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ABSTRACT

EMI problems are not uncommon in high speed communication systems. As

the system clock frequencies increases, so does the challenges in controlling the EMI

in such systems. A connector is a very important part of a high speed communication

system. Electromagnetic interference (EMI) is found to be tightly correlated to mode

conversion: from differential-mode (DM) signals to common-mode (CM) currents and

further to antenna-mode (AM) currents on the outside of cables or enclosures. More-

over, in such high speed systems, coupling to an adjacent cable-connector system is

not uncommon. It is essential to understand and quantify this coupling path in order

to mitigate the coupling. Though simulation based methods are widely used, such an

approach is generally very time consuming and computationally resource hungry and

an effort is made to quantify the coupling paths using measurement-simulation com-

binations with minimal simulation aid. This thesis presents a systematic approach to

isolate and identify the different coupling paths in a high speed interface (in this case

we show DVI), as well as identify which discontinuity (and hence the coupling path)

is most critical to mitigate EMI. A transfer function based method is implemented to

quantify the coupling in the connector cable system. The method developed in this

study can be used for any high-speed interface in modern communication systems.
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1. INTRODUCTION

The digital visual interface (DVI) connector is partially inside and partially

outside the computer chassis or enclosure. DVI uses a high-speed serial link called

transition minimized differential signaling (TMDS) to transmit signals between the

CPU and the monitor using a DVI cable [1]. Although differential signals cause

weak radiations, it can be converted to common-mode (CM) currents and further to

antenna-mode (AM) currents flowing on the outside of the chassis and the DVI cable

[2],[3],[4].

Figure 1.1 shows some of the discontinuities in the DVI signal link. The

discontinuities such as the connector body shell gaps, gaps between the connector

shell and the DVI cable shell as well as the gaps between the connector and the CPU

enclosure are the main reasons causing this mode conversion [5].

According to the equivalent principle, the voltages along these gaps can be

regarded as secondary radiation sources causing the cable and the enclosure to ra-

diate. This implies that the connector imperfections can work as feeding sources

while the DVI cable and enclosure are the antenna structures [6]. In a DVI interface,

the connector forms an important link between the source and the receiver system

connected by the DVI cable. The connector is housed in a back shell also referred

to as the connector shell or shield (Figure 1.1). The main purpose of the connector

shell is to provide a continuous closed conductive envelope in order to prevent outside

fields from penetrating and internally generated noise from emerging out. Ideally

this shield should make a 360◦ direct electrical contact with the outer supporting

metallic bracket enclosure system [5],[7]. However, it is very difficult to obtain such a

perfect shield from a manufacturing and assembly point of view. Therefore, the con-

nector body shell has certain apertures as well as non-uniform contact points with the
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Figure 1.1. Different gaps in a DVI connector link

bracket. Each aperture reduces the shielding efficiency of this shield that results in in-

creased susceptibility and emissions as electromagnetic energy can leak through these

apertures. Many studies have shown how the apertures on the shield of a high-speed

connector can hamper the shielding effectiveness of a connector [8],[9],[10],[11],[12].

It is important to ensure that no aperture on the connector body shell approaches

λ/2 in length since that would cause the aperture to turn into a good energy radiator

and cause severe EMC issues [5]. It has been studied that the connector shell conti-

nuity should also be extended to the enclosure of the entire system while maintaining

low impedance between the other critical contacts such as the connector-shell and

cable-shell assembly [13],[14]. In general, a very well shielded cable connected to a

connector having a poor shielding effectiveness would render the entire systems EMI

performance to drop significantly. But there are situations where a connector with
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apertures would still perform well. It might be acceptable to have a connector body

shell with apertures as long as the enclosure to which the connector is mounted on

is completely shielded and has no slots/apertures/seams. At the same time the con-

tact between the connector frame and the enclosure along with the bracket has to be

complete and circumferential. In this case the cable-shell to connector-shell contact

has to be circumferential 360◦ for an effective shielding regardless of the connectors

shielding inside.

A slight deviation from the above ideal case can degrade the overall EMI per-

formance of the system no matter how good the connector shield/cable shield is. But

such is not the case with actual systems. In an actual enclosure system there are

many slots/apertures/seams for multiple reasons such as cable routing, ventilation,

mechanical contacts, acoustics etc. The amount of leakage from the aperture depends

mainly on the linear dimension, the wave impedance and the frequency of the sig-

nal. Moreover, more the current has to detour, more the shielding is reduced [15].

These crucial contacts in the connector-enclosure-cable system can be represented as

equivalent inductances [12]. Looking at these contacts from the perspective of return

current path gives a better insight as why they can be regarded as equivalent induc-

tances. Suppose a good circumferential connection is made between an interconnect,

then the return current would flow without any obstruction, but once the contacts

are restricted to tap points or dimples as in the case of the connector shell-cable shell

contact, the current now constricts and has to flow through these dimples (Figure

1.2). We know when the flow of current is impeded by these geometrical structures

(dimples), it can be regarded as an equivalent inductance.

Understanding the imperfections in the return path of currents is important

in order to mitigate EMI problems. The best solution is to have a good layout

design at the design phase taking into consideration all the good design practices and

have provisions for additional filtering on most of the high speed signal lines where
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Figure 1.2. Illustration of dimples on a cable connector

possible. High-speed signal lines should not have many transition vias as this may

further excite the power-GND planes through which it penetrates and further increase

the EMI issues. Following similar good design practices prevent the risk of having

to re-manufacture the board during the debug phase of a product when it fails the

EMI compliance testing. Not only will a re-manufacture add to an overhead cost to

the entire project budget but also impacts the final shipment of the product that can

further add to the losses incurred by the company.

1.1. MOTIVATION

When good design practices are followed and the end design still fails the strict

compliance testing requirements, sometimes it can be attributed to the connectors

and cables routing within the system which act as excitation sources or antennas in

a typical system allowing the internal energy from within the system to leak out into

its surroundings through some coupling path. Having a good understanding of such

coupling paths, design improvements for connectors and additional components and

even layout changes can be suggested to so as to improve the overall EMI performance.
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Simulation methods are sometimes effective in-order to estimate the EMI per-

formance. A major downside of simulating the entire system is the computation size

and resources necessary. For a complex system, of cables, connectors and boards, it

may be necessary to model every detail in-order to capture its actual impact. This

would make the simulations extremely large, resource hungry and time consuming. It

would be interesting to be able to identify the different coupling paths and simulate

the system by making changes to the important structures associated with the cou-

pling paths to see the reduction in the EMI, however additional time and resources

may be necessary if the impact of each and every detail is necessary to be studied.

A study to be able to quantify the coupling paths in such a system without using a

complete simulation model is quite beneficial. Being able to understand these cou-

pling paths makes it easier to debug the EMI issues in such a cable-connector system.

Hence a method where the impact of certain design changes can be studied without

the use of heavy computational resources is investigated which can help in making

quick engineering judgments has been developed.

1.2. ORGANIZATION OF THESIS

This thesis is presented in order to study the various important contacts/

imperfections in the DVI signal link by identifying the mode-conversion mechanisms

and quantifying the impact of the imperfections in the DVI signal link towards EMI

due to the AM currents. The EMI problem associated with a high-speed connector

cable system link is analyzed by breaking the entire signal path into different blocks

and quantifying the impact of each block towards the overall EMI performance. The

impact of each block has been quantified in the radiated field. The system is divided

into different blocks such as:

1. The connector itself
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2. The connector-cable assembly

• The cable itself

• The connector-cable system

3. Adjacent connectors

While some parts are quantified based on simple mode conversion and gap

voltage generation, a detailed study has been presented on the connector-cable as-

sembly with the derivation of a transfer function to quantify the mode conversion and

evaluate the impact of the major imperfections at this interface. The underlying idea

is to be able to identify and quantify the different coupling paths as well as identify

the important contributing imperfections in the DVI signal path that would have the

most impact on the EMI performance of the entire system. After identifying this

important imperfection, it would make it easier in suggesting design changes that

would be most beneficial in reducing the EMI of the system. The rest of this thesis is

organized as follows. In Section 2, a background related to the different currents and

the EMI problem related to a DVI system is illustrated. Section 3 explains coupling

paths in such high speed connectors illustrated on a DVI system. Further section 4

deals with the methods used to quantify the mode conversion in the connector, the

connector cable assembly and coupling to adjacent connectors. For the connector,

the mode conversion at the major slots on the connector body and the coupling path

related to it are identified after which the dominating slot is determined and its effect

is verified in the standard radiated field tests. For the mode conversion in the connec-

tor cable assembly a test setup is designed to identify the important interfaces and

derive a transfer function to predict the radiated field that is validated with the mea-

surements. The coupling to adjacent connectors is studied based on a combination

of measurement and simulation methods.
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2. BACKGROUND

This chapter focusses on explaining the different types of currents on a cable

and has been extended to a high speed DVI connector cable system.

2.1. TYPES OF CURRENTS

The DVI signal driver may send both differential-mode (DM) and common-

mode (CM) currents. The DM currents may give rise to CM currents when it encoun-

ters discontinuities along its path like traces, DVI connector, load end terminations,

etc. Usually there are both DM and CM currents flowing along the differential pair

signal lines. The CM return currents would flow through the inner surface of the

shielding braid. However, if there is a discontinuity along the braid, the CM return

currents will flow along the outer surface of the braid(the least impedance path).

Different modes of current are illustrated in Figure 2.1.

Figure 2.1. Different currents on a cable
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We define antenna mode (AM) currents as those currents that flow on the

outside of larger metal parts, such that they cause EMI. The term antenna mode

currents is selected to distinguish between the CM currents that do not cause EMI

(e.g., the CM current inside the shielded cable), and the CM currents that cause EMI

(e.g., the fraction of the CM current that flows on the outside of a shielded cable).

This AM current will act as feeding sources to excite the surrounding structures and

cause EMI problems.

To investigate the mode-conversion in a more complex DVI signal link, let us

assume an ideal differential signal flowing along a differential pair Tx- and Tx+ as

shown in Figure 2.2. Part of the DM currents would get converted to CM currents

due to the discontinuities of pins and asymmetric geometry of Tx- and Tx+ with

reference to the GND pins and the connector cover. The CM return current will flow

through the GND pins of the connector, the inner side of the shield of the connector,

and the inner surface of the shield of the DVI cable as shown in Figure 2.2. The blue

arrows on the DVI cable represent the CM return currents on the inside of the cable.

They return to the DVI cable shell and connector shell through six tiny contacts or

dimples which connect with the connector shell represented by inductances as shown

in Figure 2.2-A, wherein the inductances between the connector shell and the cable

shell are used to symbolize the connector shell- cable shell gap. The induced voltages

along this gap will excite AM currents on outer surfaces of the cable and the chassis.

In addition, when the return currents encounter the gap between the shell-bracket

(Figure 2.2-B) or bracket-enclosure (Figure 2.2-C), similar gap voltages can also be

induced and AM currents are further excited on the surfaces of the connector outer

shell and chassis.
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Figure 2.2. Current flow in a DVI connector- cable system

2.2. EMI TESTS ON A DVI CONNECTOR SYSTEM

An actual computer system with a graphics card having a dual stack DVI

connector connected to a LCD display was selected as our research target. To identify

the EMI problem, the computer system was placed inside a semi anechoic chamber

with the display being driven by the top DVI connector. The standard 3m FCC

radiated field test performed on the system shows the harmonics of the DVI spectrum

in the radiated field test (Figure 2.3) that can cause the product (graphics card) to

fail EMC certifications.

A first level check is to identify the major antenna structure in the system.

In this frequency range, the DVI cable can by itself form an effective antenna [3].

With the AM current on the DVI cable having a DVI CM spectrum signature, it

radiates quite effectively showing the harmonics of the DVI clock in the radiated field

tests (Figure 2.3, 2.4). For a given display resolution, the critical clock harmonics of

445.5MHz and 742.5MHz strongly show up in the radiated field tests with the 5th

harmonic (742.5MHz) only a few dB lower than the FCC class B limit (Figure 2.4).
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Figure 2.3. Field strength measured at 3m for the DVI system

Figure 2.4. DVI clock harmonic at 742.5MHz



11

3. DVI LINK COUPLING PATH ANALYSIS

There are many interfaces in the DVI link system. The mode conversion from

some of the interfaces has been identified and the coupling paths are presented in

this chapter. The coupling paths have been illustrated in the form of a coupling path

diagram as in Figure 3.1 and later explained.

Figure 3.1. Coupling paths
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Aiming at a segmented model, the first step is dividing the complex problem

into blocks that are easier to understand and the second step is to quantify each block.

This can help towards the improvement of the overall design and introduce a more

systematic approach of understanding the EMI in the DVI system thus providing a

good tool for engineering judgment. Based on the radiation of the DVI system, the

electromagnetic coupling paths and mechanisms from the driver signal to the AM

currents have been qualitatively understood and identified. The path includes the

graphics card PCB, DVI connector, chassis, and the DVI and HDMI cables. The

coupling path diagram shown in Figure 3.1 identifies the major mode conversions in

the DVI connector link. Figure 3.1-A represents the mode conversion from DM from

the driver to CM in the signal link. The CM current can be caused by asymmetry in

the driver, the PCB layout design, the connector, the cable connector, cable asymme-

try, the receiver side termination, etc. In fact the driver may itself drive a signal with

some inherent CM. Figure 3.1-B focuses on the connector-cable structures and the

coupling paths associated with them. Three important coupling paths are described

with illustrative figures in the following sections. These coupling paths have later

been quantified using measurement and simulation based techniques.

3.1. COUPLING PATH 1 - CONNECTOR BODY IMPERFECTIONS

As in most connector body shell assemblies, the dual stack DVI connector has

many body shell gaps or apertures that make contact at intervals along its length

and sides (Figure 3.2). The gaps in the connector form a main coupling step to excite

nearby structures. For example the seam between the top flange of the connector

shell and the connector frame (Figure 3.2-D) makes contact to the body frame by

three tiny dimple like structures. For this seam an equivalent inductance can be

expressed as the current is impeded to flow through only these dimples. Often these
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Figure 3.2. Connector body shell gaps

seams offer high rf impedance, but contacts (dimples) at intervals along the length of

the seam can parallel the inductance of the connections thus reducing the equivalent

impedance. Such inductances will have a voltage drop across it due to the CM return

currents, which in turn will act as a source to drive antenna mode currents on the

outside metallic structures, like on the bracket, the enclosure body, DVI cable, etc.

thus causing them to radiate. Figure 3.3 shows a visual interpretation of the currents

and the gap voltages which further drive AM currents on the inside of the bracket-

enclosure and due to imperfect shielding of the enclosure, antenna mode currents flow

on the outside of the enclosure and cable shield.

3.2. COUPLING PATH 2 - CONNECTOR - CABLE ASSEMBLY

This coupling path deals with the coupling related to the connector cable

assembly structures which involve the connector, bracket, enclosure and cables. The
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Figure 3.3. Mode conversion from the connector body shell

coupling path illustrated in Figure 3.4 explains the coupling path through the con-

nector shell-cable shell mating interface. The connector shell-cable shell interface can

drive antenna mode currents on the cable and enclosure as well. With a well shielded

cable and connector, the interface at this shell-shell interface is still very important

towards the overall EMI performance of the system. An imperfect contact at this

interface will have a connector shell-cable shell voltage developed which in turn can

drive antenna mode currents on the outside of the cable and enclosure system. This

interface along with other interfaces such as the shell-bracket, bracket-enclosure are

illustrated with inductances in Figure 3.4 in side view.
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Figure 3.4. Mode conversion in connector shell-cable shell interface

3.3. COUPLING PATH 3 - COUPLING TO ADJACENT CONNEC-
TORS

The coupling to adjacent connectors has been studied here taking an example

of a HDMI connector mounted on the same PCB sharing the enclosure mounting

bracket with the DVI connector. The next assumption is that there is no coupling

from the outside of the enclosure, ex. from the DVI cable to the HDMI cable. Here

the coupling from a DVI connector to a HDMI connector-cable system results in AM

current on the HDMI cable having the DVI CM spectral content. The coupling to the

adjacent HDMI connector is mainly caused due the DVI link system via two coupling

mechanisms. Firstly, the coupling may occur inside the PCB, e.g. the DVI signals

can excite a power ground plane cavity which propagates the signal to the HDMI

signal at a HDMI via transition through power ground plane. This would lead to

the DVI’s spectral content becoming visible on the HDMI signal, but not necessarily
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as AM on the HDMI cable having the DVI spectral content. The second coupling

path is outside the PCB, but inside the enclosure and is caused by the imperfect

shielding of the DVI connector and imperfect contact of the HDMI connector shell

taps to the bracket (Figure 3.5). Here the connector gap voltages driven by the CM

return currents can drive currents on the inside of the bracket and PCB. The voltage

developed across the PCB-Bracket drives a current on the HDMI connector shell. An

imperfect contact at the HDMI shell-bracket interface drives the DVI common mode

spectral content AM current on the outside of the HDMI cable. Both of the above

coupling paths have been studied in more detail in subsequent chapters and the most

dominating coupling path has been quantified.

Figure 3.5. Coupling to the HDMI connector
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4. QUANTIFYING THE COUPLING PATHS

A critical EMI factor is investigated such as identifying the different sources of

AM currents on the DVI link in order to quantify the various coupling paths using the

segmentation method employing measurement and simulation methods. This section

helps in identifying which interface contributes most towards the field strength 3m

away and suggest changes so as to reduce this mode conversion and coupling. The

parts of the coupling path which do not have a well-defined port will need to be

addressed mostly by gap voltages and simulation methods. Here one has to overcome

the numerical limitations that become the limiting factor for small structures, such as

the interior of the connector, the minute dimple like taps on the DVI connector, etc.

for which measurement based methods are used. For quantifying the contribution

from the connector-cable assembly structures a test structure is designed to measure

the transfer function [Pam/Pin]. This transfer function expresses the AM current in

terms of power measured on the cable shield to the input power of the system which is

used along with the measured DM power spectrum to estimate the AM current on the

cable attached. The same test setup is used to screen the shielding of different cables

as well. However, the coupling from the connector gaps to other adjacent connectors,

such as a HDMI connector will require a numerical and measurement based two-step

approach. The entire study is based on such a segmentation methodology and is

developed to quantify the coupling mechanisms from DVI gaps/slots to bracket slots

and further to radiated-field emissions.

4.1. MODE CONVERSION WITHIN THE CONNECTOR MODULE

For the connector it is important to characterize the gap voltages so as to

study its impact towards the EMI performance. In order to characterize the various
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gaps on the connector, the port voltages at the various gaps on the connector body

is measured using a 3 port VNA.

The measurement was performed on a test board with a dual stack DVI con-

nector. The 3 port VNA is used to excite the test structure and measure the gap

voltages at the different connector gaps. The mixed mode S-Parameters are obtained

with the balanced port (DVI excitation) assigned as logical Port 1 and the single

ended unbalanced port (probe used to measure gap voltages) as logical Port 2 as

shown in Figure 4.1. The ports indicated in (1) refer to the logical ports defined

as indicated in Figure 4.1. The naming convention for the transformation matrix

(Equation 4.1) is explained in Equation 4.2.

Figure 4.1. Mixed mode port definitions


Sdd11 Sdc11 Sds12

Scd11 Scc11 Scs12

Ssd21 Ssc21 S22

 (4.1)

[
SModeResponse;ModeStimulus;ResponsePort;StimulusPort

]
(4.2)

Ssd21 is the transmission parameter that describes the amount of common

mode voltage produced at logical Port 2 when there is a differential mode stimulus
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at logical Port 1, which also relates to the generation of EMI. Similarly Ssc21 refers to

the gap voltage produced at a slot given a certain CM input voltage in the system.

The mode conversion is calculated using Equation 4.3 and Equation 4.4. It

should be noted the ports indicated in Equation 4.3-4.4, e.g. in Sxy, x and y corre-

sponds to the physical ports and not to the logical ports. Using a simple coax probe

across the interface would measure the voltage at that interface for a CM excitation

(SSC21) or DM excitation (SSD21). Figure 4.2 shows the test setup.

Ssd21 =
1√
2

(S31 − S32) (4.3)

Ssc21 =
1√
2

(S31 + S32) (4.4)

Figure 4.2. Test setup for mode conversion on the connector body shell
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The differential pair on the test board was excited using Port 1 and Port 2 of

the VNA while a small coax probe was connected to Port 3 of the VNA. The differen-

tial pairs on the DVI connector were terminated using a termination board. A port

extension was performed on Port 3 till the end of the coax probe. The coax probe

used is shown in Figure 4.3. The coax probe was connected between the two surfaces

forming a gap and the port voltage was measured.The mode conversion parameters

were calculated using these measured S-Parameters. The underlying rationale for this

measurement is the following: differential mode currents gets converted to common

mode currents at the imperfections within the connector/cable/PCB. The common-

mode return current flows through the inside of the connector body. Due to the

gaps present in the shell of the connector, the common-mode return currents drive a

voltage across the gaps which would drive currents on the outside of the connector

shell and due to current continuity, the current flows on the inside of the bracket

and enclosure of the system. Hence, this port voltage measurement can give us an

estimate of the slot that contributes towards the maximum mode conversion on the

body of the connector.

Figure 4.3. Probe used for gap voltage measurement
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Some of the results are shown in Figure 4.4. As can be seen, the voltage

conversion is more in the common-mode case as compared to the differential mode

case.Based on the above described mode conversion results, it can be observed that

the top flange-body frame contact contributes the most towards the gap voltage which

in turn can drive AM currents on the outer metallic structures. In order to confirm

our findings from this test, we do a relative study based on measured field strengths

at 3m distance to confirm the maximum contribution of each slot on the connector

body shell. The relative effect of the contributions of the different slots on the con-

nector body is studied in the radiated emissions test setup which is the main criteria

in distinguishing the effect of each slot. The effect of each slot on the radiated field

is studied by making each contact imperfect one at a time when all other gaps are

perfectly shielded so as to have the contribution of only one gap/slot at a time. The

slots on the connector body are completely shielded using copper tape as shown in

Figure 4.5.

Figure 4.4. Mode conversion on the connector body shell (a) side black gaps, (b)
body shell - frame contact
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Figure 4.5. Unshielded and shielded DVI connector

This was performed on the actual system graphics card, where the system

was placed inside the chamber for performing the radiated emissions test. Figure 4.6

shows the test setup. A baseline is measured with the entire connector well shielded.

Each gap is then made imperfect one at a time to observe its effect in the far field

emissions. A similar trend is observed on the radiated field tests where the top flange

contact when made imperfect shows the maximum increase in the radiated emissions

above the base case having all well shielded slots. Figure 4.7 shows the measured

field strengths for all the test cases and Table 4.1. lists the field strength for each slot

which can be compared to the baseline well shielded case.

Table 4.1. Field strength for different connector body shielding at 742.5 MHz

dBµV/m
Baseline 33

Top contact unshielded 37.6
Side unshielded 33.4

Thus based on the above quick measurements based on port voltages, the most

dominating slot on the connector shell body can be determined. Adapting simulation

methods can also help in understanding the coupling. Simulation of the connector

alone can give an insight into the performance of different DVI connectors. The
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Figure 4.6. Test setup for radiated field measurements

Figure 4.7. Measured field strengths for different connector body shielding at 742.5
MHz
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surface current distributions can be compared when the DVI connector is excited in

common/differential modes and rough judgments on which parts on the connector

shell are important in the signal return path can be determined. In this simulation

the connector is mounted on a simple PCB structure. The connector is terminated

with matched loads at the cable end. Design changes can be suggested to improve

and reduce the EMI radiations based on the surface current observations.

An additional shorting pin is attached from the connector body shell to the

PCB reference plane as shown in Figure 4.8. Figure 4.9 illustrates the surface current

distribution on the outside shell of two different DVI connectors. For the original

connector, the surface current is strong and widely distributed on the bottom part

of the metal shell of the connector. This indicates strong return currents on the con-

nector cover, which may further induce strong radiations by exciting AM currents on

the inside of the bracket-enclosure system.

Figure 4.8. Connector shield with additional GND pin
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Figure 4.9. Surface current distribution on the connector shell

The additional shorting pin provides a lower impedance return path for the

signals. It can be observed from Figure 4.9 that the surface current on the shell is

reduced and its distribution area shrinks. Based on the above measurements and

simulations, certain suggestions on the design of the DVI connector shell can be

made to improve the EMI performance of the connector. The two most important

suggestions are: (a) add more taps/dimples on the shield - connector frame contact.

(b) add additional GND connect on the connector body shell close to the signal pins.

4.2. MODE CONVERSION IN THE CONNECTOR CABLE ASSEM-
BLY

After determining the important slots/gaps on the connector body shell, next

in the coupling path analysis is the connector-cable assembly structure, including the

DVI connector, cable connector, the cable, all mechanical supporting structures like

the bracket that holds the connector in place and the bracket-enclosure contact. It

should be noted that, besides the AM currents caused by the connector body shell

gaps which can leak out from the imperfect bracket-enclosure contacts, shield leakage

of DVI cables could also results in strong EMI radiations. In order to capture the
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effect of the imperfect interfaces which convert the CM return currents to AM currents

we first need to remove the effect of the cables inherent ability towards this mode

conversion.

4.2.1. Cable Shielding. Braided cable shields show a strong mode conver-

sion through their own shield [9],[5],[16]. A simple test setup was designed to measure

the shield leakage of commercially available DVI cables. The setup was then further

extended to measure a transfer function between the AM current on the outside of

the DVI cable to the power injected to a DVI connector in-order quantify the various

interfaces. A schematic of the measurement setup is shown in Figure 4.10 to measure

the shield leakage of different cables. Port 1 and Port 2 of the VNA are connected to

one of the differential pairs of the connector that is located in the well-shielded small

shielding box while port 3 of the VNA is used to measure the antenna-mode current

by means of a current clamp or current probe through an amplifier.

Figure 4.10. Test setup- cable shield leakage
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The signal lines of the DVI cable are terminated with a matched load of 50Ω to

the shield of the DVI cable as shown in the Figure 4.11. In the same figure we see the

signal reference is terminated to the shield of the DVI cable. The shield of the DVI

cable is at a certain height above reference plane forming a transmission line struc-

ture whose characteristic impedance is 235Ω. To avoid reflection of antenna-mode

current along the shield of the cable, two 470Ω resistances are connected in parallel

to match the transmission line. The current on the shield of the cable is measured

by moving the current clamp along its length. The currents driven by connector gaps

are distinguished from the currents caused by shield leakage by observing the current

distribution along the cable into the termination. A current that is driven by a con-

nector gap will have a constant magnitude from the connector to the termination, as

there is no reflected wave. However, distributed leakage will excite currents along the

length of the DVI cable, thus, leading to a strongly fluctuating current magnitudes

along the DVI cable.

Figure 4.11. DVI cable termination
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The mode conversion (Ssc21) is calculated by using the single ended S-Parameters

measured using the VNA. By varying the current clamp location along the length

of the cable, the mode conversions of two different cables are compared in Figure

4.12,4.13. A constant and low mode conversion along the length of the cable shows

better shielding effect for that DVI cable. This experimental setup can be used to

select better EMI shielding DVI cables by analyzing the mode-conversion. Clearly

the Dual link DVI cable shows better performance compared to the standard off the

shelf DVI cable (Figure 4.13). Dual link DVI signals have a higher operating clock

frequency range [1]. This may be the reason for the cable marked dual link to be

designed for better shielding capabilities.

In order to distinguish the AM currents along a cable due to the imperfect

metallic connections from those caused by leakage of the cable, a well-shielded cable

is made by modifying DVI cable 1. The plastic cover around the cable shell and the

outer protective sheath of the entire cable was removed. A 360◦ connection of the

shield to the DVI cable connector shell was made using copper tape that was then

extended to the entire length of the cable making a solid cable shield as compared

to the previous braided cable shield. The same test is repeated using the cable with

the modified solid shield. This lowered the shield leakage significantly for the cable

under test.

Figure 4.14 shows the mode conversion (Ssc21) for the same cable as shown in

Figure 4.12 after the modified solid shield. It is observed that for the well-shielded

cable, the mode conversion (Ssc21) is extremely low and constant along the length of

the cable with the variation of the location of the current clamp. With the contri-

bution removed from the poor shielding cable, we can now use the same test setup

to measure the currents driven on the cable shield by the imperfect contacts at the

connector-cable assembly structures.
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Figure 4.12. Shield leakage cable 1

Figure 4.13. Shield leakage cable 2
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Figure 4.14. Shield leakage after proper shielding - cable 1

4.2.2. Connector Cable System. The imperfect contacts (at the inter-

faces: Figure 2.2 (A) DVI connector shell- DVI cable shell, (B) DVI connector shell-

Bracket, (C) Bracket-Enclosure) can convert the CM return currents to AM currents

flowing on the outside of the DVI cable or the metallic computer enclosure, which are

efficient radiating structures. The connector shell and the cable shell are connected

through six contact points (dimples) - three on the top and three on the bottom,

hence it is not a perfect 360◦ connection and has just a few contact points on the top

and bottom of the shell-shell interface. The DVI connector-bracket is held together

by four screws, two screws on each DVI connector level. Hence this connection is

not perfect as well. Moreover, the bracket-enclosure contact is using two screws and

gasket enforced connections along the length.

The same setup with the well shielded DVI cable can now be used to determine

a transfer function which defines the ratio between the AM current on the outside
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of the shielded DVI cable to the differential input power into the system (Iam/Pin).

Instead of using a VNA to measure the S-Parameters, we now use the tracking gen-

erator as a source to generate the broadband input power, which is fed into a hybrid.

The differential outputs of the hybrid are connected to one of the differential pair

inputs of the connector test PCB (Figure 4.15). The idea behind this setup is to

excite the connector system in DM and obtain the AM on the cable shield due to

each imperfect contact in the system. The power received using the current clamp is

then converted to current using the transfer impedance of the probe. This test was

performed for the DVI connector shell-cable shell, shell-bracket and bracket-enclosure

interfaces.

Each case was performed one at a time, for example when the shell-shell con-

tact was made bad, all other contacts, i.e. the shell-bracket, bracketenclosure contacts

were perfectly shielded using copper tape. This ensured the contribution from one

imperfection at a time. A transfer function of each connector joint is derived using

the injected power and measured current on the DVI cable. Figure 4.16 shows this TF.

Figure 4.15. Test setup to measure the mode conversion for the different interfaces
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Based on the measurements it is observed the shell-shell contact to be the most

important contact in the connector-cable assembly as for the same power injected,

maximum AM current is measured on the cable. For estimating the impact of these

imperfect interfaces, the radiated fields need to be estimated. The TF enables us

to estimate the AM current on the cable given a certain input DM power spectrum.

The measured DVI DM spectrum is used as an input and the AM current on the

cable is estimated for each case and the radiated emissions estimated and compared

to the actual system emissions. The input power that is used as an input to the

transfer function is the DM power spectrum measured on the graphics card before

the connector. Figure 4.17 shows the measurement on the graphics card where the

probes are connected before the connector by removing the decoupling capacitors.

The probes connect to a hybrid which gives us the DM spectrum measured at the

SA input. Using this measured power spectrum, the AM current is calculated for the

three cases. This antenna-mode current is then used as the current source in order

to obtain the radiated field from using a simple dipole assumption [6].

Figure 4.16. Transfer function for different interfaces
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Figure 4.17. Test setup to measure the input DM power

For validating our estimation of the radiated field emissions, similar modi-

fications were made on the connector-cable assembly on the real system and the

maximized radiated fields were measured in the anechoic chamber. For example,

for the shell-shell interface, it was made imperfect using mylar tape while all other

gaps were properly shielded using copper tape. Figure 4.18 shows the estimation

for the DVI clock frequencies at 742.5 MHz compared to the actual measured case.

The estimation is in the range within 5dB compared to the actual measured values.

Equation 4.5 assumes constant current flowing along the entire length of the cable

and estimates the radiated field at a distance of 3m from the wire.

E =
4π10−7fiLSinθ

r
(4.5)
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f- Frequency I-Antenna-mode current L-Length of cable - Azimuthal angle r-

Observation distance.

Using similar methods, the field strengths at other important frequencies can

be estimated as well.

Figure 4.18. Comparison of the estimated and measured field strengths at 745.5MHz

4.3. COUPLING TO ADJACENT CONNECTORS

A high speed connector can have other connectors adjacent to it on the same

PCB and mounted on the same bracket. The coupling to adjacent connector has been

studied here taking an example of an HDMI connector mounted on the same PCB

sharing the enclosure mounting bracket with the DVI connector. An assumption is

that there is no coupling from the outside of the enclosure, ex. from the DVI cable to

the HDMI cable. This section focuses on how the coupling from a DVI connector to

a HDMI connector-cable system results in antenna mode (AM) current on the HDMI

cable having the DVI common mode (CM) spectral content. The coupling to the

adjacent HDMI connector is mainly caused due to the CM return currents of the DVI

link system via two coupling mechanisms. Coupling may occur inside the PCB, e.g.

the DVI signals can excite a power ground plane cavity which propagates the signal
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to the HDMI signal at a HDMI via transition through power ground plane. This

would lead to the DVIs spectral content becoming visible on the HDMI signal, but

not necessarily to an antenna mode on the HDMI cable having DVIs spectral content.

The second coupling path is outside the PCB, but inside the enclosure and is caused

by the imperfect shielding of the DVI connector and imperfect contact of the HDMI

connector shell taps to the bracket (Figure 4.19). This is studied by considering a sce-

nario where there is no direct EMI issue caused by the DVI connector-cable system.

The study is scenario based where the DVI connector is active and connected to a

display monitor through a very well shielded high quality cable. In this DVI link the

CM currents may arise due to the transceiver, imperfect symmetry of the differential

signal paths, asymmetric termination at the load end, etc. The contacts at the DVI

connector on the PCB to the DVI cable are very good and the connector-cable shield

connects to the chassis ideally. This scenario is considered, as this would eliminate

the direct contributions of the DVI connector-cable system towards EMI problems.

Figure 4.19. DVI and HDMI connector-bracket system
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On the other hand, on the inside of the enclosure, the DVI connector shell

is not perfectly shielded and has some seams and slots for mechanical mounting

reasons. These gaps on the DVI connector shell will cause a voltage drop driven by

the CM return currents [12],[14]. This voltage would drive a current on the inside of

the bracket and the PCB. Due to the imperfect contact at the HDMI shell-bracket

interface, a voltage will be developed at this interface which would drive AM current

on the outside of the HDMI cable attached, with a DVI CM spectral content.

4.3.1. Internal Coupling vs External Coupling. To compare the dif-

ferent coupling paths, two separate simulation models are setup where the internal

coupling model (Figure 4.20) includes part of the real PCB, the bracket and the

HDMI connector and the external coupling model (Figure 4.21) includes a solid plate

representing the PCB, the bracket and the HDMI connector with contact taps to

the bracket. In both the models a 200Ω resistor is used as a HDMI load between

the ’HDMI cable shield’ and the HDMI shield box (Figure 4.20-B) to quantify the

coupling noise by observing the coupled current in the HDMI load resistor. In the

internal coupling model, the DVI connector is removed and all signal lines are match

terminated. On the HDMI side, the HDMI signal lines are similarly terminated.

Figure 4.20. Surface current distribution for internal coupling
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Figure 4.21. Surface current distribution for external coupling

The idea is to observe how much signal from the DVI gets coupled to the

outside of the HDMI cable shield due to the internal board geometry. Though there

may be some coupling to the actual HDMI signal lines, the AM current due to this

internal coupling is rather weak. This statement is validated in the following sim-

ulation setup. One differential pair in the DVI link is exited in CM to obtain the

coupling in the HDMI connector side. From the surface current distributions it can be

seen that the DVI common-mode signal may cause noise current distribution on the

HDMI connector pin field. The coupled current on the 200Ω resistor is the parameter

used to evaluate the coupling strength. The external model contains a solid plate to

represent the PCB, the DVI connector, the bracket and the HDMI connector (Figure

4.21). With the same CM excitation, current distributions and current through the

HDMI load resistor is observed.

The coupling currents in the 200Ω resistor for two models are compared in

Figure 4.22. It can be seen that the external coupling is much stronger than the

internal coupling through the PCB. This indicates the noise suppression for the ex-

ternal coupling paths are more important than those of the internal coupling. Once
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Figure 4.22. Coupling current in 200 Ohm resistor

it is certain that the external coupling path dominates, an effort has been made to

quantify this external coupling path.

A measurement based method to quantify the mode conversion from differ-

ential signaling of the DVI connector to AM current with a DVI common mode

spectral content on the HDMI cable is investigated. This is achieved by measuring

the S-Parameters and then formulating a power transfer function model based on

the coupling, which predicts the coupled power to an equivalent load resistance (RL)

between the bracket and the HDMI connector shell assuming a perfect contact at the

HDMI cable shell-connector shell interface. This coupled power is used to derive the

AM current on the cable attached to the HDMI connector which would radiate based

on a radiation resistance (Rrad) that is used to derive the closed form estimate of the

radiated field emissions.

4.3.2. Coupling Path Characterization. The coupling between the DVI

connector and the HDMI connector can be defined in terms of S-Parameters. The

S-Parameters can be used to extract the coupling information based on the way the

ports are defined in the system. A port can be defined where it is possible to have a
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well defined voltage and current [17],[18]. Thus the selected two-terminal port needs to

be either electrically small in dimension as compared to the wavelength of the highest

frequency of interest, or support a TEM wave. Considering a two port system if one

port is defined at the noise source excitation end (DVI) and the other at the coupled

victim’s end (HDMI), the S-Parameters will contain the coupling information needed

to be able to quantify this coupling. In this case the HDMI cable being the major

antenna structure, the voltage between the connector shell and the bracket connected

to the enclosure is mainly important. Hence the victim side port is defined between

the outer ground shell of the HDMI connector shell and the nearest point on the

bracket where it is possible to measure this port voltage. The DVI connector source

can be defined as the excitation port.

The differential signaling by itself will cause weak emissions, the CM currents

that further get converted to AM currents cause significant EMI issues as discussed

earlier in Section 2. The mixed mode S-Parameters will help us in characterizing

this mode conversion. The mixed mode S-Parameters (Equation 4.1) are obtained

when the balanced port (DVI excitation) is assigned as logical Port 1 and the single

ended unbalanced port (between HDMI connector shell-bracket) is logical Port 2

as shown in Figure 4.1 earlier. Once the Mode conversion has been measured the

idea is to obtain a power transfer function that would define the coupling between

two adjacent connectors. Once the single ended S-Parameters are measured and the

conversion term derived, Equation 4.6 is used to determine the ratio of the power

dissipated in the load resistor (RL) to the source power input to the system [18]. A

good approximation for the equivalent contact resistance can be used to estimate the

current which is the AM current on the shield of the HDMI cable when the cable is

assumed to be connected to the HDMI connector.
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The power transfer function, ’G’ is defined as the ratio of power dissipated in

the load (ZL) to the power delivered to the input of the two port network (Figure

4.23).

In Equation 4.6, S21 is the measured coupling S-Parameter function (SSD21

when exciting the DVI connector in DM or SSC21 when in CM), Γin and ΓL are the

reflection coefficients at the input and load terminals respectively. The above transfer

function along with the mixed mode S-Parameters is used to determine the power dis-

sipated in the load resistor (PL). As a check we know if the network is totally matched

then all of the magnitudes of the reflection coefficients are zero and the power gain,

was verified with our formulation and data handling. The power equation using sin-

gle ended S-Parameters has also been verified with measurement data illustrated later.

Figure 4.23. Power delivered to load

G =
PL

Pin

=
|S21|2(1− |TL|2)

(1− |Tin|2)|1− S22TL|2
(4.6)

4.3.3. Simplified Test Structure. Two simple test structures are designed

and the closed-form estimation has been compared to the measured radiated field

emissions. The first test structure has a first level approximation for the DVI as

well as HDMI connector. This model has been validated with a simulation model in

order to understand the coupling mechanism better since the simulation gives more
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flexibility in making changes. Once this model has been validated, a more complex

test structure with real connectors mounted on a PCB has been used.

For designing the test structures in order to analyze the coupling between the

connectors, multiple aspects of the structure need to be taken into account especially

the structure of the excitation connector, the victim connector, the PCB and the

common bracket that holds the connectors to the enclosure. The first test structure

is designed considering the most simplified case of a DVI connector. Only two pins

of a DVI connector, Tx1+ and Tx1- are modeled as transmission lines using coaxial

cables and another GND pin is added alongside for providing a return current path.

The bracket is modeled as a solid copper plate on which the simplified DVI pins are

directly terminated using 50Ω SMT resistors. The shape of the co-ax cables is modi-

fied in order to have the same arrangement as for the top connector of a dual stacked

DVI connector. The spacing between the co-ax cables is maintained as in proportion

to the real DVI connector pins. The return path for these currents would not only

be through the adjacent ground pin but also through the bracket contact with the

PCB. It should be noted that all these assumptions are made not only to capture

the coupling between the connectors but at the same time keep the test structure

rather simple to mechanically construct as well as simulate before moving onto the

more complex real connectors. For modeling the HDMI connector shell, the first level

approximation is a small brass piece protruding out of the HDMI slot on the bracket.

With the test structure now built, ports needed to be defined. Two ports are defined

at the two driving ports of the DVI connector, while the third port is defined between

the HDMI connector shell and the bracket (Figure 4.24). The Port 3 will measure

the voltage developed at that location when Port 1 and Port 2 are either driven in

single ended mode, common mode, or differential mode.
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Figure 4.24. Simplified test structure for DVI and HDMI connectors

Simulation model : The simulation model is set up similar to the measurement

test structure. Once the network parameters between the simulation model and the

test structure can be validated, the effect of certain modifications in the simulation

model can provide a better insight into the coupling and how to reduce this coupling.

Such modifications included but are not restricted to a vertical slot on the GND

plane, improved contact of the HDMI connector shell to the bracket using taps of

different designs, shield on a DVI connector, placement of magnetic material to guide

any magnetic field lines towards the victim connector, etc. Figure 4.25 is similar to

Figure 4.24 where two coaxial cables define the DVI connector pins terminated on the

bracket directly using lumped elements. The unbalanced, Port 3 is similarly defined

between the connector shell and the brackets.

Model validation: Once the Z-Parameters and S-Parameters for the measure-

ment and simulation model are validated, the test for understanding the coupling and

making modifications to the HDMI connector shell contacts to the bracket is studied

in detail using the simulation model and observing the current distributions. Figure
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Figure 4.25. Simulation model

4.26 through Figure 4.28 shows the impedance parameters validation (derived from

the S-Parameters) of only Port 1 of the DVI connector along with the validation of

the unbalanced Port 3 on the victim side. Port 2 of the DVI connector was simi-

larly validated with measurements. Figure 4.29 shows a good correlation between the

measured and simulated single ended coupling S-Parameters.

As seen from the coupling Z-term, Z31 in Figure 4.28, at low frequency the

coupling is mostly inductive with a 20dB/dec increment. This can be attributed

to the time varying currents on the DVI connector-bracket loop generating a time

varying magnetic flux which couples to the CM return current loop at the HDMI

connector shell - bracket loop [4],[19]. An equivalent spice model with mutually cou-

pled inductors has also been studied and validated with measurements for simulating

this coupling between the simplified connectors.

One major test included having good contacts to the bracket from the HDMI

shell which showed significant reduction in coupling. In the real product there exists



44

Figure 4.26. Self Z-term of DVI port

Figure 4.27. Self Z-term of HDMI port
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Figure 4.28. Coupling Z-term validation - DVI to HDMI port

Figure 4.29. S-Parameter validation - DVI to HDMI coupling
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spring loaded taps, which at times make contact but most of the time due to some

mechanical mounting issues, do not make any good contact [14]. From a return

current perspective, this imperfect contact at the HDMI shell to the bracket can be

considered as an equivalent inductance as the current now is constricted compared

to a very good contact between the connector shell and the bracket. The potential

drop developed across this imperfect contact would be the source of the AM current

being driven on the cable shield when a cable is attached to the HDMI connector.

A method to make this contact more effective would be to have more spring loaded

contacts along the sides of the shell in addition to the one present or have a 360◦

contact around this connector using EMI gaskets. With the HDMI connector being

modeled as a short brass piece protruding out from the slot, for emulating a HDMI

cable shield, 1” thick copper tape was attached to the HDMI connector, or brass piece

as in this simplified model for measuring the radiated field emissions.

Radiated field tests : Before performing the radiated field test of the test struc-

ture, it is necessary to verify the power delivered to a known load in the power transfer

function (Equation 4.6). In order to verify this, a signal with a certain power level

is injected using the tracking generator of the spectrum analyzer at port 1 on the

test structure and the power received at the HDMI port, port 3 is measured. The

same power is used in the analytical model taking into consideration a load resistance

RL=50Ω of the spectrum analyzer and the power delivered to the load is calculated

using Equation 4.6 and compared with the measurement data. The analytical cal-

culation is in good agreement with the measurement (Figure 4.30). With the power

equation validated, the radiated field test is performed inside a semi-anechoic cham-

ber. For performing the radiated field tests, the test board is enclosed in an enclosure

to avoid measuring direct PCB emissions. The bracket is firmly held to the enclosure

using screws and finally all seams are well shielded as shown in Figure 4.31.
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Figure 4.30. Power calculation using S-Parameters and measurement at HDMI port
when DVI connector is excited with known power level

Figure 4.31. Shielding enclosure for test boards
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Near field probing showed no leakage except close to the HDMI slot interface

which was intentionally left open for attaching the dummy HDMI cable. For exciting

the DVI connector prototype, a tracking generator of a spectrum analyzer is used

with an input power, Pin = -3dBm. This value is to be used with the analytical

model for estimation purposes. A hybrid is used when the test board is excited in

CM and DM. The test board is first tested with single ended excitation, but then also

in CM and DM. As the study is focusing mainly on the DVI signal using differential

signaling, only the differential case has illustrated. But the same idea can be used for

any single ended excitation model. The standard FCC radiated field emissions test at

3m distance is performed taking into account the antenna factor and cable loss. For

the estimation process once current in the load resistor is derived, using Equation 4.7

the closed-form estimation of the radiated field emissions is derived. The closed-form

estimation with the variation of the radiation resistance is indicated in Figure 4.32.

E =

√
30PG

R
(4.7)

Figure 4.32. Measurement and estimation of radiated fields for simplified test
structure
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This method of estimation assumes all the power is radiated, which may not be

true in the actual measurement case. As the S-Parameters of simulation and measure-

ment shown in Figure 4.29 were shown to be a good match with the measurements,

for estimation purposes here, the S-Parameters from the simulation model is used as

it has better dynamic range at lower frequencies.

4.3.4. Test Structure With Real Connectors. With the successful vali-

dation of the estimation method using the first level prototype of the connectors, a

new test board is manufactured with two high-speed connectors placed adjacent to

each other as shown in Figure 4.33, one being a dual stack DVI connector and the

other a standard HDMI connector. The HDMI connector has spring-loaded taps that

connect to the bracket holding the two connectors [12]. The bracket has a provision

to be connected to the PCB at one extreme end at the HDMI connector side, away

from the DVI connector as illustrated in Figure 4.33. In this test structure the DVI

signals are terminated by 50Ω resistors (Figure 4.34) and then well shielded. The

entire board is then placed inside the same shielding box with the bracket being held

to the enclosure with screws. Port 3 is similarly defined between the HDMI connector

shell and the bracket which is attached to the enclosure as seen in Figure 4.35.

Figure 4.33. Test structure with actual DVI and HDMI connectors
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Figure 4.34. Termination plug for DVI connector

Figure 4.35. Single ended port 3 location between HDMI connector shell and bracket
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The same measurements are again repeated to measure the coupling from the

terminated DVI signal to the HDMI connector-bracket interface. The single ended

S-Parameters measured are converted to mixed mode S-Parameters which are then

used in the power transfer function model (Equation 4.6) in order to estimate the

current through the load, i.e. when the HDMI cable is attached to the system and

with Equation 4.7 to predict the field strength 3m away. For radiated field tests,

a real HDMI cable is connected to the HDMI port. Pair of signal lines of the DVI

connector are then driven using a hybrid in common mode and differential mode from

the tracking generator of a spectrum analyzer. For similar reasons as stated earlier,

only the differential mode case has been illustrated. The radiated power received is

maximized for different heights and polarizations as the DUT is rotated 360◦ on a

turn table.

In Figure 4.36 the measured radiated fields show some cable resonances which

cannot be predicted with this simple closed form estimation method, but the overall

estimation is in good agreement with an assumption of the radiation resistance value

Rrad=70Ω.

Figure 4.36. Measured and estimated field strength with HDMI cable
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5. CONCLUSION AND FUTURE WORK

A systematic methodology to quantify the EMI coupling within a DVI system

has been studied and validated. The systematic approach refers to breaking down

of the DVI signal link into different blocks and quantifying the effect of each block

towards the EMI performance of the system. Understanding the coupling paths within

the system provides a better insight into debugging the EMI issues. Based on the

coupling path study a transfer function was derived which determines the AM current

on the DVI cable for a given DM input power and using simple field calculations we

determine the emission level at the operating DVI clock frequencies. It also allows in

identifying and quantifying the different imperfections on the DVI connector shell and

connectorcable assembly structures so as to determine the most important slot/gap.

Thus helping in identifying the dominating source through which the internal CM

currents can leak out as AM currents.

The major advantage of this is to be able to quickly estimate the radiated fields

for checking the EMI performance of the system. In this process a test setup was

designed which can be used for screening of different cables based on their shielding

performance. The same setup can be extended to other cable-connector systems

as well, such as, HDMI, USB, etc. Making design modifications on the connector

body/different interfaces and observe its impact in the radiated fields without heavy

dependency on computational resources saves both time and effort. The disadvantage

is that this method can predict an approximate solution only for the strong DVI

harmonics. The other frequency bands in the system can be dominated by other

noise sources in the system thus rendering this TF based approach ineffective. Based

on this study the design suggestions which can be strongly supported to reduce EMI

problems in this system are; (i) Designing a better contact between the DVI connector
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shell and body frame, and (ii) Ensuring a better metal connection at the interface of

the DVI connector shell and DVI cable mating shell.
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