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ABSTRACT 

Solar radiation prediction models are complex and require software that is not 

available for the household investor. The processing power within a normal desktop or 

laptop computer is sufficient to calculate similar models. This barrier to entry for the 

average consumer can be fixed by a model simple enough to be calculated by hand if 

necessary. 

Solar radiation modeling has been historically difficult to predict and accurate 

models have significant assumptions and restrictions on their use. Previous methods have 

been limited to linear relationships, location restrictions, or input data limits to one 

atmospheric condition. This research takes a novel approach by combining two 

techniques within the computational limits of a household computer; Clustering and 

Hidden Markov Models (HMMs). Clustering helps limit the large observation space 

which restricts the use of HMMs. Instead of using continuous data, and requiring 

significantly increased computations, the cluster can be used as a qualitative descriptor of 

each observation. HMMs incorporate a level of uncertainty and take into account the 

indirect relationship between meteorological indicators and solar radiation. This reduces 

the complexity of the model enough to be simply understood and accessible to the 

average household investor. 

The solar radiation is considered to be an unobservable state that each household 

will be unable to measure. The high temperature and the sky coverage are already 

available through the local or preferred source of weather information. By using the next 

day's prediction for high temperature and sky coverage, the model groups the data and 

then predicts the most likely range of radiation. This model uses simple techniques and 

calculations to give a broad estimate for the solar radiation when no other universal 

model exists for the average household.  
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NOMENCLATURE 

Symbol Description 

G   Monthly average solar irradiation  

G0   Monthly average extraterrestrial solar irradiation  

L   Distance to sea  

z   Altitude  

∆T  Monthly average minimum temperature  

Tref   Reference temperature  

 

H0  Extraterrestrial Radiation 

H  Terrestrial Radiation 

S0  Extraterrestrial Sunshine Duration 

S  Terrestrial Sunshine Duration 

 

∆t  Difference in Maximum and Minimum Daily Temperature 

���   Five Day Average Temperature 

 

M  Cluster Medoid List 

mi  Cluster Medoid for group i 

Cl  List of Points in Cluster l 

a(i)  Measure of Average Distance to Each Point in the Same Cluster 

b(i)  Measure of Average Distance to Each Point in the Nearest Cluster  
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T  Length of the Observation Sequence 

N  Number of States in the Model 

M  Number of Observations in the Model 

Q  Distinct Set of States of the Markov Process 

V  Distinct Set of Possible Observations  

O  Observation Sequence 

λ  Model  Description of the Hidden Markov Model  λ=(A, B, π) 

A  Matrix of Transition Probabilities 

B  Matrix of Emission Probabilities 

π  Initial Distribution of States 

X  State of the Model (Hidden) 

Ot  Observation at Time t  

 

αt(i)  Partial Probability of Observations Before Time t 

βt(i)  Partial Probability of Observations After Time t 

γt(i )  Most Likely State at Time t 



 

1.  INTRODUCTION 

It is commonly known that there are benefits from renewable energy. The 

dwindling supply of fossil fuels and other non-renewable sources of power are a large 

influence on the development of other continuous sources for energy that do not rely on 

limited supplies of natural resources. These sources of power are also influenced by other 

factors such as “going green,” the minimization of environmental by-products from 

historic methods of power generation.  

The most ancient source of power for the earth is the sun, and it is intuitively one 

of the best sources for a renewable source of continuous power. The main source of solar 

power is the photovoltaic (PV) cell. The PV cells capture radiation from the sun, and 

convert into Direct Current (DC) that can be stored directly to a battery.  

1.1. PHOTOVOLTAIC CELLS 

The main two inhibitors to large-scale solar power generation facilities are the 

inconsistent power generation and transmission of DC electricity.  

The reliance on clear skies and consistent atmospheric conditions becomes 

problematic for a consistent supply of power. A reliable power system requires that there 

is a regular flow to be stored or directly feed the significant demand for electrical power. 

Solar power could supply sufficient energy given perfect conditions, but the weather 

hinders generation without a predictable pattern. 

Solar photovoltaic circuits generate DC power. This DC power is used with most 

circuitry and batteries, but needs to be converted for most household appliances. 
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Household appliances have been designed to run on Alternating Current (AC) to be 

directly powered by the electricity supplied to all households. The transmission of DC 

power has remained a problem since the inception of the electricity supply system or 

“power grid.” AC electricity was chosen instead of DC mainly for its ability to hold 

charge for longer distances when carried along power lines.  

Because large-scale solar power generation facilities are impractical, the focus of 

many solar equipment suppliers turns to the independent household and self-sufficiency 

sector. The supply of residence scale and even handheld device-scale solar generation 

products has proliferated throughout the western world. However, the proliferation of PV 

cells is more influenced by the social status and how novel the product seems instead of 

the direct economic benefits. 

Currently, the photovoltaic cells rely on social benefits for popularity and sales. 

Solar cells are not purchased for an economic benefit, but become a luxury good and 

status symbol. People adopt solar power when nearby people are environmentally 

minded, especially when their neighbors already use solar power. [Gillingham 2012] 

Daily solar radiation is not available or known to the public in a manner 

comparable to temperature or other weather. Subsequently, the public is unclear on the 

returns from solar radiation. There is an implied relationship between a sunny day and 

high radiation, but there is not an understanding about how the radiation is measured or 

converted into electricity. The lack of predictable returns using solar power generation 

creates a barrier to new customers. The NOAA agency gathers information with the 

Surface Radiation (SURFRAD) Network. However, this information is not available for 

every city nor is the information definitive about solar power potential for the area.  
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New customers are much more likely to purchase a PV system when the 

uncertainty about the system is controlled. Some companies, such as Solar City and 

Sungevity, provide installation and calibration services with their PV systems in order to 

eliminate error and uncertainty.  These companies lease the solar cells to the consumer 

and offer to pay the negative difference if the system does not operate as promised. 

[Gillingham 2012] 

1.2. STOCHASTIC PROPERTIES OF SOLAR RADIATION 

Solar radiation data has been gathered for extended periods of time. This data has 

been analyzed and shown to retain stochastic, or time based characteristics. These 

characteristics allow stochastic models to accurately and reliably represent the radiation 

data. A predictor model for the original stochastic data can be created when an 

understanding of the descriptors is developed.  

Stochastic models of daily “insolation” or radiation data have existed for more 

than 40 years. A study in Solar Energy, found that when looking at 60 day periods 

throughout the year, that sequences can reproduce the sequential characteristics of the 

original data. This modeling technique verifies that period of time, and preceding day’s 

value influences the radiation on the next day. [Brinkworth 1976] 

Another Solar Energy study tested different techniques in modeling solar 

radiation, and found that the simple Markov Chain gave the most accurate representation 

of the radiation including “noise” or variance. [Mustacchi et al. 1979] 

In 1988, a set of Markov Transition Matrices (MTM) was used to continue the 

Markov Model by creating separate prediction based on the average monthly clearness 



 4

index values.  Each of the MTMs was used for a short range of clearness indexes. This 

created a large-scale model to be used throughout the year, but still contained specific 

representations of individual months. [Agular et al. 1988] 

Markov Models will be discussed in depth in the Section 4. Methodology.  

1.3. MONTHLY SIGNIFICANCE 

As shown by [Brinkworth 1976] and [Agular et al. 1988], unique months during 

the year have significant impact on the daily radiation values. This is confirmed by 

[Skiba et al. 1997] using linear correlations of monthly mean daily sums. Their 

distribution based on the linear correlation equations has a maximum relative deviation 

less than 8% when compared to the actual values.  

Monthly information can be significant to the model, but it was shown by [Olseth 

et al. 1984] that the time average values are unrelated to simultaneous input for solar 

driven processes such as PV electricity production. This study showed that using monthly 

clearness index can allow for unique distributions to accurately describe distributions 

throughout the year.  

1.4. HORIZONTAL VERSUS DIFFUSE RADIATION 

Studies have been done attempting to complete the total diffuse radiation based 

only on one directional component of the data. For this study it is significant that the 

horizontal data accurately relates to the total potential energy generation. The PV 

generation most commonly uses cells placed at an angle in order to directly face the 

sunlight. Using combinations of existing models, [Notton et al. 2005] found accurate 
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descriptions of the diffuse radiation with less than 11% Root Mean Squared Error as a 

percentage of the mean. Using a horizontal reading for this research can be an accurate 

description of the total radiation. 

1.5. TEMPERATURE VERSUS RADIATION 

Solar radiation affects many different factors on earth, many of which are 

complex and impossible to find direct relationships, linear or nonlinear. One of the many 

highly correlated measures, temperature is intuitively raised by the addition of radiated 

energy into the system. Temperature and light are the two outputs for additional energy in 

any system. In the past, illumination in the form of sunlight duration has been correlated 

with solar radiation, but recently temperature has been used as an indicator for solar 

radiation in many different models. Models with temperature include: temperature as a 

direct input for correlation analysis [Tiba et al. 2012][Prieto et al. 2009], neural networks 

[Alam et al. 2009] [Yacef et al. 2012], and as a replacement for sunshine duration in 

Ångström equations. Each of these models has additional inputs such as location or wind 

and often requires additional information that can’t easily be generated or measured at 

every unique location (extraterrestrial radiation, solar duration with obstructions). This 

research uses temperature in a way that simplifies the relationships without loss of 

fidelity to the interaction of temperature and radiation.  

[Tiba et al. 2012] uses temperature along with location, wind-speed and global 

solar radiation to show significant correlations between the module temperature and the 

electricity produced. This study proves that overheated PV modules lose efficiency and 

do not generate additional power over a certain temperature. Wind-speed was included in 
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the study as a cooling mechanism for the PV cells and not an additional source of power 

generation.  

1.6. SKY COVERAGE VERSUS RADIATION 

Intuitively, sky coverage and radiation are connected. When clouds come between 

the sun and the PV cell, the radiation is diminished and scattered. It would be beneficial 

to include sky coverage in the model in order to include the variability clouds introduce 

into the measurements. Previous models, such as [Skiba et al. 1997] and [Prieto et al. 

2009] include sky coverage and note its significance to the model.  

1.7. PV SYSTEMS SETUP AND ANALYSIS  

Renewable energy (RE) systems can be accurately created, modeled, and 

optimized using computer simulation programs. There is no need for renewable energy 

installation optimization software as one already exists. One of the most popular 

applications is HOMER. This program can optimize parameters given the expected 

generation and load of the location. Parameters can be individual component type or 

model, and overall configuration of system, DC/AC power supply, power generation 

sources or storage components and capacity.  

Load values can change just as drastically as power generation potentials. 

Because of this, the leveling of load is essentially impossible and power supply 

maximums are the goals of the generation system. The improvement of renewable energy 

systems becomes the supply side of power. Each system needs to be able to meet the 

load, by generating and storing power until it is needed. In order to create an efficient and 
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robust system, accurate predictions need to be made on the power generation sub-system. 

In order for this goal to be accomplished, the inputs (radiation, wind, hydro-electric) need 

to be modeled correctly. Accurate generation predictions are a requirement for HOMER 

software to optimize each power generation system.  

Overall system configuration can be optimized when cost of resources and 

components is known. When all generation potentials are known and held constant, the 

most robust power supply system can be developed. Configuration comparisons are 

completed with stand-alone (SA) systems, those which are not supplied with electricity 

power from an existing power grid. This eliminates non-renewable energy supplied as 

one of the factors, and provides direct comparison between the different RE sources. 

By using SA systems in rural locations, it has been found that there are systems 

which are consistently optimal. [Tzamalis et al. 2011] and [Bernal-Agustin et al. 2009] 

both found that the hydrogen energy storage systems are currently too expensive for their 

benefits and have an energy cost approximately 3 times as great. As stated by [Bernal-

Agustin et al. 2009], “Energy storage in hydrogen, although technically viable, has a 

drawback in terms of its low efficiency in the electricity-hydrogen-electricity conversion 

process, besides the fact that, economically, it cannot compete with battery storage at the 

present time.” Diesel fuel is a more cost efficient alternative for most electrical 

generation situations. The environmental impacts of both diesel and batteries can easily 

be counteracted using the money saved by not using a hydrogen storage system.  

When comparing SA energy systems to the grid-connected (GC) equivalent, the 

configuration can change significantly depending on the region RE potential and local 

grid-supplied energy cost. Using both wind turbine (WT) and PV power generation, 
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[Turkay et al. 2011] found that energy costs, including amortized system components, 

could be as high as $3.39/kWh for SA power systems, while GC systems with equivalent 

components were conservatively estimated to cost $1.2/kWh or as low as $0.307/kWh.  

The GC system provides a lower cost of energy by utilizing a sufficient RE 

system to provide power supply for the constant load needed for a building while selling 

excess power to the grid provider and only buying the additional capacity needed at peak 

load hours. The SA system requires a power storage capacity high enough to obtain 

complete capacity of the load, but with a GC system can also reduce capacity 

significantly.  

[Liu et al. 2012] completed analysis in Australia to again confirm the benefits to 

be obtained from GC power systems. Using only a 6kW PV system without WT 

generation, a household could produce 61% of the total electricity load, reduces 

electricity payments by 90%, and reduces carbon dioxide emissions by 95%. The study 

also showed that investment in a PV system has a 12-16.3% return on investment. The 

cost of energy is also reduced to at the highest energy costs, $0.092/kWh. The costs 

found by this study are heavily influenced by the tariffs and benefits for using PV 

systems in the region. This study also found that the slope of the PV modules should be 

facing a very regular slope between 20o and 25o depending on the city. This displays that 

the optimum installation is quite predictable when geographic location is considered.  

It has been shown repeatedly that a PV system with a battery storage capacity can 

greatly reduce cost of energy and reduce carbon emissions. This is accomplished by using 

a GC configuration where generation ability can be optimized at each individual location 

without excessive energy storage capabilities.  



 9

2.  LITERATURE REVIEW 

2.1. LOCATION AND TEMPERATURE BASED  

[Prieto et al. 2009] formulated a functional correlation methodology to use 

temperature, altitude, and distance from the sea to estimate horizontal radiation at 

different locations along the northern Spanish coast. The correlation equation was 

developed but required extraterrestrial radiation values and was reliant on experimental 

data to determine the function for altitude and distance to the sea. The correlation 

equation is used as follows from previous experiments: 

�
�� � � �	
�� ∆�

�����
�.�

 

 The model is particularly useful when related locations have recorded data, and 

that the location function can be used to predict values in new locations that are 

unknown. This model is unsatisfactory in predicting future radiation, and because of its 

dependence on the extraterrestrial radiation as an input is not an easily accessible method.  

2.2. NEURAL NETWORKS  

A Neural Network (NN) is a computing method that attempts to loosely follow 

the methods employed by the human brain. As described by [Haykin 2011] in Neural 

Networks and Learning Machines: “A neural network is a massively parallel distributed 

processor made up of simple processing units that has a natural propensity for storing 

experiential knowledge and making it available for use.” It resembles the human brain in 

two respects: 
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1. Knowledge is acquired by the network from 

its environment through a learning process. 

2. Interneuron connection strengths, known as 

synaptic weights, are used to store the acquired 

knowledge.  

The NN takes as inputs, many different configurations of variables and through a 

hidden function, correlates the inputs to outputs. The name is derived from the method’s 

emulation of human neural processing and the lattice-like structure of the different input 

configurations. Figure 2.1 shows a simple description of the NN lattice. 

 

Figure 2.1 Neural Network Diagram 

  

NNs require an immense dataset to train the model compared to the testing set. 

An often used rule of thumb is that the training set be ten times as large as the testing set. 

This requirement limits the application of the technique to sites when a large amount of 
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information is already known. Predictive models are extremely useful when the data is 

needed for a decision with a degree of certainty. NNs can imply or use an estimation 

based on the data shown, but they cannot be confident in the answer because of the 

structure of the model. Hidden nodes with uncertain parameters and reactions are used to 

foster experiential learning in a NN. This focus toward experiential learning then inputs 

an amount of uncertainty into the final model.  

2.2.1. Assessment of Diffuse Solar Energy Under General Sky Condition. 

[Alam et al. 2009] This study uses a NN to model hourly clearness, measured as a ratio of 

terrestrial to extraterrestrial radiation. The study uses a set of sixteen different inputs to 

attempt to model the same output clearness. All of the measurements were gathered at ten 

Indian stations: Jodhpur, Kolkata, New Delhi, Pune, Chennai, Port Blair, Ahmedabad, 

Nagpur, Mumbai and Vishakhapatnam. The data was divided into seasonal sections for 

each of the models and the average or typical day of each season was modeled separately. 

The estimated hourly values for clearness are compared to the actual measurements taken 

and a mean square error (MSE) is taken for each model.  

The benefits to this model are shown with the relative accurate predictions with 

some of the different models in different seasons. The three best performing models all 

contained air temperature, relative humidity and net long wavelength and returned 

smaller than 10-4 order MSE values. The NN application to daily radiation values out 

performs the comparable regression models. 

The disadvantages are similar to overall NN: large training set and no prediction 

from the model. Unique to this method, a complication arises; the most influential factor 
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in the model is the net long wavelength. This data would be difficult to gather, and often 

is not gathered at every site where radiation values are needed. [Alam et al. 2009] 

2.2.2. Artificial Neural Network Analysis of Moroccan Solar Potential. In 

Morocco, NN model techniques have been used to develop a method of interpolating 

between known data sites and estimating solar generation potential for all of Morocco. 

The study completed by [Ouammi et al. 2012], took 12 years of data from 41 sites and 

used it to generate “heat” maps of the Moroccan solar radiation potential.  

This method, if proved accurate, could prove invaluable to anyone who desires 

estimation data on solar radiation on any of the land with unmeasured radiation currently. 

This method also works well for small regions where geographic patterns can be assumed 

essentially constant.  

Unique disadvantages to this method are as follows; the inaccuracy of the model, 

the difficulty of mountains and land formations affecting weather patterns, and the 

overall location of Morocco in the African continent near the intersection of the Atlantic 

Ocean and Mediterranean Sea.  

2.2.3. Prediction of Daily Global Solar Radiation Data Using Bayesian 

Neural Network: a Comparative Study. [Yacef et al. 2012] NNs have been shown to 

predict solar radiation. This study chooses to evaluate the inputs and improvements that 

might be done with an ordinary NN model. The NN model is improved by a Bayesian 

inference method; this adds probabilistic interpretation to the weights of the nodes. Input 

parameters to be evaluated with an automatic relevance determination are air 

temperature, relative humidity, sunshine duration, and extraterrestrial radiation. The 

study also determined the effects of the number of hidden nodes in the NN.  
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It was found that that Bayesian NN improves upon the regular NN. For the 

training set, Root Mean Square Error (RMSE), Mean Bias Error (MBE), and Mean 

Absolute Error (MAE) changed from 17.06 to 8.42, 4.70 to 3.07, and 7.10 to 5.91, 

respectively. The automatic relevance determination method found that the most 

important inputs in order from most to least important are: sunshine duration, air 

temperature, relative humidity and extraterrestrial radiation. For the Bayesian NN the 

optimum number of hidden nodes was two, with decreases in log evidence for any more 

hidden nodes.  

This study is largely a comparison and verification of improvements in the NN 

technique as applies to solar radiation. The significance to this research is the 

improvement from a probabilistic technique and the limited number of hidden nodes. 

This shows that the statistics of the system can improve results and that the underlying 

model is not significantly complex that it can't be modeled simply.  [Yacef et al. 2012] 

2.3. ANGSTROM EQUATION SUMMARY 

[Ångström 1924] proposed a basic relationship between the extra solar radiation 

and the actual observed radiation on the surface of the earth. It has since been developed 

into a more formalized linear expression for the estimation of solar radiation on the earth 

from extraterrestrial radiation values and sunshine durations, both extraterrestrial and on 

earth.  

In 1940, J. A. Prescott derived Ångström's original postulation into the form most 

commonly known as today's Ångström correlation. This derivation formalized the 
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equation into set values. The formulation considered to be the “classical Ångström-

Prescott correlation” is as follows: 

��� � � � � ���� � 

Where HE is extraterrestrial radiation, HT is terrestrial radiation ST is terrestrial 

sunshine duration, and SE is extraterrestrial sunshine duration. The coefficients a and b 

must both be found through experimental data. The coefficient a corresponds to the 

relative diffuse radiation and b loosely relates to cloudiness.  

This derived version of the Ångström-Prescott correlation equation is commonly 

used as a benchmark because of its simple formulation and a relative accuracy given from 

so few inputs. This same simplicity limits the model and the results it gives. It relies on 

extraterrestrial data, either measured or estimated and assumes it to be true. The 

correlation is also heavily reliant on experimental data to find the coefficient values. This 

limits any predictions by requiring the assumption that the data falls within the dataset 

used to derive the model. 

2.3.1. Models for Obtaining Daily Global Solar Radiation from Air 

Temperature Data. A study in Romania [Paulescu et al. 2005] replaced the ratio of 

sunshine duration in the classical Ångström-Prescott correlation with a function of the 

difference in maximum and minimum daily temperatures and the 5-day average 

temperature.  

� � �� · ��∆�, ��̄  
Where H is terrestrial radiation, H0 is extraterrestrial radiation, ∆t is the difference 

in max/min daily temperatures and ��̄is the 5-day average temperature.  
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The function contains the coefficients to be determined from experimental data 

and is shown: 

��∆�, ��̄ � !"# · �∆� $%���̄ &%
'

#()
 

The coefficients ci pi and qi all are determined from experimental data as * 
corresponds to the location of the dataset. There were 6 testing datasets from 6 locations; 

in this study n equals 6.  

This new temperature based correlation had RMSE of less than .15, but the 

datasets were limited to days with clear, cloudless conditions. This method has been 

shown as feasible, but with significant restrictions to the application. However, the strong 

results from using short term temperature as the only input are impressive.  

2.3.2. Simple Nonlinear Solar Radiation Estimation Model. [Şen. 2007] 

Turkish researcher Zekai Şen, extended the classical Ångström-Prescott equation with a 

non-linearity coefficient, making the model:  

�
�� � � � � � �

���
+
 

The variables represent the same as the classic correlation, with the addition of c 

as an effective measure of system dynamics. 

This study does show improvements on classic Ångström-Prescott estimations, 

but the additional benefits are minimal. The average improvement from the nonlinear 

correlation is only 6.32%. None of the location datasets were estimated to have a 

nonlinear coefficient, c, greater than 1.9. So while there is evidence that some locations 

have significantly dynamic radiation potential, not every location has a nonlinear model. 

By adding nonlinearity to the estimation, the complexity of the equation greatly increases 
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and the “strength” of the model declines. Strength of the model is used to gauge its robust 

nature and applicability for all different data. This nonlinear adaptation is not as strong as 

the classic formulation. [Şen. 2007] 

2.3.3. A New Formulation for Solar Radiation and Sunshine Duration 

Estimation. [Şahin. 2007] This method proposed doesn't actually change the classic 

Ångström-Prescott correlation equation, but uses a novel restructuring to create 

estimations and prediction values. When rewritten, the classic Ångström-Prescott 

correlation can be shown as: 

����
�1 - .� � �

� 

This description uses Re to represent the reduction in extraterrestrial radiation 

before it is measured on Earth. Re then can be rewritten as: 

.� � /��� ��⁄  - �� �⁄  1
��� ��⁄   

Given that this value can be found from a testing set, the estimation for both 

terrestrial sunshine duration and radiation become simple equations: 

� � ���
�1 - .� ��  

and 

� � ���
/���1 - .� 1 

These equations are beneficial due to their simplicity and that the value can be 

used to estimate an average or daily value by only knowing the overall ratio for the 

location.  
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This method retains simplicity and improves on the implementation of the 

classical Ångström-Prescott correlation. This variation is superior because it provides a 

reduction in parameters without an increase in inputs, and it doesn't require coefficients 

for the equation to be estimated with a least-squares method. However, the method is still 

restrained to need extraterrestrial values and  must have all knowledge specific to the 

location. [Şahin. 2007] 

2.4. SOLAR RADIATION ESTIMATED BY MONTHLY PRINCIPLE 
COMPONENT ANALYSIS  

Using the inputs from the Ångström-Prescott correlation, a study completed by 

[Şen et al. 2008] replaced the linear estimation equation with a Principle Component 

Analysis (PCA). PCA is a technique used to reduce parameters of the data by twisting the 

axes in the direction of the most variation. This technique gives a good estimate about the 

distribution of the data. When PCA is used to determine the distribution of sunshine 

duration as compares to solar radiation, the results are equivalent to the classical 

Ångström-Prescott correlation.  

Despite very similar estimations and accuracy, Ångström-Prescott is restricted in 

many ways that PCA is not.  

• Nonlinearity- PCA can describe data which does not fit on a 

straight linear correlation.  

• Normality- It is an assumption of regression models, that the data 

is normally distributed. PCA does not require normality.  
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• Conditional Distributions- It is assumed that the distribution at 

each value of sunshine duration in the Ångström-Prescott will be 

equally distributed on each side of the estimation. 

• Homoscedasticity- It is assumed that all the conditional 

distributions have equal variances 

• Independence-  It is assumed that all the variables in the regression models 

are independently distributed. 

By removing these restrictions from the estimation and retaining accuracy, PCA is 

an improvement over classical Ångström-Prescott regression estimation. [Şen et al. 2008] 

2.5. SUMMARY OF METHODS 

Most of the estimation models to estimate solar radiation have recognized the 

non-linear relationship, and the restriction of the models that were originally used. Direct 

correlation has proved to limit success, and special difficulty with highly variable 

weather in unique locations. 

Modern techniques have embraced the nonlinearity, the immeasurable 

interactions of the environment and the necessity for a model that can be easily 

customized for unique locations without a large number of parameters.  

However, none of the models use stochastic properties inherent in solar radiation 

to accurately make predictions into the future. This void can be filled with a simple 

model, based on stochastic assumptions, which utilizes few parameters to predict the 

day’s radiation.  
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3.  BACKGROUND/PROBLEM DESCRIPTION 

This thesis seeks to connect the known weather data with the unknown radiation 

data in a simple manner. Weather data and radiation data are measured separately, and 

most locations do not even have radiation measurements. Using Hidden Markov Models, 

it is possible to estimate the unknown radiation values based on the available weather 

data. Weather data is widely available at any location. This estimation will be based on a 

model simple enough to be recreated and used at any household. Clustering will be used 

to simplify the data from a series of multiple measurements into a single list of input 

values. 

As shown in the Literature Review, modeling techniques are unable to provide a 

simple and universal model to apply at any location. Most all models rely on the radiation 

to be measured, and a significant portion of them also require extraterrestrial 

measurements as well. All of the reviewed methods are reliant on precise quantitative 

data, and are unable to accept discrete or qualitative measures. These restrictions limit 

prediction models to those organizations with the ability for high-end processing and 

modeling capabilities. By creating a method capable of accepting qualitative indicators, 

predictions become more accessible. 

Without relying on measurable radiation data for a prediction model, a measure of 

uncertainty and hidden behavior must be taken into account in a predictive model. The 

models which have hidden processes rely on the ability to make complex calculations and 

simulate a multitude of variables simultaneously. Hidden Markov Models develop this 

uncertainty with analysis at a low-level complexity while still maintaining accuracy. 
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Clustering techniques are a mathematically justified method to find commonality 

amongst large data sets and to simplify information into fewer dimensions. Logically 

changing a large, multiple dimension dataset and simplifying the indicators by joining 

those with common qualities could retain much of the information while creating a 

succinct summary of the information. This in turn can improve simple models for solar 

radiation prediction by limiting the loss of information. However, there are currently no 

models available which use clustering in any relation to solar radiation prediction.. 
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4. METHODOLOGY 

Previous methods to predict solar radiation allow us to understand what is 

significant in solar radiation modeling. Hidden Markov Models (HMM) are appropriate 

because of the inherent probability, time sequence information and the use of hidden 

states/interactions. This research seeks to create an HMM to describe the solar radiation 

patterns and their emission of temperature data. In order for a new HMM to be an 

improvement, it must use a small observation set and a small state set. These small sets 

are found by the creation of clusters within the data. These clusters have similar 

properties and simplify the data without loss of information. To use data for clustering, 

the data must be segmented, uniformly spaced, and exist in the same time-ordered as it 

was recorded.   

This section will first show an example of a potential HMM model of solar 

radiation with known parameters. The total development process will be outlined. Then 

the rest of the section will be organized in the chronological order of the processes which 

start with raw information from the source, prepare the data, cluster the data,  then use 

cluster data to create the HMM models, then HMM models will be trained and models 

will make predictions for radiation.  
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4.1. PROCESS OUTLINE 

1) Data Processing  [see Methodology section  4.2] 

a) Inputs: time coded measurements 

b) Outputs: daily summary vectors 

2) Clustering   [see Methodology section  4.3] 

a) Inputs: daily summary vectors 

b) Outputs:  

i)  list of daily group (qualitative)  

ii)  daily temperature estimation (Low, Medium, High) 

3) Data Segmentation   [see Methodology section  4.4] 

a) Inputs: list of daily group 

b) Outputs: sections of days with the same group 

4) Prediction by Hidden Markov Modeling   [see Methodology section  4.5] 

a) Inputs:   

i)  section of days with the same group 

ii)  list of daily temperature estimation 

b) Outputs: prediction of daily radiation level (Good, Bad) 

 

This thesis connects the available weather data with the unknown radiation data. 

This problem has been decomposed into four main sub-problems: Data Processing, 

Clustering, Segmenting the data, and Predicting the unknown radiation by HMM. Data 

processing takes the data from raw inputs and creates a daily vector. Clustering simplifies 

that daily vector into a single variable, the day’s cluster, which qualitatively describes the 

day. The Hidden Markov Model creates a predicted amount of radiation based on the 

daily input cluster.  

Data, on radiation and weather respectively, is gathered from two separate 

datasets is combined and aligned into daily values. There is a limitation of which 
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indicators are available, our choices for the weather indicators are temperature and sky 

clarity. All other data is problematic because of corruption, static input, or inaccurate 

measurements. Data processing outputs a daily vector for each of the days in the year 

consisting of aggregate radiation (W/m2 per three minutes), high temperature (degrees 

Celcius), and most frequent sky clarity (Clear, Scattered, Broken, Overcast). For a more 

detailed description of data see subsection 4.2 of the Methodology. 

Clustering takes the daily values and groups them into similar clusters. A cluster 

contains similar days and provides a single variable description for the type of day. This 

research uses K- Medoids clustering; also known as Partitioning Around Medoids (PAM) 

clustering. Clustering is completed with three input lists: radiation alone, temperature 

alone, and temperature with sky coverage. The radiation clusters are used to justify the 

number of states. The only-temperature clusters are a simple description of the day and 

are input into the HMM as an observation list. The sky coverage and temperature clusters 

are used to segment the year into ranges of similar days.  

Clustering radiation provides us with two separate radiation clusters. Clustering 

temperature provides us with two separate temperature levels. Clustering sky coverage 

and temperature provides us with three separate clusters; {{Cloudy, Any Temp},{No 

Clouds, Low Temp},{No Clouds, High Temp}}. The extra cluster when using sky 

coverage with temperature reveals that sky coverage displays additional information 

about the data. However, when temperature is clustered into three groups, the results are  
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very similar. The three temperature clusters can be used to describe the data 

without the added complexity of using sky coverage. By using a single variable, we 

reduce the complexity of the input, but we don’t have significant loss of information. For 

more details on the clustering process see Section 4.3 of the Methodology.  

Data segmentation uses the simplified description of the days provided by 

clustering the sky coverage and temperature. This description is used to section the data 

into ranges of days with the same cluster. The daily values are displayed chronologically. 

Figure 5.4 is visually inspected, and then justified by statistical testing. The following are 

the ranges of similar data found: {January, February}, {March, April}, {May, June, 

July}, {August, September}, and {October, November, December}. The visual depiction 

of the data is shown in Figure 5.4.  

 Hidden Markov Models (HMM) can predict the unknown state of a system 

without direct measurement. The HMM requires an estimated number of states in the 

system. The two radiation clusters directly translate to two separate states to describe 

radiation. The three temperature clusters are used as a qualitative observation of each 

day. Each range of days, as found in data segmentation, is modeled separately. Each 

model predicts the {Bad, Good} radiation level relative to other days within the model’s 

range. This means that the Good days in Model #1 are potentially similar to the Bad days 

in Model #3. 

4.2. DATA SELECTION AND PROCESSING 

4.2.1. Data Choice. Data needed for the HMM should be of a finite set of daily 

values. These values should include, an accumulated solar radiation value, a high 
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temperature value, and an average sky coverage (cloudiness) value. This Section 

describes the process from raw data, through source selection, year selection and through 

processing to prepare the data for clustering.   

The following Section will describe the method of data selection for this research; 

covering the selection of the data source, the requirements for the databases, and the 

selection of the appropriate years.  

4.2.2. Data Source. Datasets were obtained from two separate databases. They 

are monitored and distributed by the National Oceanic and Atmospheric Association 

(NOAA) and its subsidiary organization the National Climatic Data Center (NCDC), 

respectively. The measurements of radiation, temperature and sky coverage for this 

research were not found in one dataset, therefore it was required to obtain separate 

datasets and combine them. Both databases contained different measurements; the 

NOAA set contained radiation and temperature information, while the NCDC set 

contained sky coverage information. In order for the two datasets to be compiled and 

used in conjunction, the data and measurements needed to come from the same 

geographic location.  The NOAA dataset and the NCDC dataset coincided at the same 

geographic coordinates. The data measured at the “Mercury” station on the airfield in 

Desert Rock, Nevada sent data to both databases. The two datasets (NOAA and NCDC) 

from Desert Rock was selected for this reason.  

4.2.2.1 Database requirements. The model also requires that the data is input as 

daily measurements. For the NOAA dataset, measurements were taken at 3 minute 

intervals. For the NCDC dataset, the measurements were taken sporadically most 

commonly once an hour. Despite the difference in data collection technique, each dataset 
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was complete enough for conversion to a compatible daily value. Daily values provide 

summary insight into the data collected without losing much information. For the data 

collected, the additional challenge is to provide measures that can easily cope with the 

difference in collection intervals and make a singular value for each day.  

4.2.2.2 Data collection. The data was collected by the SURFRAD researchers. 

All data was collected with sensors in the same proximity and relative sensor locations 

can be shown in Appendix A  

The radiation data was measured by a standardized platform of sensors including: 

Multi-Filter Rotating Shadowband Radiometer, UVB-1 Ultraviolet Pyranometer, LI-COR 

Quantum Sensor, ventilated Eppley pyrgeometer, and ventilated Spectrosun pyranometer. 

These sensors are used to gather direct, diffuse and global radiation data. For this 

experiment we are inspecting direct downwelling global radiation.  

Temperature data was measured by a Vaisala air temperature and relative 

humidity probe at a height of ten meters.  

Sky coverage data was measured by a ceilometer. This instrument measures 

clouds to 12,000 feet directly above the sensor. The measurement is returned in oktas 

which are also used in meteorology. This sensor is automated and algorithmic, making it 

sensitive to low clouds directly above the sensor and inaccurate after the range of its 

detection.  

The radiation, temperature and sky coverage data are measured in Watt meter 

squared, degrees Celsius, and oktas, respectively. Sky coverage, although algorithmically 

derived is a qualitative measurement relating to a range for each returned measurement. 

Sky coverage of CLR (clear) was shown at 0 oktas, SCT (scattered clouds) was shown 
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from 1-5 oktas, BKN (broken clouds) was shown from 6-9 oktas, and OVC (overcast) 

was shown at 10 oktas.  

4.2.2.3 Year selection. In order to select the year for training and testing, several 

factors were taken into account. The completeness of the information, the quality of the 

data and the relevancy of the information obtained all influenced the year range to be 

modeled. For example, measurements included in the NOAA database contained values 

only for the first half of the day. This would remove data for lack of completeness. The 

NOAA database data for some years also contained coding within the extracted text files. 

It is assumed that there were technical difficulties influencing the data collection and the 

system logged errors instead of correct data. The NCDC data pertaining to sky coverage 

was often returned as a null value and is not relevant or useful to our model. The system 

is automated and it is assumed that the algorithm was inconclusive at these points in the 

data. 

For this research, data was selected from 2004 for model training and from 2005 

for testing of the prediction model. The years were chosen to be sequential to simulate the 

application of such a model using the previous year to predict the values of the current 

year. The data from 2004 was complete and relevant with only two days excluded; one 

because of corruption and another because the data was incomplete. The data from 2005 

was much more problematic, but enough data remained to test the model based on 2004. 

In 2005 there were nine days missing entirely and of the remaining, 25 days were missing 

sky coverage data; 225 out of the 331 available were cloudless.  
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4.2.3. Data Formatting and Preprocessing. From both databases the 

measurements were formatted as time-stamped rows in a large matrix. In order to create a 

daily string of values from each of the datasets with different intervals, different measures 

were taken for each of the values needed in the model. The measures chosen for 

radiation, temperature and sky coverage were, respectively: aggregate, high and mode.  

4.2.3.1 Daily indicators. Radiation and temperature were originally measured in 

three minute intervals. In order to convert these measures to daily measures, the 

aggregate of all the 3 minute measures was taken for radiation, and the highest value was 

taken from all the measured temperatures. For sky coverage, the data was measured 

sporadically. This presented a challenge to convert into daily values.  

Sky coverage data is automatically generated, but the values were not measured 

on regular intervals. In order to regulate the number of measurements in a day, the 

coverage data was limited to hourly values, and then the mode was taken. This provided 

the daily value of the sky coverage from the inconsistent data set.  

When using the developed daily values for sky coverage, substitutions must be 

made for the qualitative values in order to allow the clustering algorithm to adjust. 

Fortunately, the qualitative values are determined using a numeric algorithm. The 

qualitative data corresponds directly to a number value of average coverage during the 

measurement period. For Example, a value of SCT (scattered clouds) contains the range 

of 1-5 oktas. When converting back to the quantitative value, the estimated value would 

be 3 oktas for all SCT values.  
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4.2.3.2 Normalizing values.  In order to create even weighting between 

temperature and sky coverage, each range of data must be normalized to a value between 

one and zero in order to use clustering based on the Euclidean distance. This is done by 

dividing all recorded daily values by the maximum observed data in the year. For the data 

from 2005, the maximum in 2004 will be used.  

4.2.4. Summary. Data was chosen from the NOAA databases for downwelling 

global radiation, air temperature and sky coverage (cloudiness). These measures were 

converted to daily measures of accumulated radiation, maximum air temperature, and 

most frequent sky coverage.  

4.3. CLUSTERING 

For this research, hard partitional clustering will be used. Clustering procedures 

all follow the same general outline as described in [Xu, Wunsch 2009]:  

1. Data is sampled 

2. Features of the data are selected 

3. The clustering algorithm is selected, then used on the data 

4. The clusters are validated and the results are interpreted.  

4.3.1. Feature Selection Using information researched in the Introduction 

Section Literature review, the features for this clustering algorithm are accumulated 

radiation, maximum air temperature and most frequent sky coverage. These features have 

previously been correlated with many other studies, and are sufficient in the datasets 

chosen.  
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Data from all sources is prone to corruption and inconsistency due to the 

automated measurement facilities. A large portion of the data is corrupted or non-existent 

leaving limited options to use as features.  

4.3.2. Clustering Algorithm Selection and Application Clustering will be 

completed with the k-medoids algorithm. This algorithm successfully groups data with 

similar information while being resistant to the effects of outliers. This method adjusts 

each cluster after the addition of a new point, this provides robust measure of 

membership when the order of data points is fixed.  

Application of the k-medoids clustering algorithm is described as follows:  

 

1. Randomly choose k points in the data to serve as medoids or “centers” for 

the clusters. Remove these points from the unassigned data and store in 

the cluster medoid list 

M = [m1,m2,. ..mk ]  

2. Assign each data point to a cluster based on the nearest medoid.  
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3. Recalculate the cluster medoid list 
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4. Repeat Steps 2 and 3 until there is no change for the clusters 
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4.3.3. Cluster Validation In order to optimize the number of clusters, k, the 

algorithm was repeated for k= 1, 2 … 6, and the optimum number of clusters was found. 

The optimum number of clusters is determined by silhouetting. The Silhouetting method 

is a comparison between a cluster and the next nearest cluster. With it, the validity of the 

clusters returned can be compared to other methods. The formula for the “Silhouette 

Weight” described in the method is: 

 

( ) ( ) ( )
( ) ( )ib,iamax

iaib
=is

−
 

 

Or alternatively: 

 

( )

( )
( ) ( ) ( )

( ) ( )
( )
( ) ( ) ( )














−

−

ib>iifa
ia

ib

ib=iifa

ib<iifa
ib

ia

=is

1

0,

1

 

 

Where a(i) is a measure of average distance to each point in the same cluster, and 

b(i) is the average distance to each point in the nearest cluster. The average Silhouette 

Weight is used as a validity matrix for the entire group of clusters.  

The optimum number of clusters is found for radiation, temperature and a two 

dimensional temperature and sky coverage dataset. After the optimum number of clusters 

is found the results are compared. This method is referred to as relative clustering criteria. 

The clusters allow us to differentiate between month segments of the daily data. This 
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allows us to cluster the total year in similar segments by inspecting the distribution of 

temperature and sky coverage clusters within the ranges for the radiation clusters.  

4.4. DATA SEGMENTATION 

Data is segmented by plotting the clustered value of radiation {Bad, Good}, and 

the cluster describing the sky coverage and temperature {{Cloudy, Any Temp},{Clear, 

Low Temp}, {Clear, High Temp}}. The inspection first separates sections with a fixed 

radiation cluster. Within each range of static radiation, ranges of constant temperature are 

found. This gives us segments among the similar radiation levels. Then, segments of like 

radiation are compared to find similarities of weather cluster. For Example: In the 

summer, radiation is continuously {Good}. Inspecting summer as one segment, there are 

obvious ranges of cluster {Clear, Low Temp} and other ranges of cluster {Clear, High 

Temp}. 

In order to retain model simplicity, the ranges were limited to monthly sections. 

This means that a new range can only start on the first of the month and not on a day in 

the middle of the month. By restricting the model in this fashion, we keep the time to 

change models predictable and easy to follow for the common household.  

The segments are statistically tested for difference of means for both temperature 

and radiation. The ranges of data with a statistically significant difference in either 

temperature or radiation are then separated into unique segments. The similar ranges are 

combined into one segment. The daily temperature clusters are then separated into 

corresponding segments and used to train individual HMMs for use in predicting the next 

year’s radiation for the respective time segment. 
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4.5. HIDDEN MARKOV MODELING 

Similar ranges of months have been segmented from relative cluster validation in 

the training data. For each of the segments an HMM is created and trained to estimate the 

unknown radiation as {Good} or {Bad}. The states are immeasurable to the models. The 

number of radiation states can be justified using clustering on the known radiation from 

the training dataset. The number of radiation clusters is directly related to the number of 

unknown radiation states.  

Each model is created based on the total observation space. The observation space 

contains the different types of days which we can observe. These observations contain the 

number of sky coverage and temperature clusters as found previously in the clustering 

procedure:  Methodology Section 4.2. The number of clusters may change for other 

locations, subsequently changing the observation space. For this data and location, the 

cluster from temperature alone provides equivalent estimation to the clusters found from 

using both sky coverage and temperature.  

HMM models are probabilistic representations of the actual environment. They 

require the parameters to be initially randomized before training. Each HMM is 

initialized with random, but equivalent, probabilities for the transitions between states, 

the emission of observations from each state, and the initial distribution of states. Figure 

4.1 shows a graphical representation of an HMM.  

Training the HMM is the process of improving the accuracy of the model by 

changing the initial parameters. Since the initial parameters are approximately equally 

likely, the model will not be representative of the actual behavior. Training the model 

finds the probability of the observation sequence in the training set, the most likely state 
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at each time, and the probability for each state at every different time. Using the entire 

observation sequence, the parameters can be re-estimated. The probability of the 

observation sequence measures the accuracy of the parameters. The model is iteratively 

retrained until the probability of the known observation sequence is no longer improved. 

Daily temperature clusters are used for observations, and the parameters are found for 

each subset of data respectively. For an example HMM see Appendix B  

 

 

 

Figure 4.1 Hidden Markov Model Two States with Measureable Temperature 
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To predict the radiation state during the testing set in the year 2005, the trained 

model from the respective time during 2004 is used to find the most likely state of the 

system at the time. These models have parameters estimated by the observations in 2004. 

The models have not used the measured radiation values from 2004. The state estimated 

by the HMM is completely based on the temperature-cluster observation. When 

predicting, a smaller sequence of observations is used to predict the state at the next day 

after the final observation. This thesis uses testing observation sets of three to predict the 

future state.  
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5.  RESULTS 

This Results Section is split into four subsections, each describing the information 

found by their respective processes. The Data processing Section describes the raw data, 

and the subjective nature of the location. The Clustering Section shows the description, 

separations and simplification of the data. The Data Segmentation Section interprets the 

clustering results and finds groups of similar data. The HMM Section shows the models 

as trained by the data, the predictions of those models, and the accuracy of those 

predictions. 

5.1. DATA PROCESSING 

Data from Desert Rock Nevada was processed for two years: 2004 and 2005. 

These years were chosen because 2004 was the most complete year available. In order to 

retain simple models, the following year was selected to test the models created based on 

the 2004 data. The following will describe some attributes of the data after it was 

converted to daily values. Descriptive measures of the data can be found in Table 5.1. 

This data was selected because it was the only location for both the radiation and 

the sky coverage to be measured. All other recording stations had miles of distance 

between the instruments to measure radiation and sky coverage. The location is in an arid 

country, and has a less diverse weather pattern than other locations with data for radiation 

or sky coverage respectively.  
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Table 5.1: Data Description 

  

2004 2005 

Radiation Minimum 5279.1 9015.5 

W/m^2 (3 min) Maximum 186053 187200 

 

Mean 115279 111496 

    Temperature Minimum 5.3 6.4 

(
o
C) Maximum 40.6 43 

 

Mean 24.49 24.44 

    

    Sky Coverage Overcast 32 12 

 

Broken Clouds 4 91 

 

Scattered Clouds 19 3 

 

Clear, No Clouds 310 225 

 

***  (Corrupted) 1 25 

 

 

 

The fact remains, that 310 of the 366 day in the training set were CLR (no 

clouds). This lack of variation clustered most of the model by temperature regardless of 

sky coverage. 

5.2. CLUSTERING 

Clustering with the PAM algorithm was completed with 3 sets of data, single 

variable: radiation, single variable: temperature and a two dimensional: sky coverage and 

temperature data set. The clustering results can be shown in the following graphs. Figure 

5.1, Figure 5.2, Figure 5.3, Figure 5.4 all display different combinations of clustering 

compared with relative criteria to actual and other clusters.   
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Figure 5.1 Radiation Clusters versus Radiation Actuals 

 

 

 

 

 Figure 5.2 Temperature Clusters versus Temp. Actuals 

 



 39

Figure 5.3 Temp. Clusters versus Radiation Clusters 

 

 

These graphs show the clusters developed in the time sequence of the original 

data set. This allows for the description of the data to retain the sequential properties 

necessary to the HMM. 

Using these visual representations of the data, the clusters were compared using  

relative criteria to validate the clusters found. In this case, we are looking for both 

correlations between the dimensions of the data and for segments of time containing 

similar data. With these two goals in mind, the data appears to be segmented into 5 

distinct and unique ranges: Low temperature and low radiation, middle temperature and 

middle radiation, high temperature and high radiation, high temperature and middle 

radiation, and variable temperature and low radiation. 

This inspection confirms the inherent logic that the seasons are highly correlated 

with radiation behavior, but additionally provides confirmation of when the model should 

be changed and also the difference between the end-of-year and the beginning-of-year 

during the expected winter season. 
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It was found that radiation could be clustered into two levels of output, 

temperature could be clustered into two levels, and the temperature/coverage data set 

could also be clustered into three groups.  

The addition of sky coverage into the clustering algorithm did not significantly 

influence the cluster selection. Therefore it will not be used as an observation vector. The 

influence of sky coverage was not significant for this data set, but should not be 

discounted for other geographic locations. The minimal impact can be attributed to the 

fact that 310 of the 366 day in the training set were CLR (no clouds). This lack of 

variation clustered most of the model by temperature regardless of sky coverage.  

This research aims to provide a simplified method for an average household. 

Restricting the time of model change to coincide with a month change allows for a 

simpler and more accessible model. Model changes can be approximated by the nearest 

month change to the shown cluster changes. These segments were confirmed by grouping 

the data and comparing monthly radiation values to show the statistical difference 

between the groups. 

5.3. DATA SEGMENTATION 

Figure 5.4 shows the comparisons of the differently segmented days. These days 

are limited to change when the month changes. This provides an additional degree of 

simplicity, and therefore accessibility, to the model.  
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Figure 5.4 Monthly radiation clusters (Grey) versus temperature clusters (Black) 

 

 

Using the clusters found from sky coverage and temperature, the segments to be 

separately modeled are {January, February}, {March, April}, {May, June, July}, 

{August, September}, and {October, November, December}. This shows the need for 

five separate HMM models to accurately describe each segment of the year. 

5.4. HMM MODELING 

The models were found from the training method described in the Methodology 

Section 4.5. These trained models require some interpretation before they can be used for 

prediction of radiation. Each segment of similar time has a unique model to predict 

radiation.  

The training method does not imply intensity of the states it models, because it 

doesn't actually predict a value, but a more qualitative description of the hidden process 
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by a “state.” This means that in order for the original state estimations to apply toward a 

directional measure, information is needed to imply the order of the states as “bad” or 

“good” radiation states. 

For each of the unknown radiation state, there are known ranges of temperature 

associated. Using the proven correlation between temperature and radiation, the state 

which is more likely to emit high temperature can be implied to have a higher radiation. 

This is a large assumption in the model as the qualitative descriptor is used to imply of an 

intensity of radiation. Original and adjusted model parameters can be found in Appendix 

C. 

5.5. HMM PREDICTION 

Looking at the confusion matrices, it is apparent that there are some models which 

are better predictors than others. Model 1 has issues because there is only one observation 

ever emitted in the data set (Low Temp). Model 3 has issues because it is homogeneous 

with all High Temp, High Radiation observations and states, respectively. The models 

with significant fluctuation greatly improve when using HMMs. The confusion matrices 

for the HMM prediction can be found in Table 5.2.  

Model 1 corresponds to {January, February}, Model 2 corresponds to {March, 

April}, Model 3 corresponds to {May, June, July}, Model 4 corresponds to {August, 

September}, and Model 5 corresponds to {October, November, December}. 
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Table 5.2 Confusion Matrices found from HMM Prediction 

 

All Year Actual  
Predicted Bad Good 
Bad 104 42 
Good 72 122 
Accuracy 0.664705882 
Adjusted 0.792982456 

Model 1 Actual  
Predicted Bad Good 
Bad 29 23 
Good 0 0 
Accuracy 0.557692308 

Model 2 Actual  
Predicted Bad Good 
Bad 14 10 
Good 16 19 
Accuracy 0.559322034 

Model 3 Actual  
Predicted Bad Good 
Bad 0 0 
Good 32 55 
Accuracy 0.632183908 

Model 4 Actual  
Predicted Bad Good 
Bad 17 1 
Good 7 26 
Accuracy 0.843137255 

Model 5 Actual  
Predicted Bad Good 
Bad 44 8 
Good 17 22 
Accuracy 0.725274725 
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The first confusion matrix in Table 5.2 contains the results from all the models for 

the entire testing year, 2005. The accuracy for each model is taken as the number of 

correctly predicted values divided by the total number of predictions. The adjusted 

accuracy for the total model removes the inaccurate predictions from Model 1 and Model 

3 in order to provide a better estimate of the accuracy of the technique despite the 

subjective influence of the dataset. 

The individual models were tested on 52, 59, 87, 51 and 91 days, respectively. 

The confusion matrices for each model are shown and can be interpreted individually. 

The two most notable models are Model 1 and Model 3.  

Model 1, {January February} contains only {Low} temperature observations and 

{Bad} radiation days. The Hidden Markov Model is not accurate when given a fixed 

input. As seen in Appendix C, the parameters of Model 1 are approximately equal for 

transition probabilities and initial distribution. This suggests that no real training has 

taken place, and that the model is not suitable for use.  

 Model 3 receives input observations {Medium} and {High}. This model however 

initially returned a fixed state {Bad}. This is inherent in the nature of the HMM training. 

The model uses unknown states, and therefore cannot compare between states. The model 

returned {Bad} as the state only because it was the first position for state. By using logic 

and the known correlation between radiation and temperature, we can correct the state 

order for the models. This means reordering the states so that the state more likely to emit 

a higher temperature is the {Good} state. The original and adjusted model parameters can 

be seen in Appendix C.  
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6.  CONCLUSION 

Using Clustering and HMM can provide a crude estimate for the prediction and 

estimation of solar radiation. The assumptions associated with the HMM improve upon 

the probabilistic models but are not as accurate as the complex analyses which can be 

done. This methodology is suitable for a rough estimate when precision is not needed, but 

a general trend of the radiation is important. Using logic and some inherent properties of 

correlation make this modeling technique applicable and surprisingly accurate with 

fluctuations in the observed data. 

Using clustering methods provided justified distinctions between the seasonal 

ranges during the year. These ranges are also not restricted to even distributions in the 

year. The unique segments found adhere to the general idea of the seasons but are 

bounded at better dates. By changing the ranges based on the data, a more accurate set of 

models is created.  

Using Hidden Markov Models only approximates a state of the sun or 

environment, not the actual radiation output. Using logic and known correlations, the 

predicted state does provide a good estimate of radiation on a daily basis. The model 

trained can predict overall distribution of good and bad days, predict the state and 

observation into the future, and estimate the most likely observation sequence in any 

week of the year.   
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6.1. DISCUSSION 

Considering the data set, the modeling results shown from this technique stand as 

a proof of concept. The technique provides more accurate results under periods of higher 

variation, such as during the fall when temperatures were highly variable, and radiation is 

decreasing. See Table 5.2 Model 4. This implies that the technique used will provide 

accurate results when used in a location that is not an arid desert.  

This data is also very subjective because the only input observation is 

temperature. Sky coverage, or cloudiness, was used during the data segmentation, but 

85% of the training data was clear skies. The majority of the clustering was based only on 

temperature; the addition of another variable added complexity without adding accuracy. 

For other datasets and other locations, more than one weather indicator may be used 

without additional complexity.  

6.2. FUTURE WORK 

Future work includes re-applying this method to other geographic locations. 

Model accuracy shows its ability to predict variable and fluctuating patterns; application 

in a less regular climate is suggestible.  

Additional accuracy could be found by recording the sky coverage measurements 

in oktas (a one to eight value of cloudiness) before the automated recording system logs 

only the qualitative measure {BKN, OVC, etc.}. These qualitative measures do not 

correspond to actual numeric values, but to either a range or a singular value. This is not 

accurate when converting back to a number in a range.   
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APPENDIX A. 

SURFRAD SENSOR ARRAY 
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Sensor Location at Desert Rock, Nevada 

Latitude:  36.63 degrees North 

Longitude:  116.02 degrees West 

Elevation:  1007 meters 
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APPENDIX B. 

EXAMPLE HIDDEN MARKOV MODEL 
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Example HMM: 

 

Let's say we are stuck in a room. We are working on research and are unable to leave or 

see a window to outside. We are able to see a thermometer that reads the outside 

temperature. We can guess the solar radiation outside based on what the temperature 

it is shown on the thermometer. 

 

We create a two state HMM to describe if it is bad or good radiation. This is in relation 

to a photovoltaic electricity system. The good radiation is a high level, and the bad 

radiation is a low level. Notation as good or bad insures difference between 

temperature levels. We are only able to make a general observation of the temperature; 

whether it is low, medium or high.  Figure A1 displays such an HMM. 

 

Figure A1: Bad or Good Radiation HMM 
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If we know the probabilities associated with this model, we are able to make predictions 

based on the observations of the thermometer. Let's assume we have already trained a 

model to have the values as follows: 

 

Transitions (A): 

 

 

Emissions (B): 

 

Initial Distribution (π): 

State Bad Good 

Initial  0.20 0.80 

 

 

We also see the following series of observations from the temperature: {Low, Medium, 

High}.  

 

With the parameters of the model we can solve two of the most common problems 

associated with HMMs. The likelihood of this observation sequence at all, and the most 

likely state sequence to produce this series of observations. Let's call the likelihood of 

this observation series, Problem #1, and the most likely state series to emit these 

observations, Problem #2. Both techniques to solve Problems #1 and #2 can be 

extended to predict the next observation or state in the sequence, respectively.  

 

 

Observation
Low Medium High

State Bad 0.20 0.10 0.70
Good 0.35 0.60 0.05

To
Bad Good

From Bad 0.60 0.40
Good 0.30 0.70
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Problem #1 Observation Likelihood: 

 

The likelihood of each series of observations can be approximated by the sum of the 

emission probabilities from every possible state sequence. For our example, the state 

can be either Bad or Good, giving us a set of eight potential sequences. Take one state 

sequence, {Good, Good, Good}, as an example. The probability this state sequence 

emitted the sequence of variables can be defined by: 

( )=High  Medium,Low,|Good Good, Good,P  

( ) ( ) ( ) ( ) ( )HighbGood|GoodaMediumbGood|GoodaLowb Good23Good12GoodSunπ=  

( ) ( )( )( )( )( )( ) 0.0041160.050.700.350.700.600.80 ==High  Medium,Low,|Good Good, Good,P  

The other state sequence possibilities can be calculated the same way and are found in 

Table A1 

 

Table A1: State sequence likelihood to emit {Low, Medium, High} 

 

Totaling the likelihood of every possible state sequence emitting the series of 

observations, you can find that the probability of observing the series {Low, Medium, 

High} is 0.043226. 

 

 

State Sequences Probabilities

Good, Good, Good 0.004116
Good, Good, Bad 0.024696
Good, Rain, Good 0.000576
Good, Bad, Bad 0.012096

Bad, Good, Good 0.000098
Bad, Good, Bad 0.000588
Bad, Bad, Good 0.000048
Bad, Bad, Bad 0.001008
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Problem #1 and its solution can be algebraically described by the process: 

 

Let the given HMM model be λ=(A, B, π) and let the series of observations be O= {O1, O2, 

O3... OT-1, OT}. Problem #1 wants to find the P(O| λ).  

 

Let X= {x1, x2, x3... xT-1, xT}. Using the emission probabilities from B, we can describe the 

problem again as a series of emission probabilities:  

( ) ( ) ( ) ( ) ( )( ) ( )TxTTxTx2x1 ObObObOb=λX,|OP ∗∗ −− 1121 ...  

Define the likelihood of a state sequence as: 

( ) ( ) ( ) ( ) ( ) ( )2121... −−∗−−∗∗ xT|xTaxT|xTax2|x3ax1|x2ax1π=λ|XP  

Using the Conditional Probability, we know that  

( ) ( )
( )( )λP

λXO
P=λ|XO,P

∩∩
 

Which allows us to find:  

( ) ( ) ( )
( )( )

( )
( )( )

( )
( )( )λP

λXO
P=

λP

λX
P

λXP

λXO
P=λ|XPλX,|OP

∩∩∩×
∩

∩∩
 

Solved for the needed probability: 

( ) ( ) ( )λ|XPλX,|OP=λ|XO,P  

Summing over all state sequences we find that:  

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )11211 21... −−∗−−∗∗∗∗∑

∑

∑

TxTx2x1
X

X

X

ObxT|xTaObx1|x2aObπ=

λ|XPλX,|OP=

λ|XO,P=λ|XO,P

 

 

The computation of this sum is largely inefficient and for complex applications has been 

evaluated with algorithms so that higher order models are feasible. This research uses 

the “forward pass” algorithm to reduce the number of multiplications from STN
2
 down 

to N
2
T. 
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Forward Pass: 

Define the probability of the partial series of observations at time t :  

( ) ( )λ|q=x,OO,OP=iα itt2,t ...1  

 

The initial values of α are defined by  

( ) ( )ixi x|Obπ=iα 11  

 

For t=1,2,3...T-1 and i=1,2...N compute: 

( ) ( )( ) ( )[ ] ( )it

N

=j
jitt x|Obx|xajα=iα ∑ −

1
1  

Which simplifies to: 

( ) ( )( )iα=λ|OP
N

=i
T∑ −

1
1  

 

Problem #2 Most Likely State Sequence: 

 

As you can see in Table A1, the most likely probability is the state sequence: {Good, 

Good, Bad}. However this chained probability is limited to system without independent 

probabilities for each time, t. Using the table finds the dynamic programming solution, 

but it is not necessarily the most likely solution from the HMM. The answer must be 

confirmed by taking the total of each sequence with each state in each position. For 

example, the probability of the first state as Good, would be the first four sequence 

probabilities over the total probability of the series of observations. The state 

probabilities at each time are shown in Table A2. 
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Table A2: State Probabilities to emit {Low, Medium, High} 

t=1 t=2 t=3 

Good  0.95970018 0.68241336 0.11192338 

Bad  0.04029982 0.31758664 0.88807662 

 

 

This leaves us with confirmation from the HMM probabilities that the most likely state 

sequence is {Good, Good, Bad}.  

 

Problem #2 can be described algebraically as follows. 

 

Using the results of the forward pass algorithm, we additionally need a “backward” pass 

which iterates through the time series of data in the opposite direction, end to 

beginning.  

 

Let us define β, the probability of the partial observation sequence after time t 

( ) ( ) ( ) ( )( )λ,q=x|O,,OOP=iβ itT2+t+tt 11 ... −  

 

For t=t, t+1...T-2,T-1 and i= 1, 2... N  

βt(i ) can be computed recursively the same way that αt(i) was previously.  

 

( )( ) 11 =iβ T −  

 

For t=t, t+1...T-2 and i= 1, 2... N  

( ) ( ) ( ) ( )( ) ( ) ( )jβObx|xa=iβ +t+tjji

N

=j
t 11

0
∑  

Using both the forward and backward pass probabilities together, the most likely state 

at time t can be defined by γt(i ): 

( ) ( )λO,|q=xP=iγ ttt  
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This is evaluated as: 

( ) ( ) ( )( )
( )( )λ|OP

iβiα
=iγ tt

t  

 

Training: 

 

When parameters of the system are unknown, the accurate model for the system 

becomes a more complicated problem. The HMM prediction model is reliant on an 

accurate number of states and estimated probabilities.  

 

HMMs parameter estimations are improved by two distinct methods; supervised and 

unsupervised training. Using supervised training, the data is separated into two parts: 

the training set and the testing set. For unsupervised training, data can be either 

separated or can be left with a continuously updated model current to a moving 

segment of the entire data. The model we will be using attempts to estimate data with 

supervised training using the previous year as a training set of data.  

 

To adjust or “train” a model's parameters, use the following process: 

1. Initialize  λ= (A, B, π) 

2. Compute αt(i), βt(i),  γt(i ), and  γt(i, j ) 

3. Re-Estimate the model λ= (A, B, π) 

4. If the P(O| λ) increases, go back to 2; otherwise, quit 

 

The estimation process relies on random initialization values for all the parameters. In 

addition to the values found from the forward and backward passes, there must be an 

additional measure γt(i, j ) to estimate the likelihood for being in state qi and 

transitioning to state qj.  

( ) ( )( )λO,|q=x,q=xP=ji,γ j1+titt  

Written in terms of α, β, A, and B: 

( ) ( ) ( ) ( )( ) ( )( )( )
( )( )λ|OP

jβObx|xaiα
=ji,γ

+t+tjjit
t

11
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Using the measures that we have found using the initial model, the parameters can be 

re-estimated by the following formulas: 

 

For  the initial probabilities, π, while i = 1,2... N : 

( )iγ=πi 1  

 

For  the transition probabilities, A, while i = 1,2... N and j = 1,2... N :  

( )
( )

( )

















∑

∑
−

−

iγ

ji,γ

=xi|xja
T

=t
t

T

=t
t

1

1

1

1
 

For  the emission probabilities, B, j = 1,2... N and k = 1, 2 … M : 

( )
( )

( )

















∑

∑
−

−

jγ

jγO  when

=x|Ob
T

=t
t

T

=t
tk

jk 1

1

1

1
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APPENDIX C. 

MODEL PARAMETERS 
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Original Parameters: 

 

 

 

 

 

 

 

 

 

 

 

Adjusted Parameters: 
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