the five different functions demanded in 

industry in one package named optstl: mesh, load, and constrain any user defined 

volume, topologically optimize the volume, and then write an STL of the topologically 

optimized volume.  The meshing function can create a uniform mesh of user defined 

density. The density is determined when the user inputs the discretization factor. 

Discretization factors can range from one to any integer greater than one.  Voxel cubes 

are used in top3d which is the optimization engine modified in this study, so voxelization 

was chosen as the method of discretization for this study. Voxelization required 

discretization of the user defined system in this study via trilinear mapping to split the 

model into a mesh of cubes or voxels. User defined loads and constraints are mapped to 

the mesh using Booleans and nested loops. Loads and constraints can be distributed over 

entire surfaces, mapped to a specific point, or a combination of each. These loads and 

constraints are input via argument into the top3dFlex algorithm. The optstl code made 

in this study improves upon the top3d code by allowing the use of Cartesian coordinates 

instead of nodal indices. A simple example of the difference between Cartesian 

coordinates and nodal indices comes from a 2 mm x 2 mm mesh example. The node at x 

= 2 mm and y = 2 mm has a nodal index of 4. Most design volumes in this study are 

significantly more complex, so calculation of the nodal index is pre-programmed into the 

optstl package. All the user must do is correctly input Cartesian coordinates of each 
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load and constraint into the MATLAB command window after having loaded either an 

STL model or a set of design volume parameters. Distributed loads can only be made 

perpendicular to the xy, yz, and zx plane, and constraints are always simply supported 

constraints for the optimization engine top3dFlex. Finite element analysis of the 

voxelized system solves the displacement value of each node and the optimization 

function optimizes the elasticity of each voxel. Displacement is controlled using weighted 

filtering before each search for the set of optimal voxel densities. Users get a 3D 

MATLAB plot and three choices: 1) to scale the result, 2) to make a point cloud from the 

result, and 3) to write an STL file from the result.   

 

A company requiring all these functions can save money otherwise spent on 

purchasing separate software for each function. Scientists have considered the economics 

of solid freeform fabrication [23], and a 2006 study has shown the benefits of this 

technology exceedingly outperform subtractive, casting, and molding methods at low 

volumes of production [23]. Even the nesting of multiple parts during solid freeform 

fabrication means one machine can produce an entire assembly after just one iteration of 

lowering the machine bed [23]. The use of optimal topology STL writing enables shifting 

cost estimator variables of production time and material cost further in favor of solid 

freeform fabrication. 

 

The pre-existing publicly available software packages have been primarily for 

.obj files and graphical displays and thus cannot directly interface with solid freeform 

fabrication technology. The mapping of topology optimization results for STL writing 
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enables the solid freeform fabrication of lightweight mechanisms. Epistemic errors are 

systemic and random in nature [18], and optstl can eliminate epistemic errors that are 

encountered during manual mappings and re-renderings. One concern respecting these 

computationally optimized parts pertains sufficient load bearing behavior, so validation is 

required. FEA plots and compression testing from this study prove whether the optimized 

parts exhibit acceptable mechanical behavior.  
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2. BACKGROUND 

 

 

 

 The objective of topology optimization is the minimization of the model’s 

volume given loads and constraints. The use of explicit functional parameters leads to an 

impracticable state space solution [20]. Therefore, the structure should be expressed 

implicitly non-parametrically for optimal results. The objective is minimization of the 

design model’s volume: 

                            (Eq 1) 

where Vs is the maximum user defined volume, and     [0 ,1]  is the normalized density 

of each element in the final volume V. The normalized density,  , relates to the 

compliance of the model: 

                                                       (Eq 2) 

where      is the stiffness of an element, u is the displacement of this element, and f  is 

the force acting on this element. The value of     for each element can be computed using 

gradient-based descent [7, 20].  

 

The optstl optimal topology STL writing program, which is developed in this 

study, is based on Liu and Tovar’s top3D algorithm [19]. The regulated SIMP based 

gradient descent, stiffness matrix, and display functions of top3d were used in optstl 

via a modified version named top3dFlex: 

function xPhys = top3dFlex(nelx,nely,nelz,volfrac,penal,rmin, loadnid, 

fixednid, passive, Young, load_mag) 
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where loadnid and fixednid are the node indices for the loads and constraints. A node 

is a vertex of a voxel, and nelx, nely, and nelz are the number of voxel elements in the 

x, y, and z directions, respectively. Voxels in the design volume which should be void are 

voided using passive. Voids represent areas such as holes for fasteners or other features 

defined in the input STL file. All voids are determined computationally beforehand using 

the results of the VOXELISE_FLEX function as discussed in later sections. The product of 

nelx, nely, and nelz creates the design volume, and the variable volfrac   [0,1] is the 

desired fraction of the design volume for the final structure. Both the initial value of the 

design volume and the midsection search Boolean employ volfrac: 

x = repmat(volfrac,[nely,nelx,nelz]); xPhys = x; 

 

Where the 3D array xPhys contains the current normalized density of each voxel, 

and the initial value definition sets all element volumes in xPhys equal to volfrac. 

if sum(xPhys(:)) > volfrac*nele, l1 = lmid; else l2 = lmid; end 

 

 Where the volume nele is the product of number of elements in the x, y, and z 

along the x, y, and z axes, and xPhys has been subjected to the regulated Solid Isotropic 

Material Penalization method: 

                                         
                  

                               (Eq 3) 

Where E0 and Emin are the Young’s and minimum moduli of the material 

respectively, and the MATLAB code for Equation 3 requires one line: 

sK = KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)); 

  KE(:)is the global stiffness matrix   
  computed using the function lk_h8 as 

explained in detail per [19]. Each element i of xPhys, is a voxel element’s normalized 

density where i                        , and      is a multiresolutional or regulated 



8 

 

density as a function of the neighboring normalized densities subject to the user defined 

exponent penal > 1 for convergence. The variable xPhys equals the variable    from 

Equation 3. Researchers find maintaining a coarse FEA mesh while finely computing the 

SIMP requires factoring in weighted contributions of neighboring elements to the 

deformation of any single element [19, 20]. The neighboring normalized element 

densities contribute weight as a function of the user input rmin: 

sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2+(k1-k2)^2));  

                                                    (Eq 4) 

Where element2 is nearest element to element1 within the distance R = rmin, and 

(i1-i2),  (j1-j2), and (k1-k2) are the differences between the x, y, and z coordinates of 

element1 and element2.  

                                                  
            

            

                      (Eq 5) 

xPhys(:) = (H*xnew(:))./Hs); 

 

Where the denominator Hs is the initial weighted contribution of the neighboring 

elements of all the normalized element densities initially set to  0.5, and H*xnew(:) is 

the updated contribution of the neighboring normalized element densities after 

calculating each xnew via gradient based descent, and the convergence is checked using a 

midsection search method: 

    l1 = 0; l2 = 1e9; move = 0.2; 
    while (l2-l1)/(l1+l2) > 1e-3 
        lmid = 0.5*(l2+l1); 
        xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-

dc./dv/lmid))))); 
        xPhys(:) = (H*xnew(:))./Hs; 
        if sum(xPhys(:)) > volfrac*nele, l1 = lmid; else l2 = lmid; end 
    end 
 

where the variables dc and dv are defined,: 
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dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce; 
  dv = ones(nely,nelx,nelz); 

 

where dc is the first derivative of the SIMP computation and where ce is the constitutive 

matrix, and the product of the constitutive matrix, the normalized elements’ moduli, and 

the E0  is the system’s stiffness, k, as defined in Hooke’s Law: 

                              (Eq 6) 

where k is the system’s stiffness and can be related to the modulus in terms of axial stress 

and strain: 

                    
 

 
                                                       (Eq 7) 

where E is Young’s modulus,   is stress on the area, and   is strain in the direction of the 

stress. 

                         
 

  

  
  
                                   (Eq 8) 

where F is the force exerted on area A and    is the change of l in the direction of the 

force f. Equation 6 can be rearranged to resemble equation 2: 

                        
    

 
                        (Eq 9) 

where EA/l equals the stiffness k,    equals the displacement x, and Eq 9 now resembles 

the function in Eq 2 for meshing discretization of i elements with modulus E as defined in 

Eq 3. Varying the elasticity value inversely varies the displacement. Locations where the 

model is not strained signify areas of little to no force transmission, so the modulus can 

be revised to zero in these locations only. The SIMP model from equations 1 – 3 allows 

for penalizing such locations until there are only sufficient voxels left for mechanical 

compliance.  If the voxel’s normalized density is less than unity, then subjecting this 

density to any exponent greater than one causes the modulus to approach zero. Only 
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voxels having a density equal to one can remain unchanged after SIMP. Penalization 

converges through each iteration and the updated values for    are inputs into the next 

iteration of the constitutive matrix, ce. 

 

Several supplemental functions are added in optstl for top3dFlex such as the 

ability to read in any model space via STL, adjust mesh density, scale the result, make a 

point cloud, and write an STL. Reading in any STL file is the function of VOXELISE_FLEX 

which returns a binary 3D array where the any element in the array can have either a 0 or 

1 value. Voxels on the inside of the model are given a value of 1, and voxels outside the 

model are given a value of 0. Such valuation is known as binary homogenization. Voxel 

size is determined during this homogenization, so the user is first asked for the 

discretization factor before proceeding. The minimum discretization factor is one voxel 

per millimeter. Scaling is permitted after top3dFLEX produces an optimal result, so the 

user can choose to optimize a small scale model of his or her system and then scale the 

result. An option is given, so the user can then generate a point cloud in the dxf format 

for inspection in AutoCAD. A final option is given for the user to write an STL file for 

solid freeform fabrication, so the user can fabricate the optimized topology. If the user 

decides not to use any of these supplements such as input an STL file, then the user can 

still use top3dFlex via a secondary set of requests for the user to define only the length , 

width, and height of the volume. The iterative solver as recommended in Liu and Tovar’s 

paper [17]for optimizing a large volume is fully implemented in optstl, so no restriction 

is placed on the size of the user defined design volume or input STL model. 
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3. PURPOSE 

 

 

The purpose of this study is to advance the fabrication of light weight or spatially 

optimized mechanisms for solid freeform fabrication that can be applicable to vehicle 

development, bionics, consumer electronics, and civil structures. Scientists have studied 

optimal topologies for force inverters [10], interiors of sandwich panels [26], and 

building infrastructure [15, 21]. Optimizing these mechanisms involves minimizing 

volume while maintaining mechanical performance. Any volume eliminated during this 

process reduces the amount of material for fabrication and energy required for work and 

heat transfer, and the eliminated volume presents space for embedding hardware.  

 

A major constraint of the existing top3d is the definition of the user’s design 

volume as just a rectangular block specified as a length, width, and height. Liu and Tovar 

do describe a method for adding features using active and passive voxels [19], yet the 

user would have to explicitly parameterize each active and passive voxel. Active voxels 

represent voxels within the model while passive voxels represent voxels inside the design 

volume yet outside the model. Defining these active and passive voxels parametrically 

requires formulation of feature geometry into functional notation. Used in this study is a 

simplified means where the user can save any solid CAD model into an STL format.  

Any structure having already been saved in the STL format can be voxelized via use of 

the VOXELISE_FLEX function in optstl for top3dFLEX, so the voxel format of the 

original top3d algorithm is retained in optstl. Passive voxel assignments of 0 are then 

assigned to any voxel outside the solid, and active voxel assignments of 1 are assigned to 



12 

 

any voxel within the solid. Voxelization of the input STL file produces this binary array 

for input into top3dFlex, yet these binary voxels are returned having any value in the 

continuous distribution [0, E0]. Fabrication of this continuous distribution is highly 

technical and requires machinery capable of depositing or binding materials of varying 

moduli. A DaVinci 1.0 printer which is employed in this study is capable of extruding 

only a single filament of material, so optstl is made to homogenize the continuous 

moduli distribution back to a binary voxel format via the CONVERT_voxels_to_stl 

function. Researchers have studied the voxels as the base units of structural 

homogenization [16]. Voxels can tessellate readily, so larger structures can be made from 

a voxel microstructure. Using voxels as homogenous building blocks this way is known 

as microstructural homogenization much like a brick wall is made from the homogenous 

assembly of bricks. Making one load bearing microstructure can scale to that of a larger 

system of homogeneous microstructures. The user can now decide whether to optimize 

and fabricate any system of components or any component within the system.  
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4. RESULTS 

 

 

One primary result of this study was the development of one software package, 

optstl for which a process diagram is shown in Figure 4.1. 

 

 

 

Figure 4.1: optstl Program Flowchart 

 

 

 

 

 The resulting program requires the user to input optstl into the MATLAB 

command window. There are sixteen .m MATLAB files which contain function scripts 

that the user must have in the current working MATLAB directory. A series of questions 

follow the command line function call to proceed to determine the design volume. Either 

an STL or just the length, width, and height parameters are acquired. If the user does 
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input an STL, then the user is still responsible for inputting the model length, width, and 

height of model as well as a discretization factor for meshing. Load and constraint inputs 

are required following the determination of the design volume. Topology optimization 

can then proceed and then binary homogenization. The resulting 3D array contains only 

0’s and 1’s. All of the 0’s represent space outside the optimal model, and all of the 1’s 

represent space within the optimal model. Should the user prefer to scale these results 

before writing a point cloud or an STL file, the user asked for a scaling factor. Appendix 

E contains a user’s training manual for practicing three examples studied here.  

  

The topology optimization engine named top3DFlex here was developed from 

Liu and Tovar’s top3D script [19]. Liu and Tovar presented several examples of how to 

use top3d. Figures 4.2 and 4.3 here show adapted results from these examples: 

 

 

  

  

 

 

 

Figure 4.2: (Left) Optimal Cantilever Topology Under a -1N Distributed Force at the 

Cantilever’s Tip Produced in top3D. Figure 4.3: (Right) Optimal Platform Topology 

Under a -1N Point Force Along the Central Vertical Axis Produced in top3D. 

 

 

 

 

Figures 4.2 and 4.3 are MATLAB figures shaded as functions of each voxel’s 

moduli [19]. Figure 4.2 contains a model which has overall dimensions of 30 mm x 10 
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mm x 2 mm, and Figure 4.3 has overall dimensions of 12 mm x 6 mm x 12 mm. Each 

voxel in both figures represents a 1 mm x 1 mm x 1 mm volume. The modulus of each 

voxel is stored in the variable xPhys of top3d. Locating any single voxel in xPhys is 

outlined in [19], and the location of a voxel is known as its index. Mechanical loading 

and constraint functions require the computer to have the index for each voxel and each 

voxel’s vertices. A result of this study is automated mapping based on user defined 

coordinate information. Every possible vertex coordinate in the design volume is 

generated using generate_cube_M. Mapping the voxels of these vertices is dependent 

of the type of discretization found. Trilinear discretization connects vertices using cubes 

while cubic discretization connects vertices using triangular pyramids. Connectivity 

within cube voxel elements correlates with the trilinear discretization, so each voxel is 

assigned eight rows in the connectivity list generated from generate_cube_M. 

 

function [M,T] =generate_cube_M(left, right, bottom, top, back, front, 

h_partition,scale) 
 

  

where the variables left, right, bottom, top, back and front together define the width, 

depth, and height of the overall design volume from the user defined inputs of optstl. 

The variable h_partition is a 3x1 array for defining the fineness or coarseness of nodal 

map, and the variable scale applies when the user wishes to scale the model. An 

h_partition value of [1,1,1] means the element voxels of the system will have 

dimensions of 1 mm x 1 mm  x 1 mm. If a finer mesh is required, then the user must 

decrease the value for each element of h_partition.  Two examples are shown below. 

Reducing the h_partition value in half increases the point cloud fineness eight times 

for the stl. There are 1000 elements in Figure 4.4 and 8000 elements in Figure 4.5. The 
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design volume is initially appearing made from an h_partition value of 

[10,10,10]meaning each voxel has dimensions of 10 mm x 10 mm x 10 mm. 

Decreasing the coarseness of the design volume means each resulting voxel should 

occupy less space thereby making more voxels necessary for meshing. Decreasing the 

value of h_partition causes the indirectly proportional change in the quantity of 

elements without changing the overall scale of the design volume:  

 

h = h_partition; 

  
n_hor = scale*(right - left)/h(1); %parallel to the x-axis 
n_vert = scale*(top - bottom)/h(3); %parallel to the y-axis 
n_depth = scale*(front - back)/h(2); %parallel to the z axis 

 

where n_hor, n_vert, and n_depth are the number of elements along the x, y, and z axes 

respectively. The changed coarseness seen in Figures 4.3 and 4.4 below is the result of 

decreasing the value of h_partition to [5,5,5]. An even finer point cloud for stl has 

been computed in this study using a value of h_partition [4,4,4]. Further decreasing 

each value of h_partition increases the amount time required in computing the point 

cloud, triangulations, and normal vectors for these binary stl files. Each value of 

h_partition can be different, so the mesh has a unique density in each axial direction. 

 

 

 

  

 

 

 

 

 

 

Figure 4.4: (Left) Mesh Made from generate_cube_m Function with an h_partition 

Value of [10,10,10]. Figure 4.5: (Right) Mesh Made from the generate_cube_m 

Function with an h_partition Value of [5,5,5]. 
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The dimensions of the cube in Figure 4.4 and Figure 4.5 are equal: width = 100 

mm, depth = 100 mm, and height = 100 mm, yet the number of elements and ensuing 

computations are different. Further decreasing the value of h_partition to [4, 4, 4] 

results in 15,625 voxel elements for the same100 mm x 100 mm x 100 mm design 

volume. All of the vertex information for each voxel is stored a nodal index matrix M, and 

the trilinear discretization connectivity of each vertex composing each voxel is stored in 

an element index matrix T. The size of matrix M for the cube shown in Figures 4.4 – 4.5 is 

(s+1)
3
/(h+1)

3
 x 3, and the size of matrix  T for the same figures is (s/h)

3
 x 8 where s is the 

length of one side and h equals h_partition. Variation in the number of voxels of a 

given design volume due to varying h_partition is shown in Table 4.1. 

 

 

 

 

Table 4.1: Variation in the Design Volume as a Result of Varying h_partition 

h_partition Length, width, and 

height of design 

volume (mm) 

Number of Elements 

10 100 x 100 x 100 1000 

5 100 x 100 x 100 8000 

4 100 x 100 x 100 15625 

 

 

 

 

The amount of time required for writing an STL file without voxelization varies 

proportionally with the number of elements. A regression analysis is presented below in 

Figure 4.6 for estimating the time of computation. Time for writing the STL’s 

corresponding with the values of h_partition in Table 1has been calculated using the 
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MATLAB cputime variable. The variable cputime is reserved for recording the running 

time of the MATLAB application. Solving for the difference between the value of 

cputime before starting the meshing and stl writing scripts and the value of cputime 

after running these scripts is the running time required. The time study here is the result 

of timing only with the generate_cube_m and xyzstlwrite functions. The R
2
 

regression coefficient equals 1 for measuring the squared residuals of a second order 

polynomial best fit to this data, so the correlation between the computer’s behavior and 

expected behavior is predictable.  

 

 

 

 

 
Figure 4.6: Varying Computation Time as a Result of Increasing the Number of 

Elements in the Design Volume 

 

 

 

 

If the h_partition is further reduced to [2,2,2] in the hopes of increasing the 

fineness of the design volume,  then the resulting number of elements becomes 125,000. 
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The estimated computation time then becomes 9288.7 seconds or 2 hours and 35 minutes 

for running only the generate_cube_m and xyzstlwrite functions.  

 

Proving these discretization and mapping algorithms worked was necessary for 

saving time and materials to be invested in the fabrication of the results. Mapping and 

discretization directly influenced the storage and application of user defined constraints 

and loads, so these numerical models of the system had to represent the real system 

accurately. Discretization and mapping were hence tested using the results of top3d 

shown in Figure 4.2 and Figure 4.3. The test consisted of creating and identifying the 

vertices of each voxel element in the system and then removing those vertices that had 

been removed during the topology optimization. The required alogorithm for this process 

was written during this study and named optcoordinates:  

 

function Mopt = optcoordinates (M,T, scaled_weight_mat) 

  
zero_weights= find(scaled_weight_mat<=0.95); 

  

where the input arguments are the nodal coordinates M, the node to element connectivity 

list T, and the 3D array of voxel moduli with any scaling named scaled_weight_mat, 

and the output is the array Mopt. Creating this output array requires the MATLAB 

function find which returns only the indices of elements in scaled_weight_mat greater 

than or equal to the set threshold value. A threshold value of 0.95 appears in the example 

above, so only elements with a density greater than 0.95 would remain for the STL. 

Using a single threshold to filter data is known as binary homogenization. Varying the 

binary homogenization threshold varies the amount of data passed through this type filter. 

If more points are required after filtering, then the filter should be re-run using a lower 
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threshold value. The indices of scaled_weight_mat and the column indices of the T 

matrix represent the same elements, so identifying the index of voxel element in the 

scaled_weight_mat correlates with a column of the same index in the T matrix. Vertex 

information is additionally available in the T matrix, so if the voxel element must be 

removed after filtering then removing the entire corresponding column from T removes 

the voxel and its vertices from the system. All the elements that do not meet the threshold 

value require only MATLAB empty brackets [] for removal: 

T(:,zero_weights') = []; 

 

The remaining columns of T represent elements that meet the threshold. Many of 

the resulting columns can contain repeating values because a vertex can be shared 

amongst eight voxel elements. Eliminating any repeating values requires the standard 

MATLAB unique function:  

 

non0_elnodes = unique(T)'; 

  

where non0_elnodes is the output of the unique function applied to T and contains the 

index of every node for each element of a density meeting the threshold set in the find 

function. Finally, Mopt is the return argument and contains the point cloud of all the 

nodes for elements meeting the density threshold. 

  
Mopt = M(:,non0_elnodes); 

  

where the number of elements in Mopt can be varied using varied the is top3d’s result and 

the MATLAB find functions imposed the homogenization threshold. The threshold used 

was 0.5, so any voxel existing under the threshold was assigned a 0 value. Voxels above 

this threshold were assigned a 1 value. 
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Examples of point clouds using optcoordinates from this study before and after 

optimization are shown in Figure 4.7-4.10. Each point in these point clouds is a vertex of 

a voxel in the original design volume.  

 

   

  

 

 

 

 

 

 

 

 

 

 

Figure 4.7: (Top Left) The Design Volume Point Cloud for the Cantilever. Figure 4.8: 

(Top Right) The Optimized Design Volume Point Cloud for the Cantilever. Figure 4.9: 

(Bottom Left) The Design Volume for the Platform. Figure 4.10: (Bottom Right) The 

Optimized Design Volume for the Platform. 

 

 

 

 

The optimized point clouds appear to the right of their respective original design 

spaces. The original design volume for the cantilever is 600 cm
3
. The optimized design 

volume for the cantilever is 250 cm
3
 as a result of -1N loads distributed at the tip and 

simply supported as shown in Figure 4.8. The platform’s original design volume is 4000 

cm
3
. The platform’s optimized design volume is 1412 cm

3
 as the result of a -1N point 

force placed at the top dead center and simply supported as shown in Figure 4.10. The 
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time required for generating these point clouds through the sequential use of top3d, 

generate_cube_M, and optcoordinates is shared in Table 4.2. Each computation time 

is the total time between inputting the design parameters and outputting the point cloud 

file. Computation time increases expectedly with the number of voxel elements involved. 

Topology optimization is found to increase the computation time as well: 

 

 

 

 

Table 4.2: Results of the Original and Optimized Point Clouds 

Mechanism 
Original 

Volume (cm
3
) 

Computing 

Time for the 

Original Point 

Cloud (sec) 

Optimized 

Volume (cm
3
) 

Computing 

Time for the 

Optimized 

Point Cloud 

(sec) 

Cantilever 600 0.1872 250 31.8242 

Platform 4000 0.6396 1412 123.5216 

 

 

 

 

Times for the original volume hence are shorter than the times for the optimized 

volumes because these latter volumes required running the topology optimization 

function. The difference in computing times between the original and optimized 

cantilever is 31.637 seconds. The difference in computing times between the original and 

optimized platform is 122.882 seconds. The cantilever’s optimization achieved a 58.33% 

reduction in volume and consequently required 170 times longer than the computing time 

for the original cantilever point cloud. The platform’s optimization has achieved a 64.7% 
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reduction and consequently required 193 times longer than the computing time for the 

original platform’s point cloud.   

 

The tradeoff between topology optimization and computation time is meaningful 

only in the event that these topologically optimized light weight models are as stiff as the 

original models. If these optimal models are not compliant in terms of sustaining the user 

defined loads, then the original models are sufficient. Mechanical stiffness or the ability 

of a mechanism to sustain a load given constraints is critical to the quality of the end 

user’s safety and experience. Each optimized model is thus subjected to validation using 

FEA to compute the strained displacements incurred under the given loading and 

constraint conditions.  

 

A 30 mm x 10 mm x 2 mm simply supported cantilever was loaded with 100N 

uniformly distributed as shown in Figure 4.11. The coordinates of the loads and 

constraints are shared in Appendix K. The maximum volume of Vs for the objective 

function in equation 1 was set to 0.3 meaning 30% of the entire 30 mm x 10 mm x 2 mm 

original volume. Therefore, the objective was to find at most a 180 mm
3
 design which 

supported the 100N distributed load while simply supported. The value of Vs is the 

determining factor in the optimization, so too low of a Vs could produce a design that 

does not support its load. Too high of a Vs may not decrease the volume sufficiently. The 

FEA displacement plot of this system shows displacement existing primarily near the 

loading point in the green and red regions of Figure 4.12. The majority of the cantilever 
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was left un-strained as shown in the large blue region. The maximum displacement in the 

red region was 0.000480 m, so the overall design envelop did not show necking.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: (Left) The Loaded and Constrained Cantilever. Figure 4.12: (Right) FEA 

Displacement Plot of This Cantilever System Made in This Study Using Linux Based 

Software Named ImpactFEA 

 

 

 

 

Regulated SIMP based topology optimization of the cantilever subject to the 

loads, constraints, and objective which were discussed immediately before Figure 4.11 

removed 286 mm
3
 from the original 600 mm

3
 design. The resulting 314 mm

3
 STL model 

shown in Figure 4.13 was printed during this study using a DaVinci 1.0 printer to make 

the prototype shown in Figure 4.14. The ruler shown in juxtaposition with the prototype 

of the optimal cantilever proves the topology optimization did not adversely alter the 

scale of the 30 mm length dimension. The width and height dimensions were preserved in 

the optimization as well. All of the removed material was only removed from within the 

original design envelop, so if this prototype were part of a larger assembly of 

components, then assembly fit would not be affected. 

-100N 

-100N 
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Figure 4.13: (Left) STL File Made in This Study as Viewed Using XYZware. Figure 

4.14: (Right) Printed Optimal ABS Cantilever Prototyped in This Study Using a DaVinci 

1.0 FDM Machine 

 

 

 

 

The print time was under 30 minutes. The 314 mm
3 

volume of the STL file 

matched the volume as computed in top3D. If any discrepancy had occurred between 

these two volumes, then an issue would have been revealed in the discretization and 

mapping functions discussed earlier. Tetrahedral meshing was imposed on a solid step 

file converted from the STL file shown in Figure 4.13 for testing the optimal cantilever 

model using FEA. File conversion from the STL file to step file (.stp) in this study was 

executed using Linux based FreeCAD. Meshing and FEA in this case were executed in 

Linux based Salome Meca and Code Aster plug-ins respectively. The maximum 

displacement in the red region of Figure 4.15 is 0.00406 mm which is an order of 

magnitude larger than the original model. The strain in this red region is only 0.041% of 

the original 10 mm cantilever height. 

 

Therefore, topology optimization, using equations 1-3, the loads, constraints, and 

objectives as defined immediately before Figure 4.11, decreased the volume 52.3%, yet 

strain has not even passed 0.1%. There is a way to reduce the volume here even further. 



26 

 

 

 

 

 

 

 

 

Figure 4.15:  FEA Made in This Study of the Optimal Cantilever Prototype Model Using 

Linux Based Software Salome Meca and Code Aster 

 

 

 

 

Recalling the topology optimization results in a 3D array of moduli for each 

voxel, and the moduli belong to a continuous range [0, E0]. The only means of writing the 

STL file in Figure 4.13 was setting a binary threshold, so the moduli under the threshold 

were eliminated leaving only moduli above the threshold in the model. Increasing the 

threshold value slightly should eliminate slightly more material and cause a slightly 

further reduction in the prototype’s volume without increasing the strain much. 

A 40 mm x 20 mm x 40 mm simply supported platform was loaded with a 100N point 

force in the top dead center as shown in Figure 4.16. The volume constraint Vs for 

equation 1 was set to 0.5 or 50% of the 40 mm x 20 mm x 40 mm original volume. 

Therefore, the objective was to find at most a 16000 mm
3
 design which supported the 

100N distributed load while simply supported. The coordinates of the loads and 

constraints are shared in Appendix K.  The FEA displacement plot of this system shows 

displacement existing primarily near the loading point in the red region of Figure 4.17. 

Most of the platform was left un-strained as shown in the blue region. The maximum 



27 

 

displacement in the red region was 0.00000399 m in the z-direction only, and no buckling 

was observable. 

 

 

Figure 4.16: (Left) The Force Diagram for the Platform. Figure 4.17: (Right) The FEA 

Plot of This Platform System Made in This Study Using Linux Based ImpactFEA 

 

 

 

 

Regulated SIMP based topology optimization of the platform subject to the load, 

constraints, and the objective volume constraint as defined immediately before Figure 

4.16 removed 25616 mm
3
 from the original 32000 mm

3
 design. The resulting 6384 mm

3
 

STL file shown in Figure 4.18 was printed during this study using a DaVinci 1.0 printer 

to make the prototype shown in Figure 4.19. The ruler shown in juxtaposition with the 

prototype of the optimal cantilever proves the topology optimization did not adversely 

alter the scale of the 40 mm length dimension. The width and height dimensions are 

preserved after the optimization as well, so any assembly fit requirements for this part are 

still preserved.  

The print time during this study was under 60 minutes for printing the prototype 

in Figure 4.19 from the STL file in Figure 4.18 using a DaVinci 1.0 FDM machine. The 

-100N 
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6384 mm
3 

volume of the STL file matched the volume as computed in top3D, so again, 

the discretization and mapping functions which were made in this study and discussed 

earlier were accurate. 

 

 

 

 

 

 

  

 

 

Figure 4.18: (Left) STL File Made in This Study as Viewed Using XYZware. Figure 

4.19: (Right) Printed Optimal ABS Platform Prototyped in This Study Using a DaVinci 

1.0 FDM Machine. 

 

 

 

 

Tetrahedral meshing was imposed on a solid step file converted from the STL file 

shown in Figure 4.18 for testing the optimal cantilever model using FEA. File conversion 

from STL to stp in this study was executed using Linux based FreeCAD. Meshing and 

FEA in this case were executed in Linux based Salome Meca and Code Aster plug-ins 

respectively. The maximum displacement in the red region is 0.0341 mm which is an 

order of magnitude larger than the original model. The strain in this red region, shown in 

Figure 4.20, is only 0.171% of the original 20 mm platform height. 
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Figure 4.20: FEA of the Optimal Platform Prototype Model Using Linux Based Software 

Salome Meca and Code Aster 

 

 

 

 

Therefore, topology optimization, using equations 1-3, the loads, constraints, and 

objective function volume constraint as defined immediately before Figure 4.16, 

decreased the volume 80%, yet strain had not even passed 0.1%. An in depth study of the 

strain behavior required physical compression testing of this optimal 40 mm x 20 mm x 

40 mm platform. Five platforms were printed using a DaVinci 1.0 FDM printer. The 

DaVinci 1.0 prints quasi-hollow models using a honey comb lattice. Lattice density can 

be varied using the XYZware software of the DaVinci 1.0. Density can range from 30% 

to 90%.  The 90% density setting was used in fabricating the platforms tested in this 

study.  

 

Each platform was placed on a level plane and compressive forces were added 

using free weights to a top surface placed over the platform. An example compression 

test setup was photographed and shown in Figure 4.21. The photographed platform was 

optimized for a 100 N load, and the compression test range was 0 N to 178 N. 
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Compression occurred on the vertical axis of the platform. The initial height was 20 mm, 

and initial load was 0 N. 

 

 

 

 

 

Figure 4.21: An Example of the Compression Test Setup Employed in This Study. 

The 40 mm x 20 mm x 40 mm optimal platform sits on a level surface under 44,497 N of 

compressive weight. 

 

 

 

 

A General UltraTech digital caliper with a resolution of 0.01 mm was used for 

measuring the height of each platform three times for each compressive load. One inside 

jaw was placed against the top level and the other inside jaw was rested against the 

Caliper 

measures the 

difference 

between the 

upper and lower 

levels. 

Upper 

Level 

Lower 

Level 

Prototype 
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bottom level. The resulting measurement equals the height of the prototype under 

compression. The average of three such height measurements for each prototype per 

compressive load is shown in Table 4.3 and all the individual measurements are shared in 

Appendix J. 

 

 

 

 

Table 4.3: Compression Test Results 

Compressiv
e Force (N) 

Average 
Height of 

Prototype 1 
after 

compressio
n 

Average 
Height of 

Prototype 2 
after 

compressio
n 

Average 
Height of 

Prototype 3 
after 

compressio
n 

Average 
Height of 

Prototype 4 
after 

compressio
n 

Average 
Height of 

Prototype 5 
after 

compressio
n 

0 20.577 20.000 20.013 20.000 19.997 

44.5 20.557 19.987 20.007 19.997 19.987 

66.75 20.550 19.983 20.003 19.990 19.977 

89 20.543 19.973 20.000 19.983 19.973 

111.25 20.537 19.970 19.990 19.980 19.963 

133.49 20.523 19.960 19.983 19.970 19.963 

177.99 20.513 19.953 19.973 19.967 19.953 

 

 

 

 

 The results of compression testing in Table 4.3 are discussed in terms of stress-

strain behavior in Section 5.6. 

 

The results of 40 mm x 20 mm x 40 mm optimization were scaled using a scale 

factor of 5 to assess practicality of fabricating larger optimal objects. Scaling 5 times in 

each direction made the 20 mm x 10 mm x 20 mm original design volume into a 200 mm 

x 100 mm x 200 mm envelope. Meshing this new volume meant increasing the number of 
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voxels 125 times, yet the computational time required for optimization on this scale 

would require 34 hours extrapolating from the results of Table 2. Scaling directly the 

results of optimizing these small volumes required the development of scaletop3D 

which scales the voxel moduli n x n x n array and returns a scaled sn/h x sn/h x sn/h array 

where s is the scaling factor scale and h is the mesh discretization factor h_partition. 

The scale is user defined in the function call for scaletop3D:  

optmodel = scaletop3D(optmodel,scale, h_partition) 
 

where the argument weight represents the modulus of each voxel element in the design 

volume and the argument scale is a 1x3 vector representing the user’s desired 3D scale 

factor for each direction. If the user enters a scale factor less than unity for any direction, 

then scaletop3D does not work. The scale factor is used in this study for the purpose of 

magnification only, so the expected value of each scale factor is greater than or equal to 

unity. MATLAB does not directly provide a means for scaling 3D arrays like weight, so 

the scaletop3d function replaces each voxel with its own s/h x s/h x s/h array named 

del_V.  

 

del_V = zeros(scale/h_partition(1),scale/h_partition(2),scale/h_partition(3)); 

 

for z=1:size(weight, 3) 

    for y=1:size(weight, 2) 

        for x = 1:size(weight, 1) 

            for z_scale = 1:scale/h_partition(3) 

                for y_scale = 1:scale/h_partition(2) 

                    for x_scale = 1:scale/h_partition(1) 

                       del_V(x_scale, y_scale, z_scale) =weight(x,y,z); 

                    end 

                end 

            end 

            scaled_weight_arr{x,y,z}=del_V; 

        end 

    end 

end 
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Every element of del_V equals the modulus of the previously single element from 

the weight array. The single element has thus been successfully scaled. Each del_V array 

is then stored in a structure, and then a new del_V array is made for the next voxel 

element in weight. The resulting structure must be concatenated along all three 

dimensions, so the result is transformation of the original 3D array into a structure and 

finally into a scaled 3D array. Appendix C contains the full code required in this 

transformation.  

 

The number of elements in the scaled array is inversely proportional to the 

discretization factor h_partition and directly proportional to the scaling factor scale. 

The 704000 mm
3
 optimized platform occupies only 17.6% of the overall design 

envelope’s volume as shown in Figure 4.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: A 3D Scaled STL Made in This Study of the Optimal Platform Prototype 
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 Finally, the capability of optstl to read in and optimize a pre-existing STL file 

was tested. Figure 4.23 shows an example of a model FDM tool:  

 

 

 

 

 

 

 

 

Figure 4.23: Example FDM Tool 

 

 

 

 

An stl file was made after rendering a model of the tool shown in Figure 4.23. The 

stl file image is shown in Figure 4.24. The length and width of the tool were modified to 

4 inches by 6 inches, so the tool would fit inside the FDM platform of the DaVinci 1.0 

printer used in this study. 

 

 

 

 

 

 

 

 

 

Figure 4.24: STL File of the FDM Tool as Viewed in XYZware 
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The stl file shown in Figure 4.24 was loaded into the optimization engine using a 

modified version of the publicly available VOXELISE MATLAB function. The modified 

version of this function made as a result of this study is VOXELISE_FLEX: 

 

function [gridOUTPUT,varargout] = VOXELISE_FLEX(gridX,gridY,gridZ, 

discretization, filename) 

 

where gridX, gridY, and gridZ are the overall x, y, and z dimensions of the model 

rounded up to the nearest millimeter, filename is the file path of the STL model, and 

discretization is the number of voxel lengths per millimeter. A discretization 

factor of 1 would produce a mesh of 1 voxel per mm
3
.  Voxelising the stl shown in Figure 

4.24 using a discretization factor of 1 yielded 875000 voxels. The stl file was then scaled 

down by a factor of 10 on each side, so the discretization factor could be increased and 

computation time decreased. Figure 4.25 shows an image of the voxelised model before 

optimization. 

 

 

 

 

 

 

 

 

 

Figure 4.25: Voxelised FDM Tool as Viewed in the MATLAB Figure Window 
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A 100N point force and simply supported constraints were placed on the model as 

shown in Figure 4.26, and the volume constraint, Vs, for the objective function in 

equation 1 was set 0.5 meaning 50% of 30 mm x 48 mm x 15 mm envelope of the design. 

The locations of the loads and constraints are shared in Appendix K : 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: FDM Tool Load and Constraint Diagram 

 

 

 

 

Figure 4.13 and 4.18 show the optimized model to have significantly different 

surface topology from the original model of each. Surfaces are often key components in a 

products function, so preserving the surface of the top and sides of the tool was studied. 

A boundaryelements function was written to find all the voxels on the top and sides of 

a model: 

 

function boundaryelements = findboundary(gridOUTPUT, nelx, nely, nelz) 

 

where gridOUTPUT, nelx, nely, and nelz are the original voxelised model, the 

number of elements in the x direction, the number of elements in the y direction ,and the 

number of elements in the z direction. Three Booleans are used to determine whether a 

-100N 
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voxel is on the boundary of the model. First, the voxels at the bounds of the design 

volume can be found using this Boolean: 

(gridOUTPUT(i,j,k)==1)&& ((i~=length(nelx) || (i==length(nelx) && 

((j==1) || (j==length(nely)) || (k==1) || (k==length(nelz)))))) 

 

Voxels not at the boundary of the design volume yet at the boundary of the model can be 

found using these two Booleans in order: 

 
gridOUTPUT(i,j,k)==1) && (i~=1) && (i~=length(nelx)) && (j~=1) && 

(j~=length(nely)) && (k~=1) && (k~=length(nelz)) 
 

gridOUTPUT(i+1,j,k)==0 || gridOUTPUT(i-1,j,k)==0 || 

gridOUTPUT(i,j+1,k)==0 || gridOUTPUT(i,j,k+1)==0 ||gridOUTPUT(i,j,k-

1)==0 

 

Figure 4.27 shows the resulting optimized model which from the top and sides is 

identical to topology of the original voxelised model in Figure 4.26.  The resulting STL 

file was scaled up by a factor of 10 in each direction to produce the topologically 

optimized STL of the original STL shown in Figure 4.26. Figure 4.28 reveals the optimal 

interior of the model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27: (Left) Optimized FDM Tool as Viewed in a MATLAB Figure Window. 

Figure 4.28: (right) Optimized FDM Tool as Viewed at an Angle in XYZware. 
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5. DISCUSSION 

 

 

5.1 CAPABILITY OF A SINGLE INTERFACE 

 The optstl interface provides a vast array of STL modification functions: 

meshing via VOXELISE_FLEX, mapping via generate_cube_m, topology optimization via 

top3dFlex, scaling transformation via scaletop3D, binary homogenization via 

optcoordinates, user input/output, point cloud generation, and stl writing. The 

VOXELISE_Flex function was adapted and modified from the publicly available 

VOXELISE Matlab function. Modifications to this function include the ability for the user 

to change the discretization factor and mesh density in the x, y, and z direction 

individually. The generate_cube_m was made originally in this study for trilinear 

discretization of the design volume for mapping into the optimization engine. The 

top3dFlex function was modified from the top3d function, so user no longer needs to 

know parametric functions to describe the surface of the input design volume. The 

original top3d function required explicit parameterized representation of the design 

volume’s surface to map loads and constraints. Explicit parameterization of more 

complex design volume may not be feasible, so the modified top3dFlex function was 

developed in this study to allow a user to input just the Cartesian coordinates of the loads 

and constraints. Optimization increased the point cloud computation time by a minimum 

factor of 170 times, so a scaletop3D function was developed in this study to allows a 

user to optimize a small scale system and the scale up the results. Getting the results of 

the topology optimization required homogenization from the continuous distribution of 

moduli to a binary distribution, so the optcoordinates function was made originally in 
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this study to find all the vertices of voxels which met and did not meet a threshold value. 

Voxels which met the threshold value were assigned a 1, and voxels which did not meet 

the threshold value were assigned a 0. The optstl script passes this binary homogenized 

data into a copy of the publicly available dxfpoint function for generation of a point. A 

copy of the publicly available CONVERT_voxels_to_stl MATLAB function similarly 

interprets the binary distribution of voxels as those voxels with a 0 value were outside the 

stl while voxels with a 1 value were inside the stl.     

 

5.2 TOP3DFLEX 

 Two of the three examples accompanying the top3D software were tested 

and worked successfully for this study. One example was the cantilever beam and the 

second was a platform [18]. The loads were changed in this study for testing the 

practicality of the software in fabricating ABS prototypes. The cantilever load in this 

study was a -100 N/mm distributed load putting the tip in shear, and the platform load in 

this study with a -100 N point force in the center of the platform. The Young’s modulus 

used for ABS was 2150 MPa, and a table of the material properties appears in Appendix 

I. Liu and Tovar used a Young’s modulus of 1 MPa and load magnitudes of -1N/mm and 

-1N for the cantilever and platform respectively [18]. The topology optimization 

produced a 58.3% reduction in cantilever’s volume and a 92% reduction in the platform’s 

volume. Liu and Tovar’s software required the user to adjust values directly within the 

script [19]. The top3dFlex script operates within the optstl main script, so the user is 

allowed to input values for the Young’s modulus, loads, and constraints on a case by case 

basis without risking corruption of the optimization engine. The loads and constraints of 
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Liu and Tovar’s script required surface parameterization [19]. The optstl main script 

has user input/output which allows the user to input only the Cartesian coordinates of the 

loads and constraints, and then optstl maps these coordinates to voxel vertices using the 

trilinear discretization information of the generate_cube_m function. The optstl main 

script then passes these arguments directly into the top3dFlex script. The potential for 

the user to input large stl files for topology optimization meant a large number of voxel 

elements could be involved in the computation. Liu and Tovar discussed a fast iterative 

solver option for top3d [19], so top3dFlex included this iterative solver as a default 

solver.    

 

5.3 MESHING, DISCRETIZATION, AND MAPPING 

A user can now directly input any design volume via stl such as FDM tool model 

shown in Figure 4.23 to voxelized as shown in Figure 4.24 for input into the optimization 

engine. The VOXELISE_Flex function reads and meshes the input stl file as a 3D array of 

elements. The original VOXELISE function assigns 0’s to all voxels in the design volume 

yet outside the stl and 1’s to all the voxels inside the stl. Each voxel from the VOXELISE 

function represented 1 mm
3
 of the model. Modifying the 1mm

3
 mesh density may be a 

user priority especially when working with complex surface geometry, so the 

VOXELISE_Flex function was developed in this study. Mesh density in the 

VOXELISE_Flex function is determined using a user defined discretization factor where 

the user is allowed to input the number of voxels required per millimeter. 
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The meshed design volume from the VOXELISE_Flex function is passed through 

optstl for mapping the user defined loading and constraints. User defined Cartesian 

coordinates of the loads and constraints are mapped to mesh indices using the 

generate_cube_m function. The first voxel in the system is located in the top back left 

and the last voxel is location in the bottom front left. Indexing first traverses top to 

bottom, then left to right, and finally back to front. Trilinear discretization in the 

generate_cube_m mapping algorithm was tested for two abilities. Simply mapping 

indices of all the voxel vertices in the design volume and connecting the vertex indices in 

order to create each associated voxel was one test. Figure 4.4 and Figure 4.5 proved the 

generate_cube_m function with optcoordinates can correctly map the topology 

optimization results from MATLAB figures to voxels for the stl files. The second feature 

tested was the capacity for adjusting the mesh fineness. Figures 4.4 and 4.5 illustrated the 

different discretization and mesh density possible through manipulation of the 

h_partition argument in generate_cube_m. Varying the values of h_partition 

indirectly varies the mesh density, so low values of h_partition create the most dense 

voxel meshes.   

 

5.4 SCALING 

 Figure 4.22 illustrated the ability of optstl to scale an optimized model. 

Successfully overcoming the problem of scale here required the implementation of a 

scaling algorithm. MATLAB only has a scaling algorithm for 2D arrays, yet users can 

require scaling length, width, and height dimensions simultaneously. The scaling of each 

dimension was accomplished using scaletop3D. Any 3D array can be scaled using this 
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function, and the output mesh density can be adjusted using the user defined 

h_partition. Adjusting the value of h_partition indirectly changes the mesh density just 

the like in the case of generate_cube_m. 

 

5.5 STL WRITING 

 Figures 4.13, 4.18, and 4.28 illustrated optstl’s ability to write stl files. A 3D 

array of 1’s and 0’s is passed via optstl to the publicly available 

CONVERT_voxels_to_stl function. The 1’s indicate a voxel element is located within the 

model while the 0’s indicate the voxel element is outside the model. All of the voxel 

elements are processed through a set of binary homogenization instructions from the 

optimization engine. Binary homogenization is the process of preparing the data for the 

stl writing function. Processing the data is a matter of having a set binary homogenization 

threshold value as discussed in paragraphs preceding Figure 4.7-4.10. Images for Figures 

4.13, Figure 4.18, and Figure 4.28 use a binary homogenization threshold of 0.5. 

Topology optimization produced a 3D array with a continuous distribution of moduli 

from [0, E0] where E0 is the Young’s modulus of the material used in fabrication. Finding 

all of the resulting values above the threshold and setting these values equal to 1 

determined the interior of the stl models. Values below the threshold were set to 0 

determining the outside of the stl models. Completing the binary homogenization was the 

last step required before writing the stl files.  

 

5.6 TOPOLOGICALLY OPTIMIZED SOLID FREEFORM FABRICATION 

 The STL for each optimal model example was printed successfully during this 

study as illustrated in Figure 4.14 and Figure 4.19. A DaVinci 1.0 printer extruding ABS 



43 

 

filament was used in fused deposition modeling of each print in this study. None of these 

prototypes required over 1 hour to print. Volumes for each printed model matched the 

volumes of the computed models revealing no error in the discretization, meshing, and 

mapping functions discussed earlier. Testing the integrity of the printed STL was 

paramount after analyzing the FEA plots of the optimized models. Each model showed 

less than 0.1% strain after optimization as illustrated  in Figure 4.15 and Figure 4.20. 

Only physical testing could validate the true mechanical compliance evident in these 

results, so the printed optimal ABS platform was subjected to compression testing. Data 

from this compression test was shared in Table 4.3, and the raw data is shared in 

Appendix J. Table 5.1 and Figure 5.1 display the prototype’s behavior under 

compression, the theoretical behavior based on the Young’s modulus of ABS, and a light 

blue line indicates the design load of 100 N.  

  

Strains were calculated for each data point from Table 4.3 was calculated using 

Eq 10: 

        
     

  
                 (Eq 10)  

where the ith strain value    is the difference between the prototype’s initial height h0 and 

the height after the ith load divided by the prototype’s initial height h0. Forces from Table 

5.1 are the numerator for the stress calculated in Pascals for Figure 5.1 using Eq 11: 

                                 
  

 
                                                         (Eq 11)  

where the ith stress value    is the ratio of the ith compressive force    to the prototype’s 

constant load bearing surface area, A = 4.75 x 10
-4

 m
3
. Substituting values for each load 
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into Eq 5 produces the control strain distribution shown in the second column of Table 

5.1: 

                                                                  
  

 
            (Eq 12) 

where the ith control strain     is the ratio of the ith strain to the constant Young’s 

modulus of ABS, E = 2150 MPa. The results were tabulated in Table 5.1. 

 

 

 

Table 5.1 Prototype Compression Test Stress and Strain Results 

Compressive 
force (N) 

Control 
Strain 

Strain 1 Strain 2 Strain 3 Strain 4 Strain 5 

0 0 0 0 0 0 0 

4.450E+01 
2.069E-08 

0.001 
6.667E-

04 
3.331E-04 1.667E-04 

5.001E-
04 

6.675E+01 
3.104E-08 

1.296E-
03 

8.333E-
04 

4.997E-04 5.000E-04 
1.000E-

03 

8.900E+01 
4.139E-08 

0.002 
1.333E-

03 
6.662E-04 8.333E-04 

1.167E-
03 

1.112E+02 
5.174E-08 

1.944E-
03 

1.500E-
03 

1.166E-03 1.000E-03 
1.667E-

03 

1.335E+02 
6.209E-08 

2.592E-
03 

2.000E-
03 

1.499E-03 1.500E-03 
1.667E-

03 

1.780E+02 
8.278E-08 

3.078E-
03 

2.333E-
03 

1.999E-03 1.667E-03 
2.167E-

03 

 

 

 

 

The calculated values from Table 5.1 are plotted in Figure 5.1, so the typical 

compression behavior can be observed. Compression testing occurred in the elastic 

region of ABS, so the Young’s modulus could be chosen a control. The plot in Figure 5.1 

shows the compression testing stress strain behavior of the five prototypes. One line in 

Figure 5.1 shows the theoritical stress-strain behavior as modelled using Young’s 

modulus, and another line shows the stress-strain behavior as predicted using the FEA in 
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Figure 4.20. No fractures were observed after the final load step. Wave like behavior in 

Figure 5.1 is attributed to the experiment setup and instrument resolution in Figure 4.21. 

 

 

 

 

 
Figure 5.1: The ABS Prototype’s Performance vs the Young’s Modulus of ABS and the 

Computed FEA Result 

 

 

 

 

 The FEA shown in Figure 4.20 computed that the maximum strain should be 

0.171%. A one sample t-test of the compression test data near the design load at 

234,082.6 Pa yielded a t value of -2.615. If t < tcritical,α for the one-sided one sample t-test, 

then there is a statistical directional difference from the expected mean value. A one-

tailed 95% confidence tcritical,α  one tailed value computed in MS Excel was -2.132, so the 

compression testing results were significantly less than the FEA’s result with 95% 

confidence.  However, the one tailed 99% confidence tciritical,α  value computed in MS 
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Excel was -3.747, so the differences between the prototypes and FEA are not signficantly 

different at the 99% confindence level.  

 

The    test was selected for testing the difference between the observed 

prototypes’ behavior under compression and the Young’s modulus as shown in Table 5.2. 

If the p-value is less than 0.01, then the two behaviors are different with 99.99% 

confidence.  

 

 

Table 5.2: p-values for χ^2 Test Comparison of Each Prototype Sample Against 

the Expected Behavior from Young’s Modulus 

Prototype 
# 

p-Value of χ^2 
Comparison 

Prototype and 
Control 

1 6.24947E-97 

2 3.15124E-54 

3 2.24923E-27 

4 3.13694E-23 

5 3.33495E-48 
 

 

All of the p-values are less than 0.01, so the prototypes’stress-strain behavior 

under compression was signfiantly different from the Young’s modulus. The reason for 

this difference is the change in cross sectional area. Cross sections of the control 

modelled using Young’s modulus were uniform while the cross sections of the prototype 

shown in Figure 4.18 are non-uniform. The second area moment of inertia is directly 

proportional to cross sectional area and measures the amount of resistance an object may 

have to a given static load. Therefore, decreasing cross sectional areas from the model in 
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the prototype reduced the second area moment of inertia in the prototype and caused the 

decrease in the stress-strain relationship from the Young’s modulus behavior. 

 

5.7 ADAPTIVE PLACEMENT OF USER DEFINED  LOAD(S) AND 

CONSTRAINT(S) ON USER DEFINED VOLUMES 

 

 Images shown in Figures 4.2-4.5, 4.7-4.10, 4.13-4.14, 4.18-4.19, 4.22 and 4.27-

4.28 were all made in this study using optstl. The optstl loading and constraint 

instructions allow the user to input Cartesian coordinates of loads and constraints. 

Loading this information using coordinates is not permitted in the original top3d. Load 

and constraint information in top3d required explicit surface parameterization meaning 

the user had to know how to calculate the index of a voxel at an (x,y,z) coordinate. Using 

optstl the user can input just (x,y,z) coordinate of a point load or constraint, and the 

optstl alogorithm uses the generate_cube_m function made in this study. Use of the 

generate_cube_m function generates both a list of all the (x,y,z) voxel vertice 

coordinates in the design volume and a list of the order in which to connect these 

vertices. Trilinear discretization dictates the programmed order in which these vertices 

are connected to produce the voxelized space. Surface constraints and uniformly 

distributed loads can be applied as well. If the user wishes, then optstl holds a user 

defined dimension constant in order to load or constrain an entire 2D plane of active 

voxels. Active voxels were stored in the memory as voxel elements with a value of 

1using the binary homogenization instructions of optcoordinates discussed earlier. 

Passive voxels would have a value of 0. Setting loads and constraints based on Cartesian 

coordinates simplifies the surface parameterization step. A resulting list of loaded and 

constrained vertices are passed to top3dFlex along with the Young’s modulus and an 
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array of passive elements. Passing the passive elements into the topology optimization 

engine forces the computation to retain any features such as holes [19]. Large quantities 

of passive or active elements could cause long computation times [19], so the top3dFlex 

algorithm was adapted to implement the MATLAB pcg solver. Liu and Tovar 

recommended the pcg solver for the fastest computation speed [19]. Implementing the 

pcg solver allows MATLAB to determine the best solution for system of linear equations 

at hand. Adapting top3d into top3dFlex and supplementing this function using the 

optstl main script decreases the amount of hard coding the user must do in order to 

modify the program to differenct design requirements. Supplementing the script further 

with an STL reading function allows the user to load and constrain any design volume. 

Figure 4.17 demonstrates the ability of any STL to be voxelized for input into the 

optimization engine. If the model’s function requires that certain voxels be preserved 

such as the outermost layer of voxels, then the boundaryelements function can be used 

as demonstrated in Figure 4.28.  
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6. CONCLUSION 

 

 

The fabrication of topologically optimized parts is realizable using optstl . 

Topology optimization was shown in this study to produce parts of significantly less 

elastic  modulus than unoptimized parts of the same load and constraint parameters. ABS 

parts were fabricated in this study using optstl and a DaVinci 1.0 FDM machine. 

Fabrication required the adaption of Liu and Tovar’s top3d algorithm and several 

supplemental functions.  Adapting the top3d algorithm resulted in a user input/output 

interface for optimizing any stl input subject to user defined load and constraint 

coordinates. Output from this adapted program named optstl can be a scaled model, 

point cloud, and/or an stl file. Each optimized prototype was analyzed using FEA, and 

one optimized prototype was subjected to compression testing. Supplemental FEA’s of 

the original models are shared in Appendix H. An order of magnitude increase in the 

strain was observed in the optimized prototypes when compared with the original models. 

Statistical testing of the compression test results did reveal a significant statistical 

difference between a theoretical solid ABS volume’s behavior and the optimized 

prototype’s behavior.  The actual stress-strain behavior resembles that as predicted in the 

FEA result in Figure 4.20. 

  

Solid freeform fabrication users now have a MATLAB preprocessor for loading, 

optimizing, and writing the STL’s of design volumes. Unification of these engineering 

design processes is provided in optstl. The publicly available top3D, VOXELISE, and 

CONVERT_voxels_to_stl algorithms were found, modified, and coalesced 
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algorithmically in optstl. Added functionality such as scaling, discretization, binary 

homogenization, and user defined volumes required supplemental functions and 

modifications of the pre-existing function arguments. Adjusting a 3D array’s scale was a 

matter of applying fundamentals from the 1D and 2D mathematical transformations for 

the scaletop3D function. All of the results produced in this study can be scaled using a 

scaling algorithm for 3D MATLAB arrays developed successfully during this study. 

Optimizing the smaller design envelope and then scaling the result can save computation 

time of a large volume. MATLAB did not previously have a 3D scaling function in the 

MATLAB library or on the internet. Using MATLAB structures, arrays, and 

concatenation in a combination of nested for loops yielded the sufficient scaling 

transformation for this study. Mapping required knowledge of FEA techniques for 

solving partial differential equations in a trilinear discretized system for the 

generate_cube_M function. Trilinear discretization produces finite element mesh 

comprised of cubes which can map 1 to 1 with voxels. Indexing the trilinear discretized 

mesh for this study was already discussed in Liu and Tovar’s paper, so the indexing 

process was simply automated for user’s of optstl. Automating and storing the index 

data mapping of the voxelized system enables the user to input an (x,y,z) coordinate and 

return an array element index for the optimization functions.  Allowing the user to 

communicate using the Cartesian coordinate system simplifies the process of translating 

the real data into the computer, for example a user could use CMM or point cloud data. 

All of optstl is written in MATLAB. Core components of optstl are shared in 

Appendix A- Appendix D, and converting these scripts to a C based programming 

language or parallel computing algorithms can increase computation speed.  



51 

 

The optstl package coalesced the functions of model loading, constraining, 

topology optimization, scaling, mapping, and stl writing. Using optstl for solving 

equations 1-3 for design volumes did reduce the amount of raw material required for the 

fabrication of load bearing structures. Material costs and fabrication times were in turn 

reduced because of the decrease in the volume and amount of material required. 

Compression testing showed that the optimized parts deformed significantly more than 

unoptimized parts, yet each prototype in this study did support its design load. Any user 

defined stl could be optimized using equations 1-3, loads, and simply supported 

constraints in optstl, and the function of the model could be preserved using the 

boundaryelements function of optstl.  
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APPENDIX A:  

 

OPTSTL MAIN SCRIPT 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%Purnajyoti Bhaumik wrote this for topology optimization of any 3D 

model 

  
function optstl 

  
prompt = 'Would you like to input an STL file or optimize a rectangular 

prism? Enter Y or N. '; 
source_type = input(prompt,'s'); 
if isempty(source_type) 
    return 
end 
if source_type == 'Y' 
    prompt = 'What is the source STL filename (include file path and 

extension ex: C:\test.stl)? '; 
    STLin = input(prompt,'s'); 
    if isempty(STLin) 
        return 
    end 
    gridX = input('What is the overall height (in mm)?'); 
if isempty(gridX) 
    return 
end 

  
gridY = input('What is the overall width (in mm)?'); 
if isempty(gridY) 
    return 
end 

  
gridZ = input('What is the overall depth (in mm)?'); 
if isempty(gridZ) 
    return 
end 
end 

  

  

  
if source_type == 'N' 
        gridX = input('What is the overall width (in mm)?'); 
if isempty(gridX) 
    return 
end 

  
gridY = input('What is the overall height (in mm)?'); 
if isempty(gridY) 
    return 
end 

  
gridZ = input('What is the overall depth (in mm)?'); 
if isempty(gridZ) 
    return 
end 
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    nelx = 1:1:gridX; 
    nely = 1:1:gridY; 
    nelz = 1:1:gridZ; 

     
    for k = 1:gridZ 
        for i = 1:gridX 
            for j = 1:gridY 
                gridOUTPUT(i,j,k) = 1; 
            end 
        end 
    end 
    %gridOUTPUT(:,:,:)=1; 
    gridOUTPUT= permute(gridOUTPUT, [2,1,3]); 
    display_3D(gridOUTPUT) 
end 

  
if source_type == 'Y' 
    prompt = 'How many voxels per millimeter? '; 
    discretization = input(prompt); 
    if isempty(discretization) 
        returns 
    end 
[gridOUTPUT,nely,nelx,nelz] = VOXELISE_FLEX(gridX, gridY, gridZ, 

discretization,STLin); 
gridX = length(nelx); 
gridY = length(nely); 
gridZ = length(nelz); 
display_3D(gridOUTPUT) 
end 

  
passive = find(~gridOUTPUT); 
active = find(gridOUTPUT); 

  
[M, T] = generate_cube_M(0, length(nelx), 0, length(nely), 0, 

length(nelz), [1,1,1],1);  

  
load_answer = 'Y'; 
i=0; 
while load_answer == 'Y' 
prompt = 'Would you like a distributed load or a point force? Enter D 

or P: '; 
load_type = input(prompt, 's'); 
if isempty(load_type) 
    return 
end 
i = i+1; 
if load_type == 'D' 
    prompt = 'Would you like this load distributed in a perpindicular 

to the width, depth, or height of the model? Enter w, d, or h: '; 
        load_plane = input(prompt, 's'); 
        if load_plane == 'h' 
            prompt = ('At what distance from the bottom would you like 

this distributed load? Enter this distance in whole millimeters.'); 
            load_plane_width = input(prompt); 
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            if isempty(load_plane_width) 
                return 
            end 
             for z = 1:gridZ 
                for x = 1:gridX 
                     for m = 1:length(active) 
                         if active(m)== load_plane_width+(x-

1)*(gridY)+(z-1)*(gridY*gridX) 
                             loadnid{i} = 

unique(T([5,6,7,8],active(m))); 
                             i = i+1; 
                         end 
                     end 
                  end 
              end 
              i = i-1; 
        elseif load_plane == 'd' 
            prompt = ('At what distance from the back would you like 

this surface constraint? Enter this distance in whole millimeters.'); 
            load_plane_width = input(prompt); 
            if isempty(load_plane_width) 
                return 
            end 
              for x = 1:gridX 
                  for y = 1:gridY 
                     for m = 1:length(active) 
                         if active(m)==(x-

1)*gridY+y+load_plane_width*(gridY*gridZ) 
                             loadnid{i} = 

unique(T([1,2,7,8],active(m))); 
                             i = i+1; 
                         end 
                     end 
                  end 
              end 
              i = i-1; 
        elseif load_plane == 'w' 
            prompt = ('At what distance from the left would you like 

this surface constraint? Enter this distance in whole millimeters.'); 
            load_plane_width = input(prompt); 
            if isempty(load_plane_width) 
                return 
            end 
              for z = 1:gridZ 
                  for y = 1:gridY 
                     for m = 1:length(active) 
                         if active(m)==(z-

1)*(gridX*gridY)+y+load_plane_width*gridY 
                             loadnid{i} = 

unique(T([1,4,5,8],active(m))); 
                             i = i+1; 
                         end 
                     end 
                  end 
              end 
              i = i-1; 
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        end 
elseif load_type == 'P' 
    prompt = ('You will be asked for the 3D coordinates of this point 

force. What is the x-coordinate in millimeters?'); 
    pforcex = input(prompt); 
    prompt = ('What is the y-coordinate in millimeters?'); 
    pforcey = input(prompt); 
    prompt = ('What is the z-coordinate in millimeters?'); 
    pforcez = input(prompt); 
    for k = 1:size(M,2) 
        if M(1,k)==pforcex && M(2,k)==pforcey && M(3,k)==pforcez 
            loadnid{i} = k; 
        end 
    end 
end 
prompt = ('Would you like to enter another load? Enter Y or N'); 
load_answer = input(prompt, 's'); 
if isempty(load_answer) 
    return 
end 
end 

  
final_load = loadnid{1}; 
for j = 2:i 
final_load = cat(1, final_load, loadnid{j}); 
end 

  
prompt = 'What is the magnitude of the load?'; 
load_mag = input(prompt); 
if isempty(load_mag) 
    return 
end 

  
constraint_answer = 'Y'; 
i=0; 
while constraint_answer == 'Y' 
prompt = 'Would you like a surface or a point constraint? Enter S or P: 

'; 
constraint_type = input(prompt, 's'); 
if isempty(constraint_type) 
    return 
end 
i = i+1; 
if constraint_type == 'S' 
    prompt = 'Would you like this load distributed perpindicular the 

width, depth, or height of the model? Enter w, d, or h: '; 
        constraint_plane = input(prompt, 's'); 
        if constraint_plane == 'h' 
            prompt = ('At what distance from the bottom would you like 

this surface constraint? Enter this distance in whole millimeters.'); 
            constraint_plane_width = input(prompt); 
            if isempty(constraint_plane_width) 
                return 
            end 
             for z = 1:gridZ 
                for x = 1:gridX 
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                     for m = 1:length(active) 
                         if active(m)== constraint_plane_width+(x-

1)*(gridY)+(z-1)*(gridY*gridX) 
                             constraintnid{i} = 

unique(T([5,6,7,8],active(m))); 
                             i = i+1; 
                         end 
                     end 
                  end 
              end 
              i = i-1; 
        elseif constraint_plane == 'd' 
            prompt = ('At what distance from the back would you like 

this surface constraint? Enter this distance in whole millimeters.'); 
            constraint_plane_width = input(prompt); 
            if isempty(constraint_plane_width) 
                return 
            end 
              for x = 1:gridX 
                  for y = 1:gridY 
                     for m = 1:length(active) 
                         if active(m)==(x-

1)*gridY+y+constraint_plane_width*(gridY*gridZ) 
                             constraintnid{i} = 

unique(T([1,2,7,8],active(m))); 
                             i = i+1; 
                         end 
                     end 
                  end 
              end 
              i = i-1; 
        elseif constraint_plane == 'w' 
            prompt = ('At what distance from the left would you like 

this surface constraint? Enter this distance in whole millimeters.'); 
            constraint_plane_width = input(prompt); 
            if isempty(constraint_plane_width) 
                return 
            end 
              for z = 1:gridZ 
                  for y = 1:gridY 
                     for m = 1:length(active) 
                         if active(m)==(z-

1)*(gridX*gridY)+y+constraint_plane_width*gridY 
                             constraintnid{i} = 

unique(T([1,4,5,8],active(m))); 
                             i = i+1; 
                         end 
                     end 
                  end 
              end 
              i = i-1; 
        end 
elseif constraint_type == 'P' 
    prompt = ('You will be asked for the 3D coordinates of this point 

force. What is the x-coordinate in millimeters?'); 
    pconstraintx = input(prompt); 
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    prompt = ('What is the y-coordinate in millimeters?'); 
    pconstrainty = input(prompt); 
    prompt = ('What is the z-coordinate in millimeters?'); 
    pconstraintz = input(prompt); 
    for k = 1:size(M,2) 
        if M(1,k)==pconstraintx && M(2,k)==pconstrainty && 

M(3,k)==pconstraintz 
            constraintnid{i} = k; 
        end 
    end; 
end 
prompt = ('Would you like to enter another constraint? Enter Y or N'); 
constraint_answer = input(prompt, 's'); 
if isempty(constraint_answer) 
    return 
end 
end 

  
final_constraint = constraintnid{1}; 
for j = 2:i 
final_constraint = cat(1, final_constraint, constraintnid{j}); 
end 
final_constraint = unique(final_constraint); 

  

  
t = cputime 

  

  
prompt = ('What is the modulus of elasticity in MPa?'); 
Young_answer = input(prompt); 
if isempty(Young_answer) 
    return 
end 

  
active = findboundary(gridOUTPUT, nely, nelx, nelz); 
test = gridOUTPUT; 
test(~active) = 0; 
test(active) = 1; 
clf; 
display_3D(test) 
optmodel = top3dFlex(length(nelx),length(nely),length(nelz), 0.3, 3, 

1.5, final_load, final_constraint, passive, Young_answer, 

load_mag,active); 

  

  
prompt = ('Would you like to scale this model? Please enter Y or N'); 
scale_answer = input(prompt, 's'); 
if isempty(scale_answer) 
    return 
end 

  
if scale_answer == 'Y' 
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    prompt = 'How many voxels per millimeter? (recommended at least 1 

voxel per millimeter) '; 
    discretization = input(prompt); 
    if isempty(discretization) 
        return 
    end 

     
    prompt = ('Please enter a scale factor for the x-axis: Only whole 

numbers greater than or equal to 1'); 
    x_scale = input(prompt); 
    if isempty(x_scale) 
        return 
    end 
    for i = 1:x_scale*length(nelx)/discretization 
        nelx(i) = min(nelx)+(i-1)*(discretization); 
    end 
    prompt = ('Please enter a scale factor for the y-axis: Only whole 

numbers greater than or equal to 1'); 
    y_scale = input(prompt); 
    if isempty(y_scale) 
        return 
    end 
    for i = 1:y_scale*length(nely)/discretization 
        nely(i) = min(nely)+(i-1)*(discretization); 
    end 
    prompt = ('Please enter a scale factor for the z-axis: Only whole 

numbers greater than or equal to 1'); 
    z_scale = input(prompt); 
    if isempty(z_scale) 
        return 
    end 
    for i = 1:z_scale*length(nelz)/discretization 
        nelz(i) = min(nelz)+(i-1)*(discretization); 
    end 
    scale = [x_scale, y_scale, z_scale]; 
    h_partition = [discretization, discretization, discretization]; 
    optmodel = scaletop3D(optmodel,scale, h_partition) 
end 

  
opt_passive = find(optmodel<=0.5); 
opt_active = find(optmodel>0.5); 
optmodel(opt_passive) = 0; 
optmodel(opt_active) = 1; 
optmodel(active) = 1; 
clf; 
display_3D(optmodel) 

  
prompt = ('Would you like to make a point cloud? Please enter Y or N'); 
cloud_answer = input(prompt, 's'); 
if isempty(cloud_answer) 
    return 
elseif cloud_answer == 'Y' 
    point_cloud = optcoordinates(M,T, optmodel) 
    prompt = ('What is the destination dxf filename (include file path 

and extension ex: C:\test.dxf)? '); 
    cloud_answer = input(prompt, 's'); 
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    if isempty(cloud_answer) 
    return 
    end 
    FID = dxf_open(cloud_name); 
    dxf_point(FID,point_cloud(3,:), point_cloud(1,:), 

point_cloud(2,:)); 
    dxf_close(FID); 
end 

  

  
prompt = ('Would you like to make an STL file? Please enter Y or N'); 
stl_answer = input(prompt, 's'); 
if isempty(stl_answer) 
    return 
elseif stl_answer == 'Y' 
prompt = ('What is the destination STL filename (include file path and 

extension ex: C:\test.stl)? '); 
STLout = input(prompt,'s'); 
CONVERT_voxels_to_stl(STLout, optmodel, nely, nelx, nelz,'ascii'); 
end 
cputime - t 
end 
% DISPLAY 3D TOPOLOGY (ISO-VIEW)is copied from Liu and Tovar's top3d 
function display_3D(rho) 
[nely,nelx,nelz] = size(rho); 
hx = 1; hy = 1; hz = 1;            % User-defined unit element size 
face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8]; 
set(gcf,'Name','ISO display','NumberTitle','off'); 
for k = 1:nelz 
    z = (k-1)*hz; 
    for i = 1:nelx 
        x = (i-1)*hx; 
        for j = 1:nely 
            y = nely*hy - (j-1)*hy; 
            if (rho(j,i,k) > 0.5)  % User-defined display density 

threshold 
                vert = [x y z; x y-hx z; x+hx y-hx z; x+hx y z; x y 

z+hx;x y-hx z+hx; x+hx y-hx z+hx;x+hx y z+hx]; 
                vert(:,[2 3]) = vert(:,[3 2]); vert(:,2,:) = -

vert(:,2,:); 
                

patch('Faces',face,'Vertices',vert,'FaceColor',[0.2+0.8*(1-

rho(j,i,k)),0.2+0.8*(1-rho(j,i,k)),0.2+0.8*(1-rho(j,i,k))]); 
                hold on; 
            end 
        end 
    end 
end 
axis equal; axis tight; axis off; box on; view([30,30]); pause(1e-6); 
end 
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APPENDIX B:  

 

TOP3DFLEX FUNCTION 
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%P. Bhaumik's Oct 2014 optimization code based on code by LIU AND TOVAR 

(JUL 2013) 
function xPhys = top3dFlex(nelx,nely,nelz,volfrac,penal,rmin, loadnid, 

fixednid,passive, Young, load_mag,active) 
% USER-DEFINED LOOP PARAMETERS 
maxloop = 200;    % Maximum number of iterations 
tolx = 0.01;      % Termination criterion 
displayflag = 1;  % Display structure flag 
% USER-DEFINED MATERIAL PROPERTIES 
E0 = Young;           % Young's modulus of solid material titanium 

alloy 
Emin = 1e-9;      % Young's modulus of void-like material 
nu = 0.3;         % Poisson's ratio 
% USER-DEFINED LOAD DOFs 
loaddof = [3*loadnid(:) - 1];                            % DOFs 
% USER-DEFINED SUPPORT FIXED DOFs 
fixeddof = [3*fixednid(:); 3*fixednid(:)-1; 3*fixednid(:)-2]; % DOFs 
% PREPARE FINITE ELEMENT ANALYSIS 
nele = nelx*nely*nelz; 
ndof = 3*(nelx+1)*(nely+1)*(nelz+1); 
F = sparse(loaddof,1,load_mag/size(loadnid,1),ndof,1); 
U = zeros(ndof,1); 
freedofs = setdiff(1:ndof,fixeddof); 
KE = lk_H8(nu); 
nodegrd = reshape(1:(nely+1)*(nelx+1),nely+1,nelx+1); 
nodeids = reshape(nodegrd(1:end-1,1:end-1),nely*nelx,1); 
nodeidz = 0:(nely+1)*(nelx+1):(nelz-1)*(nely+1)*(nelx+1); 
nodeids = repmat(nodeids,size(nodeidz))+repmat(nodeidz,size(nodeids)); 
edofVec = 3*nodeids(:)+1; 
edofMat = repmat(edofVec,1,24)+ ... 
    repmat([0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -1 ... 
    3*(nely+1)*(nelx+1)+[0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -

1]],nele,1); 
iK = kron(edofMat,ones(24,1))'; 
jK = kron(edofMat,ones(1,24))'; 
% PREPARE FILTER 
iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1); 
jH = ones(size(iH)); 
sH = zeros(size(iH)); 
k = 0; 
for k1 = 1:nelz 
    for i1 = 1:nelx 
        for j1 = 1:nely 
            e1 = (k1-1)*nelx*nely + (i1-1)*nely+j1; 
            for k2 = max(k1-(ceil(rmin)-1),1):min(k1+(ceil(rmin)-

1),nelz) 
                for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-

1),nelx) 
                    for j2 = max(j1-(ceil(rmin)-

1),1):min(j1+(ceil(rmin)-1),nely) 
                        e2 = (k2-1)*nelx*nely + (i2-1)*nely+j2; 
                        k = k+1; 
                        iH(k) = e1; 
                        jH(k) = e2; 
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                        sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-

j2)^2+(k1-k2)^2)); 
                    end 
                end 
            end 
        end 
    end 
end 
H = sparse(iH,jH,sH); 
Hs = sum(H,2); 
% INITIALIZE ITERATION 
x = repmat(volfrac,[nely,nelx,nelz]); 
x(passive)=0; 
xPhys = x;  
loop = 0;  
change = 1; 
% START ITERATION 
while change > tolx && loop < maxloop 
    loop = loop+1; 
    % FE-ANALYSIS 
    sK = KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)); 
    K = sparse(iK(:),jK(:),sK(:)); K = (K+K')/2; 
    tolit = 1e-8; 
    maxit = 8000; 
    %M = diag(K); 
    M = diag(diag(K(freedofs, freedofs))); 
    U(freedofs,:)=pcg(K(freedofs, freedofs),F(freedofs,:), tolit, 1000, 

M); 
    %[num_nodes, num_loads] = size(U); 
%     for i = 1:num_loads 
%     U(freedofs,i)=pcg(K(freedofs, freedofs),F(freedofs,i), tolit, 

1000, M); 
%     end 
    % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 
    ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),[nely,nelx,nelz]); 
    c = sum(sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce))); 
    dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce; 
    dv = ones(nely,nelx,nelz); 
    % FILTERING AND MODIFICATION OF SENSITIVITIES 
    dc(:) = H*(dc(:)./Hs);   
    dv(:) = H*(dv(:)./Hs); 
    % OPTIMALITY CRITERIA UPDATE 
    l1 = 0; l2 = 1e9; move = 0.2; 
    while (l2-l1)/(l1+l2) > 1e-3 
        lmid = 0.5*(l2+l1); 
        xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-

dc./dv/lmid))))); 
        xnew(passive) = 0; 
        xPhys(:) = (H*xnew(:))./Hs; 
        if sum(xPhys(:)) > volfrac*nele, l1 = lmid; else l2 = lmid; end 
    end 
    change = max(abs(xnew(:)-x(:))); 
    x = xnew; 
    % PRINT RESULTS 
    fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.3f 

ch.:%7.3f\n',loop,c,mean(xPhys(:)),change); 
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    % PLOT DENSITIES 
    if displayflag, clf;  
        %display_3D(xPhys); 
    end 
end 
clf; display_3D(xPhys); 
end 
% ===================== AUXILIARY FUNCTIONS 

=============================== 
% GENERATE ELEMENT STIFFNESS MATRIX 
function [KE] = lk_H8(nu) 
A = [32 6 -8 6 -6 4 3 -6 -10 3 -3 -3 -4 -8; 
    -48 0 0 -24 24 0 0 0 12 -12 0 12 12 12]; 
k = 1/72*A'*[1; nu]; 
% GENERATE SIX SUB-MATRICES AND THEN GET KE MATRIX 
K1 = [k(1) k(2) k(2) k(3) k(5) k(5); 
    k(2) k(1) k(2) k(4) k(6) k(7); 
    k(2) k(2) k(1) k(4) k(7) k(6); 
    k(3) k(4) k(4) k(1) k(8) k(8); 
    k(5) k(6) k(7) k(8) k(1) k(2); 
    k(5) k(7) k(6) k(8) k(2) k(1)]; 
K2 = [k(9)  k(8)  k(12) k(6)  k(4)  k(7); 
    k(8)  k(9)  k(12) k(5)  k(3)  k(5); 
    k(10) k(10) k(13) k(7)  k(4)  k(6); 
    k(6)  k(5)  k(11) k(9)  k(2)  k(10); 
    k(4)  k(3)  k(5)  k(2)  k(9)  k(12) 
    k(11) k(4)  k(6)  k(12) k(10) k(13)]; 
K3 = [k(6)  k(7)  k(4)  k(9)  k(12) k(8); 
    k(7)  k(6)  k(4)  k(10) k(13) k(10); 
    k(5)  k(5)  k(3)  k(8)  k(12) k(9); 
    k(9)  k(10) k(2)  k(6)  k(11) k(5); 
    k(12) k(13) k(10) k(11) k(6)  k(4); 
    k(2)  k(12) k(9)  k(4)  k(5)  k(3)]; 
K4 = [k(14) k(11) k(11) k(13) k(10) k(10); 
    k(11) k(14) k(11) k(12) k(9)  k(8); 
    k(11) k(11) k(14) k(12) k(8)  k(9); 
    k(13) k(12) k(12) k(14) k(7)  k(7); 
    k(10) k(9)  k(8)  k(7)  k(14) k(11); 
    k(10) k(8)  k(9)  k(7)  k(11) k(14)]; 
K5 = [k(1) k(2)  k(8)  k(3) k(5)  k(4); 
    k(2) k(1)  k(8)  k(4) k(6)  k(11); 
    k(8) k(8)  k(1)  k(5) k(11) k(6); 
    k(3) k(4)  k(5)  k(1) k(8)  k(2); 
    k(5) k(6)  k(11) k(8) k(1)  k(8); 
    k(4) k(11) k(6)  k(2) k(8)  k(1)]; 
K6 = [k(14) k(11) k(7)  k(13) k(10) k(12); 
    k(11) k(14) k(7)  k(12) k(9)  k(2); 
    k(7)  k(7)  k(14) k(10) k(2)  k(9); 
    k(13) k(12) k(10) k(14) k(7)  k(11); 
    k(10) k(9)  k(2)  k(7)  k(14) k(7); 
    k(12) k(2)  k(9)  k(11) k(7)  k(14)]; 
KE = 1/((nu+1)*(1-2*nu))*... 
    [ K1  K2  K3  K4; 
    K2'  K5  K6  K3'; 
    K3' K6  K5' K2'; 
    K4  K3  K2  K1']; 
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end 
% DISPLAY 3D TOPOLOGY (ISO-VIEW) 
function display_3D(rho) 
[nely,nelx,nelz] = size(rho); 
hx = 1; hy = 1; hz = 1;            % User-defined unit element size 
face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8]; 
set(gcf,'Name','ISO display','NumberTitle','off'); 
for k = 1:nelz 
    z = (k-1)*hz; 
    for i = 1:nelx 
        x = (i-1)*hx; 
        for j = 1:nely 
            y = nely*hy - (j-1)*hy; 
            if (rho(j,i,k) > 0.5)  % User-defined display density 

threshold 
                vert = [x y z; x y-hx z; x+hx y-hx z; x+hx y z; x y 

z+hx;x y-hx z+hx; x+hx y-hx z+hx;x+hx y z+hx]; 
                vert(:,[2 3]) = vert(:,[3 2]); vert(:,2,:) = -

vert(:,2,:); 
                

patch('Faces',face,'Vertices',vert,'FaceColor',[0.2+0.8*(1-

rho(j,i,k)),0.2+0.8*(1-rho(j,i,k)),0.2+0.8*(1-rho(j,i,k))]); 
                hold on; 
            end 
        end 
    end 
end 
axis equal; axis tight; axis off; box on; view([30,30]); pause(1e-6); 
end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C: 

       

3D ARRAY SCALING FUNCTION 
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%%Author: Purnajyoti Bhaumik 
%%This code outputs a scaled version of the top3D results 
%%******************************** Thesis 

Requirement*****************************  

 

function scaled_weight_mat = scaletop3D(weight,scale) 

  
scaled_weight_arr = {zeros(size(weight,1)), zeros(size(weight, 2)), 

zeros(size(weight, 3))}; 
del_V = zeros(scale,scale,scale); 

  
for z=1:size(weight, 3) 
    for y=1:size(weight, 2) 
        for x = 1:size(weight, 1) 
            for z_scale = 1:scale 
                for y_scale = 1:scale 
                    for x_scale = 1:scale 
                       del_V(x_scale, y_scale, z_scale) =weight(x,y,z); 
                    end 
                end 
            end 
            scaled_weight_arr{x,y,z}=del_V; 
        end 
    end 
end 

  
for z = 1:size(weight, 3) 
    for y = 1:size(weight, 2) 
        scaled_weight_mat = scaled_weight_arr{1,y,1}; 
            for x=1:size(weight, 1)-1 
                scaled_weight_mat = 

cat(1,scaled_weight_mat,scaled_weight_arr{x+1,y,z}); 
            end 
        smat{z,y}=scaled_weight_mat; 
    end 
end 

  
for z_cat = 1:z 
    scaled_weight_mat2 = smat{z_cat,1}; 
    for y_cat = 1:y-1 
        scaled_weight_mat2 = 

cat(2,scaled_weight_mat2,smat{z_cat,y_cat+1}); 
    end 
    smat2{z_cat}=scaled_weight_mat2; 
end 

  
scaled_weight_mat3 = smat2{1}; 

  
for z_cat = 1:z-1 
    scaled_weight_mat3 = cat(3, scaled_weight_mat3, smat2{z_cat+1}); 
end 
 scaled_weight_mat = scaled_weight_mat3; 
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APPENDIX D: 

 MODEL SPACE NODE AND INDEX CODE 
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%%Author: Purnajyoti Bhaumik 
%%This code outputs the node and index matrices for 3D linear FEA 
%%******************************** Thesis 

Requirement*****************************  

  

  
function [M,T] =generate_cube_M(left, right, bottom, top, back, front, 

h_partition,scale) 

  
h = h_partition; 

  
n_hor = scale*(right - left)/h(1); %parallel to the x-axis 
n_vert = scale*(top - bottom)/h(3); %parallel to the y-axis 
n_depth = scale*(front - back)/h(2); %parallel to the z axis 

  

  

  
total_nodes = (n_hor+1)*(n_vert+1)*(n_depth+1); 
total_elements = (n_hor)*(n_vert)*(n_depth); 

  
M = zeros(3, total_nodes); 
T = zeros(8, total_elements); 

  
count = 1; 
count2 = 1; 

  
%while count <= total_nodes 
    for k = 1: n_depth+1 %transverses z-axis (depth) 
        for j = 1:n_hor+1 %transverses x-axis (horizontal) 
            for i = 1:n_vert+1 %transverses y-axis (vertical) 
                M(1,count)= (j-1)*h(1); 
                M(2,count)= n_vert-(i-1)*h(2); 
                M(3,count) = (k-1)*h(3); 
                count = count+1; 
            end 
        end 
    end       
%end 

  
%while count2 <= total_elements 

     
    for k = 1: n_depth %transverses z-axis (depth) 
        for j = 1:n_hor %transverses x-axis (horizontal) 
            for i = 1:n_vert %transverses y-axis (vertical) 
                T(1,count2)= i+(j-1)*(n_vert+1)+(k-

1)*(n_vert+1)*(n_hor+1); 
                T(2,count2) = i+(j-1)*(n_vert+1)+(k-

1)*(n_vert+1)*(n_hor+1)+(n_vert+1)*(j); 
                T(3, count2) = 

i+(k)*(n_vert+1)*(n_hor+1)+(n_vert+1)*(j); 
                T(4, count2) = i+(k)*(n_vert+1)*(n_hor+1); 
                T(5, count2) = i+(k)*(n_vert+1)*(n_hor+1)+1; 
                T(6, count2) = 

i+(k)*(n_vert+1)*(n_hor+1)+(n_vert+1)*(j)+1; 
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                T(7, count2) = i+(j-1)*(n_vert+1)+(k-

1)*(n_vert+1)*(n_hor+1)+(n_vert+1)*(j)+1; 
                T(8, count2) = i+(j-1)*(n_vert+1)+(k-

1)*(n_vert+1)*(n_hor+1)+1; 
                count2 = count2+1; 
            end 
        end 
    end            
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APPENDIX E:  

 

FIND THE TOP AND SIDE BOUNDARY ELEMENTS 
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function boundaryelements = findboundary(gridOUTPUT, nelx, nely, nelz) 

  

  
a=1; 

  

  
for i = 1:length(nelx) 
    for j = 1:length(nely) 
        for k = 1:length(nelz) 
            if (gridOUTPUT(i,j,k)==1) && (i~=1) && (i~=length(nelx)) && 

(j~=1) && (j~=length(nely)) && (k~=1) && (k~=length(nelz)) 
                if gridOUTPUT(i+1,j,k)==0 || gridOUTPUT(i-1,j,k)==0 || 

gridOUTPUT(i,j+1,k)==0 || gridOUTPUT(i,j,k+1)==0 ||gridOUTPUT(i,j,k-

1)==0 
                   boundaryelement{a} = i+(j-1)*length(nelx)+(k-

1)*length(nelx)*length(nely); 
                   a = a+1; 
                end 
            elseif (gridOUTPUT(i,j,k)==1)&& ((i~=length(nelx) || 

(i==length(nelx) && ((j==1) || (j==length(nely)) || (k==1) || 

(k==length(nelz)))))) 
                boundaryelement{a} = i+(j-1)*length(nelx)+(k-

1)*length(nelx)*length(nely); 
                a = a+1; 
            end 
        end 
    end 
end 

  
boundaryelements = boundaryelement{1}; 
for j = 2:a-1 
boundaryelements = cat(1, boundaryelements, boundaryelement{j}); 
end 
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APPENDIX F:  

 

OPTSTL TRAINING MANUAL 
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Please note: all dimensions are millimeters, all forces are Newtons, so all moduli are 

MPa. 

EVERYTHING HERE IS CASE SENSITIVE. MAKE SURE ALL OF THE FILES ARE 

IN THE CORRECT FOLDER. 

Example 1: Cantilever 

 

 

 

 

1. Enter optstl into the command window 
2. When asked for an STL, input N for no 
3. When asked for the overall width, input 30 
4. When asked for the overall height, input 10 
5. When asked for the overall depth, input 2 
6. When asked for a distributed or point force, enter P 
7. When asked for a x coordinate, input 30 
8. When asked for a y coordinate, input 0 
9. When asked for a z coordinate, input 0 
10. When asked for another load, input Y 
11. When asked for a distributed or point force, input P 
12. When asked for a x coordinate, input 30 
13. When asked for a y coordinate, input 0 
14. When asked for a z coordinate, input 1 
15. When asked for another load, input Y 
16. When asked for a distributed or point force, input P 
17. When asked for a x coordinate, input 30 
18. When asked for a y coordinate, input 0 
19. When asked for a z coordinate, input 2 
20. When asked for another load, input N 
21. When asked for the magnitude of these loads, input -1 
22. When asked for a surface or point constraint, input S 
23. When asked to perpendicular to which axis, input w 
24. When asked for distance from the left, input 0 
25. When asked for another constraint, input N 
26. When asked for a modulus, input 2150 (Young’s modulus of ABS) 
27. When asked to scale the model, input N 
28. When asked respecting boundary elements, enter N 
29. When asked to create a point cloud, input N 
30. When asked to write an STL, input Y 
31. When asked for a filename, enter a full file path ex: C:\example.stl 
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Example output: (Left) matlab figure and (Right) STL file 

 

 

 

 

 

 

Example 2: Platform 

 

 

 

 
1. Enter optstl into the command window 
2. When asked for an STL, input N 
3. When asked for the overall width, input 40 
4. When asked for the overall height, input 20 
5. When asked for the overall depth, input 40 
6. When asked for a distributed or point force, enter P 
7. When asked for a x coordinate, input 20 
8. When asked for a y coordinate, input 20 
9. When asked for a z coordinate, input 20 
10. When asked for another load, input Y 
11. When asked for the magnitude of these loads, input -1 
12. When asked for a surface or point constraint, input P 
13. When asked for a x coordinate, input 0 
14. When asked for a y coordinate, input 0 
15. When asked for a z coordinate, input 0 
16. When asked for another constraint, input Y 
17. When asked for a surface or point constraint, input P 
18. When asked for a x coordinate, input 40 
19. When asked for a y coordinate, input 0 
20. When asked for a z coordinate, input 0 
21. When asked for another constraint, input Y 
22. When asked for a surface or point constraint, input P 
23. When asked for a x coordinate, input 40 
24. When asked for a y coordinate, input 0 
25. When asked for a z coordinate, input 40 
26. When asked for another constraint, input Y 
27. When asked for a surface or point constraint, input P 
28. When asked for a x coordinate, input 0 
29. When asked for a y coordinate, input 0 
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30. When asked for a z coordinate, input 40 
31. When asked for another constraint, input N 
32. When asked for a modulus, input 2150 (Young’s modulus of ABS) 
33. When asked to scale the model, input N 
34. When asked respecting the boundary, enter N 
35. When asked to create a point cloud, input N 
36. When asked to write an STL, input Y 
37. When asked for a filename, enter a full file path ex: C:\example1.stl 
Example output: (Left) matlab figure and (right) STL file 

  

 

 

 

 

 

 

 

Example 3: Input Any STL File in this case an FDM tool 

1. Enter optstl into the command window 
2. When asked to input an STL, enter Y 
3. When asked the STL filepath use FDMtool2.stl, for example C:\FDMtool2.stl. 

FDMtool2.stl is scaled down for decreasing the number of elements and 
computation time. 

4. When asked the height, enter 5 
5. When asked the width, enter 11 
6. When asked the depth, enter 16 
7. When asked for a discretization factor, enter 3. You should get a MATLAB figure of 

the voxelised model. 
8. When asked for a load, enter P 
9. When asked for the x-coordinate, enter 16 
10. When asked for the y-coordinate, enter 14 
11. When asked for the z-coordinate, enter 24 
12. When asked for another load, enter N. 
13. When asked for the load’s magnitude, enter -100 
14. When asked for constraint, enter P 
15. When asked for the x-coordinate, enter 0 
16. When asked for the y-coordinate, enter 0 
17. When asked for the z-coordinate, enter 0 
18. When asked for another constraint, enter Y 
19. When asked for constraint, enter P 
20. When asked for the x-coordinate, enter 33 
21. When asked for the y-coordinate, enter 0 
22. When asked for the z-coordinate, enter 0 
23. When asked for another constraint, enter Y 
24. When asked for constraint, enter P 
25. When asked for the x-coordinate, enter 33 
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26. When asked for the y-coordinate, enter 0 
27. When asked for the z-coordinate, enter 48 
28. When asked for another constraint, enter Y 
29. When asked for constraint, enter P 
30. When asked for the x-coordinate, enter 0 
31. When asked for the y-coordinate, enter 0 
32. When asked for the z-coordinate, enter 48 
33. When asked for another constraint, enter N 
34. When asked for the modulus, enter 2150 for ABS (e.g. 2150 MPa) . You should then 

get an optimized model. 
35. When asked to scale the model, enter N.  
36. When asked respecting the boundary, enter Y. You should then get the optimized 

model plus the boundary elements. 
37. When asked to write an STL file, enter Y. 
38. When asked for the file path, enter a full path for example C:\optFDMtool.st 
Original STL    Topologically Optimized STL  
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APPENDIX G: 

 

STL IMAGES 
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Increasing Cantilever Discretization 

 

 
Increasing platform discretization 

 

 

 
Testing discretization and scaling of a 1 mm

3
 unit cube  
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APPENDIX H: 

 

 SUPPLEMENTAL FEA 
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Figure H.1: The original cantilever’s plot for displacement in the X direction 

 
Figure H.2: The original cantilever’s plot for displacement in the Y direction 

 
Figure H.3: The original cantilever’s plot for displacement in the Z direction 
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Figure H.4: The original cantilever’s plot for resultant 3D strain  

 
Figure H.5: The original cantilever’s plot for strain in the X direction 

 
Figure H.6: The original cantilever’s plot for strain in the Y direction 
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Figure H.7: The original cantilever’s plot for strain in the Z direction 

 

Figure K.8: The original platform’s plot for displacement in the X direction 
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Figure K.9: The original platform’s plot for displacement in the Y direction 

 

 

Figure K.10: The original platform’s plot for displacement in the Z direction 

 

Figure K.11: The original platform’s plot for resultant 3D strain 
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Figure K.12: The original cantilever’s plot for displacement in the X direction 

 

 

Figure K.13: The original platofrm’s plot for displacement in the Y direction 
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Figure K.14: The original platform’s plot for displacement in the Z direction 
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APPENDIX I: 

 

 MATERIAL PROPERTIES 
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Material 
Young's Modulus 

(GPa) 
Density 
(g/cc) 

Poisson’s 
Ratio 

ABS 2.15 Gpa 1.07 0.3 

Titanium 
Alloy 

115 GPa 4.03 
0.3 
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APPENDIX J:  

 

COMPRESSION TESTING RESULTS 
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Mass for 

Compress

ing 

Prototype

Compress

ive force 

(N)

height 

(mm)

1st 

Measure

ment

height 

(mm)

2nd 

Measure

ment

height 

(mm)

3rd 

Measure

ment

height 

(mm)

Average

Std. Dev 

(mm)

Prototype

's Strain 

(ε)

Stress, Pa
Control 

Strain (ε)

Design 

Load

0 0 20.53 20.76 20.44 20.57667 0.165025 0 0 0 210420

10 44.49816 20.53 20.54 20.6 20.55667 0.037859 0.000972 93633.03 4.36E-05 210420

15 66.74724 20.58 20.51 20.56 20.55 0.036056 0.001296 140449.5 6.53E-05 210420

20 88.99632 20.54 20.52 20.57 20.54333 0.025166 0.00162 187266.1 8.71E-05 210420

25 111.2454 20.56 20.52 20.53 20.53667 0.020817 0.001944 234082.6 0.000109 210420

30 133.4945 20.52 20.52 20.53 20.52333 0.005774 0.002592 280899.1 0.000131 210420

40 177.9926 20.51 20.5 20.53 20.51333 0.015275 0.003078 374532.1 0.000174 210420
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Mass for 

Compress

ing 

Prototype

Compress

ive force 

(N)

height 

(mm)

1st 

Measure

ment

height 

(mm)

2nd 

Measure

ment

height 

(mm)

3rd 

Measure

ment

height 

(mm)

Average

Std. Dev 

(mm)

Prototype

's Strain 

(ε)

Stress, Pa
Control 

Strain (ε)

0 0 20 19.99 20.01 20 0.01 0 0 0

10 44.49816 19.99 19.98 19.99 19.98667 0.005774 0.000667 93633.03 4.36E-05

15 66.74724 19.98 19.99 19.98 19.98333 0.005774 0.000833 140449.5 6.53E-05

20 88.99632 19.96 19.98 19.98 19.97333 0.011547 0.001333 187266.1 8.71E-05

25 111.2454 19.97 19.97 19.97 19.97 0 0.0015 234082.6 0.000109

30 133.4945 19.95 19.96 19.97 19.96 0.01 0.002 280899.1 0.000131

40 177.9926 19.94 19.96 19.96 19.95333 0.011547 0.002333 374532.1 0.000174
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Mass for 

Compress

ing 

Prototype

Compress

ive force 

(N)

height 

(mm)

1st 

Measure

ment

height 

(mm)

2nd 

Measure

ment

height 

(mm)

3rd 

Measure

ment

height 

(mm)

Average

Std. Dev 

(mm)

Prototype

's Strain 

(ε)

Stress, Pa
Control 

Strain (ε)

Design 

Load

0 0 20 20.02 20.02 20.01333 0.011547 0 0 0 210420

10 44.49816 20.01 20.01 20 20.00667 0.005774 0.000333 93633.03 4.36E-05 210420

15 66.74724 20.01 20 20 20.00333 0.005774 0.0005 140449.5 6.53E-05 210420

20 88.99632 20.01 19.99 20 20 0.01 0.000666 187266.1 8.71E-05 210420

25 111.2454 19.99 19.99 19.99 19.99 0 0.001166 234082.6 0.000109 210420

30 133.4945 19.99 19.98 19.98 19.98333 0.005774 0.001499 280899.1 0.000131 210420

40 177.9926 19.97 19.98 19.97 19.97333 0.005774 0.001999 374532.1 0.000174 210420
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Mass for 

Compressing 

Prototype

Compress

ive force 

(N)

height 

(mm)

1st 

Measure

ment

height 

(mm)

2nd 

Measure

ment

height 

(mm)

3rd 

Measure

ment

height 

(mm)

Average

Std. Dev 

(mm)

Prototype

's Strain 

(ε)

Stress, Pa
Control 

Strain (ε)

Design 

Load

0 0 20 20 20 20 0 0 0 0 210420

10 44.49816 19.99 20 20 19.99667 0.005774 0.000167 93633.03 4.36E-05 210420

15 66.74724 20 19.98 19.99 19.99 0.01 0.0005 140449.5 6.53E-05 210420

20 88.99632 20 19.98 19.97 19.98333 0.015275 0.000833 187266.1 8.71E-05 210420

25 111.2454 19.99 19.98 19.97 19.98 0.01 0.001 234082.6 0.000109 210420

30 133.4945 19.98 19.97 19.96 19.97 0.01 0.0015 280899.1 0.000131 210420

40 177.9926 19.97 19.97 19.96 19.96667 0.005774 0.001667 374532.1 0.000174 210420
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Mass for 

Compress

ing 

Prototype

Compress

ive force 

(N)

height 

(mm)

1st 

Measure

ment

height 

(mm)

2nd 

Measure

ment

height 

(mm)

3rd 

Measure

ment

height 

(mm)

Average

Std. Dev 

(mm)

Prototype

's Strain 

(ε)

Stress, Pa
Control 

Strain (ε)

Design 

Load

0 0 19.99 20 20 19.99667 0.005774 0 0 0 210420

10 44.49816 19.99 19.98 19.99 19.98667 0.005774 0.0005 93633.03 4.36E-05 210420

15 66.74724 19.97 19.98 19.98 19.97667 0.005774 0.001 140449.5 6.53E-05 210420

20 88.99632 19.97 19.97 19.98 19.97333 0.005774 0.001167 187266.1 8.71E-05 210420

25 111.2454 19.97 19.96 19.96 19.96333 0.005774 0.001667 234082.6 0.000109 210420

30 133.4945 19.96 19.96 19.97 19.96333 0.005774 0.001667 280899.1 0.000131 210420

40 177.9926 19.95 19.95 19.96 19.95333 0.005774 0.002167 374532.1 0.000174 210420
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APPENDIX K: 

 

 LOAD AND CONSTRAINT DATA 
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Cantilever loads and constraints 

Load Location: point force at (x = 30 mm , y = 0 mm, and z = 0 mm) 

Load Location: point force at (x = 30 mm , y = 0 mm, and z = 1 mm) 

Load Location: point force at (x = 30 mm , y = 0 mm, and z = 2 mm) 

Load magnitude = -100 N (program will distribute this load across the thre nodes above 

which represent the tip of the cantilever, so each load is -33.333 N) 

Simply Supported Constraints at  x = 0 mm,  0 mm ≤ y ≤ 10 mm, and  0 mm ≤ z ≤ 2 mm 

 

Platform loads and constraints 

Load Location: point force at (x = 20 mm , y =20 mm, and z = 20 mm) 

Simply Supported Constraints at (x=0mm, y = 0mm, z = 0mm), (x=40mm, y = 0mm, z = 

0mm), (x=40 mm, y = 0 mm, z = 40 mm), and (x=0mm, y = 0mm, z =40 mm) 

 

FDM Tool loads and constraints 

Load Location: point force at (x = 15mm , y = 14 mm, and z = 24 mm) 

Load Magnitude: -100N 

Simply Supported Constraints at (x=0mm, y = 0mm, z = 0mm), (x=33mm, y = 0mm, z = 

0mm), (x=33mm, y = 0mm, z = 48mm), and (x=0mm, y = 0mm, z =48 mm) 
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