
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

2012 

A novel cantilever for bi-harmonic atomic force microscopy A novel cantilever for bi-harmonic atomic force microscopy 

Muthukumaran Loganathan 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Mechanical Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Loganathan, Muthukumaran, "A novel cantilever for bi-harmonic atomic force microscopy" (2012). 
Masters Theses. 7372. 
https://scholarsmine.mst.edu/masters_theses/7372 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7372?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7372&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

 

A NOVEL CANTILEVER FOR BI-HARMONIC ATOMIC FORCE 

MICROSCOPY 

 

by 

 

 

MUTHUKUMARAN LOGANATHAN 

 

 

A THESIS 

 

 

Presented to the Faculty of the Graduate School of the  

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

 

 

 

 

2012 

 

 

 

 

Approved by 

 

 

Douglas A. Bristow, Advisor 

Robert G. Landers 

Jagannathan Sarangapani 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2012 

Muthukumaran Loganathan 

All Rights Reserved 



iii 

PUBLICATION THESIS OPTION 

This thesis consists of two articles that have/will be published and has been 

prepared in the style recommended by the respective journal publication. Pages 6-23 have 

been published in the Review of Scientific Instruments journal. Pages 24-40 will be 

submitted for publication in the Nanotechnology journal. Appendix has been added for 

purposes normal to thesis/dissertation writing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

ABSTRACT 

Tapping mode (TM) AFM is a popularly used AFM technique in which an 

oscillating sharp tip mounted on a micro cantilever is used to probe the surface of interest 

with nanoscale resolution by making intermittent (tapping) contact with the surface. Any 

change in surface profile affects the tip amplitude, and is detectable only if it results in an 

amplitude change that is significant enough to be measured by the laser detector. Hence, 

it is desirable to have a micro cantilever that is sensitive to surface changes so as to 

provide sharper images and better surface resolution. 

In the first part of this thesis, a novel method to improve the measurement 

sensitivity of the cantilever has been proposed. In this method a driving signal composed 

of two harmonics is used to generate a tapping trajectory whose valley is broader 

compared to conventional sinusoidal trajectory. Such a trajectory reduces the velocity of 

tapping and allows the tip to spend more time in proximity to the sample. Numerical 

analysis indicates reduction in impact forces and improvement in measurement 

sensitivity. Experimental results demonstrate increase in image sharpness and reduction 

in tip wear. 

 In the second part of this thesis, a new cantilever design, called a “bi-harmonic” 

cantilever is presented. This cantilever design has a second resonant frequency twice its 

first resonant frequency, and can be fabricated from commercial cantilevers through 

silicon etching. Numerical results indicate this cantilever assists in obtaining better 

sensitivity using a smaller input drive force, compared to commercial cantilevers. Surface 

images obtained using bi-harmonic cantilevers exhibit improved surface tracking, and 

thus sharper imaging, which is a direct benefit of higher sensitivity. 
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1. INTRODUCTION 

Advancement in the field of nanotechnology can be attributed to the invention of 

state of the art tools that enable visualization and manipulation of nano structures with 

relative ease. The Atomic force microscope (AFM) is one of the foremost and versatile 

tool that is capable of measuring nano surfaces apart from nano manipulation, nano 

assembly, and nano lithography. The AFM comes under the classification of scanning 

probe microscopy, which is a technique that involves scanning the surface of interest with 

a sharp tip or probe.  

 The Atomic Force Microscope (AFM) was invented by Binnig et al. in 1986, and 

is capable of generating 3D plots of surface with a resolution in the order of nanometers. 

Unlike its predecessor, the scanning tunneling microscope, AFM can be used to image 

both conducting and non conducting surfaces. Moreover its ability to operate under 

ambient conditions makes it an apt tool to study biological samples at nano level. The 

integral part of the AFM is the nano sized tip mounted on one end of a micro cantilever 

that acts as sensor to detect surface characteristics. It is normally made of silicon, doped 

with traces of antimony, with the top face often coated with metal or metal oxides for 

enhanced laser reflection.  This tip, when brought in close proximity the surface, 

experiences forces including short range repulsive forces, weak Van der Waal’s attractive 

forces, capillary forces, adhesion, magnetic, electrostatic forces. Such forces affect the 

motion of the cantilever which is detected by shining a laser on the cantilever and 

monitoring the reflected beam using an optical detector. Among all the nano scale forces 

the repulsive forces and the Van der Waal’s attractive forces are always present. The 

repulsive forces are strong force fields that span a region of 1 – 3 Angstroms above the 
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surface. The attractive forces are comparatively weak and span few nanometers based on 

the material of the surface.   

Based on the way the tip probes the surface, the AFM can be operated in three 

different modes namely contact mode, non contact mode and tapping mode. The contact 

mode is the simplest of the operation in which a static probe is made to be in constant 

contact with the sample surface while the sample is moved in a raster scan pattern. In 

other words the probe remains the repulsive regime of the surface for the entire scan 

period. This is a closed loop process where the deflection of the cantilever is regulated by 

controlling the Z-stage on which the sample is placed as in Figure 1.1. Since the tip and 

the sample are in constant contact both suffer considerable wear.  

The tip wear and sample damage can be greatly reduced by operating in non-

contact mode. In this mode the cantilever is made to probe the attractive force regime of 

the surface. In other words the cantilever does not come in physical contact with the 

surface. A static probe has the possibility of getting pulled into the surface or drifting 

away from the sample it is made to oscillate near its resonance. Since the attractive forces 

are very small compared to the repulsive forces, very sensitive cantilever and high 

resolution laser detectors are required. A feedback control loop is required to regulate the 

amplitude and thus maintain a constant offset between tip and the sample.  

The tapping mode is most widely used AFM technique where the oscillating 

micro cantilever is made to intermittently “tap” the surface. Unlike non contact mode, 

where the probe oscillates only in attractive region, the oscillating probe in tapping mode 

traverses both attractive and repulsive regime alternatively. The surface variation affects 

amplitude of the cantilever which is measured using a laser – detector pair. Tapping 
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mode is a feedback control process where the amplitude of the cantilever is regulated by 

controlling the z-piezo on which the sample rests.  The change in amplitude is directly 

proportional to the change in surface height hence the corrective action (z-piezo 

displacement) taken to regulate the cantilever amplitude directly represents the surface 

variations.  

 

Figure 1.1 Schematic of an AFM 

 

In Tapping mode AFM the ability to obtain good surface image depends on 

effectiveness of the control scheme, which depends on many factors including the signal-

to-noise ratio.  While many efforts have been made to improve the detection electronics 

to improve signal-to-noise ratio, the mechanical cantilever and probe are a critical 

element of the sensing.  Cantilever research is primarily focused on fabricating the 

cantilever and variations in tip geometry and materials.  There are also considerable 

efforts at AFM operation at near 0 Kelvin to minimize thermal noise.  However, to date, 
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there has been little effort at improving the mechanical signal, that is, the sensitivity of 

the cantilever motion to change in response to a change in sample height. A high 

sensitivity means that a small change in surface height induces large change in the 

cantilever amplitude, which can more easily be detected by the controller. Hence high 

sensitivity enables good surface tracking, which will produce sharper images.  
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2. RESEARCH OBJECTIVE 

Rapid development in the field of micro and nano scale engineering have posed 

ever increasing demand on developing powerful instruments for investigating features as 

small as atoms with precision. This involves improving the sensitivity of tools like the 

AFM. This thesis explores one of the ways to improve the measurement sensitivity of 

tapping mode (TM) atomic force microscopes. The method described involves reshaping 

the tapping trajectory of the tip so as to obtain better sensitivity. Though the technique 

has been developed for tapping mode AFM it can also be extended to non contact AFM.  
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PAPER 

I. MEASUREMENT SENSITIVITY IMPROVEMENT IN TAPPING-MODE 

ATOMIC FORCE MICROSCOPY THROUGH BI-HARMONIC DRIVE 

SIGNAL 

Muthukumaran Loganathan, Santosh R Kodandarama, and Douglas A Bristow 

 

ABSTRACT 

This article presents a novel method to improve the measurement sensitivity and 

reduce impact forces in tapping-mode atomic force microscopy by reshaping the tip 

trajectory.  A tapping drive signal composed of two harmonics is used to generate an 

oscillating trajectory with a broader valley compared to the typical sinusoidal trajectory.  

The wide broad valley reduces the velocity of the tip in the vicinity of the sample and 

allots a greater portion of each period in the vicinity of the sample. Numerical 

simulations show that this results in decreased impact force and increased sensitivity of 

the cantilever oscillation to changes in tip-sample offset.  Experimental results 

demonstrate an increase in image sharpness and decrease in tip wear using the bi-

harmonic driving signal. 

 

I. INTRODUCTION 

The atomic force microscope (AFM) is one of the most versatile tools for surface 

analysis at the nanoscale
1
.  In particular, the tapping mode AFM

2-3
 is a widely used 

imaging technique.  Tapping mode involves a periodic excitation of the cantilever probe 

such that it oscillates near resonance and intermittently “taps” on the sample.  Compared 
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to other modes, tapping mode induces low tip-to-sample interaction forces and can be 

used to image a wide variety of materials, including soft samples. Research into the 

dynamics of the tapping mode over the past nearly 20 years has enhanced the capability 

and reliability of the tapping mode.  Initially the Q-factor of the cantilever was a focus
4-6

, 

as higher Q-factors result in higher force sensitivity, but also longer settling times, and 

thus slower imaging.  Low noise deflection sensors and small amplitude tapping mode 

have demonstrated high measurement sensitivity in liquids
7-9

. At the same time, dynamic 

analysis provided new understanding of the process
10-11

.  The analysis explains that 

image artifacts and instability are the result of multiple stable dynamic equilibria.  In 

many cases, a change in process parameters such as tapping frequency or amplitude set 

point can eliminate the artifacts or restabilize the image
12

. Other control systems 

approaches have been proposed to expand the stable imaging range
13-14

.  

Recent efforts focus on measuring, or even exciting the cantilever, at multiple 

eigenmode frequencies of the cantilever.  The additional information contained in the 

higher mode response is used to measure material properties, such as elastic modulus
15-16

, 

and electrostatic forces
17-18

. When correlated with known material responses, the higher 

mode information can provide high resolutions maps of material composition
19-24

. 

In this article, we propose a new type of multi-frequency tapping mode.  Here, 

additional frequencies are added at the higher harmonics of the fundamental drive signal, 

as opposed to previous works where the frequencies are at the higher eigenmode 

frequencies of the cantilever.  The objective of our approach also differs.  Rather than 

attempting to extract additional information from the sample, the multi-frequency tapping 

used here is intended to reshape the periodic tapping trajectory to one with more 
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favorable tapping dynamics.  In principle, any periodic trajectory can be created using a 

sufficient number of harmonic frequencies, but for simplicity, we consider driving the 

cantilever with the first two harmonics.  Through careful selection of the second 

harmonic parameters, the trajectory is reshaped to have a wider valley at the point of 

contact with the sample.  As shown later in this article, the reshaped trajectory results in 

higher measurement sensitivity and lower interaction forces.  The required instrument 

modification to obtain these results is minimal, as it requires only the connection of an 

arbitrary waveform function generator to the amplifier circuit for the tapping piezo in an 

off-the-shelf tapping-mode AFM.  No change in sensing systems, electronics, or software 

is necessary to obtain the performance improvements. 

  

II. MODEL DESCRIPTION 

 The dynamics of the AFM cantilever in air can be described as the spring-mass-

damper system
12

, 

 
     

   
,

dr tsF F xx
x

Q k
x


  


  

  (1) 

where x is the displacement of the tip from its equilibrium position, τ = tωo is a 

scaled time, ωo is the resonant frequency of the cantilever, Q is the quality factor of the 

cantilever, k is the cantilever spring constant, Fdr is the drive force and Fts is the tip-

sample interaction force. Several models have been proposed for the tip-sample 

interaction forces.  Here we use the Lennard-Jones potential
25-27

 which is given by,                         

 

 
   

1 2
8 2

 F      
180 6

ts

s s

A R A R
x

x x x x
 

 
, (2) 
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where, A1 and A2 are the Hamaker constants for the repulsive and attractive potentials 

respectively, R is the probe tip radius and xs is the distance between the cantilever 

equilibrium and sample. The drive force is typically a sinusoid, 

 
      τ ,drF Asin 

 (3) 

where the amplitude, A, and frequency, β = ω/ωo, are tuning parameters.  Typically, β is 

selected to be 1 indicating the drive signal operates at the resonant frequency of the 

cantilever
12

 and A is adjusted to regulate the tapping force. 

It is well known that the forcing function (3) results in a sinusoidal free response, 

as illustrated in Figure 1.  The amplitude A, frequency β, and offset xs determine the 

magnitude of impact forces and the resolution of the image
28

.  The critical portion of the 

trajectory is at the valley, where the cantilever probe interacts with the sample.  Consider 

now the proposed broad-valley trajectory illustrated in Figure 1.  The wider valley 

reduces the velocity as the probe nears the sample, which allows the probe to spend a 

greater portion of each period in the vicinity of the sample. One possible model for a 

broad-valley trajectory is, 

 

   0  sin sin 2  ,
2

desiredx A


   
  

    
     (4) 

whose second time-derivative at the valley is given by, 

 
   2

0    1 4 .desired valleyx A   
   (5) 

From (5), it is clear that the width of the valley can be adjusted by 0≤γ<0.25.  It 

can also be verified that for γ in this range 0≤γ<0.25, the peak-to-peak amplitude of the 
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trajectory is A0. In order to generate the broad-valley trajectory, two harmonics are 

needed in the drive signal, as, 

 
 1 2sin   (2   ) .drF A Bsin          (6) 

FIG. 1. Single harmonic and broad valley trajectories 

 

The free response to the two-harmonic drive signal is obtained using standard 

Fourier analysis techniques as, 

     1 2( ) sin   ( )       ( 2 ) sin 2  A   ( 2 ) ,G j G j Ax B G j G j           
 7) 

where G(jω) is the Fourier transform of the cantilever, (1). Comparing 7) to (4) 

and considering the resonance case (β=1), the broad-valley trajectory is obtained using 

the drive signal parameters, 

 
0 1 2,  90 ,  3  and  90 .

k
A A B Q

Q
       

  (8) 

Substituting (8) into (6) yields what is referred to here as the broad valley drive signal, 
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   cos   (2 ) ,drF A Bcos      (9) 

where A>0 independently controls the amplitude of the cantilever and 0≤B<3Q/4 

independently controls the width of the valley. 

Remark: The above method can be followed to generate trajectories with narrow 

valley, also. A narrow valley response results when -0.25<γ≤0, or in terms of the drive 

signal parameters, -3Q/4<B≤0. A narrow valley response may be useful when high force 

is desired, such as in nano-indentation.  

In the following we examine, using numerical techniques, the effect of trajectory 

shape on measurement sensitivity and tip-sample interaction force.  Here, measurement 

sensitivity is defined as the steady-state change in the cantilever trajectory to the change 

in tip-sample offset. Mathematically this is given by, 

 

 ( )  ,
d

S RMS x t
dxs



 (10) 

where RMS is the root mean square. The tip-sample interaction force is measured as the 

average force of the sample on the tip over one period of oscillation, or,    

 
 1  ,ts tsT T

F F d     (11) 

where 2T    is the period of the trajectory. 

 

III. NUMERICAL ANALYSIS 

 The following analysis assumes parameters A1=1.3596x10
-76 

Jm
6
, A2=1.865x10

-19 

J, R= 20 nm, k=7.5 nN/nm, Q=100, and A=1.5 nN corresponding to commercially 

available antimony doped silicon probe and a silicon substrate.  An approach-retract plot 



12 

of the cantilever response is shown in Figure 2 with respect to various values of B/Q at 

resonance (β=1).   

 

 

FIG. 2. RMS vs. tip sample offset curves for single harmonic (B/Q=0) and bi- harmonic 

(B/Q=0.05, 0.1, 0.15, 0.2, and 0.25) drive signals obtained at resonance (β=1). Note: the 

figure shows the RMS response for both approach and retract phase (inset). 

 

It is well known that AFM tapping dynamics have two stable solutions, which are 

sometimes referred to as the attractive solution and repulsive solution
29

.  The attractive 

solution is active at large offsets and the repulsive solution is active at small offsets.  For 

a region of offsets in between, both solutions may be active resulting in the hysteretic 
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loop shown in Figure 2. The hysteretic loop is typically avoided in imaging to prevent the 

appearance of image artifacts. 

 

 

FIG. 3. Average force vs. tip sample offset plot for single harmonic (B/Q=0) and bi 

harmonic (B/Q=0.05, 0.1, 0.15, 0.2 and 0.25) drive signals. Note: the figure shows the 

average force for both approach and retract phase. 

 

The measurement sensitivity (10) can be observed as the slope of the approach-

retract curve.  Imaging typically occurs in the repulsive region, where the slope, and thus 

measurement sensitivity, is largest and approximately linear.  Of particular interest here, 

is the effect that the bi-harmonic parameter B has on the slope in this region, namely a 
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larger B results in larger measurement sensitivity.  The sensitivity for the offset xs=16 nm 

is tabulated in Table I.  Better than a 30% improvement in measurement sensitivity can 

be obtained with B=0.25Q compared to B=0, the nominal case with the single harmonic 

drive signal (3).  

 

TABLE I. Sensitivity measurement at offset xs= 16 nm 

B/Q
a
 Sensitivity 

% Increase 

in sensitivity 

0 0.7076 - 

0.05 0.7502 6.02 

0.1 0.7918 11.90 

0.15 0.8346 17.95 

0.2 0.8782 24.11 

0.25 0.9215 30.23 

a
B/Q – Ratio of bi harmonic parameter to Q-factor of the cantilever  

 

The average force experienced by the tip during an approach-retract is shown in 

Figure 3.  Solutions in the attractive region have a net attractive force and solutions in the 

repulse region have a net repulsive force.  Notably, the bi-harmonic parameter B has the 

effect that larger values of B decrease the magnitude of the interaction force.  That is, at 

any offset the net tip-to-sample force is reduced by increasing B. Average repulsive 
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forces are tabulated in Table II for the offset xs=16 nm.  Using B=0.25Q reduces forces 

by 34%. 

 

TABLE II. Force measurement at offset xs= 16 nm 

B/Q 

 

Average 

Force (nN) 

% Reduction in 

average force 

0 0.4478 - 

0.05 0.4232 5.2 

0.1 0.3904 12.8 

0.15 0.3595 19.7 

0.2 0.3283 26.7 

0.25 0.2949 34 

 

IV. EXPERIMENTAL VALIDATION 

A Veeco Multi-Mode Scanning Probe Microscope is used in the following 

experiment. An antimony doped silicon cantilever of resonant frequency, F = 359.7 kHz 

and quality factor, Q = 350 is used with a silicon sample. The cantilever drive signal 

generated by the SPM controller was intercepted using a Signal Access Module, and 

replaced by a bi-harmonic signal generated by a National Instruments digital function 

generator. The following experiment shows a standard approach-retract curve in which 

the tip moves towards and away from the sample while the RMS (volts) value of the 

reflected laser on the optical sensor is recorded. The output was then converted to 
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nanometers through a suitable conversion factor. Figure 4 shows the resulting curves for 

several values of B/Q. It can be seen that the sensitivity i.e. slope of the curves increase as 

B/Q is increased.  

 

 

FIG. 4. Experimental RMS vs. tip sample offset curves obtained for single harmonic 

(B/Q=0) and bi harmonic (B/Q=0.05, 0.15, and 0.2) drive signals. Note: the figure shows 

the RMS response for both approach and retract phase. 

 

Comparing Figure 4 to the numerical study shows similar results. As B/Q 

increases, the slope of the response also increases. That is, for the same change in offset, 

Xs, there is a greater (and thus more detectable) change in the cantilever trajectory which 

denotes increase in sensitivity. The sensitivity values were obtained by applying linear 

least square fit through the data points in the range 80≤Xs≤130 nm (linear region) and 
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measuring the slope. The sensitivities were calculated for each case and are tabulated in 

Table III.     

V.    IMPACT ON IMAGING AND TIP WEAR 

A.  Imaging results Figure 5 shows the obtained images using single harmonic 

drive (A) and bi-harmonic drive B/Q=0.05 (B) and B/Q=0.1 (C). Fourier transforms of 

the images in (A), (B), and (C) are shown in (D), (E), (F), respectively.  Visual inspection 

of (A), (B), and (C) clearly shows that the image becomes sharper as B is increased.  

Sharpness is typically quantified by measuring the high frequency components of the 

image
30

.  

 

TABLE III. Experimental sensitivity measurement obtained through a linear curve fit. 

B/Q Sensitivity 

% Increase in 

sensitivity 

0 0.6849 - 

0.05 0.7149 4.38 

0.15 0.7890 15.19 

0.2 0.8252 20.49 

 



18 

To quantify the sharpness improvement, a circle is fit to the spectrum plot whose radius is 

selected to encompass one half of the spectral content; Results are given in Table IV.  

The results show that B/Q=0.1 increases the frequency range by about 50% when 

compared to the single harmonic spatial frequency range. 

 

 

 

FIG. 5. Images (125 X 125 nm) of BudgetSensors Tip Check sample obtained through 

single harmonic (A) and bi-harmonic trajectories B/Q=0.05 (B) and B/Q=0.1 (C). Plots 

(D), (E), (F) represent the spectral content of (A), (B) and (C) respectively.   

 

TABLE IV. Measurement of image sharpness via high frequency radius.  

B/Q 

High Frequency Radius 

(1/pixel) 

% Increase 

0 0.08550 - 

0.05 0.10275 20.17 

0.1 0.12404 45.07   
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B. Tip wear One practical benefit of reducing tip-sample interaction forces is 

reduction in tip wear. In order to validate low tip-sample interaction forces in bi-

harmonic mode, a tip wear test is performed. Two sets of three probes were subjected to 

wear in single harmonic mode and bi-harmonic mode (B/Q=0.3), respectively. The tips 

were imaged before and after wear using scanning electron microscope. 

 

  

FIG. 6. SEM images of probe tip taken before and after wear test and superimposed to 

ascertain the loss in tip height (a) Single harmonic mode (b) Bi- harmonic mode (B/Q = 

0.3). Insets show the tip images which were filtered using edge detection filter.  
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TABLE V. Tip height loss measurement 

Mode Probe 

Tip height loss 

 (nm) 

Mean 

 (nm) 

SINGLE 

HARMONIC 

1 55 

53 2 50 

3 54 

BI-HARMONIC 

4 35 

34 5 31 

6 36 

 

 

Figure 6 shows superimposed images of probes subjected to single (Figure 6. a) 

and bi-harmonic mode (Figure 6. b), respectively. Both the probes were subjected to 20 

image cycles, with each cycle corresponding to 512 scan lines over a 1μm X 1μm area. 

The wear in the tip was quantified by measuring the loss in tip height from the SEM 

image.  Other tips in the set were also subjected to the same conditions and the loss in tip 

height was calculated. The results are tabulated in Table V. The mean loss in tip height 

for bi-harmonic mode is 19 nm less than single harmonic mode. This clearly shows that 

the wear in the tip subjected to bi-harmonic mode is lesser when compared to that 

subjected to single harmonic mode.  
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VI. CONCLUSION 

In conclusion, the technique described in this article increases the measurement 

sensitivity while reducing the tip sample interaction force in AFM tapping mode through 

the addition of a second harmonic frequency to the drive signal.  In the time domain, this 

can be viewed as altering the probe trajectory from a sinusoidal shape to one that has a 

broad valley.  The broad valley trajectory reduces the velocity of the tip before contact 

and increases the period of time that the tip spends near the surface, thereby increasing 

sensitivity to changes in the offset. Experimental results show that the bi-harmonic 

trajectory yields better resolution at high spatial frequencies and reduced tip wear as 

compared to single harmonic. Moreover, this technique does not require major 

configuration changes in TM-AFM instrumentation, which makes it readily deployable.  

    

 

 

 

 

 

 

 

 

 

. 
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II.  BI-HARMONIC CANTILEVER DESIGN FOR IMPROVED MEASUREMENT 

SENSITIVITY IN TAPPING-MODE ATOMIC FORCE MICROSCOPY 

Muthukumaran Loganathan and Douglas A Bristow 

 

ABSTRACT 

We report the development of bi-harmonic cantilevers, a set of cantilevers whose 

second resonant frequency is twice its first resonant frequency, for tapping-mode AFM 

operation. Such cantilevers exhibit improvement in measurement sensitivity when tapped 

with an oscillating trajectory whose valleys are broader compared to conventional 

sinusoidal trajectory. Broad valley tapping trajectories can be generated using drive 

signals composed of two harmonics which are in this case the first two flexural modes of 

the cantilever. Matching the harmonics of the drive signal with the flexural modes 

enables trajectory shaping to be achieved with relatively small drive force. Numerical 

simulations show that bi-harmonic cantilevers provide better sensitivity without 

saturating the input drive signal. We also present the actual mechanical design and 

working of such a cantilever. Experimental results obtained with the bi-harmonic 

cantilevers indicate improved surface tracking which is a direct benefit of higher 

sensitivity. 

 

1. INTRODUCTION 

Conventional Tapping-mode AFM [1] involves exciting a micro cantilever with a 

nano sized tip near its resonant frequency and tapping the surface of interest 

intermittently. The surface variations are recorded by regulating the amplitude of the 
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trajectory through a feedback loop and monitoring the feedback signal. This method has 

been successfully used to image variety of samples including conductive, non-conductive 

and biological samples over various imaging conditions.  

Though the steady state tapping trajectory is predominantly sinusoidal with the 

frequency same as the driving signal, it does contain higher harmonic components [2-4] 

purely due to non-linear tip sample interaction. Since non linear surface forces are 

characteristic of the material, variations in higher harmonics can be directly correlated to 

surface inhomogeneities [5-7]. Apart from material contrast, higher harmonic imaging 

was used to map electrostatic forces [8-9]. Though higher harmonics contain valuable 

information, the poor signal-to-noise ratio at the corresponding frequencies makes 

measurements inaccurate. This led to the idea of redesigning cantilevers to have one of 

the higher eigenmode an integer multiple of the fundamental resonant mode [10]. Such an 

approach improved the signal to noise ratio and made the harmonics sensitive to surface 

properties. Apart from single eigenmode excitation, significant compositional sensitivity 

was also achieved by driving the cantilever with multi-frequency signals. Garcia et al 

proposed a method to obtain compositional maps by exciting first two modes of the 

cantilever [11-12] and monitoring the phase of the second eigenmode.  

The concept of multi frequency drive signals was not only used to obtain material 

maps but was also employed to improve the measurement sensitivity of the AFM. The 

measurement sensitivity was improved by tapping the cantilever with a broad valley 

trajectory [13] which can be generated by driving the cantilever with a drive signal 

composed of two harmonics. However, since the rectangular cantilever does not readily 
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respond to second harmonic of the drive signal large input voltage has to be fed in to 

reshape the trajectory. 

In this article, we overcome the above disadvantage by proposing a new 

cantilever design whose second mode frequency is twice its first mode. Such a cantilever 

has high amplification at first and second harmonic frequency and hence can be readily 

made to tap with a broad valley trajectory without saturating the input drive signal. 

Henceforth, these types of cantilever will be designated as bi-harmonic cantilevers. We 

also show how the measurement sensitivity can be improved with least modifications to 

the cantilever geometry.  

 

2. MODEL DESCRIPTION 

A broad valley trajectory, as shown in figure 1, is a trajectory whose valley is 

broader compared to a sinusoidal tapping trajectory. One possible representation of a 

broad valley trajectory is, 

  0( ) ,cos( ) cos(2 )desiredz t A t t      (1) 

 

Where, A0 controls the amplitude and 0 0.25  controls the width of the valley of the 

trajectory. Considering the cantilever as a lumped mass system, a trajectory as in eqn (1) 

can be generated by driving the system with an input force signal composed of two 

harmonics. The broad valley trajectory can be achieved with less input force if the 

cantilever system has two resonant modes matching the two harmonics of the broad 

valley trajectory. In other words, if a cantilever has a second resonant frequency twice 
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that of its first resonant frequency it can be effectively used to reshape the tapping 

trajectory with less input force. 

 

 

Figure 1. Comparison of sinusoidal and broad valley trajectories 

 

Assuming the dynamics are mostly contained in the first two resonant modes, 

such a cantilever can be modeled as a system of two 2
nd

 order differential equations [14], 

one for each resonant mode of the cantilever. Now considering the system is operated at 

1
st
 resonance, the model can be represented as, 

 

1 1
1 1 1 1 1 1 2

1

2 2
2 2 2 2 2 1 2

2

( ) ( )

( ) ( )

dr ts

dr ts

m
m z k z z F t F z z

Q

m
m z k z z F t F z z

Q





     

     

 (2) 

where, mi, ki, Qi, and ωi are the effective mass, stiffness, Q-factor, and angular frequency 

of the i
th

 eigenmode. For the cantilever under consideration, ω2=2ω1.  In order to generate 

a trajectory that contains two harmonics (eqn. 1) an input drive signal composed of two 

harmonics is required. Hence drive signal Fdr can be represented as, 

 1 1 1 2 2 2( ) cos( ) cos( ),drF t F t F t        (3) 
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 where, Fi and i are the drive force and phase shift applied at i
th

 harmonic. Fts is the non 

linear tip-sample interaction force. The total displacement of the tip from its equilibrium 

can be written as, 

  

1 2

1 1 1 2 2 2

( ) ( ) ( ) ( )

cos( ) cos( ),

z t z t z t O

A t A t



   

  

   
  (4)  

where Ai and φi are the Amplitude and phase difference of the i
th

 eigenmode. O(ε) 

represents the contributions of higher harmonics and eigenmodes. Here, we use the 

Lennard-Jones [15] potential to model the non-linear interaction, 

 

 
   

1 2
8 2

 F       ,
180 6

ts

s s

H R H R
x

x z x z
 

 
 (5) 

where, A1 and A2 are the repulsive and attractive Hamaker constants respectively. R is the 

probe tip radius and xs is the distance between the cantilever equilibrium and sample. The 

free response of the cantilever can be shaped to have the desired broad valley trajectory 

by carefully selecting parameters Fi and i, which can be obtained through standard 

Fourier analysis. They are, 

  1 2
1 0 1 2 0 2

1 2

, 90 , , 90 .
k k

F A F A
Q Q

         (6)

 

Substituting (5) in (3) gives what will be referred here as bi harmonic drive signal, 

 ( ) cos( ) cos(2 ).
2 21 1 2 1

F t F t F t
dr

       (7) 
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3. BI-HARMONIC CANTILEVER THEORY 

Consider a hard surface being tapped in air. The tip surface force profile, for such 

a scenario, can be approximated to be an impulse function. It is also known that an 

impulse function contains infinite harmonics, and can written as, 

 

1 1 0

1 1 0 2 2 0

( )

cos( ) cos( ) ...,

ts

ts ts

F t t

f t t f t t

  

   

 

    
 (8) 

 Where, fts is the average energy of the force function and t0 is the time when the 

cantilever comes in contact with the surface. Since the system attenuates all inputs except 

those that match the 1
st
 and 2

nd
 resonant modes, the model equivalent to eqn (2) can be 

represented as, 

 

1 1
1 1 1 1 1 1 1 0

1

2 2
2 2 2 2 2 2 2 0

2

( ) cos( )

( ) cos( )

dr ts

dr ts

m
m z k z z F t f t t

Q

m
m z k z z F t f t t

Q


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
 

     

     

 (9) 

Where ω2=2ω1. The output z1 can be written as, 

 
1 01 1

1 1 1 1 1( ) ( ) ,
j tj j

tsz t A e G j F e f e
        (10) 

Where, G1 is the transfer function representation of the 1
st
 mode of the cantilever and is 

given by, 

 

2
1

1
1

2 2
1

1

( ) .
1

k
G s

s s
Q







 

 (11) 

By making the 2
nd

 mode of the cantilever stiffer than the 1
st
 mode, the effect of tip 

surface forces on 2
nd

 mode deflection z2 can be made small. z2 can be represented as, 
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2 02 2

2

2 2 2 2 2

2 2 2

( ) ( )
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z t A e G j F e f e
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
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


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From eqn (11), it can be inferred that by making the 2
nd

 mode stiffer parameters A2 and 

2 can be made independent of the tip offset and hence, can be held constant for all 

interactions (A2c and 2c). From (9) the surface force can written as, 

 

1

1 0 11
1

1 1

.
( )

j
j t j

ts

A e
f e F e

H j


 



  

 (13) 

 By setting A1 to be a particular value A1c we can calculate F1 for a given system 

H1.  and  are chosen from (5) corresponding to broad valley trajectory. The unknown 

parameters in eqn (12) are fts, t0 and From the infinite solutions (z1) that can be 

generated from the combination of A1 and  there is only one solution whose 

time of impact (t0) that satisfies eqn (12). Let the corresponding to this valid solution 

be 1c. Thus the valid tapping trajectory for any given A1c and A2c can be written as, 

  1 1 1 1 2( ) cos( ) cos(2 ) ,tapping c c cz t A t t       
 (14)

 

where,  = A2c/A1c. Since, the analysis pertains to hard samples the lowest point on the 

trajectory in eqn (13) can be considered as the location of the sample surface.  That is, 

 
min( ( )) .sTipoffset, x z t

 (15) 

 

The measurement sensitivity of the cantilever is defined as the change in root 

mean square (RMS) of the trajectory to the change in tip sample offset  
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 ( )  ,
d

S RMS z t
dxs



 (16) 

The RMS of eqn (14) is plotted for every tip offset (xs) as in eqn (15) for both single 

harmonic (A2=0) and bi-harmonic trajectories (=A2/A1=0.2) along with the respective 

simulation curves in figure 2.  

 

 

Figure 2. RMS vs. tip sample offset (xs) obtained through analytical framework and 

numerical simulation for single harmonic (γ=0) and bi-harmonic (γ= 0.2) trajectories. 

 

Figure 2 shows the agreement between analytical and simulation sensitivity 

improvement, which can be obtained, provided the surface under consideration is a hard 

surface and the 2
nd

 mode of the cantilever is lot stiffer compared to the 1
st
 mode. The 2

nd
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assumption can be achieved by designing the bi-harmonic cantilever to satisfy the 

criteria. 

 

4. NUMERICAL ANALYSIS 

The model described in section 2 was analyzed using numerical technique to 

estimate the measurement sensitivity of the cantilever. The system parameters were 

chosen by performing a model fit to the frequency spectrum of the finite element model 

of the bi-harmonic cantilever (figure 6(a)). The parameters are k1=15 nN/nm, k2=1355.2 

nN/nm, Q1=100, Q2=300, ω1=200 kHz, ω2=400 kHz.  

 

 

Figure 3. RMS vs. tip sample offset (xs) of bi-harmonic cantilever for single harmonic 

(γ=0) and bi-harmonic (γ=0.05, 0.1, 0.15, 0.2) obtained at ω1=200 kHz and ω2=400 kHz. 

Inset shows the approach and retract direction.  
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From eqn (16) it can be seen that measurement sensitivity is the slope of the 

approach retract curve shown in figure 3. It is interesting to note that tapping both regular 

and bi-harmonic cantilever with a single harmonic drive signal yield same sensitivity 

value of 0.707
10

. Hence this can be used as point of comparison to evaluate the sensitivity 

improvement. As γ is increased i.e. as the width of the broad valley is increased the 

measurement sensitivity also increases. Table 1 tabulates the sensitivity obtained for 

different values of γ at tip offset of xs=13 nm. More than 70% improvement in sensitivity 

is observed with γ=0.2 compared to single harmonic tapping (γ=0). Not only has the 

sensitivity improved but the input force (F2) at second mode is small compared to bi-

harmonic operation using regular cantilever [10]. This, from the instrumentation side 

means that bi-harmonic cantilever can be made to tap with broad valley without 

saturating the input drive signal. It can also be noted that increasing γ has reduced the 

effective operating range of the cantilever, however this can be recovered by tapping with 

larger amplitude while preserving the higher sensitivity. 

 

TABLE 1. Sensitivity measurement at xs= 13 nm 

γ F2 (nN) Sensitivity % Increase   

0 0 0.707 - 

0.05 4.47 0.841 18.95 

0.1 8.95 0.931 31.6 

0.15 13.4 1.05 48.51 

0.2 17.9 1.22 72.56 
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5. CANTILEVER DESIGN 

For nominal rectangular cantilevers the second resonant frequency is normally greater 

than twice its first resonant frequency (ω2>>2ω1). Hence, in order to match the second 

resonant mode to the second harmonic, it has to be reduced without affecting the 

fundamental resonant frequency. Resonant frequencies of rectangular cantilever can be 

varied by selectively removing material from high stress location corresponding to that 

mode [16-17]. This reduces the effective spring constant of that mode which in turn 

reduces the frequency of the mode.  

 

  

 

 

 

 (a) (b)  

Figure 4. (a) Bi-harmonic Cantilever setup (b) Top view of the cantilever showing 

dimensions that can be altered (L1, L2) to tune the 2
nd

 mode of the cantilever.  
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Figure 5. (a) SEM image of bi-harmonic cantilever fabricated using Focused Ion Beam 

(FIB). (b) First and second resonant mode shape of the cantilever with a fixed base and 

free end (tip). The resonant frequencies are 200 kHz and 400 kHz respectively.  

 

The proposed cantilever as shown in figure 4 has an inner beam that oscillates 

freely. Such a design reduces the 2
nd

 mode frequency yet maintains a relatively higher 2
nd

 

mode stiffness (k2=1355.2 nN/nm) compared to the 1
st
 mode (k1=15 nN/nm). Figure 5(a) 

shows the bi-harmonic cantilever fabricated from commercial silicon cantilever (TESP) 
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manufactured by BRUKER FEI Helios NanoLab 600 focused ion beam (FIB) was used 

for etching. The unmodified cantilever was 125 μm long, 40 μm wide and 4 μm thick. 

The bi-harmonic cantilever has an inner beam of 84 μm in length and 16 μm in width. 

The dimensions of the inner cantilever were narrowed upon using dynamic analysis 

performed through finite element technique. Figure 5(b) shows the mode shapes of the 

cantilever at the first and second resonant mode. 

 

 

 

Figure 6. (a) Frequency spectrum of bi-harmonic cantilever (force input) obtained 

through finite element analysis. (b) Frequency response of fabricated bi-harmonic 

cantilever (base motion input) shown in Figure 5. 

 

The frequency spectrum of the finite element model and the fabricated cantilever are 

shown in figure 6(b). This design is not only simple but also provides ways to retune the 

2
nd

 mode frequency. Normally resonant frequencies of the fabricated cantilever may not 

exactly match the simulation due to uncertainties in cantilever material properties and 

fabrication errors. In such cases the frequency deviation can be corrected by modifying 
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the effective length (Leff) of inner beam suitably. Increasing the effective length of the 

inner beam decreases the second resonant frequency and vice versa, without much 

affecting the first mode. The length of the inner beam can be decreased or increased by 

removing material corresponding to region L1 or L2 respectively. 

 

6. EXPERIMENTAL VALIDATION 

Experiments were carried out on a Veeco Multi-Mode scanning probe 

microscope. The bi-harmonic cantilever was made to scan a cobalt sample. The default 

sinusoidal drive signal was replaced by bi-harmonic drive signal generated by National 

Instruments digital function generator. The experiment was setup such that the sample 

approaches and retracts from the tip at a constant rate, and the RMS (volts) value of the 

reflected laser signal from the photo detector was recorded. 

The experimental sensitivity was calculated by measuring the slope of the linear 

region (60≤xs≤100 nm) of the experimental data shown in figure 7. The sensitivity 

improvement was about 33% compared to single harmonic tapping. The experimental 

sensitivity improvement is lower than that estimated in simulation because it depends on 

both tip radius and stiffness which are uncertain parameters due to tip wear and 

fabrication errors respectively. 
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Figure 7. Experimental RMS vs. tip sample offset curves of bi-harmonic cantilevers 

corresponding to single harmonic (γ=0) and bi-harmonic (γ= 0.2) trajectory. Inset shows 

the approach and retract direction. 

 

The real benefit of improvement in sensitivity can be seen in figure 8. The tapping 

trajectory was changed from single to bi-harmonic half way through the scan while the 

controller gains were kept constant. In Single harmonic operation the error signal (figure 

8(a)) was considerably small which resulted in poor surface height tracking (figure 8(b)). 

When the trajectory was switched to bi-harmonic, due to increase in sensitivity of the 

cantilever the error signal was relatively large which lead to good surface tracking and 

improved image sharpness.  
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Figure 8. Cobalt sample 1 X 1 μm scan. (a) Absolute amplitude error (b) Three 

dimensional topography. Note: SH indicates single harmonic tapping and BH indicates 

bi-harmonic tapping. 

 

7. CONCLUSION 

In conclusion, to overcome the difficulty in reshaping the tip trajectory to have a 

broad valley we have developed a cantilever whose second resonance is twice its first 

resonance. This cantilever readily responds to bi-harmonic drive signals which are used 

to obtain broad valley trajectory.  Experimental results indicate improved measurement 

sensitivity and imaging results corroborate numerical and experimental results by 

exhibiting improved surface tracking. 
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SECTION 

3. CONCLUSION 

This thesis addresses the task of improving the sensitivity of tapping mode (TM) 

atomic force microscope. A novel method of improving the sensitivity through tip 

trajectory reshaping has been proposed, described, simulated and experimentally 

validated. Practical benefits of implementing this method include sharper surface images, 

reduced tip wear, readily deployable without much configuration changes to the existing 

AFM. Trajectory shaping involves tapping with a broad valley trajectory that can be 

obtained by adding a second harmonic component to the regular sinusoidal drive signal. 

It was observed that the measurement sensitivity improved as the width of the broad 

valley was increased by increasing the second harmonic amplitude of the drive signal. 

Hence, higher second harmonic drive amplitude is desired. However, the power 

constraint on the electric hardware (saturation) poses a limit on the maximum amplitude 

achievable. Moreover due to cantilever’s poor gain at the second harmonic large drive 

second harmonic signals are required to obtain a reasonable broad valley shaping. 

In order to overcome this problem, a new cantilever design whose second 

resonant frequency is twice its first resonant frequency was proposed. Such a cantilever 

has good gains at both first and second harmonic frequencies (provided the cantilever is 

operated at its resonance). Simulation demonstrates improved sensitivity obtained with 

relatively small second drive amplitude. The bi harmonic cantilever, owing to the 

simplicity of the design, can be easily implemented on commercially available AFM 

cantilevers with very less geometrical change. Experimental results show improved 

surface tracking which is a direct indication of improved sensitivity. This sensitivity 

improvement method can also be effectively extended to non contact AFM.  
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APPENDIX 

MATLAB PROGRAMS  

 

A.1 PROGRAM TO OBTAIN APPROACH-RETRACT SIMULTION CURVES 

 
 

clc; 
clear all; 
w1=2*pi*200e3; 
w2=2*pi*400e3; 
k1=15; 
k2=1355.2; 
Q1=100; 
Q2=300; 
x0=[0 0 0 0]; 
a1=[0 1;-w1^2 -w1/Q1]; 
a2=[0 1;-w2^2 -w2/Q2]; 
b1=[0 w1^2/k1]'; 
b2=[0 w2^2/k2]'; 
c1=[1 0]; 
c2=[1 0]; 
beta=200000*2*pi; 
AA=blkdiag(a1,a2); 
BB=[b1;b2]; 
CC=[1 0 1 0]; 
DD=0; 
Cobs=eye(4); 
Dobs=zeros(4,1); 

  
sys=ss(AA,BB,CC,DD); 

  
% Tip force parameters 
H1=1.3596e-76; % Hamaker repulsion constant(Jm^6) 
H2=1.865e-19;  % Hamaker attraction constant(J) 
R=20e-9;  %Tip Radius(m) 
 

% For Input initial conditions 
A0=0; 
B=0; % 2nd harmonic amplitude 
A=3e-9;  % 20nm drive amplitude 

  
XX=zeros(2501,1); 
convergence_epsilon = 1e-11; 

  
% Tip offset sweep 
xs_v =1e-9*[22:-0.05:6 6.05:0.05:22];  % Sweep Up 
    peak_to_peak = 0; 
    Average_Force=0; 
    peak_force=0; 
       for i=1:length(xs_v) 
       xs = xs_v(i); 
       display(sprintf('Calculating response for xs = %d',xs)) 
       flag_converged=0; 
       max_history = 0; 
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       min_history = 0; 
       run_number=0; 
       force=0; 
        rms=0; 
        con_num=0; 
        Y=0; 
        while(~flag_converged) 
           sim('Garcia_sim',2*pi/beta);   % Simulink program call 
            run_number = run_number + 1; 
            max_history(run_number) = max(x); 
            min_history(run_number) = min(x); 
            force(run_number) = max(Fts); 

 
            % check convergence 
if (run_number > 100) 
   if (norm((max_history(run_number-99:run_number)-

max_history(run_number)),2) < convergence_epsilon) || run_number > 4000  
       if (norm((min_history(run_number-99:run_number)-

min_history(run_number)),2) < convergence_epsilon) || run_number > 2000 

                     
              rms = sqrt(sum(x.^2)/length(x)); 
              bc=xf; 
              con_num=con_num+1; 
              if (con_num == 1) 
                  XX=horzcat(XX,x); 
                  flag_converged = 1; 
              end 
              end 
              end 
            end 
if (mod(run_number,100)==0); display(sprintf('Running period 

%i',run_number)); end; 
        x0=xf'; 
        end 

     
peak_to_peak(i) = (max_history(run_number) - 

min_history(run_number))/2; 
vtip(i)=virial_tip; 
display(sprintf(' xs = %d completed',xs)) 
Average_Force(i)=Favg/2/pi/beta; 
peak_force(i) = force(run_number);  
RMS(i)=rms; 
end 
 

display(sprintf('AMPLITUDE')); 
num2str(peak_to_peak', '%4.5e\n') 
display(sprintf('RMS')); 
num2str(RMS', '%4.5e\n') 
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A.2 PROGRAM TO MEASURE HIGH FREQUENCY CONTENT OF AN AFM 

IMAGE 
 
% Image Processing to get the 2D - Fourier Transform  
clear all; 
clc; 
format long; 

    
img_r=imread('img_bq0.1.jpg');   % Image to be analyzed  

thres=8.75;                   % threshold value 
 

img=double(rgb2gray(img_r))+1; 
nor=size(img); 

  
U=-0.5:1/nor(1):0.5-1/nor(1); 
V=-0.5:1/nor(2):0.5-1/nor(2); 

 
% 2D FOURIER TRANSFORM OF THE IMAGE 
IMG_F=fft2(img); 
IMG_F=fftshift(IMG_F); 
a=abs(IMG_F); 
Z=log(1+abs(IMG_F)); 

  
% THRESHOLDING OF THE FOURIER SPECTRUM 
count=0; 
for i=1:nor(1) 
    for j=1:nor(2) 
        if Z(i,j)<=thres 
            Z(i,j)=0; 
        else 
            Z(i,j)=1; 
             count=count+1; 
             dist(count)=(sqrt((U(i)^2)+(V(j)^2))); 
        end 
    end 
end 

  
radius=mean(dist); 
 

% PLOT THE 50% CIRCLE FIT 
for i=1:nor(1) 
    for j=1:nor(2) 
if abs(U(i)^2)+(V(j)^2 - (radius)^2) < 0.001 && abs(U(i)^2)+(V(j)^2 –  

(radius)^2) > 0.00001 
            circ(i,j)=1; 
        else 
            circ(i,j)=0; 
        end     
    end 

         
end 
circ_3(:,:,1)=circ;circ_3(:,:,2)=circ*0;circ_3(:,:,3)=circ*0; 
Z_3(:,:,1)=Z-circ;Z_3(:,:,2)=Z-circ;Z_3(:,:,3)=Z-circ; 
figure;imshow(uint8(255.*(2.*circ_3+Z_3))); 
fprintf('%10.5f \n',radius); 
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