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ABSTRACT 

Adaptive Resonance Theory, ART, is a powerful clustering tool for learning 

arbitrary patterns in a self-organizing manner.  In this research, two papers are presented 

that examine the extensibility and applications of ART.  The first paper examines a 

means to boost ART performance by assigning each cluster a vigilance value, instead of a 

single value for the whole ART module.  A Particle Swarm Optimization technique is 

used to search for desirable vigilance values.  In the second paper, it is shown how ART, 

and clustering in general, can be a useful tool in preprocessing time series data.  

Clustering quantization attempts to meaningfully group data for preprocessing purposes, 

and improves results over the absence of quantization with statistical significance. 
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1. INTRODUCTION 

1.1. OVERVIEW 

Today’s need for data analytic techniques is great.  Biology has been the muse for 

data processing and optimization.  Numerous methods created during the latter half of the 

20th century were biologically inspired, (e.g., artificial neural networks, particle swarms, 

fuzzy logic, genetic and evolutionary computing, and artificial immune systems).   

Biologically-inspired machine learning methods have seen success in linear and 

nonlinear function approximations, data processing, and classification.  Applications 

include filtering, adaptive control, pattern recognition, and pattern discovery.  The utility 

in these applications were evident across many disciplines. 

Machine learning has been deployed across many disciplines, (e.g., psychology, 

neuroscience, statistics, etc).  Cognitive psychology has devoted itself to theories of 

learning.  Socrates was one of the first to study the learning process, noting that 

knowledge comes from within [13-14].  Pavlov demonstrated that dogs could be 

conditioned to salivate via a reinforcement signal from a bell [18].  Several studies have 

been conducted to understand the brain's primitive functions, its ability to group objects 

and concepts, and its ability to think abstractly [15-17]. 

Clustering is one of these primitive functions the brain performs.  Gail Carpenter 

and Stephen Grossberg developed theories on not only clustering, but also how the brain 

learns [1-4].  They created Adaptive Resonance Theory (ART).  This concept utilizes 

resonance as part of a learning theory. 

Adaptive Resonance Theory has been used successfully as a powerful data 

clustering tool.  It can learn arbitrary patterns quickly in a self organizing way.  To briefly 
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compare and contrast with k-Means clustering [5-9], ART is a parameterized algorithm.  

In k-means, the number of clusters must be specified a priori, while ART has a vigilance 

threshold.  This threshold allows for the creation of new clusters in real-time.  The 

vigilance threshold also determines how tight or loose the recovered clusters are. 

 

1.2. LEARNING PARADIGMS 

Most machine learning methodologies, particularly in neural networks, can be 

classified into one of three main learning paradigms.  They are:  supervised learning, 

unsupervised learning, and reinforcement learning.  Several other paradigms exist, but 

they are, primarily, based on one of these three (e.g. semi-supervised learning, which 

hybridizes the ideas of supervised and unsupervised learning). 

1.2.1. Supervised Learning.  Supervised learning is synonymous with having a 

teaching or training signal, or oracle, that has a perfect knowledge of the defined task.  It 

knows the answer to arbitrary inputs into the system and can evaluate the response with a 

desired response.  A machine learning system utilizing this learning paradigm would be 

able to correct itself by taking into account the disparity between its response and the 

desired response.  The system would be guiding itself towards a minima of error.  

Teaching a system to learn the response behavior of a quadratic would illustrate this 

paradigm. 

1.2.2. Unsupervised Learning.  Unsupervised learning is similar to allowing the 

machine learning algorithm to take care of itself.  The learning paradigm relies heavily on 

both the mathematical and statistical properties associated with the problem domain.  

These properties are used, ideally, to glean meaningful knowledge from the relational 
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aspect of the problem applied.  This concept can be illustrated by grouping blocks by 

shape or size, each being a measure of similarity. 

1.2.3. Reinforcement Learning.  A number of problems with complex dynamics 

make supervised learning useless.  In these situations, the computational burden of 

calculating the appropriate response for any arbitrary input becomes too great.  

Reinforcement learning is ideal in these instances.  This approach is well-suited when 

explicit output recommendations are not available or are only available a minority of the 

time.  Particularly when there are no explicit recommendations, an excellent substitute for 

such recommendations is a cost function.  Reinforcement learning can be thought of as 

the process of causing a cost function to replace error signals that would have come from 

a teacher if one were available.  A control problem (e.g., a cart balancing a pole on a 2-D 

track) is one example of a good use of reinforcement learning. 

 

1.3. CLUSTERING
1
 

Clustering is a powerful methodology for data analysis that humans perform on a 

daily basis.  People are constantly bombarded with information as they move about their 

day.  This information becomes processed, organized, and examined.  Descriptive 

features can be identified when a new object or phenomenon is encountered.  When 

comparing these features to known objects or phenomena, the unknown can become 

known.  Humans have an unquantifiably large corpus of data to work with.  This 

information is used to gain knowledge and understanding about the world around them.   

                                                 

1
 Section 1.3 is derived from [10] 
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The ability to group, or classify, data and examine emergent patterns is at the 

forefront of data acquisition.  Data, when grouped together, is expected to exhibit similar 

properties under certain criteria.  For a system to learn the emergent characteristics in 

data, it must either create labels autonomously or adjust system parameters to recognize 

known labels implicitly. 

Class labels are known in supervised classifications.  From a set data vectors, 

denoted as x∈ℜd, where d is the dimensionality of the input space, a mapping exists to a 

finite set of discrete class labels, designated as y∈ 1,...,C, where C is the total number of 

classes [10].  The system can then be modeled as 

),( wxfy ii        (1.1) 

where w is defined as the vector of the system parameters and i denotes an arbitrary 

input.  The system parameters can be iteratively updated to minimize the overall system 

error on a finite sample of output mapped data vectors, i=1,...,n, where n is the total 

number of samples.  The system can perform functionally as a classifier when the system 

either converges to an acceptable level of system error or reaches a prescribed number of 

update iterations. 

Data labels are unknown in unsupervised classification.  Unsupervised 

classification has been referred to as clustering or exploratory data analysis.  Clustering 

methods attempt to discover some hidden, underlying structure from within a finite set of 

data vectors, denoted as x∈ℜd, where d is the dimensionality of the input space.  Most 

clustering algorithms fall into one of two categories: hierarchical and partitional.    

Hierarchical clustering is split into two branches: agglomerative and divisive, see 

Figure 1.1.  Agglomerative clustering builds groups from the bottom-up, beginning at 
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individual data points.  Divisive clustering takes a top-down approach and looks for 

logical splits. 

 

 

 

Figure 1.1.  Agglomerative and Divisive Hierarchical Clustering 

 

 

Partitional clustering can be either hard or fuzzy, see Figure 1.2.  Hard partitions 

form crisp boundaries where data vectors definitively either belong or do not belong to a 

cluster.  Fuzzy partitions form fuzzy boundaries where data vectors have a degree of 

membership to different clusters.  This fuzzy membership is based on a fuzzy 

membership function.  The fuzzy membership function's formulation can be based on a 

similarity measure though it is ultimately defined by the practitioner. 
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Figure 1.2.  Hard and Fuzzy Partitional Clustering 

 

 

1.4. VALIDATION MEASURES 

Methods must be established to not only determine the quality of the clustering 

results, but also validate the clustering algorithm.  Thus, cluster validation indexes have 

been researched a great deal [11-12,21-22].  All methods will fall into one of three 

categories; external criterion methods, internal criterion methods, and relative criterion 

methods.  Several studies combined these three methods into two [11-12]. 

External criterion measures will generally compare clustering results, C, with 

some a priori knowledge.  In some cases, this could be the ground truth; in others, it may 

be comparing it to another result.  Internal criterion measures will generally include an 

examination of the clustering result's internal structure.  Both the compactness of and the 

separation from the clusters with respect to one another would be investigated.  The 

diversity of this evaluation method stems from the numerous ways in which compactness 

and separation can be quantified.  Relative criterion measures will generally compare the 

clustering results C with other clustering results.  This could take the form of comparing 
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the results using different cluster algorithm parameters and examining the change in the 

corresponding external or internal measures. 

 

1.5. MANIPULATING ART 

ART is based off of neural networks and, therefore, has a simple extensible 

architecture, see Figure 1.3.  Its self-organizing property grants a degree of autonomy that 

is particularly useful when compared to methods without this property.  ART is a 

cognitive theory for learning [1-4,9].  Its architecture is a framework for the learning 

theory.  As a framework, pieces can be removed and new pieces added in.  New systems 

can be built from the old [2,9,19-20]. 

 

 

 

Figure 1.3.  Adaptive Resonance Theory Framework 
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The original ART implementation could only handle binary input data [1].  While 

there are many problems that can be formulated in a discrete manner, much of the world 

regularly operates in analog.  Fuzzy logic provided the extension necessary to expand 

ART into the continuous domain [2].  Between its discrete and analog forms, ART has a 

lot to offer in engineering applications [8]. 

ART functions primarily in an unsupervised manner.  There are drawbacks with 

this autonomous learning.  Natural partitions that are sparse may be needlessly broken up 

into multiple clusters.  An extension to ART was developed to map these unnecessary 

divisions back to their natural partitions [9].  This changes the nature of ART from an 

unsupervised learning method, to a supervised learning method. 

This is only a sample of the many extensions that have been developed for ART.  

The extensions presented are meant to show the utility and extensibility of ART.  This 

provides a foundation for the rest of this thesis. 

 

1.6. CLOSING NOTES 

This research was focused on manipulating ART.  The first paper in this work 

includes a discussion on the use of different vigilance values for each recovered cluster 

rather than a blanket vigilance threshold for the entire ART module.  This is done by 

employing a particle swarm technique for the vigilance search.  The second paper 

discussed the use of clustering techniques (e.g., ART) to preprocess and cluster 

sequential data for prediction purposes. 
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PAPER 

I. PARTICLE SWARM OPTIMIZATION IN AN ADAPTIVE RESONANCE 

FRAMEWORK 

1.1. ABSTRACT 

A Particle Swarm Optimization (PSO) technique, in conjunction with Fuzzy 

Adaptive Resonance Theory (ART), was implemented to adapt vigilance values to 

appropriately encompass the disparity in data sparsity.  Gaining the ability to optimize a 

vigilance threshold over each cluster as it is created is useful because not all conceivable 

clusters have the same sparsity from the cluster centroid.  Instead of selecting a single 

vigilance threshold, a metric for the PSO to optimize on must be selected.  This trades 

one design decision for another.  The performance gain, however, motivates the tradeoff 

in certain applications. 

 

1.2. INTRODUCTION 

Adaptive Resonance Theory (ART) has been used successfully in a variety of 

applications [17-20].  A number of other clustering methods require the user to specify 

the number of clusters desired a-priori.  Adaptive Resonance Theory, however, only 

requires that the user set a vigilance threshold.  This threshold determines how tight or 

loose clusters are, allowing ART to create new clusters autonomously. 

One of the primary disadvantages of the vigilance threshold is that it applies to all 

possible clusters.  Two clusters, in which one is tightly packed and the other is large and 

loose, can be easily imagined.  A single vigilance value would not achieve high fidelity 
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for each cluster.  This motivates the idea of using a different vigilance threshold for each 

cluster, e.g. [4].  The problem then becomes determining the vigilance for each cluster, as 

it is created.   

As an alternative to [4], Particle Swarm Optimization (PSO), another biologically 

inspired machine learning method, is well-suited for this task.  Several studies combined 

PSO with clustering methods (e.g., ART) [1,3].  Balancing the dichotomy of exploration 

and exploitation, PSO assists in searching for candidate vigilance thresholds. 

This paper is organized into four sections.  The methods employed, PSO, ART, 

and their combination, are discussed in Section 2.  Section 3 is focused on the data used, 

the experiments conducted, and the results gathered.  Section 4 concludes the paper. 

 

1.3. THEORY 

1.3.1. Fuzzy Adaptive Resonance Theory.  Fuzzy Adaptive Resonance Theory.  

ART, is a learning theory.  It overcomes the stability-plasticity dilemma and can learn 

arbitrary input patterns in a stable, fast, and self-organizing way [12,13,15,16].  A 

particularly useful variant of ART is Fuzzy ART [13].  The details reviewed below are 

useful for understanding how vigilance was modified in this study. 

The architecture for Fuzzy ART has two layers: the F1 Layer and the F2 Layer.  

Normalized input patterns, comprising the F1 layer, are fed through a weight matrix, 

which acts as a category template.  Category choices are calculated for each F2 category 

against the input vector: 

j

j

j
w

wx
T







   (1.1) 

where ˄ is the fuzzy AND operator defined by 
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   iii
yxyx ,min    (1.2) 

and α is a choice parameter that is used to break ties. 

In a winner-take-all fashion, the highest category choice is taken.  The category 

match equation is used to compare the winning node to the vigilance threshold: 

x

wx j
    (1.3) 

If the node is classified as a match, that input pattern is mapped to the selected 

node.  If the node is not a match, that node is turned off via a reset mechanism, and a new 

competition in the F2 layer takes place.  The cluster mapping is built as each input pattern 

is matched to a node.  The vigilance threshold greatly affects the ART network's 

performance, as it determines the criteria for the "goodness" of  the match. 

1.3.2. Particle Swarm Optimization.  Particle Swarm Optimization is a 

technique by which a swarm of simple agents traverse an n-dimensional search space, 

attempting to find global minima/maxima.  It attempts to balance the dichotomy of 

exploitation and exploration [5]. 

In PSO, a number of particles are initialized randomly within the search space 

with a random velocity.  The particle's position at each iteration is evaluated according to 

a fitness function.  Each particle's best position is noted, and the swarm's best position is 

determined.  A new velocity is then calculated.  This takes into account its previous 

velocity, weighted towards its best position and the global best position.  The velocity 

update can be calculated as 

   ttggttpptt xgrxprvv  *****1     (1.4) 

where v is the particle's velocity, x is the particle's position, p is the particle's best 

position, g is the global best position, ω is a weighting term, φ is a weighting term with 
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respect to both the particle's best and global best, and r is a random applied weight that 

shifts the balance between the particle's best and the global best position. 

1.3.3. ART - PSO Hybrid.  The ART category creation event is the ideal place in 

the algorithm for a PSO hybridization.  When ART creates a new category, the vigilance 

vector is then incremented and a new swarm is initialized to optimize ART's 

performance. 

This extends ART with vigilance thresholds for each clusters, optimizing each 

threshold to its cluster.  This hybridization attempts to make ART responsive to 

variations in cluster compactness.  The datasets that include both tight and loose clusters 

should benefit from this approach. 

1.3.4. Validation Indexes.  Four validation indexes were chosen for the PSO to 

optimize: classification accuracy, the Rand index, the Silhouette index, and the Dunn 

index. 

The easiest index to define is accuracy.  Accuracy is simply the ratio of correctly 

classified data elements over the total number of data elements. 

The Rand Index requires the computation of a confusion matrix.  A true positive 

(TP) corresponds to two similar data points being assigned the same cluster.  A true 

negative (TN) corresponds to two dissimilar data points being assigned to different 

clusters.  A false positive (FP) corresponds to two dissimilar data points being assigned to 

the same cluster.  A false negative (FN) corresponds to two similar data points being 

assigned to different clusters.  With these four variables in mind, we can define the Rand 

Index by 

TNFNFPTP

TNTP
R




    (1.5) 
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The Silhouette index examines the relationship that exists between of the 

clustering results and the data that goes into it.  It takes into account the cohesion within a 

cluster and the dissimilarity with other clusters. 

Consider each datum i and, further, let a(i) be the average dissimilarity between i 

and all other data within the same cluster.  This depiction gives insight to the cluster's 

cohesion.  Let b(i) be the smallest average dissimilarity between i and every other cluster 

to which i is not a member.  The silhouette index can then be defined as 

 
   

    ibia

iaib
is

,max


    (1.6) 

The Dunn index examines both the compactness and the separation of the 

recovered clusters.  Formulating distance measures, between clusters, when left up to the 

practitioner, can have a great impact on the results.  The distance between clusters will be 

defined as the smallest distance between a pair of points that belong to each cluster.  The 

diameter, or size, of a clusters is the largest distance between two of its members.  The 

Dunn index is defined as 

 
 

  


































l

Ki

ji

KijKi Cdiam

CCdist
KD

,...,1

,...,1,...,1 max

,
minmin    (1.7) 

where K is the number of clusters. 

 

1.4. DATA, EXPERIMENTS, AND RESULTS 

Three datasets were chosen to test the efficacy of this layered adaptability 

approach to ART.  The Iris, Wine, and Wisconsin Breast Cancer datasets within the UCI 

Repository [10] are common benchmark datasets that are often used to test clustering 

algorithms.  The Iris dataset contains three classes, two of which are partially inter-
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mixed, with four descriptors: petal length, petal width, stamen length, and stamen width.  

The Wine dataset contains three classes and thirteen descriptors.  The Wisconsin Breast 

Cancer (WBC) dataset contains two classes and nine descriptors. 

Four metrics were chosen for the PSO to optimize, two external and two internal 

measures.  The Accuracy and Rand indices were chosen because they utilize the ground 

truth of the dataset in question in their calculation.  The Silhouette and Dunn indices were 

chosen as a comparison to the prior two as they are calculated from the inter-relationships 

of the clustered data with itself.    

Each of the four metrics were tested on a set of 50 runs.  The number of recovered 

clusters and the mode of the accuracy was taken for each set of 50 runs, Tables 1.1 and 

1.2, respectively.  Pure supervised metrics, where the ground truth is known, exhibited 

the best performance.  The Accuracy metric achieved very high ratings, miss-matching 

only a few points.  Rand performed well on the Iris dataset, less so on Wine.  

Interestingly, Rand found better results on the WBC dataset, than Accuracy.  Neither the 

Silhouette nor the Dunn index performed well with any of the data.  This is not 

surprising, due to the absence of ground truth in these indices and a lack of disparity in 

the index value for good and poor results.   
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Table 1.1.  Mean and Variance of the Number of Clusters Recovered with a Given PSO 

Optimization Metric over 50 Runs 

Clusters 

Recovered 

PSO Optimization Metric 

Accuracy Rand Silhouette Dunn 

Iris (3) 3±0 3.36±0.7494 2±0 2±0 

Wine (3) 3±0 3.6±0.6061 2.24±0.4764 2±0 

WBC (2) 2.86±0.3505 3.04±0.4020 2.02±0.1414 2±0 

 

 

Table 1.2.  Mode Accuracy of a Given PSO Optimization Metric over 50 Runs 

Mode Accuracy 

per Metric 

PSO Optimization Metric 

Accuracy Rand Silhouette Dunn 

Iris 0.9667 0.9667 0.6667 0.6667 

Wine 0.9775 0.7191 0.3371 0.3315 

WBC 0.9048 0.9356 0.6706 0.6706 

 

 

The PSO-ART implementation was them compared with generic Fuzzy ART and 

Fuzzy ARTMAP (Table 1.3).  High performing vigilance values were chosen for each 

dataset.  PSO-ART outperformed Fuzzy ART and Fuzzy ARTMAP in all instances, 

except with the WBC dataset.  While PSO-ART found better results than Fuzzy ART, it 

did not outperform Fuzzy ARTMAP. 
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Table 1.3.  Mean Accuracy Comparing Fuzzy ART, Fuzzy ARTMAP, and PSO-ART 

over 50 Runs 

Mean Accuracy Fuzzy ART Fuzzy ARTMAP PSO-ART 

Iris 0.9333 0.9533 0.9663 

Wine 0.9213 0.7191 0.9685 

WBC 0.8199 0.9224 0.8805 

 

 

1.5. CONCLUSION 

Implementing per-cluster vigilance thresholds in ART has the potential to be of 

value for pattern recognition and discovery.  Optimizing for vigilance allows each cluster 

to better represent its data.  It also allows some clusters to be pushed away if their 

existence is not optimal.  Both the Silhouette and the Dunn indices had the disadvantage 

of not having a high disparity in the range of values they can take.  The lacking value 

disparity led to category abatement, or early stopping. 

Adaptive Resonance Theory produces easy to understand clusters.  It can be seen 

how much each cluster category fits an arbitrary feature of the data.  With a vigilance 

threshold for each category, it can be seen how well a pattern must match a category for it 

to be considered a member. 

This was not an exhaustive search of validation indices on which the Particle Swarm 

could optimize.  Several indexes were, however, identified as candidate metrics.  Current 

results show much better performance for external criteria as opposed to internal criteria.   

A good internal criterion would add useful autonomy to the ART implementation. 
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II. TIME SERIES PREDICTION VIA TWO-STEP CLUSTERING 

2.1. ABSTRACT 

Linear and nonlinear models for time series analysis and prediction are well-

established.  Clustering methods have recently gained attention in this area.  This paper 

explores a framework that can be used to cluster time series data.  The range of values of 

a time series in clustered.  Then the time series is clustered by data windows that flow 

into the initial set of value clusters.  We can ensure with higher certainty that predictive 

temporal patterns are discovered across the whole range of values. 

 

2.2. INTRODUCTION 

2.2.1. Linear and Nonlinear Methods.  Time series analysis and forecasting are 

each useful in a variety of scientific and engineering applications (e.g., weather 

forecasting, control, signal processing, and finance).  The various types of models for 

analyzing and forecasting time series are linear models, nonlinear models, and clustering 

models. 

Linear models (e.g., the moving average model [MA], the auto-regressive model 

[AR], and the auto-regressive moving average model [ARMA]) are popular for their 

well-defined statistical properties [9].  Linear models can break down when the time 

series has either a wide band spectrum or unknown seasonal components [8]. 

Nonlinear models (e.g., artificial neural networks) greatly extend the capacity to 

learn complex functions.  Artificial neural networks allow for the distortion of the input 

space into a feature space that can be separated linearly [12].  The use of neural networks 

in time dependent domains requires the determination of time lags to be used in the 
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neural architecture.  Although neural networks can be quite powerful, careful design 

decisions must be made that are not always intuitive. 

Clustering methods, a subset of nonlinear models, are designed to uncover hidden 

structures in data.  A time series already possesses a structure [9] (the temporal 

dependence) in addition to anything discovered analytically.  Clustering methods should 

be able to discover temporal patterns that have predictive power. 

2.2.2. Fuzzy ART.  Adaptive Resonance Theory (ART) is an unsupervised 

learning theory.  ART is capable of learning arbitrary data vectors in a stable and self-

organizing way that overcomes the stability-plasticity dilemma [13-17].  A variant called 

Fuzzy ART [15] will be referred to for the remainder of this discussion. 

 Fuzzy ART is comprised of an input layer and a category layer.  All input patterns 

are normalized between [0,1].  The weight matrix (wj) acts as a category template.  A 

category choice is calculated for each category against the input pattern:  

j

j

j
w

wx
T







   (2.1) 

where ˄ is the fuzzy AND operator defined by 

   iii
yxyx ,min    (2.2) 

and α is a choice parameter that is used to break ties. 

In a winner-take-all fashion, the category with the largest Tj is chosen.  A 

category match is calculated after a category choice is made, by comparing the winning 

node to the vigilance threshold: 

x

wx j
    (2.3) 
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This determines the "goodness" of the match. 

If the input pattern is classified as a match, that pattern is mapped to the selected 

node.  The node is turned off via a reset mechanism if the node does not match, and a 

new competition in the category layer takes place.  As each input pattern is matched to a 

category, the cluster mapping is build. 

2.2.3. K-Means.  The K-means algorithm [5] attempts to group n observations 

into k clusters.  Optimal partitions are formed when the sum of squares error from each 

observation to its nearest centroid mean is minimized.  Each centroid represents each of 

the k clusters. 

K-means is easy to implement.  Unfortunately, it can produce misleading results 

[6,7].  The most basic formulation is as [5,10]: 

1. Initialize k partitions in a d-dimensional feature space 

2.  Assign each of the n observations to the nearest Partition (Pl) that has the 

smallest sum of squares to its centroid mean (ml).  For example, 

   klilinjmxmxifPx ijljlj ,1,;;,1,
22

    (2.4) 

3. Update the centroid means to reflect the observation's new partitions 
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1

   (2.5) 

4. Repeat steps 2 and 3 until either a minimum threshold of iterations has 

transpired or no change occurs in the partition's make-up. 

2.2.4. Two-Step Clustering.  Preprocessing is an important step in data analysis.  

In this two-step clustering methodology, clustering serves as a step in preprocessing.  The 

time series is clustered first by value (Fig. 2.1).  This partitions the time series into value 
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bins which, essentially, performs vector quantization.  The time series is then partitioned 

into n-step overlapping contrails (i.e., t(1:n), t(2:n+1), and so forth).  These contrails are 

distributed among the value bins by their next value, t+1.  Each group of contrails is then 

clustered to build prototype shapes that flow into each value bin (Fig. 2.2).  These 

prototypes are created by averaging all of the contrails in that cluster.  The cluster 

prototypes are finally compared against test data for t+1 predictions.  The matching 

prototypes are chosen, and the corresponding target values are compared to the test data's 

target. 

 

 

 

Figure 2.1.  Wind Speed Time Series Quantized by Value 
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Figure 2.2.  Wind Speed Contrail Cluster 

 

 

This two-step clustering methodology acts as a framework for clustering time 

series.  Different clustering methods can be interchanged for both target value clustering 

and contrail clustering. 

 

2.3. DATA, EXPERIMENTS, AND RESULTS 

Two datasets were used to test the utility of the proposed clustering framework.  

The first data set was taken from the National Renewable Energy Lab's (NREL) M2 

Tower in Boulder, Colorado [11].  This data contained wind speed that has been recorded 

every 60 seconds.  The training and testing data was collected from April 7, 2014 - April 

13, 2014 and April 7, 2013 - April 13, 2013, respectively.  The Mackey Glass equation 

was also used as its chaotic dynamics are of interest [19].  The Mackey Glass equation 

can be described as follows: 
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where β is equal to 0.2, γ is equal to 0.1, and n is equal to 10.  Thirty thousand time steps 

were generated.  The first 10,000 were used for initialization, the second 10,000 were 

used for training, and the third 10,000 were used for testing.  A five-point moving 

average was used to smooth the training data. 

Two clustering steps were included in the framework, and two cluster algorithms 

were chosen:  K-means and Fuzzy ART.  A total of four combinations were possible.  

Each combination was tested over 50 runs, see Table 2.1.  All four methods performed 

comparably. 

 

 

Table 2.1.  Mean and Standard Deviation of the MSE of Time Series Predictions based 

on 50 Runs 

Data Set FuzzyART-

FuzzyART 

FuzzyART-kMeans kMeans-FuzzyART kMeans-kMeans 

Wind Data 0.4318 

±0.0000 

0.4296 

±0.0015 

0.4240 

±0.0007 

0.4204 

±0.0020 

Mackey-Glass 1.354e-4 

±0.0000 

1.1067e-4 

±0.0431e-4 

1.3305e-4 

±0.0271e-4 

1.1004e-4 

±0.0524e-4 

With 60 prediction prototypes 

 

 

A comparison was made with the individual algorithms that the two-step methods 

are comprised of (Table 2.2).   All formulations of the two-step framework generated 

approximately 60 prototype vectors for prediction purposes.  Compared to either k-means 
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clustering or fuzzy ART used alone, the performance of the two-step methods was better.  

The individual methods were tested up to approximately 500 partitions to get the best 

performance for comparison.  The two-step methods were better with an order of 

magnitude less predictor prototypes. 

 

 

Table 2.2.  Comparison between Individual Methods' Mean and Standard Deviation of 

the MSE based on 50 Runs 

Data Set K-means* Fuzzy ART** 

Wind Data 0.7334 

±0.0537 

0.5744 

±0.0000 

Mackey Glass 5.760e-4 

±0.0604e-4 

5.380e-4 

±0.0000 

* K-means set to 500 partitions 

** Fuzzy ART partitioned into 512 clusters 

 

 

In Table 2.3, two sample t-Tests were performed to check if each of the two-step 

methods was better than the individual methods.  All two-step formulations showed a 

significant performance difference with the p-value significant in all cases. 
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Table 2.3.  Comparison of Two-Step Methods with Individual Methods using a t-Test 

Data Set Method Vs t-Test 

p-value Significance 

Wind Data kMeans-

kMeans 

kMeans <10-63 Extremely 

Significant 

Fuzzy ART <10-172 Extremely 

Significant 

kMeans-

fuzzyART 

kMeans <10-63 Extremely 

Significant 

Fuzzy ART <10-213 Extremely 

Significant 

fuzzyART-

kMeans 

kMeans <10-62 Extremely 

Significant 

Fuzzy ART <10-181 Extremely 

Significant 

fuzzyART-

fuzzyART 

kMeans <10-62 Extremely 

Significant 

Fuzzy ART 0 Extremely 

Significant 

Mackey Glass kMeans-

kMeans 

kMeans <10-160 Extremely 

Significant 

Fuzzy ART <10-175 Extremely 

Significant 

kMeans-

fuzzyART 

kMeans <10-166 Extremely 

Significant 

Fuzzy ART <10-200 Extremely 

Significant 

fuzzyART-

kMeans 

kMeans <10-163 Extremely 

Significant 

Fuzzy ART <10-183 Extremely 

Significant 
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Table 2.3.  Comparison of Two-Step Methods with Individual Methods using a t-Test 

(cont.) 

Data Set Method Vs t-Test 

p-value Significance 

Mackey Glass fuzzyART-

fuzzyART 

kMeans <10-170 Extremely 

Significant 

Fuzzy ART 0 Extremely 

Significant 

 

 

2.4. CONCLUSION 

The two-step clustering framework applied to time series data exhibited 

promising results over individual methods, as confirmed by t-Test results.  Quantization 

of the time series helps ensure that prototypes can be generated across the entire range of 

data.  K-means and Fuzzy ART were applied together and separately in all possible 

combinations.  The performance of each two-step formulation produced results that were 

relatively similar, and all were superior to the corresponding techniques in isolation.   
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SECTION 

2. CONCLUSION 

2.1. CLOSING THOUGHTS 

In this research, ART was examined for its extensibility and applications.  ART is 

limited by a single vigilance value that controls the performance of the implementation.  

By assigning a vigilance value to each cluster and optimizing them with a PSO 

implementation, this extension outperformed Fuzzy ART on three datasets and Fuzzy 

ARTMAP on two datasets, out of three total datasets.  ART and K-Means were examined 

as a means of performing vector quantization.  This clustering quantization boosted 

prediction results when applied to time series. 
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