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ABSTRACT

Solar radiation prediction models are complex agplire software that is not
available for the household investor. The procgspower within a normal desktop or
laptop computer is sufficient to calculate simitaodels. This barrier to entry for the
average consumer can be fixed by a model simplagimto be calculated by hand if
necessary.

Solar radiation modeling has been historicallyidifft to predict and accurate
models have significant assumptions and restristamtheir use. Previous methods have
been limited to linear relationships, location riesibns, or input data limits to one
atmospheric condition. This research takes a ngwetoach by combining two
techniques within the computational limits of a selkold computer; Clustering and
Hidden Markov Models (HMMs). Clustering helps lirtlite large observation space
which restricts the use of HMMs. Instead of usiogtcuous data, and requiring
significantly increased computations, the cluster lbe used as a qualitative descriptor of
each observation. HMMs incorporate a level of utatety and take into account the
indirect relationship between meteorological inthica and solar radiation. This reduces
the complexity of the model enough to be simplyarstbod and accessible to the
average household investor.

The solar radiation is considered to be an unoléde\state that each household
will be unable to measure. The high temperatureth@dky coverage are already
available through the local or preferred source@dther information. By using the next
day's prediction for high temperature and sky cager the model groups the data and
then predicts the most likely range of radiatiohisTmodel uses simple techniques and
calculations to give a broad estimate for the s@dration when no other universal

model exists for the average household.



ACKNOWLEDGMENTS

Thanks go out to Dr. Guardiola for his guidancetighout my college career.
His perspective on analysis and course work enltamyegraduate studies. | would
especially like to thank him for his time and patie on weekends and personal time.

| would like to thank Dr. Cudney and Dr. Wunsch &dirtheir efforts in educating
me throughout my university career.

| would like to thank Daniel Berc of the Nationaléther Service for his insight
into the data collection and processing systendis assistance was crucial to
understanding the sensors.

Most of all | would like to thank my parents foeihunderstanding and
exceptional support during my entire academic cahsau always helped me when |
needed it and motivated me to continue when tim&ewoubling. | would never have

made it without both of you.



TABLE OF CONTENTS
Page
A B S T R A T it e e e ii
ACKNOWLEDGMENTS ...t e e e e e e e v
LIST OF ILLUSTRATIONS ...ttt e eaas Vil
LIST OF TABLES ..ottt e e et et et e e e ea e enas IX
NOMENCLATURE ... et e e e e e e eanaes X
SECTIONS
1. INTRODUCTION. ...ttt e e e e e e e eans 1
1.1. PHOTOVOLTAIC CELLS ... oottt 1
1.2. STOCHASTIC PROPERTIES OF SOLAR RADIATION ............ 3
1.3. MONTHLY SIGNIFICANCE .....cotiiiiiiiii et ee e 4
1.4. HORIZONTAL VERSUS DIFFUSE RADIATION......comeveenn.n b
1.5. TEMPERATURE VERSUS RADIATION .....ccoiiiiieeeiee e, 5
1.6. SKY COVERAGE VERSUS RADIATION ....ccoooiiiiiiiiiiiiiciicei, 6
1.7. PV SYSTEMS SETUP AND ANALYSIS ...t e, 6
2. LITERATURE REVIEW ...t 9...
2.1. LOCATION AND TEMPERATURE BASED........ccoveeiiiiiiiieennns 9
2.2. NEURAL NETWORKS ..o e e e e 9
2.2.1. Assessment of Diffuse Solar Energy
Under General Sky Condition. ...........cccuevveeeiiiieiinnnens 11

2.2.2. Artificial Neural Network Analysis
of Moroccan Solar Potential .............c.coceceviiiiinnnnnn. 12



Vi

2.2.3. Prediction of Daily Global Solar Radiatioat® Using
Bayesian Neural Network: a Comparative Study....... 12

2.3. ANGSTROM EQUATION SUMMARY ....ccouiiiiimm e 13
2.3.1. Models for Obtaining Daily Global Solar Rattbn
from Air Temperature Data...............c.v e e evvneeeennnnnn 14
2.3.2. Simple Nonlinear Solar Radiation Estimatidodel......... 15
2.3.3. A New Formulation for Solar Radiation anch&hine
Duration EStIMation ..........ccuuuiiiiiiiiiiemee e 16
2.4. SOLAR RADIATION ESTIMATED BY MONTHLY PRINCIPLE
COMPONENT ANALYSIS ... 17
2.5. SUMMARY OF METHODS. ..... oot 18
3. BACKGROUND/PROBLEM DESCRIPTION ....cccuuiiceeee e 19
4. METHODOLOGY ...ttt e e e e e e et e ee e eaas 21
4.1. PROCESS OUTLINE ...t e 22
4.2. DATA SELECTION AND PROCESSING........ccocoiiiiiiieeens 24
4.2.1. Data ChOICE........cciiiiiiiiie e 24
4.2.2. DAtA SOUICE ......ciiviiiiiiiiie et s et 25
4.2.2.1 Database requirements. ............comceeneeeeennnnn. 25
4.2.2.2 Data COIlECHION ......oeeiiiiiii s e 26
4.2.2.3 Year Selection ..........ccooveeiiiiiiiiiieeiiii e 27

4.2.3. Data Formatting and Preprocessing ....cccceeevvvveeeenn..... 28
4.2.3.1 Daily indiCatorsS. .......cooveeviiiiiiieeeeeiee e, 28
4.2.3.2 Normalizing values .................u e eeeevineeeennn. 29

A.2.4, SUMMAIY ...iiiiiiii et a e e e e e e e e e e e eaaaas 29



vii

4.3. CLUSTERING ...t 29
4.3.1. Feature SeleCtion .............oouuummmmmmm e eeeeeiie e 29
4.3.2. Clustering Algorithm Selection and Applicati............... 30
4.3.3. Cluster Validation ..............coviioiiieeiiiiiiieeeeeei e 31
4.4. DATA SEGMENTATION ...uniiiie i 32
4.5. HIDDEN MARKOV MODELING .....c.oiiiiiiiiiii e 33
. RESULT S e e e n e e 36
5.1. DATA PROCESSING ...t imee e 36
5.2. CLUSTERING ... et 37
5.3. DATA SEGMENTATION ...ouiiiii e 40
5.4. HMM MODELING ..ot e e 41
5.5. HMM PREDICTION ... .cuuiii e 42
6. CONCLUSION ...ttt et e e e e ennnns 45
6.1. DISCUSSION ...t 46
6.2. FUTURE WORK ... 46
APPENDICES
A. SURFRAD SENSOR ARRAY ...t 47
B. EXAMPLE HIDDEN MARKOV MODEL .......cooiiiiiieiieeee e 49
C. MODEL PARAMETERS ... ettt 58
BIBLIOGRAPHY . e ee o ettt e e e e e e e ees 60



viii

LIST OF ILLUSTRATIONS

Page
Figure 2.1 Neural Network DIiagram ...........coccecuieeeeineeeeiee e e e eeeas 10
Figure 4.1 Hidden Markov Model Two States with Measble Temperature.......... 34
Figure 5.1 Radiation Clusters versus Radiation AlStU...............cccooevvviiiiiiiinieennnn. 38
Figure 5.2 Temperature Clusters versus Temp. AStUAL.........cccooviiiiiiiiiiiiieceinnnnn. 38
Figure 5.3 Temp. Clusters versus Radiation Clusters...........ccccoovvviiiiiiiinneennnn. 9.3
Figure 5.4 Monthly radiation clusters versus terap@e clusters..............ccceeveeeennnn. 41



LIST OF TABLES

Table 5.1: Data DeSCription ........cooeevvuiemmeeiineeeeieee e,

Table 5.2: Confusion Matrices found from HMM Préeihn



NOMENCLATURE

Symbol Description

G Monthly average solar irradiation

Go Monthly average extraterrestrial solar irradiati

L Distance to sea

z Altitude

AT Monthly average minimum temperature

Tret Reference temperature

Ho Extraterrestrial Radiation

H Terrestrial Radiation

S Extraterrestrial Sunshine Duration

S Terrestrial Sunshine Duration

At Difference in Maximum and Minimum Daily Tempaues
ts Five Day Average Temperature

M Cluster Medoid List

m Cluster Medoid for group

C List of Points in Clustelr

a(i) Measure of Average Distance to Each PoinhénSame Cluster

b(i) Measure of Average Distance to Each Poirth@Nearest Cluster



T Length of the Observation Sequence

N Number of States in the Model

M Number of Observations in the Model

Q Distinct Set of States of the Markov Process
Vv Distinct Set of Possible Observations

@] Observation Sequence

A Model Description of the Hidden Markov Modgt(A, B, nt)
A Matrix of Transition Probabilities

B Matrix of Emission Probabilities

T Initial Distribution of States

X State of the Model (Hidden)

O Observation at Time t

a(i) Partial Probability of Observations Before Bin
Be(i) Partial Probability of Observations After Tirhe

1i(i ) Most Likely State at Time

Xi



1. INTRODUCTION

It is commonly known that there are benefits froenawable energy. The
dwindling supply of fossil fuels and other non-resadle sources of power are a large
influence on the development of other continuous@es for energy that do not rely on
limited supplies of natural resources. These ssunt@ower are also influenced by other
factors such as “going green,” the minimization esfvironmental by-products from
historic methods of power generation.

The most ancient source of power for the earthassun, and it is intuitively one
of the best sources for a renewable source ofrmandis power. The main source of solar
power is the photovoltaic (PV) cell. The PV cellspture radiation from the sun, and

convert into Direct Current (DC) that can be stad@dctly to a battery.

1.1. PHOTOVOLTAIC CELLS

The main two inhibitors to large-scale solar pogeneration facilities are the
inconsistent power generation and transmission@el&ctricity.

The reliance on clear skies and consistent atmosptenditions becomes
problematic for a consistent supply of power. Aatade power system requires that there
is a regular flow to be stored or directly feed significant demand for electrical power.
Solar power could supply sufficient energy givenf@et conditions, but the weather
hinders generation without a predictable pattern.

Solar photovoltaic circuits generate DC power. T power is used with most

circuitry and batteries, but needs to be conveidedhost household appliances.



Household appliances have been designed to rurtemating Current (AC) to be
directly powered by the electricity supplied toladuseholds. The transmission of DC
power has remained a problem since the inceptigheoélectricity supply system or
“power grid.” AC electricity was chosen instead® mainly for its ability to hold
charge for longer distances when carried along pdines.

Because large-scale solar power generation fasilare impractical, the focus of
many solar equipment suppliers turns to the indépeinhousehold and self-sufficiency
sector. The supply of residence scale and evenhedthdevice-scale solar generation
products has proliferated throughout the westerridvbélowever, the proliferation of PV
cells is more influenced by the social status amd hovel the product seems instead of
the direct economic benefits.

Currently, the photovoltaic cells rely on sociahbéts for popularity and sales.
Solar cells are not purchased for an economic ligbet become a luxury good and
status symbol. People adopt solar power when ngsatgle are environmentally
minded, especially when their neighbors alreadysata power. [Gillingham 2012]

Daily solar radiation is not available or knowrthe public in a manner
comparable to temperature or other weather. Subsélgjuthe public is unclear on the
returns from solar radiation. There is an implietionship between a sunny day and
high radiation, but there is not an understandimgu& how the radiation is measured or
converted into electricity. The lack of predictab#¢urns using solar power generation
creates a barrier to new customers. The NOAA aggatyers information with the
Surface Radiation (SURFRAD) Network. However, thiermation is not available for

every city nor is the information definitive abadlar power potential for the area.



New customers are much more likely to purchase &yem when the
uncertainty about the system is controlled. Sommepamies, such as Solar City and
Sungevity, provide installation and calibrationvsess with their PV systems in order to
eliminate error and uncertainty. These compamiasd the solar cells to the consumer
and offer to pay the negative difference if theasysdoes not operate as promised.

[Gillingham 2012]

1.2. STOCHASTIC PROPERTIES OF SOLAR RADIATION

Solar radiation data has been gathered for extepdadds of time. This data has
been analyzed and shown to retain stochastic, me tbased characteristics. These
characteristics allow stochastic models to acclyated reliably represent the radiation
data. A predictor model for the original stochastiata can be created when an
understanding of the descriptors is developed.

Stochastic models of daily “insolation” or radiatiolata have existed for more
than 40 years. A study in Solar Energy, found taen looking at 60 day periods
throughout the year, that sequences can reprodgcsetquential characteristics of the
original data. This modeling technique verifiesttpariod of time, and preceding day’s
value influences the radiation on the next dayifiBrvorth 1976]

Another Solar Energy study tested different teches] in modeling solar
radiation, and found that the simple Markov Chaaneythe most accurate representation
of the radiation including “noise” or variance. [Btacchi et al. 1979]

In 1988, a set of Markov Transition Matrices (MTMpas used to continue the

Markov Model by creating separate prediction basedhe average monthly clearness



index values. Each of the MTMs was used for atstange of clearness indexes. This
created a large-scale model to be used througlheuyear, but still contained specific
representations of individual months. [Agular et1&88]

Markov Models will be discussed in depth in theti®ec4. Methodology.

1.3. MONTHLY SIGNIFICANCE

As shown by [Brinkworth 1976] and [Agular et al.88), unique months during
the year have significant impact on the daily radm values. This is confirmed by
[Skiba et al. 1997] using linear correlations of ntidy mean daily sums. Their
distribution based on the linear correlation equeihas a maximum relative deviation
less than 8% when compared to the actual values.

Monthly information can be significant to the madalt it was shown by [Olseth
et al. 1984] that the time average values are ata@lto simultaneous input for solar
driven processes such as PV electricity producfitms study showed that using monthly
clearness index can allow for unique distributid@asaccurately describe distributions

throughout the year.

1.4. HORIZONTAL VERSUS DIFFUSE RADIATION

Studies have been done attempting to completeotia diffuse radiation based
only on one directional component of the data. g study it is significant that the
horizontal data accurately relates to the totaleptél energy generation. The PV
generation most commonly uses cells placed at gitean order to directly face the

sunlight. Using combinations of existing modelsoffén et al. 2005] found accurate



descriptions of the diffuse radiation with lessriEl% Root Mean Squared Error as a
percentage of the mean. Using a horizontal reaftinghis research can be an accurate

description of the total radiation.

1.5. TEMPERATURE VERSUS RADIATION

Solar radiation affects many different factors ocartle, many of which are
complex and impossible to find direct relationshipgar or nonlinear. One of the many
highly correlated measures, temperature is inelyivaised by the addition of radiated
energy into the system. Temperature and lightledwo outputs for additional energy in
any system. In the past, illumination in the forfrsanlight duration has been correlated
with solar radiation, but recently temperature bagn used as an indicator for solar
radiation in many different models. Models with ferature include: temperature as a
direct input for correlation analysis [Tiba et 2012][Prieto et al. 2009], neural networks
[Alam et al. 2009] [Yacef et al. 2012], and as alaeement for sunshine duration in
Angstrém equations. Each of these models has additinputs such as location or wind
and often requires additional information that tagdsily be generated or measured at
every unique location (extraterrestrial radiatisnlar duration with obstructions). This
research uses temperature in a way that simplifiesrelationships without loss of
fidelity to the interaction of temperature and edidin.

[Tiba et al. 2012] uses temperature along with tioca wind-speed and global
solar radiation to show significant correlationgween the module temperature and the
electricity produced. This study proves that ovatbd PV modules lose efficiency and

do not generate additional power over a certairpegature. Wind-speed was included in



the study as a cooling mechanism for the PV celtkraot an additional source of power

generation.

1.6. SKY COVERAGE VERSUS RADIATION

Intuitively, sky coverage and radiation are conaedctVhen clouds come between
the sun and the PV cell, the radiation is diminished scattered. It would be beneficial
to include sky coverage in the model in order @ude the variability clouds introduce
into the measurements. Previous models, such aba[&k al. 1997] and [Prieto et al.

2009] include sky coverage and note its signifieatacthe model.

1.7.PV SYSTEMS SETUP AND ANALYSIS

Renewable energy (RE) systems can be accuratepted,e modeled, and
optimized using computer simulation programs. Therao need for renewable energy
installation optimization software as one alreadysts. One of the most popular
applications is HOMER. This program can optimizeapaeters given the expected
generation and load of the location. Parametersbeaimdividual component type or
model, and overall configuration of system, DC/AGwer supply, power generation
sources or storage components and capacity.

Load values can change just as drastically as payeseration potentials.
Because of this, the leveling of load is essentiathpossible and power supply
maximums are the goals of the generation system.ifiprovement of renewable energy
systems becomes the supply side of power. Eaclkerayseeds to be able to meet the

load, by generating and storing power until it éeded. In order to create an efficient and



robust system, accurate predictions need to be madee power generation sub-system.
In order for this goal to be accomplished, the tsguadiation, wind, hydro-electric) need

to be modeled correctly. Accurate generation ptedis are a requirement for HOMER

software to optimize each power generation system.

Overall system configuration can be optimized wteast of resources and
components is known. When all generation potendaésknown and held constant, the
most robust power supply system can be developedfigliration comparisons are
completed with stand-alone (SA) systems, those lwhre not supplied with electricity
power from an existing power grid. This eliminatemn-renewable energy supplied as
one of the factors, and provides direct compariztween the different RE sources.

By using SA systems in rural locations, it has b&emd that there are systems
which are consistently optimal. [Tzamalis et all2Dand [Bernal-Agustin et al. 2009]
both found that the hydrogen energy storage syséeesurrently too expensive for their
benefits and have an energy cost approximatelyn8gias great. As stated by [Bernal-
Agustin et al. 2009], “Energy storage in hydrogaithough technically viable, has a
drawback in terms of its low efficiency in the dlémty-hydrogen-electricity conversion
process, besides the fact that, economically,nihcacompete with battery storage at the
present time.” Diesel fuel is a more cost efficiealternative for most electrical
generation situations. The environmental impactbath diesel and batteries can easily
be counteracted using the money saved by not asingirogen storage system.

When comparing SA energy systems to the grid-caedeGC) equivalent, the
configuration can change significantly dependingtlo@ region RE potential and local

grid-supplied energy cost. Using both wind turb{eT) and PV power generation,



[Turkay et al. 2011] found that energy costs, idolg amortized system components,
could be as high as $3.39/kWh for SA power systavhile GC systems with equivalent
components were conservatively estimated to ca&ll®&/'h or as low as $0.307/kWh.

The GC system provides a lower cost of energy lilzing a sufficient RE
system to provide power supply for the constantl ln@eded for a building while selling
excess power to the grid provider and only buyimg additional capacity needed at peak
load hours. The SA system requires a power stocagacity high enough to obtain
complete capacity of the load, but with a GC systeam also reduce capacity
significantly.

[Liu et al. 2012] completed analysis in Australiaagain confirm the benefits to
be obtained from GC power systems. Using only a 6RW system without WT
generation, a household could produce 61% of thal telectricity load, reduces
electricity payments by 90%, and reduces carboridioemissions by 95%. The study
also showed that investment in a PV system hasE13®4 return on investment. The
cost of energy is also reduced to at the highestggncosts, $0.092/kWh. The costs
found by this study are heavily influenced by tlaeifts and benefits for using PV
systems in the region. This study also found thatdlope of the PV modules should be
facing a very regular slope betweerf 20d 25 depending on the city. This displays that
the optimum installation is quite predictable whgographic location is considered.

It has been shown repeatedly that a PV systemanditittery storage capacity can
greatly reduce cost of energy and reduce carbossgonis. This is accomplished by using
a GC configuration where generation ability caropgmized at each individual location

without excessive energy storage capabilities.



2. LITERATURE REVIEW

2.1. LOCATION AND TEMPERATURE BASED

[Prieto et al. 2009] formulated a functional coat&ln methodology to use
temperature, altitude, and distance from the sestimate horizontal radiation at
different locations along the northern Spanish todse correlation equation was
developed but required extraterrestrial radiatialues and was reliant on experimental
data to determine the function for altitude andahse to the sea. The correlation

equation is used as follows from previous experisien

G AT \*°
Gy f (%) <Tref>

The model is particularly useful when related taoes have recorded data, and

that the location function can be used to predilues in new locations that are
unknown. This model is unsatisfactory in predictfoture radiation, and because of its

dependence on the extraterrestrial radiation aspa is not an easily accessible method.

2.2. NEURAL NETWORKS

A Neural Network (NN) is a computing method thaeatpts to loosely follow
the methods employed by the human brain. As desttifly [Haykin 2011] in Neural
Networks and Learning MachinesA heural network is a massively parallel distributed
processor made up of simple processing units that has a natural propensity for storing
experiential knowledge and making it available for use.” It resembles the human brain in

two respects:
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1. Knowledge is acquired by the network from
its environment through a learning process.
2. Interneuron connection strengths, known as
synaptic weights, are used to store the acquired
knowledge.
The NN takes as inputs, many different configursiof variables and through a
hidden function, correlates the inputs to outplitee name is derived from the method’s
emulation of human neural processing and the éatiik® structure of the different input

configurations. Figure 2.1 shows a simple desaniptf the NN Ilattice.

Inpul layer Layer of Layer ol
ol source hidden autpul
niodes NEUTans NEurs

Figure 2.1 Neural Network Diagram

NNs require an immense dataset to train the maztapared to the testing set.
An often used rule of thumb is that the traininglseten times as large as the testing set.

This requirement limits the application of the teicue to sites when a large amount of
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information is already known. Predictive models exeremely useful when the data is
needed for a decision with a degree of certaintys Man imply or use an estimation
based on the data shown, but they cannot be comfid¢he answer because of the
structure of the model. Hidden nodes with uncenpairameters and reactions are used to
foster experiential learning in a NN. This focusénd experiential learning then inputs
an amount of uncertainty into the final model.

2.2.1. Assessment of Diffuse Solar Energy Under General Sky Condition.
[Alam et al. 2009]This study uses a NN to model hourly clearnesssored as a ratio of
terrestrial to extraterrestrial radiation. The studes a set of sixteen different inputs to
attempt to model the same output clearness. Ah®imeasurements were gathered at ten
Indian stations: Jodhpur, Kolkata, New Delhi, Pudkennai, Port Blair, Ahmedabad,
Nagpur, Mumbai and Vishakhapatnam. The data wadetivinto seasonal sections for
each of the models and the average or typical dagach season was modeled separately.
The estimated hourly values for clearness are coedgda the actual measurements taken
and a mean square error (MSE) is taken for eacltemod

The benefits to this model are shown with the ndatccurate predictions with
some of the different models in different seasding three best performing models all
contained air temperature, relative humidity antloweg wavelength and returned
smaller than 10 order MSE values. The NN application to daily ediin values out
performs the comparable regression models.

The disadvantages are similar to overall NN: largaing set and no prediction

from the model. Unique to this method, a complmatrises; the most influential factor
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in the model is the net long wavelength. This aedald be difficult to gather, and often
is not gathered at every site where radiation \salre needed. [Alam et al. 2009]

2.2.2. Artificial Neural Network Analysisof Moroccan Solar Potential. In
Morocco, NN model techniques have been used toageemethod of interpolating
between known data sites and estimating solar ggaerpotential for all of Morocco.
The study completed by [Ouammi et al. 2012], toBkyéars of data from 41 sites and
used it to generate “heat” maps of the Moroccaargaldiation potential.

This method, if proved accurate, could prove inghla to anyone who desires
estimation data on solar radiation on any of timel lvith unmeasured radiation currently.
This method also works well for small regions whgeegraphic patterns can be assumed
essentially constant.

Unigue disadvantages to this method are as follthesjnaccuracy of the model,
the difficulty of mountains and land formations eaffing weather patterns, and the
overall location of Morocco in the African contirtamear the intersection of the Atlantic
Ocean and Mediterranean Sea.

2.2.3. Prediction of Daily Global Solar Radiation Data Using Bayesian
Neural Network: a Comparative Study. [Yacef et al. 2012] NNs have been shown to
predict solar radiation. This study chooses toweatal the inputs and improvements that
might be done with an ordinary NN model. The NN mlad improved by a Bayesian
inference method; this adds probabilistic intergtien to the weights of the nodes. Input
parameters to be evaluated with an automatic retevdetermination are air
temperature, relative humidity, sunshine duratam extraterrestrial radiation. The

study also determined the effects of the numbdrdifen nodes in the NN.
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It was found that that Bayesian NN improves upoa tegular NN. For the
training set, Root Mean Square Error (RMSE), MeaasEError (MBE), and Mean
Absolute Error (MAE) changed from 17.06 to 8.427to 3.07, and 7.10 to 5.91,
respectively. The automatic relevance determinatiethod found that the most
important inputs in order from most to least impatt are: sunshine duration, air
temperature, relative humidity and extraterrestradiation. For the Bayesian NN the
optimum number of hidden nodes was two, with desgean log evidence for any more
hidden nodes.

This study is largely a comparison and verificatafnimprovements in the NN
technique as applies to solar radiation. The dgpnte to this research is the
improvement from a probabilistic technique and lidted number of hidden nodes.
This shows that the statistics of the system camone results and that the underlying

model is not significantly complex that it can'tinedeled simply. [Yacef et al. 2012]

2.3. ANGSTROM EQUATION SUMMARY

[Angstrém 1924] proposed a basic relationship betwihe extra solar radiation
and the actual observed radiation on the surfacbeoéarth. It has since been developed
into a more formalized linear expression for thenestion of solar radiation on the earth
from extraterrestrial radiation values and sunsldagtions, both extraterrestrial and on
earth.

In 1940, J. A. Prescott derived Angstrom'’s origimastulation into the form most

commonly known as today's Angstrom correlation. sThierivation formalized the
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equation into set values. The formulation considei@ be the “classical Angstrom-

Prescott correlation” is as follows:

HO SO
7—“”(?)

Where H is extraterrestrial radiation,{Hs terrestrial radiation {Sis terrestrial
sunshine duration, and:=$ extraterrestrial sunshine duration. The coffitsa andb
must both be found through experimental data. Tdefficient a corresponds to the
relative diffuse radiation andlloosely relates to cloudiness.

This derived version of the Angstrém-Prescott datien equation is commonly
used as a benchmark because of its simple forranland a relative accuracy given from
so few inputs. This same simplicity limits the mbdad the results it gives. It relies on
extraterrestrial data, either measured or estimated assumes it to be true. The
correlation is also heavily reliant on experimemtata to find the coefficient values. This
limits any predictions by requiring the assumptibat the data falls within the dataset
used to derive the model.

2.3.1. Modelsfor Obtaining Daily Global Solar Radiation from Air
Temperature Data. A study in Romania [Paulescu et al. 2005] replabtedatio of
sunshine duration in the classical Angstrom-Présmotelation with a function of the
difference in maximum and minimum daily temperasuaad the 5-day average
temperature.

H = H, - f(At, t5)
Where H is terrestrial radiationghb extraterrestrial radiationt is the difference

in max/min daily temperatures argls the 5-day average temperature.
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The function contains the coefficients to be deteeh from experimental data

and is shown:

n

f(At,t5) = Z c; - (At)Pi(t5)%

i=1

The coefficients cp and g all are determined from experimental dataias
corresponds to the location of the dataset. There \® testing datasets from 6 locations;
in this studyn equals 6.

This new temperature based correlation had RMSHesd than .15, but the
datasets were limited to days with clear, cloudlessditions. This method has been
shown as feasible, but with significant restricida the application. However, the strong
results from using short term temperature as tihgioput are impressive.

2.3.2. Simple Nonlinear Solar Radiation Estimation Model. [Sen. 2007]

Turkish researcher Zek&éen, extended the classical Angstrém-Prescott emquatith a

non-linearity coefficient, making the model:

H +b<5)c
H, *TP\s,

The variables represent the same as the classelatoon, with the addition of ¢
as an effective measure of system dynamics.

This study does show improvements on classic Adgsf®rescott estimations,
but the additional benefits are minimal. The averagprovement from the nonlinear
correlation is only 6.32%. None of the location at&tts were estimated to have a
nonlinear coefficient, c, greater than 1.9. So e/iiere is evidence that some locations
have significantly dynamic radiation potential, meery location has a nonlinear model.

By adding nonlinearity to the estimation, the coemily of the equation greatly increases
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and the “strength” of the model declines. Strerajtthe model is used to gauge its robust
nature and applicability for all different data.i3 honlinear adaptation is not as strong as
the classic formulationSen. 2007]

2.3.3. A New Formulation for Solar Radiation and Sunshine Duration
Estimation. [Sahin. 2007] This method proposed doesn't actuainge the classic
Angstrém-Prescott correlation equation, but useswel restructuring to create
estimations and prediction values. When rewrittee classic Angstréom-Prescott

correlation can be shown as:
S, S
— (1 —-R,) =~
H, ( 6) H

This description uses R0 represent the reduction in extraterrestrialataoh

before it is measured on Earth, tRen can be rewritten as:

_ ((So/Hp) = (S/H))
° (So/Ho)

Given that this value can be found from a testiay the estimation for both
terrestrial sunshine duration and radiation becsimgle equations:

(1 - Re)

S:HSO H
0

and

4 — __SHo
B (50(1 - Re))

These equations are beneficial due to their simplend that the value can be
used to estimate an average or daily value by &ntywing the overall ratio for the

location.
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This method retains simplicity and improves on ihglementation of the
classical Angstrom-Prescott correlation. This woiais superior because it provides a
reduction in parameters without an increase in tispand it doesn't require coefficients
for the equation to be estimated with a least-segiarethod. However, the method is still
restrained to need extraterrestrial values and t imarge all knowledge specific to the

location. Bahin. 2007]

2.4. SOLAR RADIATION ESTIMATED BY MONTHLY PRINCIPLE
COMPONENT ANALYSIS

Using the inputs from the Angstrém-Prescott cotiefg a study completed by
[Sen et al. 2008] replaced the linear estimation ggumawith a Principle Component
Analysis (PCA). PCA is a technique used to redwrameters of the data by twisting the
axes in the direction of the most variation. Tleishnique gives a good estimate about the
distribution of the data. When PCA is used to daetee the distribution of sunshine
duration as compares to solar radiation, the resate equivalent to the classical
Angstrém-Prescott correlation.

Despite very similar estimations and accuracy, Aigs-Prescott is restricted in
many ways that PCA is not.

. Nonlinearity- PCA can describe data which does fitobn a

straight linear correlation.
. Normality- It is an assumption of regression modthat the data

is normally distributed. PCA does not require nditya
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. Conditional Distributions- It is assumed that thetribution at
each value of sunshine duration in the Angstronsdéie will be
equally distributed on each side of the estimation.

. Homoscedasticity- It is assumed that all the comattl
distributions have equal variances

. Independence- It is assumed that all the variahlése regression models
are independently distributed.

By removing these restrictions from the estimatond retaining accuracy, PCA is

an improvement over classical Angstrém-Prescotiessjon estimationSen et al. 2008]

2.5. SUMMARY OF METHODS

Most of the estimation models to estimate solaiatamh have recognized the
non-linear relationship, and the restriction of thedels that were originally used. Direct
correlation has proved to limit success, and spatificulty with highly variable
weather in unique locations.

Modern techniques have embraced the nonlinearitye immeasurable
interactions of the environment and the necessity & model that can be easily
customized for unique locations without a large hanof parameters.

However, none of the models use stochastic pregsemiherent in solar radiation
to accurately make predictions into the future.sThwoid can be filled with a simple
model, based on stochastic assumptions, whiclzegilfew parameters to predict the

day’s radiation.
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3. BACKGROUND/PROBLEM DESCRIPTION

This thesis seeks to connect the known weathervdttahe unknown radiation
data in a simple manner. Weather data and radidtatenare measured separately, and
most locations do not even have radiation measuresngsing Hidden Markov Models,
it is possible to estimate the unknown radiatiolues based on the available weather
data. Weather data is widely available at any locafT his estimation will be based on a
model simple enough to be recreated and used diamsehold. Clustering will be used
to simplify the data from a series of multiple m@&&snents into a single list of input
values.

As shown in the Literature Review, modeling techieis|are unable to provide a
simple and universal model to apply at any locatiast all models rely on the radiation
to be measured, and a significant portion of thésm eequire extraterrestrial
measurements as well. All of the reviewed methedsaiant on precise quantitative
data, and are unable to accept discrete or quaditateasures. These restrictions limit
prediction models to those organizations with tibditg for high-end processing and
modeling capabilities. By creating a method capabkccepting qualitative indicators,
predictions become more accessible.

Without relying on measurable radiation data fprediction model, a measure of
uncertainty and hidden behavior must be takenantmunt in a predictive model. The
models which have hidden processes rely on théyatmlmake complex calculations and
simulate a multitude of variables simultaneouslgddeén Markov Models develop this

uncertainty with analysis at a low-level complexigile still maintaining accuracy.



20

Clustering techniques are a mathematically justifreethod to find commonality
amongst large data sets and to simplify informaima fewer dimensions. Logically
changing a large, multiple dimension dataset amgl#lying the indicators by joining
those with common qualities could retain much efitiformation while creating a
succinct summary of the information. This in tuemaémprove simple models for solar
radiation prediction by limiting the loss of infoation. However, there are currently no

models available which use clustering in any refato solar radiation prediction..
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4. METHODOLOGY

Previous methods to predict solar radiation alletaiunderstand what is
significant in solar radiation modeling. Hidden May Models (HMM) are appropriate
because of the inherent probability, time sequémoemation and the use of hidden
states/interactions. This research seeks to cagattMM to describe the solar radiation
patterns and their emission of temperature datarder for a new HMM to be an
improvement, it must use a small observation setaasmall state set. These small sets
are found by the creation of clusters within theaddhese clusters have similar
properties and simplify the data without loss dbmation. To use data for clustering,
the data must be segmented, uniformly spaced, xastie the same time-ordered as it
was recorded.

This section will first show an example of a pot@nttMM model of solar
radiation with known parameters. The total develepnprocess will be outlined. Then
the rest of the section will be organized in theoablogical order of the processes which
start with raw information from the source, prepidne data, cluster the data, then use
cluster data to create the HMM models, then HMM atsavill be trained and models

will make predictions for radiation.
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4.1. PROCESS OUTLINE

1) Data Processing [see Methodology section 4.2]
a) Inputs: time coded measurements
b) Outputs: daily summary vectors
2) Clustering [see Methodology section 4.3]
a) Inputs: daily summary vectors
b) Outputs:
i) list of daily group (qualitative)
i) daily temperature estimation (Low, Medium, High)
3) Data Segmentation [see Methodology section 4.4]
a) Inputs: list of daily group
b) Outputs: sections of days with the same group
4) Prediction by Hidden Markov Modeling [see Methtodyy section 4.5]
a) Inputs:
i) section of days with the same group
i) list of daily temperature estimation

b) Outputs: prediction of daily radiation level (God@hd)

This thesis connects the available weather datatiwt unknown radiation data.
This problem has been decomposed into four mairpsoiblems: Data Processing,
Clustering, Segmenting the data, and Predictingittk@own radiation by HMM. Data
processing takes the data from raw inputs and e€semtlaily vector. Clustering simplifies
that daily vector into a single variable, the dagfisster, which qualitatively describes the
day. The Hidden Markov Model creates a predictedwannof radiation based on the
daily input cluster.

Data, on radiation and weather respectively, ibgyad from two separate

datasets is combined and aligned into daily vallibsre is a limitation of which
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indicators are available, our choices for the wesaiitdicators are temperature and sky
clarity. All other data is problematic because @fraption, static input, or inaccurate
measurements. Data processing outputs a dailyviecteach of the days in the year
consisting of aggregate radiation (W/m2 per threautes), high temperature (degrees
Celcius), and most frequent sky clarity (Clear,t&rad, Broken, Overcast). For a more
detailed description of data see subsection 4tBeoMethodology.

Clustering takes the daily values and groups th@msimilar clusters. A cluster
contains similar days and provides a single vagiaeiscription for the type of day. This
research uses K- Medoids clustering; also knowRaastioning Around Medoids (PAM)
clustering. Clustering is completed with three inits: radiation alone, temperature
alone, and temperature with sky coverage. The tiadialusters are used to justify the
number of states. The only-temperature clusters aimmple description of the day and
are input into the HMM as an observation list. BRg coverage and temperature clusters
are used to segment the year into ranges of sinalgs.

Clustering radiation provides us with two separathation clusters. Clustering
temperature provides us with two separate temper#uels. Clustering sky coverage
and temperature provides us with three separastecj {{Cloudy, Any Temp},{No
Clouds, Low Temp},{No Clouds, High Temp}}. The eatcluster when using sky
coverage with temperature reveals that sky covedagdays additional information

about the data. However, when temperature is ckdtiato three groups, the results are



24

very similar. The three temperature clusters candegl to describe the data
without the added complexity of using sky coverd§yeusing a single variable, we
reduce the complexity of the input, but we don¥daignificant loss of information. For
more details on the clustering process see Seéti®af the Methodology.

Data segmentation uses the simplified descriptidhedays provided by
clustering the sky coverage and temperature. Téssrgption is used to section the data
into ranges of days with the same cluster. Theydailues are displayed chronologically.
Figure 5.4 is visually inspected, and then judtifpy statistical testing. The following are
the ranges of similar data found: {January, FelyydMarch, April}, {May, June,

July}, {August, September}, and {October, NovembBecember}. The visual depiction
of the data is shown in Figure 5.4.

Hidden Markov Models (HMM) can predict the unknostate of a system
without direct measurement. The HMM requires ameged number of states in the
system. The two radiation clusters directly tratesta two separate states to describe
radiation. The three temperature clusters are asedqualitative observation of each
day. Each range of days, as found in data segn@mtét modeled separately. Each
model predicts the {Bad, Good} radiation level teda to other days within the model's
range. This means that the Good days in Model ¢ patentially similar to the Bad days

in Model #3.

4.2. DATA SELECTION AND PROCESSING
4.2.1. Data Choice. Data needed for the HMM should be of a finite dedaoly

values. These values should include, an accumugatied radiation value, a high
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temperature value, and an average sky coveragadfoless) value. This Section
describes the process from raw data, through sealeetion, year selection and through
processing to prepare the data for clustering.

The following Section will describe the method ata selection for this research;
covering the selection of the data source, theireouents for the databases, and the
selection of the appropriate years.

4.2.2. Data Source. Datasets were obtained from two separate databHsesg.
are monitored and distributed by the National O@eand Atmospheric Association
(NOAA) and its subsidiary organization the Natio@dlmatic Data Center (NCDC),
respectively. The measurements of radiation, teatpeg and sky coverage for this
research were not found in one dataset, theretfevad required to obtain separate
datasets and combine them. Both databases contdiffe@nt measurements; the
NOAA set contained radiation and temperature inédrom, while the NCDC set
contained sky coverage information. In order fer tivo datasets to be compiled and
used in conjunction, the data and measurementeddedcome from the same
geographic location. The NOAA dataset and the NGataset coincided at the same
geographic coordinates. The data measured at tkectivly” station on the airfield in
Desert Rock, Nevada sent data to both databaseswbhdatasets (NOAA and NCDC)
from Desert Rock was selected for this reason.

4.2.2.1 Database requirements. The model also requires that the data is input as
daily measurements. For the NOAA dataset, measuntsmeere taken at 3 minute
intervals. For the NCDC dataset, the measuremeeits taken sporadically most

commonly once an hour. Despite the difference ta dallection technique, each dataset
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was complete enough for conversion to a compatibily value. Daily values provide
summary insight into the data collected withoutrigamuch information. For the data
collected, the additional challenge is to provideasures that can easily cope with the
difference in collection intervals and make a slagwalue for each day.

4.2.2.2 Data collection. The data was collected by the SURFRAD researchers.
All data was collected with sensors in the samaiprity and relative sensor locations
can be shown in Appendix A

The radiation data was measured by a standardlagddnm of sensors including:
Multi-Filter Rotating Shadowband Radiometer, UVRJltraviolet Pyranometer, LI-COR
Quantum Sensor, ventilated Eppley pyrgeometeryantlated Spectrosun pyranometer.
These sensors are used to gather direct, diffusglabal radiation data. For this
experiment we are inspecting direct downwellingoglaradiation.

Temperature data was measured by a Vaisala aireratope and relative
humidity probe at a height of ten meters.

Sky coverage data was measured by a ceilometey.if$trument measures
clouds to 12,000 feet directly above the sensoe. Measurement is returned in oktas
which are also used in meteorology. This sensautemated and algorithmic, making it
sensitive to low clouds directly above the sensariaaccurate after the range of its
detection.

The radiation, temperature and sky coverage datanaasured in Watt meter
squared, degrees Celsius, and oktas, respect®iejycoverage, although algorithmically
derived is a qualitative measurement relating tange for each returned measurement.

Sky coverage of CLR (clear) was shown at 0 okt&s; &cattered clouds) was shown
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from 1-5 oktas, BKN (broken clouds) was shown fié1@ oktas, and OVC (overcast)
was shown at 10 oktas.

4.2.2.3 Year selection. In order to select the year for training and tegtseveral
factors were taken into account. The completene8gdnformation, the quality of the
data and the relevancy of the information obtaiakdfluenced the year range to be
modeled. For example, measurements included iN@W®A database contained values
only for the first half of the day. This would rew@data for lack of completeness. The
NOAA database data for some years also containgigaovithin the extracted text files.
It is assumed that there were technical difficsliigluencing the data collection and the
system logged errors instead of correct data. TDBGl data pertaining to sky coverage
was often returned as a null value and is not eglewr useful to our model. The system
is automated and it is assumed that the algoritiasimconclusive at these points in the
data.

For this research, data was selected from 200éhdalel training and from 2005
for testing of the prediction model. The years waresen to be sequential to simulate the
application of such a model using the previous yearedict the values of the current
year. The data from 2004 was complete and relevdhntonly two days excluded; one
because of corruption and another because thevdatancomplete. The data from 2005
was much more problematic, but enough data remamsgst the model based on 2004.
In 2005 there were nine days missing entirely drithi@remaining, 25 days were missing

sky coverage data; 225 out of the 331 availablewtudless.
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4.2.3. Data Formatting and Preprocessing. From both databases the
measurements were formatted as time-stamped rosvtange matrix. In order to create a
daily string of values from each of the datasets different intervals, different measures
were taken for each of the values needed in theem®te measures chosen for
radiation, temperature and sky coverage were, c&8pdy. aggregate, high and mode.

4.2.3.1 Daily indicators. Radiation and temperature were originally measured
three minute intervals. In order to convert thesasnres to daily measures, the
aggregate of all the 3 minute measures was takemadation, and the highest value was
taken from all the measured temperatures. For gigrage, the data was measured
sporadically. This presented a challenge to conmestdaily values.

Sky coverage data is automatically generated,hauvalues were not measured
on regular intervals. In order to regulate the nendf measurements in a day, the
coverage data was limited to hourly values, and the mode was taken. This provided
the daily value of the sky coverage from the incstesit data set.

When using the developed daily values for sky cagey substitutions must be
made for the qualitative values in order to alltw tlustering algorithm to adjust.
Fortunately, the qualitative values are determugidg a numeric algorithm. The
gualitative data corresponds directly to a numladuer of average coverage during the
measurement period. For Example, a value of SCattesed clouds) contains the range
of 1-5 oktas. When converting back to the quamgatalue, the estimated value would

be 3 oktas for all SCT values.
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4.2.3.2 Normalizing values. In order to create even weighting between
temperature and sky coverage, each range of dagbbawmnormalized to a value between
one and zero in order to use clustering basedekgtitlidean distance. This is done by
dividing all recorded daily values by the maximubserved data in the year. For the data
from 2005, the maximum in 2004 will be used.

4.2.4. Summary. Data was chosen from the NOAA databases for dowimgel
global radiation, air temperature and sky covelatpridiness). These measures were
converted to daily measures of accumulated radiatr@ximum air temperature, and

most frequent sky coverage.

4.3. CLUSTERING
For this research, hard partitional clustering Wwélused. Clustering procedures

all follow the same general outline as describefXin Wunsch 2009]:

1. Data is sampled

2. Features of the data are selected

3. The clustering algorithm is selected, then usetherdata
4, The clusters are validated and the results arepiraied.

4.3.1. Feature Selection Using information researched in the Introduction
Section Literature review, the features for thisstering algorithm are accumulated
radiation, maximum air temperature and most fretjgley coverage. These features have
previously been correlated with many other studiasl, are sufficient in the datasets

chosen.
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Data from all sources is prone to corruption ammbmnsistency due to the
automated measurement facilities. A large portibthe data is corrupted or non-existent
leaving limited options to use as features.

4.3.2. Clustering Algorithm Selection and Application Clustering will be
completed with the k-medoids algorithm. This alforn successfully groups data with
similar information while being resistant to théeets of outliers. This method adjusts
each cluster after the addition of a new poing grovides robust measure of
membership when the order of data points is fixed.

Application of the k-medoids clustering algorithsndescribed as follows:

1. Randomly choose k points in the data to serve aoime or “centers” for
the clusters. Remove these points from the unasgidata and store in
the cluster medoid list

M=[mm,..m]
2. Assign each data point to a cluster based on theesemedoid.
x; 0G ,ifoj —rn,H<ij —m“
forj=1,2..n and fori#li,l=1,2.k
3. Recalculate the cluster medoid list
m=mn > X -X,
(XmDCij
fori=1,2,..kandm# j miOx, OC,

4. Repeat Steps 2 and 3 until there is no changééclusters
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4.3.3. Cluster Validation In order to optimize the number of clusters, k, the
algorithm was repeated for k=1, 2 ... 6, and thénoyptn number of clusters was found.
The optimum number of clusters is determined Wyosietting. The Silhouetting method
is a comparison between a cluster and the nexeseeluster. With it, the validity of the
clusters returned can be compared to other metAdwsformula for the “Silhouette

Weight” described in the method is:

ofi)= b(i) - ali)

max ali),bli)

Or alternatively:

1—%ifa(i)< b(i)
s(i)=1 o0.ifa(i)=b(i)
@—ija(i)> b(i)

a(i)

Where a(i) is a measure of average distance toa@iohin the same cluster, and
b(i) is the average distance to each point in tagest cluster. The average Silhouette
Weight is used as a validity matrix for the engreup of clusters.

The optimum number of clusters is found for radiatitemperature and a two
dimensional temperature and sky coverage dataffet. the optimum number of clusters
is found the results are compared. This methoedférred to as relative clustering criteria.

The clusters allow us to differentiate between ma#gments of the daily data. This
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allows us to cluster the total year in similar segis by inspecting the distribution of

temperature and sky coverage clusters within thgas for the radiation clusters.

4.4. DATA SEGMENTATION

Data is segmented by plotting the clustered vafuadiation {Bad, Good}, and
the cluster describing the sky coverage and temper§Cloudy, Any Temp},{Clear,

Low Temp}, {Clear, High Temp}}. The inspection firseparates sections with a fixed
radiation cluster. Within each range of static aidn, ranges of constant temperature are
found. This gives us segments among the similaatiad levels. Then, segments of like
radiation are compared to find similarities of wesatcluster. For Example: In the
summer, radiation is continuously {Good}. Inspegtsummer as one segment, there are
obvious ranges of cluster {Clear, Low Temp} andasttanges of cluster {Clear, High
Temp}.

In order to retain model simplicity, the ranges avémited to monthly sections.
This means that a new range can only start onitsteof the month and not on a day in
the middle of the month. By restricting the modethis fashion, we keep the time to
change models predictable and easy to follow ferciiimmon household.

The segments are statistically tested for diffeeemicmeans for both temperature
and radiation. The ranges of data with a statibyisggnificant difference in either
temperature or radiation are then separated intuarsegments. The similar ranges are
combined into one segment. The daily temperatwstets are then separated into
corresponding segments and used to train individih&\is for use in predicting the next

year’s radiation for the respective time segment.
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4.5. HIDDEN MARKOV MODELING

Similar ranges of months have been segmented fedative cluster validation in
the training data. For each of the segments an H¥dfeated and trained to estimate the
unknown radiation as {Good} or {Bad}. The states @anmeasurable to the models. The
number of radiation states can be justified usingtering on the known radiation from
the training dataset. The number of radiation eltssis directly related to the number of
unknown radiation states.

Each model is created based on the total observagpiace. The observation space
contains the different types of days which we chseove. These observations contain the
number of sky coverage and temperature clusteicuasl previously in the clustering
procedure: Methodology Section 4.2. The numbeludters may change for other
locations, subsequently changing the observatianesgFor this data and location, the
cluster from temperature alone provides equivadstitnation to the clusters found from
using both sky coverage and temperature.

HMM models are probabilistic representations ofdb&ual environment. They
require the parameters to be initially randomizetbke training. Each HMM is
initialized with random, but equivalent, probalidg for the transitions between states,
the emission of observations from each state, lamdhitial distribution of states. Figure
4.1 shows a graphical representation of an HMM.

Training the HMM is the process of improving thea@cy of the model by
changing the initial parameters. Since the inpelameters are approximately equally
likely, the model will not be representative of etual behavior. Training the model

finds the probability of the observation sequemcthe training set, the most likely state
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at each time, and the probability for each statvaty different time. Using the entire
observation sequence, the parameters can be neagsti. The probability of the
observation sequence measures the accuracy oathmeters. The model is iteratively
retrained until the probability of the known obsaign sequence is no longer improved.
Daily temperature clusters are used for observatiand the parameters are found for

each subset of data respectively. For an exampl&it$ke Appendix B

P(Bad|Good)
P(Bad|Bad) P{Good|Good)

Pl{Good|Bad)

/_B;d_x\\ /’—'—\ ~Good
Qadiation \\jldlatl

e = B3= By3=
PtLowlBadl PtMed|um|Bad} F’angh|Bad] P{Loleood} PtMed|um|Goad} PEnghlGuudJ

N
/

/\ Low > M_ed|u> \\ High >

Hidden

Measurable

Figure 4.1 Hidden Markov Model Two States with Measable Temperature
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To predict the radiation state during the testieigis the year 2005, the trained
model from the respective time during 2004 is usefihd the most likely state of the
system at the time. These models have parametérsatsd by the observations in 2004.
The models have not used the measured radiatioev&iom 2004. The state estimated
by the HMM is completely based on the temperatiluster observation. When
predicting, a smaller sequence of observationsesl o predict the state at the next day
after the final observation. This thesis usestigstibservation sets of three to predict the

future state.
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5. RESULTS

This Results Section is split into four subsectjarech describing the information
found by their respective processes. The Data psirog Section describes the raw data,
and the subjective nature of the location. The €hirsg Section shows the description,
separations and simplification of the data. TheaC@#gmentation Section interprets the
clustering results and finds groups of similar datee HMM Section shows the models
as trained by the data, the predictions of thosdaisp and the accuracy of those

predictions.

5.1. DATA PROCESSING

Data from Desert Rock Nevada was processed foyeaos: 2004 and 2005.
These years were chosen because 2004 was the ongsiete year available. In order to
retain simple models, the following year was sedddb test the models created based on
the 2004 data. The following will describe someiladites of the data after it was
converted to daily values. Descriptive measuras®fdata can be found in Table 5.1.

This data was selected because it was the onlyidoctor both the radiation and
the sky coverage to be measured. All other recgrsliations had miles of distance
between the instruments to measure radiation and®kerage. The location is in an arid
country, and has a less diverse weather pattemdtieer locations with data for radiation

or sky coverage respectively.
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Table 5.1: Data Description

2004 2005

Radiation Minimum 5279.1 | 9015.5
W/m”2 (3 min) | Maximum 186053 | 187200
Mean 115279 | 111496

Temperature Minimum 5.3 6.4
(°c) Maximum 40.6 43
Mean 24.49 24.44

Sky Coverage Overcast 32 12
Broken Clouds 4 91

Scattered Clouds 19 3

Clear, No Clouds 310 225

*** (Corrupted) 1 25

The fact remains, that 310 of the 366 day in thaning set were CLR (no
clouds). This lack of variation clustered mostlad model by temperature regardless of

sky coverage.

5.2. CLUSTERING

Clustering with the PAM algorithm was completedhit sets of data, single
variable: radiation, single variable: temperaturd a two dimensional: sky coverage and
temperature data set. The clustering results camden in the following graphs. Figure
5.1, Figure 5.2, Figure 5.3, Figure 5.4 all dispdéfferent combinations of clustering

compared with relative criteria to actual and ottiasters.
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Figure 5.3 Temp. Clusters versus Radiation Clusters

These graphs show the clusters developed in treeg@guence of the original
data set. This allows for the description of theada retain the sequential properties
necessary to the HMM.

Using these visual representations of the datagltisters were compared using
relative criteria to validate the clusters fourlthis case, we are looking for both
correlations between the dimensions of the datd@nskegments of time containing
similar data. With these two goals in mind, theadgbpears to be segmented into 5
distinct and unique ranges: Low temperature andréiation, middle temperature and
middle radiation, high temperature and high radmgthigh temperature and middle
radiation, and variable temperature and low ragimati

This inspection confirms the inherent logic that geasons are highly correlated
with radiation behavior, but additionally providesnfirmation of when the model should
be changed and also the difference between th@epelar and the beginning-of-year

during the expected winter season.
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It was found that radiation could be clustered imto levels of output,
temperature could be clustered into two levels, thedemperature/coverage data set
could also be clustered into three groups.

The addition of sky coverage into the clusterirgpathm did not significantly
influence the cluster selection. Therefore it widt be used as an observation vector. The
influence of sky coverage was not significant fus tdata set, but should not be
discounted for other geographic locations. The maliimpact can be attributed to the
fact that 310 of the 366 day in the training seteM@LR (no clouds). This lack of
variation clustered most of the model by temperatagardless of sky coverage.

This research aims to provide a simplified methardaih average household.
Restricting the time of model change to coincidehvei month change allows for a
simpler and more accessible model. Model changeb®eapproximated by the nearest
month change to the shown cluster changes. Thegseests were confirmed by grouping
the data and comparing monthly radiation valueshtow the statistical difference

between the groups.

5.3. DATA SEGMENTATION
Figure 5.4 shows the comparisons of the differesglymented days. These days
are limited to change when the month changes. groigides an additional degree of

simplicity, and therefore accessibility, to the rabd
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Figure 5.4 Monthly radiation clusters (Grey) verseimperature clusters (Black)

Using the clusters found from sky coverage and &atpre, the segments to be
separately modeled are {January, February}, {Madgr,il}, {May, June, July},
{August, September}, and {October, November, DecerhbT his shows the need for

five separate HMM models to accurately describénesggment of the year.

54. HMM MODELING

The models were found from the training method diesd in the Methodology
Section 4.5. These trained models require somepirgtion before they can be used for
prediction of radiation. Each segment of similandihas a unique model to predict
radiation.

The training method does not imply intensity of hates it models, because it

doesn't actually predict a value, but a more catalie description of the hidden process
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by a “state.” This means that in order for the ioiad state estimations to apply toward a
directional measure, information is needed to intp&/order of the states as “bad” or
“good” radiation states.

For each of the unknown radiation state, theré&kaosvn ranges of temperature
associated. Using the proven correlation betweepéeature and radiation, the state
which is more likely to emit high temperature canitmplied to have a higher radiation.
This is a large assumption in the model as theitatise descriptor is used to imply of an
intensity of radiation. Original and adjusted moplatameters can be found in Appendix

C.

55.HMM PREDICTION

Looking at the confusion matrices, it is apparéat there are some models which
are better predictors than others. Model 1 haesbacause there is only one observation
ever emitted in the data set (Low Temp). Model 8 isaues because it is homogeneous
with all High Temp, High Radiation observations atdtes, respectively. The models
with significant fluctuation greatly improve whesing HMMs. The confusion matrices
for the HMM prediction can be found in Table 5.2.

Model 1 corresponds to {January, February}, Modeb&responds to {March,
April}, Model 3 corresponds to {May, June, July},ddel 4 corresponds to {August,

September}, and Model 5 corresponds to {Octoberevaber, December}.



Table 5.2 Confusion Matrices found from HMM Predtiot

All Year
Predicted
Bad
Good
Accuracy
Adjusted

Model 1
Predicted
Bad
Good
Accuracy

Model 2
Predicted
Bad
Good
Accuracy

Model 3
Predicted
Bad
Good
Accuracy

Model 4
Predicted
Bad
Good
Accuracy

Model 5
Predicted
Bad
Good
Accuracy

Actual
Bad Good
104 42
72 122
0.664705882
0.792982456
Actual
Bad Good
29 23
0 0
0.557692308
Actual
Bad Good
14 10
16 19
0.559322034
Actual
Bad Good
0 0
32 55
0.632183908
Actual
Bad Good
17 1
7 26
0.843137255
Actual
Bad Good
44 8
17 22

0.725274725

43
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The first confusion matrix in Table 5.2 contains tiesults from all the models for
the entire testing year, 2005. The accuracy foh @aadel is taken as the number of
correctly predicted values divided by the total tuemof predictions. The adjusted
accuracy for the total model removes the inaccysegdictions from Model 1 and Model
3 in order to provide a better estimate of the emcy of the technique despite the
subjective influence of the dataset.

The individual models were tested on 52, 59, 87aiid 91 days, respectively.
The confusion matrices for each model are showncandbe interpreted individually.

The two most notable models are Model 1 and Model 3

Model 1, {January February} contains only {Low} teerature observations and
{Bad} radiation days. The Hidden Markov Model istraxcurate when given a fixed
input. As seen in Appendix C, the parameters of &ddare approximately equal for
transition probabilities and initial distributiomhis suggests that no real training has
taken place, and that the model is not suitableiser

Model 3 receives input observations {Medium} ardigh}. This model however
initially returned a fixed state {Bad}. This is iatent in the nature of the HMM training.
The model uses unknown states, and therefore caonqiare between states. The model
returned {Bad} as the state only because it waditbeposition for state. By using logic
and the known correlation between radiation andoezature, we can correct the state
order for the models. This means reordering theestso that the state more likely to emit
a higher temperature is the {Good} state. The aaband adjusted model parameters can

be seen in Appendix C.
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6. CONCLUSION

Using Clustering and HMM can provide a crude est@riar the prediction and
estimation of solar radiation. The assumptions @ased with the HMM improve upon
the probabilistic models but are not as accurateeasomplex analyses which can be
done. This methodology is suitable for a roughnesté when precision is not needed, but
a general trend of the radiation is important. gdogic and some inherent properties of
correlation make this modeling technique applicavid surprisingly accurate with
fluctuations in the observed data.

Using clustering methods provided justified distions between the seasonal
ranges during the year. These ranges are als@stoicted to even distributions in the
year. The unigue segments found adhere to the gledern of the seasons but are
bounded at better dates. By changing the rangesilmsthe data, a more accurate set of
models is created.

Using Hidden Markov Models only approximates aest#tthe sun or
environment, not the actual radiation output. Udogjc and known correlations, the
predicted state does provide a good estimate @tiad on a daily basis. The model
trained can predict overall distribution of goodidrad days, predict the state and
observation into the future, and estimate the rilosly observation sequence in any

week of the year.
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6.1. DISCUSSION

Considering the data set, the modeling results sHoawn this technique stand as
a proof of concept. The technique provides morei@te results under periods of higher
variation, such as during the fall when temperatuvere highly variable, and radiation is
decreasing. See Table 5.2 Model 4. This impliestti@technique used will provide
accurate results when used in a location thattisnarid desert.

This data is also very subjective because the ioplyt observation is
temperature. Sky coverage, or cloudiness, was diseadg the data segmentation, but
85% of the training data was clear skies. The nitgjof the clustering was based only on
temperature; the addition of another variable adasdplexity without adding accuracy.
For other datasets and other locations, more tham@ather indicator may be used

without additional complexity.

6.2. FUTURE WORK

Future work includes re-applying this method toeotheographic locations.
Model accuracy shows its ability to predict var@abhd fluctuating patterns; application
in a less regular climate is suggestible.

Additional accuracy could be found by recording $kg coverage measurements
in oktas (a one to eight value of cloudiness) etbe automated recording system logs
only the qualitative measure {BKN, OVC, etc.}. Tleegualitative measures do not
correspond to actual numeric values, but to eghenge or a singular value. This is not

accurate when converting back to a number in agrang



APPENDIX A.

SURFRAD SENSOR ARRAY



Sensor Location at Desert Rock, Nevada
Latitude: 36.63 degrees North

Longitude: 116.02 degrees West

Elevation: 1007 meters
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APPENDIX B.

EXAMPLE HIDDEN MARKOV M ODEL
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Example HMM:

Let's say we are stuck in a room. We are working on research and are unable to leave or
see a window to outside. We are able to see a thermometer that reads the outside
temperature. We can guess the solar radiation outside based on what the temperature

it is shown on the thermometer.

We create a two state HMM to describe if it is bad or good radiation. This is in relation
to a photovoltaic electricity system. The good radiation is a high level, and the bad
radiation is a low level. Notation as good or bad insures difference between
temperature levels. We are only able to make a general observation of the temperature;

whether it is low, medium or high. Figure Al displays such an HMM.

PiBad|Good)
PlBad |Bad) /\ Pilsood Good)
- PiGood|Bad)
g / " Bad \ / Good “/)
© \Radlatmn Radnatmn
= / \
eq= B1:= 2= En= = 23=
F‘tLUwIBad] P[Medlumwud} PiHIgh|Bad) P{Low|Good} PiMedium|Good) P{High|Good)
a4
o
[
5
z e - -~
o - TN I Hiah ™
= \ LDW '\Mechum/ Ny g )
— —

Figure Al: Bad or Good Radiation HMM
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If we know the probabilities associated with this model, we are able to make predictions

based on the observations of the thermometer. Let's assume we have already trained a

model to have the values as follows:

Transitions (A):

To
Bad Good
From Bad 0.60 0.40
Good 0.30 0.70
Emissions (B):
Observation
Low Medium High
State Bad 0.20 0.10 0.70
Good 0.35 0.60 0.05
Initial Distribution (m):
State Bad Good
Initial 0.20 0.80

We also see the following series of observations from the temperature: {Low, Medium,

High}.

With the parameters of the model we can solve two of the most common problems

associated with HMMs. The likelihood of this observation sequence at all, and the most

likely state sequence to produce this series of observations. Let's call the likelihood of

this observation series, Problem #1, and the most likely state series to emit these

observations, Problem #2. Both techniques to solve Problems #1 and #2 can be

extended to predict the next observation or state in the sequence, respectively.
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Problem #1 Observation Likelihood:

The likelihood of each series of observations can be approximated by the sum of the
emission probabilities from every possible state sequence. For our example, the state
can be either Bad or Good, giving us a set of eight potential sequences. Take one state
sequence, {Good, Good, Good}, as an example. The probability this state sequence
emitted the sequence of variables can be defined by:
P(Good,Good,Good| Low, MediumHigh)=
= 1o, bses (LOW)a(Good, | Good, )b, (Medium)a(Good, | Good, )b, (High)

P(Good,GoodGood| Low, MediumHigh)= (0.89(0.60(0.79(0.39(0.79(0.09= 0.00411

The other state sequence possibilities can be calculated the same way and are found in

Table A1

Table Al: State sequence likelihood to emit {Low, Medium, High}

State Sequences Probabilities
Good, Good, Good 0.004116
Good, Good, Bad 0.024696
Good, Rain, Good 0.000576
Good, Bad, Bad 0.012096
Bad, Good, Good 0.000098
Bad, Good, Bad 0.000588
Bad, Bad, Good 0.000048
Bad, Bad, Bad 0.001008

Totaling the likelihood of every possible state sequence emitting the series of
observations, you can find that the probability of observing the series {Low, Medium,

High} is 0.043226.
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Problem #1 and its solution can be algebraically described by the process:

Let the given HMM model be A=(A, B, i) and let the series of observations be O= {03, O,,

Os... Or.1, O1}. Problem #1 wants to find the P(O| A).

Let X= {X1, X2, X3... X1.1, X7}. Using the emission probabilities from B, we can describe the
problem again as a series of emission probabilities:
P(O[ X,4)= b, (0,)0b, (0,).. b 4 (O ) by (O;)
Define the likelihood of a state sequence as:
P(X | 4)= z(x1) Ca(x2] x1) Ca(x3| x2)..a(xT —1| xT - 2) Ca(xT -1| xT - 2)
Using the Conditional Probability, we know that
(0OnXn2)

(P(2))

P(O,X|4)=P

Which allows us to find:

OnXna)_ _(Xni)_

R P

(P(2)

PO X,A)P(X|1)= P

Solved for the needed probability:
P(O,X]4)= P(O] X,A)P(X | )
Summing over all state sequences we find that:

P(O,X[4)=> P(0,X|4)
= > P(O] X, 2)P(X | 2)

= 7, [0, (0,) Ta(x2| x1)Tb,, (0, ) .. Ca(XT =1| XT = 2) Ty _y) (O y))

X

The computation of this sum is largely inefficient and for complex applications has been
evaluated with algorithms so that higher order models are feasible. This research uses
the “forward pass” algorithm to reduce the number of multiplications from STN* down

to N°T.
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Forward Pass:
Define the probability of the partial series of observations at time t :

at(i): P(Ol’oz,"'ot X =q M)

The initial values of a are defined by

For t=1,2,3...T-1 and i=1,2...N compute:
- N -
Qy (|): Z[a(t—l)(J)a(Xi | Xj )] b(ot | Xi)
=1
Which simplifies to:
N

P(017)= 3041

i=1

Problem #2 Most Likely State Sequence:

As you can see in Table Al, the most likely probability is the state sequence: {Good,
Good, Bad}. However this chained probability is limited to system without independent
probabilities for each time, t. Using the table finds the dynamic programming solution,
but it is not necessarily the most likely solution from the HMM. The answer must be
confirmed by taking the total of each sequence with each state in each position. For
example, the probability of the first state as Good, would be the first four sequence
probabilities over the total probability of the series of observations. The state

probabilities at each time are shown in Table A2.
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Table A2: State Probabilities to emit {Low, Medium, High}

t=1 t=2 t=3
Good 0.95970018 | 0.68241336 | 0.11192338
Bad 0.04029982 | 0.31758664 | 0.88807662

This leaves us with confirmation from the HMM probabilities that the most likely state

sequence is {Good, Good, Bad}.
Problem #2 can be described algebraically as follows.

Using the results of the forward pass algorithm, we additionally need a “backward” pass
which iterates through the time series of data in the opposite direction, end to

beginning.

Let us define B, the probability of the partial observation sequence after time t

:Bt (I): P(O(t+l) ’O(t+2 T-1) | X =q, )

For t=t, t+1...T-2,T-1and i= 1, 2... N

B:(i ) can be computed recursively the same way that oy(i) was previously.
IB(T—l)(i)z 1

For t=t, t+1...T-2and i=1, 2... N
N -
Bi)= Za(x | X; ) ( (t+l))ﬁ(t+l)(])
j=0
Using both the forward and backward pass probabilities together, the most likely state

at time t can be defined by y:(i ):
Tt (i): P(Xt =G |O”1)
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This is evaluated as:

= ()80
"0 el

Training:

When parameters of the system are unknown, the accurate model for the system
becomes a more complicated problem. The HMM prediction model is reliant on an

accurate number of states and estimated probabilities.

HMMs parameter estimations are improved by two distinct methods; supervised and
unsupervised training. Using supervised training, the data is separated into two parts:
the training set and the testing set. For unsupervised training, data can be either
separated or can be left with a continuously updated model current to a moving
segment of the entire data. The model we will be using attempts to estimate data with

supervised training using the previous year as a training set of data.

To adjust or “train” a model's parameters, use the following process:

1. Initialize A= (A, B, m)

2. Compute au(i), Be(i), ve(i ), and vi(i, j )
3. Re-Estimate the model A= (A, B, )
4. Ifthe P(O] A) increases, go back to 2; otherwise, quit

The estimation process relies on random initialization values for all the parameters. In
addition to the values found from the forward and backward passes, there must be an
additional measure v:(i, j ) to estimate the likelihood for being in state g; and
transitioning to state q;.

7.(i.7)= P(x = ¢ Xy = a; 10, 2)

Written in terms of a, B, A, and B:

= ol )



Using the measures that we have found using the initial model, the parameters can be

re-estimated by the following formulas:

For the initial probabilities, t, while i=1,2... N :

T = Vl(i)

For the transition probabilities, A, while i=1,2... Nandj=1,2... N :

(Ti%(i,i)J

t=1
T-1 _
(Z Yt (I )J
t=1
For the emission probabilities, B, j=1,2...Nandk=1,2 ... M :

P ki 0

(2%(])}

a(xj | xi)=

57



APPENDIX C.

MODEL PARAMETERS



Original Parameters:
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Transition Matrix Emission Probabilities Initial Probabilities
To Observation
Model 1 Bad Good Low Medium High
From Bad 0.556423 0.443577 State.  Bad 1 o o State Bad 0.468193021
Good 0.487779 0.512221 Good 1 0 o State Good 0.531806979
To Observation
Model 2 Bad Good Low Medium High
From Bad 0.998273 0.001721 State Bad 0.120691 0.827385 0.051724 State Bad 3.83007E-05
Good 0.000172 0.999828 Good 1 o o State Good 0.999961699
To Observation
Model 3 Bad Good Low Medium High
From Bad 1 o State Bad 0 0.233889 0.711111 State Bad 1
Good 0 0 Good 0 0 0 State Good 0
To Observation
Model 4 Bad Good Low Medium High
From Bad 0.999839 0.000161 State Bad 0 0.155108 0.844892 State Bad 0.012095368
Good 0.023402 0.976398 Good 0 1] 1 State Good 0.987904632
To Observation
Model 5 Bad Good Low Medium High
From Bad 0.989782 0.010218 State Bad 0.797753 0.191011 0.011236 State Bad 3.59197375391527*A-7
Good 3.63E-05 0.999964 Good 0 1 1] State Good 0.999999641
Adjusted Parameters:
Transition Matrix Emission Probabilities Initial Probabilities
To Observation
Model 1 Bad Good Low Medium High
From Bad 0.556423207 0.443576793 State Bad 1 o o State Bad 0.468193021
Good 0.487778734 0.512221266 Good 1 o o State Good 0.531806979
To Observation
Model 2 Bad Good Low Medium High
From Bad 0.99982813 0.00017187 State Bad 1 o o State Bad 0.999961693
Good 0.00172098 0.99827902 Good 0.120650816 0.827585114 0.05172407 State Good 3.83007E-05
To Observation
Model 3 Bad Good Low Medium High
From Bad 0 o State Bad 0 0 o State Bad 0
Good o 1 Good 0 0.283888889 0.711111111 State Good 1
To Observation
Model 4 Bad Good Low Medium High
From Bad 0.999838914 0.000161036 State Bad 0 0.155108494 0.844891506 State Bad 0.012095368
Good 0.023401832 0.976598168 Good o o 1 State Good 0.987304632
To Observation
Model 5 Bad Good Low Medium High
From Bad 0.989781864 0.010218136 State. Bad 0.797752803 0.191011242 0.011235955 State Bad 3.59197375391527%-7
Good 3.63208E-05 0.999963679 Good o 1 1] State Good 0.999999641
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