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ABSTRACT 

The availability of cheaper and better electronic products as a result of the rapid 

innovation in technology in past decades has driven the production of e-waste forward. 

Printed wiring board (PWB) is a component made of one or more layers of insulating 

material with electrical conductors. The existing processes of recycling PWBs use 

pyrometallurgical or hydrometallurgical methods, which generate atmospheric pollution. 

Green recycling has obvious benefits to decrease the amount of PWBs. Green recycling 

includes two features, 1) little or zero pollution of toxic gases and heavy metals, and 2) 

efficient (quick and economical) recycling.  

The aim of this work is to investigate green thermal treatment of PWB wastes in 

laboratory scales. For small scale experiments, PWB powders were combusted and 

pyrolyzed using TG/DTA, and the emitted gases were measured using MS. The suitable 

combustion conditions: 15 oC/min heating rate, >125 ml/min gas flow rate, above 600 oC 

top temperature, and the holding time is not important for combustion process; The 

suitable pyrolysis conditions: 15-20 oC/min, >100 ml/min gas flow rate, above 900 oC top 

temperature, and longer holding time. In combustion experiments, CaCO3, NaOH, 

NaHCO3 and Na2CO3 were mixed with PWB powders with a mass ratio of 1:1 to control 

toxic gas emission like HBr. In pyrolysis experiments, additives such as CaCO3, CaO, 

Fe2O3, ZSM-5, Y-Zeolite were mixed with PWB powders with mass ratio of 5:1 to 

control toxic gas emission and enhance the pyrolysis reaction. CaCO3 was the best 

additive to efficiently control toxic emitted gas during the combustion process, and Fe2O3 

was the best choice to control toxic emitted gas and enhance the reaction speed during 

pyrolysis experiment.  
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For large scale experiments, PWB samples were pyrolyzed to solid, liquid and gas 

products in a tube furnace. Liquid products were analyzed by FTIR. For pyrolysis of 

PWB without additives, averagely there were 47% solid products, 20% liquid products 

and 33% gas products. The yield (47%) of solid products in the tube furnace was far 

more than the yield (36%) in TG/DTA experiments. The results also showed that 

pyrolyzing smaller PWB powders produced more solid products. 

 

Keywords: Printed Wire Boards (PWBs), Combustion, Pyrolysis, Green Recycling  
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1. INTRODUCTION 

1.1. BACKGROUNDS OF ELECTRONIC SCRAPS 

Production and use of electrical and electronic equipment (EEE), such as TV sets, 

computers, mobile phones and many other daily-life items, have dramatically increased 

over past decades, while the lifespan of many products becomes shorter, as shown in 

Table 1.1 [1]. The rapid innovation in technology in past decades has resulted in 

availability of cheaper and better electronic products in the market. Thus the production 

of waste electrical and electronic equipment (WEEE) is also increasing, with estimates of 

20-50 million tons per year being generated worldwide [2], and it is a problem that 

governments and policy makers have to handle [3-4]. WEEE is also called “E-wastes” or 

“E-scraps”. From the points of view of recycling and the valuable materials in the used 

EEE, “E-scrap” is more appropriate than “E-waste” since the used EEE are not real 

wastes to be dumped but had much benefit to recycle. Hence, in this thesis, the word 

“scrap” is used. 

Table 1.1.  Average Lifetime of Main Home Appliances in China [1] 

Products TV set Refrigerator Washing machine Air conditioner Personal computer 
Life time 
(years) 

8 9 9 10 
5 in 1993 & 3.5 in 

2003 

In the US, it was estimated that over 315 million computers between 1997 and 

2004 and 185 million computers between 2004 and 2007 would become obsolete [5]. In 

particular, the statistical data on January 2009 shows that every day Americans throw out 

more than 350,000 cell phones and 130,000 computers. E-scrap is the fastest-growing 

part of the U.S. garbage stream [6]. It is estimated that only 20% of the E-scrap generated 

within the US is currently collected and treated, with as much as 80% being unaccounted 

for [7]. 

E-scrap represents a complex mixture of two major material fractions: (i) metals 

(and alloys) and (ii) polymers. An example composition of PWB is as follows: 28% 

metals, 72% plastics (epoxy resins) [8], in details: C (22.5%) H (2.7%) O (5.4%) S 

(0.04%) Br (N6.5%)+ Pb, Zn, Sb, Ni, Cd, Ga, or As. Metals, particularly heavy metals, 

represent the quantitatively dominating fraction.                                    . 
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In order to recover valuable materials and to avoid simple dumping, E-scrap can 

be processed mechanically and/or thermally. Thermal treatment of E-scrap has been 

recognized as presently one of the most effective and environmentally safe recycling 

methods concerning the recovery of precious metals, e.g., in smelter units, and of energy.  

In industry, recycling of PWB scraps includes mechanical recycling that roughly 

separates different sections or parts (such as plastics, metals), and metallurgical recycling 

that recovers metals or high value materials from the products of mechanical recycling 

and controls the pollution through some exhaust gases treatment. Many mechanical 

recycling of E-scrap has been reported [9-10], thus it is not the focus of the current work. 

Hydrometallurical recycling of E-scraps has been extensively reviewed by Cui and Zhang 

[11]. 

Combustion or burning is a complex sequence of exothermic chemical reactions 

between a fuel(usually a hydrocarbon) and an oxidant accompanied by the production of 

heat or both heat and light in the form of either glow or flames, appearance of light 

flickering [12]. Combustion or incineration, as a method to dispose solid wastes and 

recover energy, has been accepted in industry. By incineration some environmentally 

hazardous organic substances are converted into less hazardous compounds. 

Disadvantages of incineration are the emission of substances escaping from fuel gas 

cleaning to air and the large amount of residues from gas cleaning and combustion. 

Pyrolysis is the chemical decomposition of organic substances by heating. 

Pyrolysis, which occurs spontaneously at high temperatures, is a special case of 

thermolysis, and is most commonly used for organic materials [13]. Thermal 

decomposition, also called thermolysis, is defined as a chemical reaction in which a 

chemical substance breaks up into at least two chemical substances when heated. The 

reaction is usually endothermic as heat is required to break chemical bonds in the 

compound undergoing decomposition. The decomposition temperature of a substance is 

the temperature at which the substance breaks up into smaller substances or into its 

constituent atoms [14].  

Pyrolysis has been recognized as an effective alternative resource recovery. 

Pyrolysis of wastes has been investigated in vacuum, molten salt, fluidized bed, rotary 

kiln, entrained, stationary and moving bed reactors. The main constituent in PWBs scraps 
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is epoxy resin that is produced originally from crude oil and can be thermally cracked 

into fuels or petrochemicals. Thermal treatment of PWBs were reported using DC Arc 

Plasma furnace [15], fixed bed reactor [16]. PWBs scraps also represent a significant 

quantity of energy in terms of the energy consumed in processing petroleum. Recover 

part of this energy content in a form with the highest possible value, i.e., fuel oil, would 

be economically and environmentally attractive. However, there is a limited Br content in 

product oil and emissions. 

Nevertheless, one of the most relevant drawbacks in dealing with thermal 

treatment of PWB scraps is the likely production of super-toxic halogenated 

dibenzodioxins and dibenzofurans from the bromine containing structures. During 

metallurgical recycling, the organic constituents are destroyed and toxic emissions are 

addressed via afterburners. Uncontrollable incineration of waste PWBs also produces 

potentially hazardous byproducts (including mainly dioxins, furans, polybrominated 

organic pollutants and polycyclic aromatic hydrocarbons) caused by burning BFR, epoxy 

resins and plastics. 

The main drawback of the thermal treatment of E-scrap is the toxic products. 

Pollutants from PWB incineration include heavy metals, organic compounds, particulate 

and acid gas (Br2, Cl2, HBr, HCl, HCN, NH3). The open burning of PWBs stripped of 

metal parts can produce toxic fumes and ashes containing polycyclic aromatic 

hydrocarbons and polychlorinated biphenyls [5], and induced emission of heavy metals 

as well [5, 17-18]. The volatile heavy metals are also a problem [19]. For the 

hydrometallurgical process, the leaching solution used in this process will enter into the 

environment like the water and air system. About 70% of the heavy metals (mercury and 

cadmium) in US landfills come from electronic wastes. Consumer electronics contribute 

40% of the lead in landfills. These toxins can cause brain damage, allergic reactions and 

cancer. As an example, at Guiyu, China, many tons of E-scrap materials and process 

residues were dumped into workshops, yards, roadsides, open fields, irrigation canals, 

riverbanks, ponds, and rivers. It was reported that the blood lead levels of children in 

Guiyu ranged from 4.40 to 32.67 μg/dL with a mean of 15.3 μg/dL, exceeding the 

“elevated blood lead level” of 10 μg/dL in children [20]. PWBs incineration plants need 

contribute significantly to the annual emissions of cadmium and mercury. In addition, 
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heavy metals not emitted into the atmosphere are transferred to slag and exhaust gas 

residues and can reenter the environment on disposal.  

Green recycling includes two features 1) Little or zero pollution (toxic gases and 

heavy metals) and 2) Efficient (quick, economical and low energy consumption) for 

recycling. The ideal solution to PWB scraps is green recycling because 1) there is urgent 

need for recycling of E-scraps due to its big amount and quick increasing; 2) E-scraps, 

especially the plastic and polymer components are the new potential energy source and 

renewable materials by the conversion of waste plastics into fuel through pyrolysis; 3) 

there is a economic motivation for recycling since PWB contains lots of precious metals; 

and 4). toxic components, such as polycarbonate materials, bromine and chlorine, and 

heavy metals like lead, cadmium and mercury, have to be controlled during the recycling 

of E-scraps.  

1.2. BRIEF INTRODUCTION OF THE CURRENT STUDY  

The current work is to perform green thermal treatment of PWB wastes, and to 

find proper additives to 1) control the emission of toxic gases such as HBr and C6H6, and 

2) speed up the thermal reactions, and to find the proper parameters for the combustion 

and pyrolysis process of PWBs, such as heating rate, gas flow rate, top temperature, and 

holding time at top temperature.  

In this thesis, a brief literature review will be presented in the second chapter. The 

third is about the small scale combustion experiment of PWB powders in TG-DTA-MS 

furnaces. The fourth chapter will introduce the small scale pyrolysis experiments. Large 

scale pyrolysis experiments will be given in the fifth chapter. The last chapter will be the 

final conclusions of the current thesis.  
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2. LITERATURE REVIEW 

2.1. LITERATURE REVIEW WORK IN PAST 10 YEARS 

In the past 10 years, there have been many literature reviews on the recycling of 

E-scraps, as summarized in Table 2.1. The most extensive ones are those by Cui and 

Forssberg [10] on the mechanical recycling of E-scraps, and by Cui and Zhang [11] on 

the recovery of metals from E-scraps. However, the state of the art in the combustion and 

pyrolysis treatment for the plastics and polymers in E-scraps is still not well reviewed. 

Table 2.1.  Literature Reviews on the Recycling of E-scraps in Recent Years 
Authors Article name and main purpose Pages Year Ref. 

Sum 
Title: The recovery of metals from electronic scrap 

53-61 1991 [21] Purpose: Overview pyromentallurgical and hydrometallurgical 
methods to recycle metals from E-scraps 

Menad et al. 

Title: Combustion of Plastics Contained in Electric and 
Electronic Scrap 

65-85 1998 [22] 
Purpose: Overview combustion methods to recycle plastics 
contained in electric and electronic scrap 

Gao et al. 

Title: Printed circuit board recycling: a state-of-art survey 

234-241 2002 [23] 
Purpose: Review the current situation in PWB recycling field 
as a reference and guideline for research and implementation. 
Both industrial applied methods and ongoing laboratory 
researches are summarized. 

Goosey et al. 

Title: Recycling technologies for the treatment of end of life 
printed circuit boards (PCBs) 

33-37 2003 [24] 
Purpose: Review technologies and processes to recycle 
materials from end of life PWBs. 

Cui and 
Forssberg 

Title: Mechanical recycling of waste electric and electronic 
equipment: a review 243-263 2003 [10] 
Purpose: Review mechanical methods of recycling E-scrap. 

Levchik et al. 

Title: Thermal decomposition, combustion and flame-
retardancy of epoxy resins—a review of the recent literature 1901-

1929 
2004 [25] 

Purpose: Overview the recent literature on combustion and 
flame-retardancy of epoxy resins. 

Shuey et al. 
Title: Review of pyrometallurgical treatment of electronic 
scrap 67-70 2004 [26] 
Purpose: A survey of pyrometallurgical processes of E-scrap. 

Kang et al. 

Title: Electronic waste recycling : A review of U.S. 
infrastructure and technology options 

368-400 2005 [27] 
Purpose: Various recycling technologies for the glass, plastics, 
and metals from E-scrap.  

Hilty 
Title: Electronic waste—an emerging risk? 

431-435 2005 [28] Purpose: Overview the development of electronic technology 
and the risk of E-scrap. 
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Table 2.1.  (Continued) Literature Reviews on the Recycling of E-scraps in Recent Years  

Authors Article name and main purpose Pages Year Ref. 

Wong et al. 

Title: Export of toxic chemicals – A review of the case of 
uncontrolled electronic-waste recycling. 

131-140 2007 [29] 
Purpose: Review the level of persistent organic pollutants such 
as PBDEs, PCDD/Fs, PAHs, polychlorinated biphenyls and 
heavy metals/metalloid concentrations of different 
environmental media at Guiyu, China, an intensive recycling 
site of E-scrap. 

Babu et al. 

Title: Electrical and electronic waste: a global environmental 
problem 

307-318 2007 [30] Purpose: Overview of E-scrap recycling, including the source, 
type of E-scrap, strategies and technologies to recover 
materials. 

Gupta 

Title: E-waste recycling and health effects: A review 

 2007 [31] Purpose: Overview the effect of E-scrap recycling on 
environment and human healthy.  

Susan 

Title: Evaluating Electronic Waste Recycling Systems: The 
Influence of Physical Architecture on System Performance. 

 2008 [32] 
Purpose: Existing E-scrap systems operating in different 
countries are examined for correlations between the 
environmental and financial performance of existing systems 
with respect to both the context and the architectural options of 
those systems. 

Huang et al. 

Title: Recycling of waste printed circuit boards: A review of 
current technologies and treatment status in China. 

339-408 2009 [33] 
Purpose: Current status of waste PWBs mechanical treatment 
in China technologies. 

Cui and 
Zhang 

Title: Metallurgical recovery of metals from electronic waste: 
A review 

228-263 2008 [11] Purpose: Recover precious metals from E-scraps by 
pyrometallurgical processing, hydrometallurgical processing, 
and biometallurgical processing. 

Guo et al. 

Title: Recycling of non-metallic fractions from waste printed 
circuit boards: A review 

567-590 2009 [34] Purpose: Recover non-metallic fractions from the PWBs using 
physical methods. Pyrolysis, gasification, supercritical fluid 
depolymerization and hydrogenolytic degradation were also 
slightly reviewed. 

Guo et al. 

Title: Heavy metal contamination from electronic waste 
recycling at Guiyu, Southeastern China. 

1617-
1626 

2009 [35] Purpose: The effect of E-scrap recycling activities at Guiyu, 
China on heavy metal pollution in the surrounding waterway 
system. 

Yu et al. 

Title: Review and prospects of recycling methods for waste 
printed circuit boards. 

1-5 2009 [36] 

Purpose: Comparing different technologies available for PWBs 
recycling and discovering the limitations of different recycling 
methods, ways to overcome these limitations, and potential 
combinations of these methods so as to realize more 
economically sound and environmentally friendly recycling of 
PWBs 
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2.2. MATERIALS COMPOSITION OF PWBS  

PWB is a platform upon which microelectronic components such as 

semiconductor chips and capacitors are mounted. It is also called printed circuit board 

(PCB). However, since PCB also stand for a well-known toxic chemical Polychlorinated 

Biphenyls, PWB is used in this work. PWB is a component made of one or more layers 

of insulating material and electrical conductors. PWB can be either rigid, flexible, or a 

combination of both. It consists of three basic parts: a insulator substrate or laminate, 

conductive circuits printed on or inside the substrate, and mounted components. PWBs 

are estimated to be ~3wt% of the total electronic appliance and are the core components 

of many electronic systems installed in martial and demotic electronic appliances [37], as 

shown in Figure 2.1. PWBs consist ~72% of organic substance and ~28% of metals. 
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Figure 2.1.  Material Composition of E-scraps [38] 

Metals in PWBs include Cu, Al, Sn, etc. Depending on the different application 

and design of the PWB, various metals may be used in the manufacturing process, 

including precious metals such as copper, lead, silver, gold, platinum, and toxic metals 

such as mercury, cadmium, barium, gallium, cadmium, lead, bismuth, as shown in Table 

2.2 [39]. These metals are from the electrical components and the solder used to attach 

them to the boards. Many of these metals have negative impacts on the environment and 

human health [37, 40-42]. The purity of precious metals in PWBs is more than 10 times 

higher than that of rich-content minerals [4, 43]. The main motivation to recycle the used 

PWBs is the value of the precious metals in them [11]. 
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In all E-scraps, plastics and polymers account for approximately 15-20% in mass 

percentage [38]. However, in the PWBs, the organic substances are approximately 72%. 

The main composition of organic substances in PWBs is ethoxyline resin bromide or 

ethoxyline resin chlorinate. Many PWBs contain polymer films such as polyimides, 

polyethylene terephthalate, polyethylene naphthalate (less frequently), and glass fiber 

composites bonded with a thermoset resin. Typical density of a raw PWB is 2.15 g/cm3 

(an average value with no components) [44]. An example chemical structure of PWBs is 

shown in Figure 2.2. 

Table 2.2.  Main Elements within PWBs [39] 

Metal wt% in PWB Annual tonnage worldwide 
Cu 9.7 97,000 
Fe 9.2 92,000 
Al 5.8 58,000 
Pb 2.24 22,400 
Sn 2.15 21,500 
Zn 1.16 11,600 
Ni 0.69 6,900 
Sb 0.35 3,500 
Cr 0.24 2,400 
Ag 0.06 600 
Cr 0.052 520 
Au 0.023 230 
Cd 0.014 140 
Pd 0.01 100 
Be 0.003 30 
Hg 0.0009 9 
Br 6.5 65,000 
Cl 0.24 2,400 

 

Figure 2.2.  An Example Chemical Structure of PWBs [45] 

Common resins include difunctional epoxy resins such as bisphenol A, 

multifunctional epoxy resins such as phenol and creosol based epoxy novolacs, BT epoxy 

blends, cyanate esters, and polyimides. The most commonly used substrate in PWBs is a 
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glass fiber reinforced (fiberglass) epoxy resin with a copper foil bonded on to one or both 

sides [46]. The most common hardener forming the cross-linking required to create a 

thermoset plastic is dicyanodiamide. Sometimes diaminodiphenyl sulfone and 

diaminodiphenyl methane are also used [4]. Epoxy resins based on bisphenol A and 

diglycidyl ether of bisphenol A are high quality materials, and are widely used in 

advanced technological applications. The chemical structure of epoxy resin is shown in 

Figure 2.3. 

 

 
Figure 2.3.  Chemical Structure of Epoxy Resin [47] 

Flame retardant is one of the key parts of PWBs. Today, there are more than 175 

chemicals classified as flame retardants. The four major groups are inorganic, 

halogenated organic, organophosphorus and nitrogen-based flame retardants [22, 48], 

which account for 50%, 25%, 20% and >5% of the annual production, respectively [48]. 

Brominated Flame Retardants (BFRs) are the major type of chemical flame retardants, 

and are very effective in plastics and textile applications [49]. Content of BFRs in 

different polymers are shown in Table 2.3. 

The main toxic substances in PWBs are BFR such as TBBPA and PBDEs and 

heavy metals such as lead and mercury [39, 50]. Researchers have claimed that BFRs, 

cadmium, chloro-paraffins, chromium, copper, lead, mercury, nickel, PWBs, and silver 

compounds are the main toxic substances detected in PWBs [22, 51]. They can cause 

serious environmental problems if not properly disposed. The materials containing BFR 

are precursors for polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) [33, 

52-53]. At the open burning sites in Ghana, some metals were present at concentrations 

over one hundred times typical background levels for soils, including lead, a highly toxic 

metal [2]. High levels of other toxic metals, including cadmium and antimony, were also 
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present. Numerous classes of organic chemicals were also present in one or more of the 

samples, including many halogenated (chlorinated or brominated) chemicals. 

The toxic effects of heavy metals on wildlife and humans are well known and 

consist of neurological problems, mental retardation, kidney damage, or even death [54]. 

Of many toxic heavy metals, lead is the most widely used in electronic devices for 

various purposes, resulting in a variety of health hazards due to environmental 

contamination. Lead enters biological systems via food, water, air, and soil. Children are 

particularly vulnerable to lead poisoning— more so than adults because they absorb more 

lead from their environments. The U.S. Centers for Disease Control and Prevention 

defined elevated blood lead levels as those ≥10 μg/dL in children ≤6 years of age [55].  

Table 2.3.  Content of BFRs in Different Polymers 

Polymer Flame retardant Structure 
Bromine 

content (%) 
Ref. 

ABS TBBPA 8.6±0.4 [56] 

Polystyrene PS 
TBBPA-bis-(2,3-

dibromopropylether) 

 

3.2 [56] 

ABS/polycarbonate
(ABS/PC) 

TBBPA-
bisallylether(TBBPA-ae) 

 

4.2 [56] 

ABS 
TBBPA-carbonatoligomer 
(TBBPA-co); n=10,….,50 

 

10.2 [56] 

ABS 
1,2-

bis(Tribromophenoxy)-
ethane (TBPE) 

 

10.6 [57] 

High-impact 
polystyrene (PS-

HI) 

Hexabromocyclododecan
e (HBCD) 

6.5 [58] 

SAPS-HI 
Decabromodiphenylether 

(DECA) 
7.6 [59] 

PWBs 
Polybrominated diphenyl 

ethers (PBDEs) 
 

m+n=1, 2.., 
10 

[60] 
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In certain developing and transition countries these difficulties are amplified by a 

lack of regulations and/or lax enforcement in the recycling and disposal sector [1]. 

Combined with the existence of a very creative and low-income informal sector, the lack 

permits a profitable E-scrap recycling business thriving on uncontrolled and risky low-

cost techniques (examples are shown in Figure 2.4 [1]). Most of the participants in this 

sector are not aware of environmental and health risks and either do not know better 

practices or have no access to investment capital to finance even profitable improvements 

or implement safety measures.  

 
Figure 2.4.  An Example of Low Quality Extraction of Copper from PWBs [1] 

2.3. GENERAL COMBUSTION OF PWBS 

Combustion is a gas phase reaction involving a fuel source and oxygen. As 

illustrated in Figure 2.5 [48], four steps involved in the combustion process are 

preheating, volatilization/decomposition, combustion and propagation. The second step is 

also called pyrolysis, and it is an endothermic reaction with the need of input heat. The 

decomposed liquid and combustible gases then react with the oxygen in the air—

combustion process. The combustion is an exothermic process with no need of heat input 

to ignite. 
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Figure 2.5.  The Four Steps involved in the Combustion Process [48] 

The products of combustion include not only CO2 and H2O, but also other gases 

and evaporated heavy metals. It was reported that, in best condition, copper was retained 

less than 5 min of residence in the incineration chamber of a fluidized bed incinerator.[61] 

In-house study on the open burning of (copper) cable wires showed extremely high levels 

of PCDDs and PBDDs and furans (PCDFs/PBDFs), resulting in 12,419 mg toxic 

equivalents per kilogram of waste input which were about three orders of magnitude 

higher than those for the open burning of household waste [54]. The open burning of 

computer casings and circuit boards stripped of metal parts can produce toxic fumes and 

ashes containing PAHs. Polychlorinated biphenyls (PCBs), which have been widely used 

as plasticizers, as coolants and lubricants in transformers and capacitors, and as hydraulic 

and heat exchange fluids, may also be present in the E-scrap stream [54].  

Severe chemical contaminations were found in ash contaminated soil samples 

from open burning sites of e-scraps, as well as in sediment from a shallow lagoon, in 

Ghana [2]. Most samples contained numerous toxic and persistent organic chemical 

pollutants, as well as very high levels of many toxic metals, the majority of which are 

either known to be used in electronic devices, or are likely to be formed during the open 

burning of materials used in such devices. The nature and extent of chemical 

contamination found at these sites in Ghana [2] were similar to those previously reported 

for E-scrap open burning sites in China, India and Russia. 
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2.3.1. Combustion for Energy Recovery.  Energy recovery is a key option for 

waste plastics, as their basic raw material, is derived from oil. Plastics have high energy 

potential. The heat value of plastics like PP and PET is even higher than the fuel, as 

shown in Figure 2.6 [22]. PS is similar to the fuel in heat value. Moreover, during the 

complete combustion of organic materials simple molecules such as CO2, H2O, N2, SO2 

and hydrogen halide will form. The heat energy recovery from plastics has been studied 

for industries such as electric power making, iron making, and steam supplying. While in 

the past, there were much oppositions ― justified by concerns around the poor 

environmental performance of old incinerators — today energy recovery is more widely 

required as an environmentally sound option. 

Incinerating and combusting the plastic directly in order to utilize the heat energy 

released, and producing steam or electricity  have received increased attention nowadays, 

since conventional energy sources are declining sharply. The use of incineration, together 

with the associated energy recovery, plays a complementary role for recycling and can 

reduce the amount of PWBs going to landfill by as much as 70%. Plastic contains as 

much energy as petroleum and natural gas, and much more energy than other types of 

garbage since plastics are made from fossil fuels. For instance, the PVC found in PWBs, 

cables and connectors holds in store 140kJ/mol and 290kJ/mol energy respectively, as 

shown in Table 2.4. 
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Figure 2.6.  Heat Values of Fuel and Different Plastics [22] 
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Table 2.4.  Kinetic Data of the Combustion of Plastics in E-scraps 

Type of resin 
Decomposition temperature 

range (oC) 

Maximum rate of 
decomposition temperature 

(oC) 

Store energy 
(kJ/mol) 

Ref. 

PA 6 310-450 415 211 

[62] 

PS 320-415 355 172 

PVC 
210-350(in PWBs) 250-280(in PWBs) 140 

350-500(in cable and 
connectors) 

425(in cable and connectors) 290 

HDPE 340-500 475 262 

PP 340-460 425 190 

PET 360-410 400 322.3-338.98 [63] 

Epoxy resins 280-500 375 230.4 [64] 
TBBA 180-270 250 179.1 [65] 

Waste plastics are particularly interesting due to their high caloric value and the 

gate fee; hence the recycling industry is willing to invest in this field [66-68]. As an 

alternative to oil and pulverized coal, the injection of high caloric plastics into the tuyere 

zone in blast furnaces has been accomplished by several ironmaking companies, as 

shown in Table 2.5 [66-67, 69-70]. During the process, reducing gas (CO+H2) rises 

through the raw materials in the furnace and reacts with the iron ore. Following the 

reduction reaction, the gas is recovered at the top of the furnace and reused as fuel. Waste 

plastics represent 5% of the fuel source, ~25 kg per ton of hot metal, out of a total fuel 

consumption of ~500 kg/thm. Recently, it was proposed that simultaneous injection of 

waste plastics with coal in innovative oxygen blast furnaces could provide up to 25% 

reduction of carbon emissions [71].  

Table 2.5.  Operational Practice of Injection of Waste Plastics in Industry [66-67, 69-70] 

 

Industry Starting year 
Stahlwerke Bremen GmbH, Arcelor Group, Bremen/Germany 1995 

Keihin Works, NKK Corp., Kawasaki/Japan 1996 
EKO Stahl GmbH, Arcelor Group, Eisenhüttenstadt 1997 
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2.3.2. Combustion/Incineration for Waste Treatment.  Incineration is the 

main industrial process to treat E-scraps. As an example, the Karlsruhe test incinerator 

TAMARA shown in Figure 2.7, is a mass combustor designed for a throughput of 150-

300kg/h of preconditioned and a maximum flue gas volume flow of 1000Nm3/h, mainly 

shredded wastes [72]. The maximum thermal capacity is approximately 0.5MW.  

 
Figure 2.7.  TAMARA Pilot Plant for Municipal Solid Waste Combustion [72] 

Chen et al. [73] investigated the kinetics of thermal and oxidative decomposition 

of PWBs under various heating rates (5, 10, 15, 20, and 25 oC/min) and oxygen 

concentrations (5, 10, and 15%) in the nitrogen-oxygen atmosphere by means of TG 

measurements. Zuo and Zhang [43] used TG/DTA-MS to combust PWBs samples at 10, 

15, 20, 25 and 30 oC/min heating rate under synthetic air (oxygen 20% and nitrogen 80%) 

with 50ml/min flow rate. Zheng et al. [74] adopted a novel fluidized bed to recycle glass 

fibers from nonmetal materials of waste PWBs. The thermoset resins in the nonmetal 

materials are decomposed in the temperature range from 400 oC to 600 oC. Sakai et al. 

[75] investigated the combustion behavior of BFRs in a rotary kiln furnace with a 

diameter of 170mm and a length of 860 mm, with a feed capacity of 0.5±1.0 kg/h.  
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2.4. PYROLYSIS OF PWBS 

2.4.1. Introduction of Pyrolysis.  The reuse of plastic wastes from the 

viewpoint of energy diversification has been paid much attention. As the thermal 

degradation products of polymers are distributed in a wide range of carbon numbers, the 

utility value of the products recovered is very low, hence, upgrading will be required for 

their efficient utilization. On the other hand, a selective recovery of useful fractions is 

possible in catalytic degradation and the product distribution is controlled more readily 

than the case of thermal degradation. Thus, the catalytic procedures are superior to 

thermal methods provided that the products are intended for resources [76].  

Pyrolysis is one of the best methods for treating complex mixtures of waste 

polymers and to recover the material and energy content. The process consists of thermal 

decomposition at moderate temperatures in total absence or small amount of oxygen in 

which the structures of polymers break down into smaller intermediate products [77]. 

These can be used as fuel or raw materials for petrochemical industry while the additives 

to the polymer materials (e.g. metals, inorganic particulate fillers and reinforcements) 

remain in the residue. 

Pyrolytic recovery of the organic materials contents seems to be an adequate way 

to utilize electronic waste. Because the majority of macromolecular organic substances 

decompose to volatile compounds at elevated temperatures, while metals, inorganic 

fillers and supports generally remain unchanged [78]. Pyrolysis of the organic flame 

retardants leads to volatile halogenated compounds that become components of pyrolysis 

gas and/or oil. Dehalogenation of the pyrolysis product of electronic scraps is essential to 

make it commercially acceptable. It would be obviously the most advantageous solution 

as pyrolysis and dehalogenation are carried out simultaneously. 

Polymers such as PVC and ABS with flame retardant used in polymer materials 

contain heteroatoms such as chlorine, nitrogen, and bromine that remain as organic 

compounds in pyrolysis oils during thermal degradation and also produce acids or toxic 

gases such as HCl, HBr, HCN, NH3 or polyhalogenated dibenzodioxins and 

dibenzofurans [77, 79], whose presence in pyrolysis oils from polymer waste is not 

desired. Therefore, the amounts of heteroatoms in pyrolysis oils have to be decreased as 

much as possible. 
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One possible method of recycling PWBs and recovering both the organic and 

non-organic parts is pyrolysis. The pyrolysis process, provided that the temperature is 

high enough, will melt the solder used to attach the electrical components to the PWBs 

[4]. The combination of the removal and recovery of the organic fraction of PWBs and 

the removal of the solder should enhance the separation of the metal components from 

the organic material. Although a significant amount of research into the pyrolysis of 

PWB wastes have been reported, most of the works have been carried out using 

analytical pyrolysis techniques or very small batch reactors [78, 80-83]. Also, most of the 

works for the pyrolysis of PWBs haves concentrated on the composition of the organic 

products, particularly the brominated organics. 

Pyrolysis of organic materials contained in waste PWBs leads to the formation of 

gases, oils, and chars which can be used as chemical feedstock or fuels [4, 33]. Reported 

pyrolysis investigations are  at experimental stage and have been carried out in vacuum, 

molten salt, fluidized bed, rotary kiln, entrained, stationary, and moving bed reactors [84]. 

Comparing to the incineration and combustion of PWBs, the pyrolysis process has 

several characteristics: [44, 62, 85] 1). Converting the organic solid substance into fuel 

gas, fuel oil and carbon-black as storage energy; 2) Emitting toxic substances such as 

sulfur, bromine and heavy metals in wastes; and 3) Keeping metals from being oxidized. 

2.4.2. Vacuum Pyrolysis of PWBs.  The vacuum pyrolysis method, with the 

sample being pyrolysed in a closed furnace with vacuum, has been used in recycling 

waste car tires.  

The vacuum could help reduce the apparent activation energy of the PWBs 

pyrolysis, and increase the volatile of pyrolytic products and decrease the secondary 

pyrolytic reactions [86-87]. The vacuum is beneficial to raise the yield of liquid products. 

Results from the vacuum pyrolysis indicates a liquid oil yield of 20–36%, a gas yield of 

2–35% and a solid yield of approximately 40-60% were obtained, as shown in Table 2.6.  

Heating rate is a significant factor affecting the yield of products, as shown in 

Table 2.6. At a certain top temperature under a certain vacuum, the biggest yield of liquid 

products will be at about 15-20 oC/min. At a lower heating rate the PWBs powders will 

reside at a certain temperature for a longer time so that the secondary pyrolysis reaction 

will take place. Some week oxygen-bridge bond and side-chain in benzene ring are easy 
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to break to form free radical to decrease the oil yield and increase volatiles [88]. The 

terminal temperature can also greatly affect the yield of pyrolysis products. Generally, at 

same heating rate under same vacuum, lower terminal temperature will have a lower oil 

yield.  

Table 2.6.  The Yield of Oil/Gas from Different Vacuum Pyrolysis Experiments 

Yield of / product, wt%. 
Experimental conditions Year Ref. 

oil gas 

25.33 8.76 10 oC/min, 30 min, 500 oC, Vacuum 2006 [86] 

21 2 

10 oC/min, 30 min, Vacuum, 5 kPa 

200 oC 

2008 [89] 

31 2.5 300 oC 

36 2.5 400oC 

35 3 500 oC 
34.5 3 600 oC 

35 2.5 700 oC 

34.37 3.05 

20 oC/min, 30 min, 400 oC 

Vacuum, 3 kPa 

34.67 2.25 Vacuum, 10 kPa 
35.05 2.14 Vacuum, 15 kPa 

34.36 2.24 Vacuum, 20 kPa 

34.25 2.29 Vacuum, 25 kPa 

34.05 2.34 Vacuum, 30 kPa 
32.30 - 

30 min, 400 oC Vacuum, 15 kPa 

5 oC/min 

34.30 - 10 oC/min 
34.32 - 15 oC/min 
34.37 - 20 oC/min 

33.80 - 25 oC/min 
33.65 - 30 oC/min 
34.37 30.52 

15-20 oC/min, 30 min 

300 oC Vacuum, 5 kPa   

2009 [90] 
35.05 34.92 400 oC Vacuum, 15 kPa   
34.05 34.78 500 oC Vacuum, 30 kPa   

26.32 34.38 600 oC Atmosphere 

Table 2.6 shows that the oil yield is 35% at the temperature of 400-550 oC and 20-

30% at the temperature of 200-300 oC. With the increase of the terminal temperature the 

high molecular polymer like epoxy resin will be broken to some long bond compound so 

that more oil products will be obtained. However, if the terminal temperature is too high, 

secondary pyrolysis reaction of pyrolysis gases will happen to break the long bond to 

short bond, the amount of gaseous products will increase but not oil products [88-89].  

Peng et al. [86] investigated the pyrolysis of waste PWBs in a bench-scale 

pyrolysis reactor under low vacuum and nitrogen. Experimental results showed that the 
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apparent activation energy under vacuum became smaller than that in nitrogen, vacuum 

helped to increase the volatility of pyrolysis products, and weakened the secondary 

reaction, so the liquid yield under vacuum was increased at the expense of gas and solid 

yields. The increase of the degree of vacuum could help to obtain the liquid products. 

However, it does not mean that higher degree of vacuum has better value because too 

high vacuum degree does not only increase the asphalt fraction in liquid products but also 

decrease the commercial value of products. Wu et al. [89] investigated the pyrolysis of 

epoxy resin in waste PWBs in a pyrolysis oven. The PWB samples were heated to 

different terminal temperature (200-700 oC) at different heating rate (5-30 oC/min) for 

different holding time (10-150 min). The experimental results showed that the optimal 

condition was obtained as follows: pyrolysis terminal temperature at 400-550 oC, heating 

rate of 15-20 oC/ min, pressure of 15 kPa, holding time of 30min, as showed in Table 2.6. 

Hall et al. [91] recycled the organic compounds and metals from scrap PWBs by 

pyrolysing in a fixed bed at 800 oC, and found that different gases release at different 

temperature from the mobile phone boards. Qiu et al. [90] pyrolysed waste PWBs in 

vacuum oven and investigated the products of liquid, solid and gas yield by FT-IR, GC-

MS, and SEM. The results showed that the density and component of the liquid changes 

with different pressure. The oils mainly consist of phenol, substituted phenols, bisphenol-

A and bromides of them, as showed in Table 2.6.  

2.4.3. Atmospheric Inert Pyrolysis of PWBs.  The waste PWBs can be 

pyrolysed in an inert gas (such as N2, Ar, etc.) under atmospheric pressure, which mainly 

uses fixed bed as a reactor. The inert gas as a carrier could push the pyrolytic gas evolved 

from the pyrolysis process at a certain flow rate and prevent the secondary pyrolysis 

reaction from taking place. The yields of pyrolysis products (oil and gas) are listed in 

Table 2.7. 

The main pyrolysis process takes place between 350-500 oC. As temperature 

increases above 600, there is little change in the yield of products. The flow rate of 

nitrogen has a certain effect on the mass loss. Higher flow rate could take the pyrolysis 

gas away more quickly, thus the secondary reaction is hard to happen so the gas products 

decrease. The pyro-oil obtained during the pyrolysis process is a mixture of organic 

compounds (usually termed oils), and also contains some aqueous products. Water and 
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hydrocarbons by-product could either be a product formed during the process (derived 

from the oxygen-containing functional groups, –COO–, OH–, –COOH–, etc.) or due to 

the original moisture in the samples, as shown in Tables 2.8 and 2.9 [92-93].  

Table 2.7.  Yield of oil/gas in Vacuum and Inert Atmosphere Pyrolysis Experiments 
Yield of product, wt%. 

Experimental condition Year Ref. 
oil gas 

40.6 24.9 
5oC/min, 30min, 540oC, Nitrogen, 100ml/min. 

Fixed-bed reactor 
2000 [19] 

 17-23/13-23 155oC/min, 30min, 1000oC, Nitrogen 100ml/min. 2003 [94] 

 
49/31(TBB

A) 
10oC/min, 600oC, Nitrogen 60ml/min 2004 [95] 

0 0.33 

15oC/min, 30min, Nitrogen 
200ml/min 

200oC 

2005, 2002 
[96-
97] 

14.99 20.22 300oC 
19.42 14.79 400oC 
20.79 14.99 600oC 
19.63 19.86 800oC 

22.47 10.75 10oC/min, 30min, 500oC, Nitrogen 2006 [86] 

22.7 4.7(Computer PWBs) 

10oC/min, 135min, 800oC, Nitrogen, Fixed-
bed reactor 

2007 [4] 
28.5 

6.5(Television 
PWBs) 

15.2 
2.3(mobile phone 

PWBs) 
28.29 35.94 20oC/min, 900oC, Nitrogen, 10L/h-15L/h 2007 [98] 

9.85±0.38 5.21±1.55 

10oC/min, 30min, Nitrogen 
200ml/min, A tubular oven, 

300oC 

2008 [99] 

13.56±1.4
6 

6.90±2.00 400oC 

12.93±1.5
5 

9.06±0.23 500oC 

13.18±1.5
5 

9.13±0.80 600oC 

13.90±1.5
5 

8.87±1.19 700oC 

16.2±1.1 7.3±0.7 15oC/min, 30min, 500oC, Nitrogen 1000ml/min 2008 [100] 
7.9, 14.4 - 

10oC/min, Nitrogen, 0.19m/s, 
0.48m/s, Fluidized bed reactors 

400oC 

2009 [101] 
11.7, 15.2 - 450oC 
15.1, 20.1 - 500oC 
17.8, 23.5 - 550oC 
18.1, 24.5 - 600oC 

18 19 800oC, Nitrogen, 20min, Muffle furnace 2009 [102] 
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Table 2.8.  Major Products in the Pyrolysis Oil Resulting from the Pyrolysis of PWBs 

The main 
products in the oil 

Composition 
percentage, % 

The main products 
in the oil 

Composition 
percentage, 

% 

Experimental 
information 

Ref. 

Phenol 25.23/10.06/38.49 p-Hydroxydiphenyl 1.47/0.08/2.87 
10oC/min, 800oC 

Nitrogen 
 

Sample:  
computer 
television 

mobile phone 
 

Quantify fraction 
of the pyr-olysis 

oil: 
Computer 42.1% 
Television 21.4% 

Mobile phone 
60.7% 

[4] 

2-Methylphenol 1.04/1.60/1.07 Bisphenol A 1.38/0.11/0.67 

4-Methylphenol 1.45/2.20/0.31 Triphenyl phosphate 0.92/4.25/0.09 

2,6-Dimethylphenol 0.27/0.50/0.15 o-Cresyl phosphate 0.55/0.00/0.00 

2-Ethylphenol 0.22/0.20/0.24 m-Cresyl phosphate 0.10/0.00/0.00 

4-Ethylphenol 0.47/0.26/0.61 2,4-Dibromophenol 0.03/0.35/0.01 

4-(1-Methylethyl) 
phenol 

8.61/1.26/16.11 2,6-Dibromophenol 0.34/0.56/0.10 

TBBPA 0.0006/0.0013/0.00   

Acetonitrile 2.48 2H-1-benzopyran-3ol 1.98 

10oC/min, 500oC 
Vacuum, 10 kPa 
Nitrogen gas was 

pumped in the 
reactor for 20min. 

[86] 

Phenol 46.37 Dibromophenol 0.93 

Methylphenol 0.84 Dibenzofurn 0.63 

2-bromophenol 1.45 p-hydroxybiphenyl 4.06 

Ethylphenol 0.58 1,3-dibromo-propanol 0.78 

4-(1-methylethyl) 
phenol 

12.73 
Bis(4-aminophenyl)-
metylene 

0.21 

Isoquinoline 0.11 Biphenol A 21.07 

Bromobiphenol A 0.57 
2,6-dibrom-4-(1,1-
dimethylethyl)-phenol 

4.05 

Phenol 1.0 bromobisphenol A 2.3 

10oC/min, 600oC 
 

Nitrogen, 
60ml/min 

[95] 

2-bromophenol 2.0 
dibromobisphenol A 
(1) 

10.5 

4-bromophenol 3.3 
dibromobisphenol A 
(2) 

2.1 

2,4-dibromophenol 6.9 tribromobisphenol A 24.7 

2,6-dibromophenol 8.7 Others 6.6 

2,4,6-
tribromophenol 

8.1 TBBA 23.8 

Phenol 49.4917 2,4-dimethylphenol 6.3818 Microwave 700W 
 

The pyrolysis 
process was 
reacted in a 

microwave reactor 

[103] 
2-Methylphenol 13.2910 2,6-dimethylphenol 1.4397 

Methylphenol 13.7923 Isopropylphenol 5.2259 

2,3-dimethylphenol 3.3293   
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Table 2.9.  Major Products in the Pyrolysis Gas Resulting from the Pyrolysis of PWBs 

The main 
products in the 

gas 

Composition 
percentage, 

% 

The main 
products in the 

gas 

Composition 
percentage, % 

Experimental 
condition 

Ref. 

H2 4.6/3.2/5.7 Propene 2/1.1/2.7 
10oC/min, 800oC 
Nitrogen 
Sample: 
 computer 
television 
mobile phone 
 
Quantify fraction of 
the pyrolysis oil: 
Computer 42.1% 
Television 21.4% 
Mobile phone 60.7% 

[4] 

CO 27/21.8/36.1 Propane 1/1.6/0.4 

CO2 51/51.5/45.8 Butene 0.8/1.8/1 

Methane 10.3/14/6.4 Butane 0.5/1.2/0.2 

Ethene 0.6/1.1/0.5 Cl 0/0/0.1 

Ethane 1.9/2.7/0.6 Br 0.3/0.1/0.5 

H2 38.52 C1–C4 15.23 10oC/min, 500oC 
 
Nitrogen/200 
A tubular oven [99] 

CO 7.23 O2 12.03 

CO2 7.93 N2 9.50 

CH4 9.55   

 

Pyrolysis oil obtained during the pyrolysis process under atmospheric inert 

condition is also a mixture of organic compounds (usually termed oils), and also contains 

some aqueous products. Similar results in the pyrolysis of different plastics have been 

reported [19, 92, 99, 104]. They all agree that water and hydrocarbons by-product could 

either be a product formed during the process (derived from the oxygen-containing 

functional groups, -COO-, OH-, -COOH-, etc.) or due to the original moisture in the 

samples [105]. 

Guan et al. [99] pyrolyzed the PWB sample (2.0 cm×2.0 cm) under nitrogen 

atmosphere, at 300, 400, 500, 600 and 700 oC in a tubular type oven. Peng et al. [106] 

also pyrolyzed PWBs under nitrogen atmosphere. Sun et al. [94] investigated the 

pyrolysis kinetics of PWB scraps under various conditions with TG. Sun et al. [97] also 

analyzed the pyrolysis products for different particle size of PWB powders (15 mm, 8 

mm and 0.2 mm) at the same terminal temperature (600 oC). Li et al. [107] reported that 

the yield of products at higher heating rate was more than at lower heating rate because 

the organic substance could obtain a large quantity of heat in a short time as the higher 
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heating rate was employed. Xiong et al. [108] investigated the characteristics of PWB 

pyrolysis and its kinetics using a tubular furnace and TGA. Guo et al. [109] pyrolysed 

waste polytet rafluoroet hylene (PTFE)-PWBs in a fixed bed at different heating rates (5, 

10, 15, 20, 30, 50 oC/min) under nitrogen atmosphere with flow rate of 50 ml/min. Guo et 

al. [110] also analyzed the composition of the pyrolysis oil products from the pryolysis of 

PWBs using GC-MS.  

Hall et al. [4] used a fixed bed reactor to pyrolyze three types of PWBs (from 

computers, televisions and mobile phones) at 800 oC. The pyrolysis products were 

analyzed using GC–FID, GC–TCD, GC–MS, GCECD, ICP–MS, and SEM–EDX. Wang 

et al. [101] used a fluidized bed reactor to pyrolyze scrap PWB particles under inert gas. 

Zhou et al. [111] studied the pyrolysis characteristic of waste phenolic-resin-based PWBs 

by TG and DSC. The composition of pyrolysis products were analyzed by pyrolysis gas 

charomatography mass spectrometry (Py-GC-MS). 
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3. SMALL SCALE COMBUSTION OF PWBS USING TG/DTA-MS 

3.1. EXPERIMENTAL PROCEDURE 

In the current study, PWBs from a used printer named HP C2121A and a used TV 

were studied and crushed to small particles with diameter of 100 - 500 µm, as shown in 

Figure 3.1. PWB powders was heated and decomposed in a thermo-gravimetric analysis 

and differential thermal analysis (TG/DTA) furnace. Synthetic air was used as the 

carrying gas to study the combustion. The evolved gases were measured using a mass 

spectrometer (MS). 

The initial mass, heating rate, carrying gas type and its flow rate, terminal 

temperature (Tm) and the holding time at Tm were varied in the experiments. Pre-purging 

of gases was carried out for 60 min in order to keep the initial mass, temperature and 

atmosphere in a steady condition process. After reaching Tm, samples were held there for 

some time, and then the system was naturally cooled down to the room temperature. 

  

Figure 3.1.  PWB Scraps and Powders Used in the Current Study 

3.2. COMBUSTION OF PWBS WITHOUT ADDITIVE 

Eighteen combustion experiments without additive were performed by varying 

the air flow rate and the heating rate. The heating rates employed were 10, 15, 20, 25, 

30oC/min and the gas flow rates were 50, 75, 100, 125 and 150ml/min, as shown in Table 

3.1. 
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Table 3.1.  Experimental Conditions of E-waste Combustion 

# 
Initial 
Mass 
(mg) 

Top Temperature  
Gas flow Rate 

(ml/min) 

Heating rate, oC/min 
oC Holding time (min)

P7 15.1926 700 60 150 (air) 30 
P8 12.7519 700 60 150(air) 30 
P9 15.1905 700 60 100(air) 30 
P10 14.1880 700 60 50(air) 30 
P11 13.9977 800 60 50(air) 30 
P12 10.5734 800 60 100(air) 30 
P13 14.5545 800 60 150(air) 30 
P14 12.3761 800 120 150(air) 30 
P15 13.4736 900 60 150(air) 30 
P16 13.2450 900 60 100(air) 30 
P17 14.8798 900 60 50(air) 30 
P18 12.9366 900 120 50(air) 10 
P19 16.0073 900 120 50(air) 15 
P20 15.8744 900 120 50(air) 20 
P21 17.1034 900 120 50(air) 25 
P22 13.3913 900 120 50(air) 10 
P23 13.3244 900 120 50(air) 20 
P24 14.468 900 120 50(air) 30 

 

3.2.1 Effect of Gas Flow Rate.  Gas flow rate may have influenced on the 

conversion fraction and the products. In addition, the gas flow rate is an important 

parameter in the industrial scale applications. DTA curves for combustion experiments 

(TV PWBs) are shown Figure 3.2. Positive peaks in DTA curve meant exothermic 

reactions. The area of peaks means the energy released during combustion. With the 

maximum gas flow rate (150 ml/min), there was only one positive peak during the entire 

combustion process. While for other gas flow rate condition, there were two positive 

peaks and the first one was higher. The first exothermic reaction occurred at ~300-350 oC, 

and the second one at ~350-450 oC. The exothermic reaction was the reaction between 

samples and oxygen. Some organic substance in PWBs might be combusted in the air 

atmosphere at lower temperature. The initial sample mass rarely affected the combustion 

process. With gas flow rate increasing, the intensity of first peaks in experiments 

increased. With further increasing of the gas flow rate, the value of the second peak 

decreased, and finally disappeared. Possible reasons included:  

 Too high gas flow rate might dilute the products, so the equipment could not detect it. 
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 Too much air provided abundant oxygen source that might combust all the materials 

at the first exothermic reaction (the first peak). 
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Figure 3.2.  DTA Curves with Different Gas Flow Rates of 50-150 ml/min, 10-30 oC/min. 

(TV PWBs) 
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The DTA peak value as a function of air flow rate was shown in Figure 3.3. When 

there was only one peak in the DTA~T curve, the DTA peak value slightly increased with 

increasing air flow rate. With too low air flow rate, there might not be too much oxygen 

and some degradation reactions may occur before combustion. Large air flow rate meant 

more sources of oxygen, and thus more intensive combustion reaction. When there were 

two peaks in the DTA~T curve, the DTA peak value changed randomly with increasing 

air flow rate. As the air flow rate reached a certain critical value, the air flow rate had 

little effect on the combustion reaction. 
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Figure 3.3.  DTA Peaks with 10-30 oC/min Heating Rate and 50-150 ml/min Gas Flow 

Rate. (TV PWBs)  

Due to the exothermic feature of the combustion reaction, there are temperature 

jumps in the T-time curve as shown in Figure 3.4. Different PWB sample have different 

temperature jump results. Under the condition of 50ml/min air flow rate and 30 oC/min 

heating rate, there are two jumps for printer PWBs, one at 310-420 oC, another at 330-

520 oC, while there is one temperature jump for TV PWBs at 310-460 oC, as shown in 

Figure 3.4a. Figure 3.4b indicates that this temperature jump is independent of the air 

flow rate. 
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Figure 3.4.  Sample Temperature versus Time (TV PWBs) 

Figure 3.5 shows the mass loss (TG curve) in percentage and the derivative of the 

mass loss (DTG) of PWB samples. TG curves of TV PWBs indicated that the final 

remaining char was around ~13% of the original mass. The final remaining char is 

somehow independent of the gas flow rate and heating rate. DTG curves have two peaks 

in the experiments with 10 oC/min heating rate and one peak in the experiments with 25 
oC/min heating rate. The signal intensity of DTG increases with the increase of gas flow 

rate. With 10 oC/min heating rate, the experiment with 150 ml/min gas flow rate has the 

maximum DTG signal intensity of 4,500 µg/min and the one with 50ml/min gas flow rate 

has the maximum signal intensity of 2,000 µg/min. TG curves of printer PWBs also 

indicated that the final remaining char of the combustion was around ~3% of the original 

mass, as shown in Figure 3.6. The difference of the final mass between TV PWBs and 

printer PWBs may be because of the difference of material compositions of these two 

PWBs. Figure 3.6 also indicates that the holding time at Tm has little effect on the 

combustion process if the Tm is larger than 600 oC. The curves DTG~T have three peaks, 

the second and third peaks decreases with increasing heat rate. The first peak is at 300-

340 oC, the second peak is at 360-390 oC, and the third peak is at 420-450 oC. 

With the same heating rate, the first DTG peak slightly increases with the increase 

of gas flow rate, as shown in Figure 3.7a. The second peak is independent of air flow rate 

(Figure 3.7b). 
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Figure 3.5.  TG and DTG Curves for Experiments with Heating Rate of 10-30 oC/min and 

Different Gas Flow Rate (TV PWBs) 
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Figure 3.6.  TG Curves for Experiments with Heating Rate of 30 oC/min and 150 ml/min 

Gas Flow Rate (Printer PWBs) 
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Figure 3.7.  DTG Peaks with 50-150 ml/min Gas Flow Rate (TV PWBs) 
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Figure 3.8.  DTG Curves for Experiments with Heating Rate of 30 oC/min and Different 

Gas Flow Rate (Printer PWB) 

 



31 

Figure 3.8 shows again the combustion of TV PWBs and printer PWBs is slightly 

different. Compare to TV PWBs, the DTG curves of printer PWBs (Fig.3.8) have the 

flowing features: 

 Gas flow rate has little effect on the combustion process; 

 The second peak occurs at different time, so the two peaks are separated from 

each other, not like TV PWBs, the peaks are partially merged.  

The mass loss can also be expressed by the conversion fraction, α, defined as: 

0

0

t

f

w w

w w
 



     (3.1) 

where wo is the initial mass, wt is the mass at t time and wf is the final mass. The 

conversion fraction curves of the experiments with different heating rates and different 

gas flow rates, as shown in Figure 3.9.  

100 200 300 400 500 600 700 800 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
on

ve
rs

io
n 

fr
ac

tio
n

Temperature (oC)

Experiment Condition:
Carrying Gas: Synthetic Air

Heating Rate: 10oC/min

Top T: 900oC
Holding time: 120 min

Flow rate
  50  ml/min
  75  ml/min
  100ml/min
  125ml/min
  150ml/min

100 200 300 400 500 600 700 800 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o

n
ve

rs
io

n
 fr

a
ct

io
n

Temperature (oC)

 

Flow rate
  50  ml/min
  75  ml/min
  100ml/min
  125ml/min
  150ml/min

Experiment Condition:
Carrying Gas: Synthetic Air

Heating Rate: 15oC/min

Top T: 900oC
Holding time: 120 min

100 200 300 400 500 600 700 800 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Temperature (oC)

Flow rate
  50  ml/min
  75  ml/min
  100ml/min
  125ml/min
  150ml/min

Experiment Condition:
Carrying Gas: Synthetic Air

Heating Rate: 20oC/min

Top T: 900oC
Holding time: 120 min

C
o

n
ve

rs
io

n
 fr

a
ct

io
n

 

100 200 300 400 500 600 700 800 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Flow rate
  50  ml/min
  75  ml/min
  100ml/min
  125ml/min
  150ml/min

Experiment Condition:
Carrying Gas: Synthetic Air

Heating Rate: 25oC/min

Top T: 900oC
Holding time: 120 min

C
o

n
ve

rs
io

n
 fr

ac
tio

n

Temperature (oC)
100 200 300 400 500 600 700 800 900

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o

n
ve

rs
io

n
 fr

a
ct

io
n

Temperature (oC)

Flow rate
  50  ml/min
  75  ml/min
  100ml/min
  125ml/min
  150ml/min

Experiment Condition:
Carrying Gas: Synthetic Air

Heating Rate: 20oC/min

Top T: 900oC
Holding time: 120 min

 
Figure 3.9.  Conversion Fractions of the Experiment with Heating Rate of 25 oC/min and 

Different Gas Flow Rate (TV PWBs) 
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Figure 3.9 indicates that the conversion fraction is independent of air flow rate, 

especially when the heating rate is bigger than 15 oC/min. Most of the reactions during 

the combustion process and the main mass loss occur at 220-550 oC. For example, at 400 
oC the conversion fraction is approximately 0.6 and at 550 oC the conversion fraction 

exceeds 0.96. 

3.2.2 Effect of Heating Rate.  The heating rate has great influence on the 

combustion process and the oxidization of metals. As shown in Figure 3.10, two abrupt 

temperature jumps were observed for the experiment with 10 oC/min heating rate, but 

only one jump for larger heating rate. Thus, the experiment with 10 oC/min heating rate 

has two obvious reaction peaks occurring at 300-350 oC and 390-445 oC respectively. For 

the first peak, both the peak start temperature and the range of temperature peak increase 

with the increase of heating rate.  
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Figure 3.10.  Sample Temperature versus Time (Different Heating Rate) (TV PWBs) 

In addition, the peak scope becomes weak as the heating rate increases. As 

discussed above, with smaller heating rate (10 oC/min), the heat supply is not enough to 

start all the combustion reactions, so at ~300 oC, some reaction may occur first, and then 
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when temperature increases to ~390 oC, other combustion occurs. The temperature jumps 

varying with heating rate are drawn in Figure 3.11a. The temperature jump increases with 

increasing heating rate, reaches the maximum heat value at 15 oC/min, and then decreases 

with further increases of the heating rate. The heat emitted during the combustion process 

is proportional to ΔT×Δt, which is shown in Figure 3.11b. In the industrial scale, larger 

heat emission is needed to propagate the combustion reaction. From the figure, it is 

concluded that the best heating rate should be approximate 15 oC/min.  
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Figure 3.11.  Temperature Jump Varying with Heating Rate (TV PWBs) 
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Figure 3.12.  DTA Curves with Different Heating Rate of 10-30oC/min, Gas Flow Rate of 

50 and 100 ml/min. (TV PWBs) 

The DTA curves with different heating rate and gas flow rate are shown in Fig.3.2 

and Figure 3.12. Two peaks of DTA are only observed in the experiment with 10oC/min 

heating rate. For experiments with only one single peak, the range of the DTA peak 

gradually shortens with the decrease of the heating rate. Unlike experiments with varying 
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gas flow rate, the top peak signal intensity of DTA depends a little on the heating rate. 

Fig. 3.2 and 3.12 show that if the heating rate is over 15 oC/min, there will be only one 

peak. One peak implies one main combustion reaction. So the heating rate should not be 

less than 15 oC/min for the industrial combustion process. There will be only one peak if 

125 ml/min gas is used no matter the value of the heating rate. In the industrial 

combustion process, complicated reactions should be avoided since complicated toxic 

gases may be generated. Thus, the reasonable gas flow rate should not be <125 ml/min. 

The peaks value of the DTA curves varying with heating rate are shown in Figure 

3.13. The DTA peaks increase with increasing in heating rate and reaches a constant 

value at 15oC/min. Since large heating rate impacts negatively on the mechanical and 

thermal properties of furnace materials, 15oC/min is enough and is the best for the 

industrial combustion process. Wu [89] has reported that the biggest product yield could 

be obtained at 15-20oC/ min heating rate during pyrolysis of PWBs. 
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Figure 3.13.  DTA Peak Varying with Heating Rate (TV PWBs) 

For the experiment with 10 oC/min heating rate and 50 ml/min gas flow rate, five 

stages were observed from TG/DTG curves during the combustion process (as shown in 

Figure 3.14): 

- First stage (30-300 oC): no reaction occurs in this period, but the moisture and 

weak coating materials were removed. Thus there was a little mass loss. 
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- Second stage (300-350 oC): the first reaction period. Sample temperature was far 

higher than heating procedure. Some organic substances reacted with oxygen 

strongly releasing a big heat. This period was only 2-3 min. Then the sample 

temperature dropped back to the normal temperature procedure quickly.  

- The third stage (350-390 oC): No new reactions in this period, and with small 

mass loss. 
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Figure 3.14.  TG and DTG Curves for Experiments with 50 and100 ml/min Gas Flow 

Rate, and Different Heating Rate.(TV PWBs) 

- The fourth stage (390-450 oC): The second exothermic reaction occurred here, 

and lasted ~1min. Sample temperature was far higher than heating procedure. 

Some organic substances reacted with oxygen strongly to release big heat. 
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- The fifth stage (>450 oC): The sample temperature rose up continuously 

according to the heating set procedure and reach the terminal temperature (900 
oC), and held there for 120 min. No further reaction occurred at this stage. 

For the experiment with 25 oC/min heating rate and 50 ml/min gas flow rate, only 

one peak occurs on the DTA curve, three stages could be observed from TG/DTG curves 

during the combustion process: 

- First stage (30-300 oC): This stage is similar to the first stage of experiments with 

the heating rate of 10 oC/min. 

- Second stage (300-450 oC): The main reactions occurred at this temperature range. 

- Third stage (>450 oC): No big change in this period. 

The conversion fraction curves of combustion PWBs with different heating rates 

are plotted in Figure 3.15. There is little difference at after the temperature reaches at 600 
oC, and the conversion fraction can be over 97%. So 600 oC is high enough for the 

combustion of PWB powders.  
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Figure 3.15.  Conversion Fractions of the Experiment with Gas Flow Rate of 50 ml/min 

and Different Heating Rate. (TV PWBs) 
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3.2.3. Emitted Gases Analysis.  The exhausted gases during combustion 

process were detected using MS machine. CO, CO2, H2O, CH4, C2H2, C2H2O, C2H3O, 

C2H4O, C2H5O, C3H5O, C6H6, HBr were found during PWBs combustion, and the 

intensity increases with increasing heating rate. CO, CO2, H2O, CH4, C2H5O, C6H6 and 

HBr gas signals varying with the temperature are plotted in Figure 3.16. For some gases, 

there were several peaks, which corresponded to the reaction temperature. The main MS 

signal peaks occur at 300-500 oC for combustion process, which corresponds to the DTA 

and DTG curves shown in Fig. 3.2 and 3.4. For low heating rate, the MS signal peaks are 

very narrow. This is because the temperature rises more slowly as a lower heating rate is 

adopted and the reaction speed may be faster than the rising temperature. 

As shown in Fig.3.16, the MS signal peaks were over a big temperature range: 

300-900 oC, which implied that different reactions occurred at different temperature and 

different products were obtained since the PWB consisted of different organic materials. 

The temperatures of different evolved gases are listed in Table 3.2. For the combustion 

process, CO2 and CO reached maximum at 350-400 oC, which implies the main 

combustion reaction was at 350-400 oC, corresponding to the DTA curves. For 

combustion, all gases (CO2, H2O, CH4, C2H5O, C6H6 and HBr) had peaks at 300 oC, 

which implied that at 300 oC the oxidization reaction occurred.  

It should be noticed that C6H6 and HBr gas was detected, while Br element is one 

of the main composition of the BFRs in the PWB. Since HBr is toxic to human beings, in 

order to environmentally recycle PWBs, suitable methods should be developed to prevent 

HBr from being released into the air. 
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Figure 3.16  Exhausted Gases during Combustion Process (TV PWBs)  
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Table 3.2.  The Evolved Gases at Different Temperature 

Experimental condition 
Combustion 

Tpeak, 
oC Gas type 

10oC/min, 50ml/min 

290 CO-CO2, C2H2, C2H2O, C2H3O, CO2-C2H4O, C2H5O, C6H6, HBr 

294 C3H4O 

 346 

413-416 CO-CO2, C2H2O, C2H5O, CO2-C2H4O  

420 C2H3O 

20oC/min, 50ml/min 

310 C2H2, C6H6, C2H2O,  

330, 331 CH3, C3H4O 

374 CO-CO2, C2H3O, CO2-C2H4O, C2H5O,  

427 H2O 

25oC/min, 50ml/min 

360 CH3 
410-412 C3H4O, C2H5O,  

420 CO2-C2H4O, C2H3O 
440 CO-CO2 
478 H2O 

30oC/min, 50ml/min 

431, 432 C2H2, Cl2, C3H4O, C6H6, HBr 

436 CH3 

440 CO-CO2, C2H3O 

444 CO2-C2H4O 

468 C2H2O 

482 C2H5O 

559 H2O 
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3.3. COMBUSTION OF PWBS WITH ADDITIVE 

In this chapter, combustion experiments were performed to control the emission 

of toxic gas during the combustion of PWB powder by adding chemical additives.  

3.3.1. Experimental Procedure.  The TV PWB samples mixed with certain 

chemical powders were combusted in TG/DTA. Evolved gases were measured using MS.  

The MS signal intensity of different evolved gases were compared with those no 

additives and the effect of chemical additives on the control of gas emission was 

discussed. The heating rate was 20 oC/min and the top temperature (Tm) was set to 900 
oC , and the holding time at the top temperature was 120 min. Synthetic air was used as 

the carrier gas with flow rate of 50ml/min. Chemical reagents, Na2CO3, NaHCO3, NaOH 

and CaCO3, were used. The chemical properties of additive reagent were listed in Table 

3.3. The weight ratio between PWB powders and additives was 1:1.  

The measured sample temperatures are shown in Figure 3.17. The TG-DTG-DTA 

curves with different additive are shown in Figure 3.18 and 3.19. For combustion 

experiments without additive, the sample temperature curve had an obvious jump which 

implied exothermic reaction. However no temperature jump was found during PWB 

combustion with additive. When using NaHCO3, there was a temperature decrease at 

165-200 oC which might be caused by the decomposition of NaHCO3, by following 

reaction: 

decomposition
3(s) 2 3(s) 2(g) 2 (g)NaHCO Na CO +CO +H O  

Table 3.3.  The Chemical Properties of Additive Reagent [112-113] 

Additive CaCO3 NaOH  NaHCO3 NaCO3 CaO 

Decomposing Temperature (
o
C) 600-1000 - >100 858.1-1000 - 

Melting Point (
o
C) 825 318.4 270 858.1 2580 
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Figure 3.17.  Temperature of PWB Powders with Additive during Combustion in TG-

DTA Furnace 
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Experiment condition: Heating Rate 20oC/min; Air Flow Rate 50ml/min; Tm=900oC 

Figure 3.18.  TG, DTG and DTA Curves of PWBs Powders with Temperature. 
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3.3.2. TG Analysis.  Mass loss shown in TG curves could be divided into two 

parts: 1). the mass loss between the room temperature and the terminal temperature (Tm) 

and 2). mass loss during the holding period at Tm. For the experiments without additives, 

no evolved gases could be absorbed, thus the mass loss (>85%) would be far larger than 

the experiments with chemical additives. The rapid mass loss could no longer be 

observed as the temperature rose to 900 oC. However, for the experiments with additives, 

mass loss during holding period at the top temperature was observed.  

Figure 3.19 showed profiles for pure chemical additives (CaCO3, NaHCO3, 

NaCO3 and NaOH), pure PWBs and the mixture of PWBs and additives (1:1). The TG 

curves the pure PWBs exhibited four stages of mass loss, and ended with a stable residue 

at >700 oC.  

a) For pure CaCO3 and PWBs, weight loss occurred at 500-700 oC and 150-300 oC. 

The TG curve of PWBs+CaCO3 is sandwiched between the pure CaCO3 and 

PWBs, as shown in Figure 3.19(a). During 300-700 oC, CaCO3 has a little 

decomposition. The acidic exhaust gases mainly reacted with CaCO3 to form CO2 

and calcium salts [114-115].  

b) Since NaHCO3 started to decompose at >100 oC, there was a big mass loss at 100-

170 oC (Fig. 3.19(b)). But little mass loss occurred at this temperature when only 

PWB sample was heated. Therefore, there was a big mass loss at 100-170 oC in 

TG curve of PWB+NaHCO3 due to the decomposition of NaHCO3. The 

decomposition products of NaHCO3 were Na2CO3, CO2 and H2O. Therefore, the 

acidic gases could react either with NaHCO3 and Na2CO3 that was generated from 

the decomposition of NaHCO3.  

c) For the decomposition of Na2CO3, Figure 3.19(c) shows that there was a small 

mass loss at 80oC which might be because the moisture was evaporated at this 

temperature. Over this temperature little change occurred. Mass loss of the 

mixture (PWB+Na2CO3) was mainly due to the degradation of PWB and the 

reaction between acidic exhaust gases and NaCO3. 

d) No mass change could be found as the pure NaOH was heated, as shown in Figure 

3.19(d). The main mass loss of the mixture mainly stemmed from the degradation 

of PWB powders and the reaction between acidic exhaust gases and NaOH. 
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NaOH was hardly decomposed. Toxic gases like HBr, H2O and CO2 could be also 

absorbed by NaOH. The emitted organic gases such as CH4, C2H2 and C2H6 

induced a little mass loss. However, since the holding time at Tm was 120 min, 

Na2CO3 might stem from the reaction between NaOH and the decomposed CO2 

from the PWB organic materials, and the generated Na2CO3 might further be 

decomposed. 

3.3.3. DTG Analysis.  DTG curves could be plotted by differentiating the TG 

curves. As shown in Figure 3.19, the pure PWB sample presented the biggest DTG peak 

value. DTG peaks with CaCO3 additive revealed two reactions: one at 250-350 oC and 

the other at 650-780 oC. An obvious peak could be observed at temperature range of 650-

780 oC, which implied that some CaCO3 decomposed reaction at this temperature.  
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Figure 3.19.  TG Curves of additives, PWB and PWBs+additives [116-118] 
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This reaction also could be also demonstrated by the CO2 MS signal found in 

Figure 3.20. The first peak of DTG curves with NaHCO3 occurred at approximately 150-

200 oC, at which the NaHCO3 reagent decomposed to Na2CO3 and H2O rather than the 

decomposition of PWBs powders. Figure 3.20 also shows that the experiment with 

NaHCO3 additive has a peak occurring at the same temperature range. 
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Figure 3.20.  MS Signal of HBr and Benzene with Time and Temperature 

3.3.4. MS Analysis. CO, CO2, H2O, CH4, C2H2, C2H2O, C2H3O, C2H4O, C2H5O, 

C3H5O, C6H6 and HBr were found during PWB combustion. During PWBs combustion 

with the additives, there was no obvious temperature jump, as shown in Figure 18, which 

meant that there was no occurrence of strong exothermic reactions during combustion. In 

other word, the subsequent dehalogenation reactions were not exothermic. 

The intensity of the emitted HBr and C6H6 gases during combustion was shown in 

Fig.3.20. In the experiments with additives, both HBr and benzene gases were hardly 

controlled by adding NaOH. The experimental results showed that the MS signal peaks 

were postponed to later time and temperature when using additives. For example, with no 
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additives, the HBr MS signal peak occurred at time range of 40-45min and temperature 

range of 275-410 oC. However, with NaOH additives, the MS signal peaks delayed to 

~45-63 min and the temperature range of 375-550 oC. As shown in Figure 3.21, as the 

CaCO3 additive is adopted, the intensities of HBr and benzene MS signal peaks are close 

to zero. For the ability of controlling HBr and C6H6, the order should be 

CaCO3>Na2CO3>NaHCO3>NaOH. The MS signals of other evolved gases like CO, CO2, 

H2O, CH4, C2H2, C2H2O, C2H3O, C2H4O, C2H5O and C3H5O were shown in Figure 3.22. 

The alkaline additives had a certain effect on inhibiting these acidic substances like CO2 

and some toxic gases. For the experiments with chemical additives some organic gases 

like CH3, C2H2 and C2H3O also had lower peak intensities than the experiment without 

additives, which implies that these additives can also act as catalyst to control the 

decomposition process to produce different organic gases. 
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Figure 3.22.  Other Evolved Gases MS Signal with Temperature 
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Figure 3.22.  (Continued) Other Evolved Gases MS Signal with Temperature  
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Figure 3.22.  (Continued) Other Evolved Gases MS Signal with Temperature  

3.3.5. Control HBr from the Gas Emission during the Combustion of PWBs. 

During the combustion of PWB powders, HBr mainly released at 300-360 oC, 

accompanied by with the main chain scissions of epoxy and brominated epoxy backbones 

[115]. The chemical properties of additive, such as decomposition temperature and 

melting point are listed in Table 3.3. 

Obviously, at a certain temperature, both PWB powders and additives would be 

heated and decomposed. NaHCO3 could be decomposed as the temperature was higher 

than 100 oC and will react with HBr with the following reactions: 

3(s) 2 3(s) 2(g) 2 (g)2NaHCO Na CO CO H O    

   2 3( ) 2(g) 2 (g)g2HBr +Na CO =2NaBr +CO +H Os s  

The thermodynamic equilibrium constant of the above reaction is: 

0 ( )
( ) expeq

G T
K T

RT

 
  

 
     (3.2) 

 0 0 0
products reactants( )G T G G         (3.3) 

where 
eqK  is the thermodynamic equilibrium constant, 0G  is the Gibbs free energy 

change, T is the Kelvin temperature, and R is the gas constant.  

2 2

2 3

H O NaBr CO

2
Na CO HBr

eqK
  
 

     (3.4) 

The melting point of NaBr is about 747 oC. Under this temperature, therefore, the 

concentration of HBr could be expressed:  
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2 2CO H O
HBr

eqK

 
       (3.5) 

The above equation shows that the equilibrium concentration of HBr is dominated 

by the concentration of CO2 and H2O in the emitted gas. Theoretically, if the 

concentration of CO2 and H2O increases, HBr increases. However, Na2CO3 and NaOH 

had a certain catalytic effect on the thermal degradation of PWBs [98], the thermal 

degradation of PWBs is earlier than the decomposition of Na2CO3, as shown in Figure 

3.22. It had a wider CO, CO2 peak than the thermal degradation of PWBs without any 

additive. NaHCO3, Na2CO3 and CaCO3 were very efficient to control the emission of 

HBr compared to the case without additive, as shown in Fig.3.22. During the experiments, 

the additives and bromide products were melted to liquid which might corrode and 

destroy the crucible due to its strong basicity. In addition, MS results indicated that 

NaHCO3 and Na2CO3 were not the best choice to remove the toxic gas like C6H6. 

Another important reason that NaHCO3 and Na2CO3 are not suitable for the green 

recycling of PWBs in industrial scale is their higher price than CaCO3. NaOH had effect 

on enhancing the thermal degradation of PWBs [98]. However, NaOH would be melted 

(as shown in Table 3.3) before the thermal degradation of PWBs. NaOH is more 

corrosive than NaHCO3 and Na2CO3. In laboratory scale the Al2O3 and platinum 

crucibles would be corroded by NaOH.  

In combustion process, the evolved HBr reacted with CaCO3 to form CaBr2, and 

released CO2 and water vapor. The reaction between evolved HBr and CaCO3 is: 

   3(s) 2 2 (g) 2(g)g s2HBr +CaCO =CaBr +H O +CO  

The equilibrium constants calculated by FactSage software at different 

temperatures are calculated, as shown in Table 3.4.  

Table 3.4.  Chemical Equilibrium Constant for the Reaction of CaCO3 and HBr 

Temperature, oC 25 200 300 400 500 600 700 800 900 

eqK , ×104 
20079 597 104 29.9 117 5.60 3.09 2.30 2.06 
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Thermal calculation shows that the equilibrium constant at 300-600oC is far larger 

than 2.55×104, which implies a complete reaction. The relationship between equilibrium 

constant and component concentration is given by: 

2 2 2

3

CO H O CaBr

2
CaCO HBr

eqK
  
 

       (3.6) 

In the reaction, because CaBr2 and CaCO3 are solid, αCaCO3=αCaO≈1. Therefore, 

EQ.(3.6) could be simplified: 

2 2CO H O

2
HBr

eqK
 


       (3.7) 

2 2CO H O
HBr

eqK

 
        (3.8) 

Eq.(3.8) revealed that the equilibrium concentration of HBr is dominated by the 

concentration of CO2 and H2O. The organic compounds can be oxidized to produce H2O 

and CO2 gas during combustion. In addition, huge amounts of heat will be released 

during the combustion process, thus the mixed sample would achieve a high temperature 

very quickly. CaCO3 will be decomposed to produce much CO2, so as to lower the 

equilibrium concentration of HBr.  

3.4. CHAPTER SUMMARY 

In this chapter, PWB materials from a used printer and TV were combusted in 

TG/DTA and the evolved gases were detected by MS. From the results as discussion 

above, it is concluded that: 

a). Combustion process 

 Heating in air atmosphere, there were two exothermic reactions. The first one 

occurred at 300-380 oC, and the second one occurred at 450-500 oC. Due to the 

release of big amount of heat during these two reactions, the sample temperature 

in these two temperature range abruptly jumped out the heating procedure, lasting 

1-3 min. 

 The gas flow rate and initial sample mass rarely affect the combustion process, 

only a little increase in temperature at the second peak resulting from increasing 

gas flow rate.  
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 The final remaining mass fraction during combustion was ~3% of the original 

mass for a printer PWBs and ~11-13% for a TV PWBs. 

 Holding time at the top temperature had little effect on the combustion process. 

 The suitable experimental conditions are 15 oC/min heating rate, >125 ml/min gas 

flow rate, 600 oC top temperature, and the holding time is not important for 

combustion. 

b). Mass Spectrometry 

 Due to the evolution of some toxic gases during PWB combustion, reasonable and 

advisable measurements should be adopted to control the emitted gases.  

 As opposed to the combustion of PWB samples without additives, for PWB 

combustion with additive, there are no obvious exothermic reactions, indicating 

that dehalogenation reactions are not exothermic. 

 The experiment without additive has the main mass loss during temperature ring 

and no obvious mass loss during the holding time at the top temperature period.  

 The experiment with NaOH additive has smallest mass loss in the temperature 

rising period and biggest mass loss in the temperature holding time. 

 The results showed that CaCO3 and NaHCO3 were very efficient to control the 

emission of HBr and benzene, lowering 80% compared to the case without 

additive. Na2CO3 can slightly control the emission of HBr gas but not for benzene 

gas mission, and NaOH has no obvious effect of the control of both gases. 

 To some extent, some chemical additives can postpone the decompostion reaction 

to a later time and higher temperature, especially NaOH. 

 Green combustion with suitable additives is an effective method to control the 

toxic gas emission during the combustion of PWBs. However, further 

investigations for the following related topics should be required: 

a) The detailed reactions during the combustion and pyrolysis of PWBs with 

and without additives and their activation energies; 

b) Behavior of heavy metals during combustion and pyrolysis; 

c) Other suitable additives; 

d) Industrial scale experimental design. 
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4. SMALL SCALE PYROLYSIS OF PWBS USING TG/DTA-MS 

4.1. EXPERIMENTAL PROCEDURE 

In the current study, PWBs from a printer named HP C2121A and a used TV were 

studied and crushed to small particles with diameter of 100-500 µm, as shown in Figure 

3.1. Experiments of P25-P29, as shown in Table 4.1, have been done using the same 

TG/DTA-MS machine. Argon gas was used as carrier gas to investigate pyrolysis process. 

The evolved gases were measured using a MS. The initial mass, heating rate, carrier gas 

type and its flow rate, terminal temperature (Tm) and the holding time at Tm were varied in 

the experiments. Pre-purging of gases was carried out for 60 min in order to keep the 

initial mass, temperature and atmosphere in a steady condition process. After reaching Tm, 

samples were held there for some time, and then the system was naturally cooled down to 

room temperature. 

Pyrolysis experiments were conducted at certain heating rates (10, 20 and 30 
oC/min) and certain argon gas flow rates (50, 75, 100, 125 and 150ml/min). PWBs 

samples were heated from room temperature to Tm=900 oC and then held at 900oC for 

120 min. At the end of the holding period, TG/DTA still ran and the carrier gas (argon) 

was kept flowing until the reactor was cooled down to the room temperature. All 

experiments were carried out at atmospheric pressure. 

Table 4.1.  Experimental Conditions of E-waste Pyrolysis 

# Initial Mass (mg) 
Top Temperature  

Gas flow Rate 
(ml/min) 

Heating rate oC/minoC 
Holding time 

(min) 
P25 12.8722 800 60 150(Ar) 30 
P26 13.6187 800 60 100(Ar) 30 
P27 13.6097 800 180 50(Ar) 30 
P28 13.3913 900 240 50(Ar) 10 
P29 16.2128 900 240 50(Ar) 30 
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4.2. PYROLYSIS OF PWBS WITHOUT ADDITIVE 

4.2.1. TG, DTG and DTA Analysis.  Since there is little combustion occurred 

due to the inert gas atmosphere, it was observed that the sample temperature followed the 

heating procedure exactly (as shown in Figure 4.1) and no temperature jump as observed 

in the case of combustion (Figure 3.4).  
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Figure 4.1.  Temperature varying with time (TV PWBs) 

The DTA curves of pyrolysis are plotted in Figure 4.2. DTA curve during 

pyrolysis was very complicated, the peak lasts very long temperature range from 300-900 
oC, which means that pyrolysis reaction occurred during a big temperature range. The 

possible reasons are: 

 Since the PWB is made of mixture of polymers, the degradation reaction for 

different polymers occur at different temperature, thus the entire degradation lasts 

over a very long temperature range. For example, epoxy resin degrades at 

~280 °C, while brominated flame retardant degrades above 390 °C [119-120].  

 The pyrolysis reaction is slower than the combustion reaction and thus lasts 

longer time. 

Some researchers have reported the pyrolysis temperature of PWBs to be ~300-

600 oC [86, 106]. For current the case, the pyrolysis reaction starts at ~330oC no 

matter the conditions of gas flow rate and heating rate, with the following special 

features:  
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 With 10 oC/min heating rate, there is a small peak before at ~250 oC with 50-75 

ml/min, and a peak at ~700 oC with 100-150 ml/min gas flow rate. 

 With 50ml/min gas flow rate, there is a peak ~250 oC for 10-20 oC/min heating 

rate, and a peak at ~700 oC for 30 oC/min heating rate. 

The sub-peak temperature slightly increased with increasing gas flow rate. For a 

certain heating rate, the experiments with lower gas flow rate have higher DTA signal 

intensity. With the same flow rate, the experiments with higher heating rate have higher 

DTA intensity. 
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Figure 4.2.  DTA Curves of Pyrolysis of PWB Samples (TV PWBs) 

The TG and DTG curves with different flow rate and heating rate are shown in 

Figure 4.3. Compared to combustion process, there are the following characteristics for 

pyrolysis process: 

 Since the speed of degradation (pyrolysis) reaction is generally slower than the 

combustion reaction, the temperature range for degradation reactions is far bigger 

than that in combustion reaction, as shown in Figure 4.2 and Figure 4.3. 

 The final remaining mass fraction was somehow independent of gas flow rate, 

especially >100 ml/min. Figure 4.4 shows that most experiments present the same 

final remaining mass fraction except the two experiments with 50 and 75ml/min 

gas flow rates. Fig.4.3 shows the pyrolysis of a printer PWBs, indicating that the 

final mass fraction with 100 ml/min gas flow rate is much smaller than the 
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experiments with over 100 ml/min gas flow rate. Thus for PWB pyrolysis process, 

the argon flow rate should be >100 ml/min. 

 To some extent, larger heating rate accelerated the pyrolysis process. The lower 

heating rate is the more successful the pyrolysis process is. Furthermore, the high 

heating rate requires stronger mechanical and thermal properties of lining 

refractory of the furnace. On the properties of the furnace for lime refractory, 15-

20 oC/min is the suitable heating rate for the pyrolysis process. For the printer 

PWB samples, the final mass fraction is the same no matter what heating rate was 

used, which probably depends on factors like the special organic composition and 

flame retardant used in PWBs. For example, with 50 ml/min gas flow rate, the 

final mass fraction was around 16%, as shown in Figure 4.4. However, for TV 

PWB samples, with the same gas flow rate, the final mass fraction with heating 

rate of 10, 20 and 30oC/min is 20%, 22% and 14% respectively. 

 The degradation reactions still continue during the holding period at Tm and the 

period of temperature declining. The mass of PWB samples persists in decreasing 

during the entire pyrolysis process. The final remaining mass fraction depended 

on the holding time at the top temperature, which indicated again that the 

pyrolysis occurred over very long time, as shown in Fig.4.4. Longer holding time 

degraded more PWBs. Variation of conversion fractions with the temperature is 

shown in Figure 4.5, which supports this conclusion again. The final mass 

fraction of PWBs by pyrolysis was 15-25% of the initial mass, far larger than the 

combustion process (~3-13% for combustion process), and the holding time had 

little effect on the combustion process. 
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Figure 4.3.  TG and DTG Curves of Pyrolysis of PWBs. (TV PWBs) 
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Figure 4.4.  TG Curves for the Pyrolysis of PWBs (printer PWBs) 
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Figure 4.5.  Conversion Fractions of the Experiment with Gas Flow Rate of 50ml/min 

and Different Heating Rate. (TV PWBs) 

4.2.2. Exhausted Gases Analysis.  The exhausted gases during pyrolysis 

process were detected using MS of CO, CO2, H2O, CH4, C2H2, C2H2O, C2H3O, C2H4O, 

C2H5O, C3H5O, C6H6, HBr. The intensity increases with increasing heating rate.  

CO, CO2, H2O, CH4, C2H5O, C6H6 and HBr gas signals varying with temperature 

are plotted in Figure 4.6. For some gases, there were several peaks, which corresponded 

to the reaction temperature. The main MS signal peaks occurred at the temperature range 

of and 300-900 oC for pyrolysis process, which corresponded to the DTA and DTG 

curves shown above (Fig. 4.2 and 4.3). For low heating rate, MS signal peaks were very 

narrow. Because the temperature rises more slowly at a lower heating rate and the 

reaction velocity might be faster than the rise in temperature. 

In pyrolysis process, degradation and decomposition reactions dominated the 

whole process, without oxidation reaction. As shown in Fig.4.6, MS signal peaks covered 

a big temperature range of 300-900 oC, which meant that the degradation reactions took 

place at different temperatures and yielded different pyrolytic products. The temperatures 

at which of different gases were emitted are listed in Table 4.2.  
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Figure 4.6  Exhausted Gases during Pyrolysis Process (TV PWBs) 

It should be noticed that C6H6, and HBr gases were detected. HBr mainly came 

from the BFRs in PWB materials. Pyrolytic gases like C2H2, C2H3O and C2H4O in 

pyrolysis were also detected. Thus, in order to environmentally friendly recycle PWBs, 

suitable green methods should be developed to prevent HBr from being emitted into the 

air. 
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Table 4.2.  The Evolved Gases at Different Temperature 

Experimental 

condition 

Pyrolysis 

Tpeak, 
oC Gas type 

10oC/min, 

50ml/min 

200 
CO-CO2, CH3, C2H2, C2H2O, C2H3O, CO2-C2H4O, 

C2H5O,  

205 HBr 

215 H2O, C6H6 

H2O C3H4O 

290, 300 C2H2O 

375 CH3 

380, 390 CO-CO2, C2H5O 

630 C2H3O, CO2-C2H4O 

650 C2H5O 

20oC/min, 

50ml/min 

290 CO-CO2, CO2-C2H4O, C2H5O, Br2, 

295 CH3, C2H3O,  

300 C2H2, C3H4O, C6H6 

430 H2O 

455 CH3 

500 CO-CO2, CO2-C2H4O, C2H5O 

505 C2H3O 

30oC/min, 

50ml/min 

100 C2H3O, CO2-C2H4O,  

105 CO-CO2, CH3 

110 C2H2, HBr 

120 C6H6 

150 C3H4O 

200 C2H2O, C2H2 

250 H2O, CH3 

290 C6H6,  

300 CO-CO2, C2H3O, C2H5O,  

305 CO2-C2H4O 

560 C2H3O 

570, 575 CO2, C2H4O, CO-CO2, C2H5O 
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4.3. PYROLYSIS OF PWBS WITH ADDITIVES 

4.3.1. Pyrolyzing the Mixture of PWB and Additive.  Pyrolysis experiments 

of PWB and “PWB+additives” have been done using TG/DTA-MS machine at the 

Material Research Center in Missouri S&T. These PWB powders are from Tallinn 

University of Technology, Estonia, that might include fine metal particles. Additives 

were used to control toxic substances evolving from the pyrolysis process, and to enhance 

the pyrolysis reaction.  

Samples were heated at 15 oC/min heating rate with 150 ml/min gas flow rate, as 

shown in Table 4.3. The additives were mixed with PWB powders with a mass ratio 5:1 

(5 PWB+1 additive). Five different additives (CaCO3, CaO, ZSM-5(NanAlnSi96-

nO192•16H2O (0<n<27)), Y-zeolite (NaxAlYSiZOm) and Fe2O3) were used. The 

temperature curve during the pyrolysis process is shown in Figure 4.7. The top 

temperature is 900 oC in the current pyrolysis experiments. 

Table 4.3.  Pyrolysis of PWBs with Additive (PWB:additive=5:1) 

No. 
PWB sample Additives 

Weight, mg Name Weight, mg Addition method 

1 20 - - - 

2 20 CaCO
3
 4 Mixed 

3 20 CaO 4 Mixed 

4 20 ZSM-5 4 Mixed 

5 20 Y-ZEOLI 4 Mixed 

6 20 Fe
2
O

3
 4 Mixed 
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Figure 4.7.  Temperature Curve of Pyrolysis Process 

4.3.2 TG and DTG Curves during Pyrolysis.  Figure 4.8 shows the variation 

of the mass loss fraction with temperature and time. The temperature reached the top 

temperature of 900 oC at 60 min. The pyrolysis of the pure PWB sample stopped at 77 

min with a final mass fraction of ~36%, as shown in Table 4.4. It was reported that in 

general there is 6.5% Br component in PWB materials [39]. As the mixture of PWB and 

CaCO3 was pyrolyzed, 43% residue remained in the crucible. Considering the 

decomposition of CaCO3 at high temperature and the reaction between CaCO3 and HBr, 

there was ~35% residue after subtracting CaO and CaBr2. The pyrolysis of PWB+CaCO3 

samples stopped at 100min. The final residue subtracting the additives and the inorganic 

products is ~41% for PWB+CaO.  

ZSM-5, Y-zeolite and Fe2O3 were also used during pyrolysis experiments. ZSM-5 

and Y-zeolite were added during the pyrolytic experiment to enhance the reaction. The 

residue fraction subtracting the additives and the inorganic products with these two 

additives is ~46%. So, it is concluded that ZSM-5 and Y-zeolite mainly acts as catalyst to 

accelerate the pyrolysis reaction but not reactants. The pyrolysis of PWB+Fe2O3 stopped 

at 113min with a ~28% final residue fraction subtracting the additives and the inorganic 

products. So, compared to other four additives, the effect of Fe2O3 on the pyrolysis of 

PWB is the best.  
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Figure 4.8.  TG Curves for the Pyrolysis of PWB and “PWB+ Additives (mixed)” 

DTA curves for different pyrolysis experiments are shown in Figure 4.9. There 

are many peaks which imply many endothermic and exothermic reactions during 

pyrolysis, which is much different from the combustion process. 

Table 4.4.  The Final Mass Fraction during Pyrolysis Experiment 

 PWB 
With additives 

CaCO3 CaO ZSM-5 y-Zeolite Fe2O3 

Solid fraction, % 35.56 42.85 54.98 55.04 55.02 39.79 

Fraction of residue 

subtracting additives, % 
35.56 35.02 40.78 46.05 46.02 27.75 
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Figure 4.9.  DTA Curves of Pyrolysis Experiment of PWB Sample and 

PWB+Additive(mixed) 
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4.3.3 MS Signal of Exhaust Gases in Pyrolysis Experiment.  MS signals of 

CO, CO2, H2O, CH4, C2H2, C2H2O, C2H3O, C2H4O, C2H5O, C3H5O, C6H6, HBr and signal 

peaks value were shown in Figure 4.10. Most of the gas signals have one peak except 

C2H3O, CO2 or C2H4O and C2H5O.  

For the pyrolysis of PWB+CaCO3, signals of CH4, CO, C2H6, C3H4, C2H3O, C3H6 

or C2H2O, CO2 or C2H4O, C2H5O, Cl2, C6H6, H2O and HCl are stronger than the 

pyrolysis pf PWBs without additives, which means that CaCO3 has certain effect on 

enhancing the pyrolysis process. CaCO3 also could control HBr gas evolved from 

pyrolysis experiment effectively. CaO has big effect on promoting the signal intensity of 

C2H2, CO, C2H6, HCl, C3H4, 2nd peak of C2H3O, Cl2 and C6H6, but not for CH4, H2O, 

2nd peak C2H3O, 2nd peak CO2 or C2H4O and 2nd peak C2H5O. ZSM-5 could stimulate 

to produce CH4, HCl, C3H4, C2H3O, 1st peak CO2 or C2H4O, C2H5O and C6H6, but lower 

HBr and H2O signals. Y-Zeolite could perform very well on producing CH4, H2O, C2H2, 

CO, HCl, C3H4, 1st peak C2H3O, 1st peak CO2 or C2H4O, Cl2 and C6H6, specially for CH4, 

C2H3O and 1st peak CO2 or C2H4O, however, and also lowers HBr. Fig. 4.8 and Table 

4.4 show that Fe2O3 help pyrolyze more PWB samples than other additives. MS signal 

from the pyrolysis of PWB+Fe2O3 has very strong intensity of CH4, H2O, C2H3O and 1st 

peak CO2 or C2H4O. Signal intensity of HCl, Cl2, C6H6 and HBr could be controlled to a 

lower level by Fe2O3 than other additives.  
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Figure 4.10.  MS Signal Exhausted Gases during Pyrolysis Process 
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Figure 4.10.  (Continued) MS Signal Exhausted Gases during Pyrolysis Process  
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Figure 4.10.  (Continued) MS Signal Exhausted Gases during Pyrolysis Process. 
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Figure 4.10. (Continued) MS Signal Exhausted Gases during Pyrolysis Process  

4.4. CHAPTER SUMMARY 

a). Pyrolysis process 

 Running pyrolysis of PWB powders under argon gas, the sample temperature 

followed the heating procedure exactly and no temperature jump observed. The 

reaction occurred during a big temperature range, and there were a few sub-peaks 

at 350, 500, and 700 oC respectively. The sub-peak temperature slightly increased 

with increasing gas flow rate. 

 Longer holding time degraded more PWB. The final mass fraction of PWB during 

pyrolysis was 15-25% of the initial mass.  

 Larger heating rate accelerated the pyrolysis process. While the final mass 

fraction would be the same no matter what heating rate was used. 

 The suitable experimental conditions are 15-20 oC/min, >100 ml/min gas flow 

rate, >900 oC top temperature, and long holding time. 

b). Effect of additives 

Fe2O3 is the most effective additive to help control Hbr and C6H6 during the 

pyrolysis of PWB. MS signal from PWB+Fe2O3 experiment has very strong intensity of 

CH4, H2O, C2H3O and 1st peak CO2 or C2H4O. Signal intensity of HCl, Cl2, C6H6 and 

HBr could be controlled at a lower level by Fe2O3 than by other additives.  
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5. LARGE SCALE PYROLYSIS OF PWBs USING TUBE FURNACE 

5.1. EXPERIMENTAL PROCEDURE 

A tube furnace was used to investigate the pyrolysis of PWBs in a large scale. 

Figure 5.1 is the schematic of the experimental setup design. Figure 5.2 shows the picture 

of the real experiment equipment. Temperature is controlled via a feedback control using 

a thermocouple. The temperature controllers allow the operator to program the heating 

and cooling rates. 

Tube furnace

tube tube

Liquid product 
collector

Tail gas 
treatment

Gas Sampling

Condensor

 
Figure 5.1.  The Schematic of Pyrolysis Experiment Using Tube Furnace 

 

Figure 5.2.  The Real Pyrolysis Experiment an Equipment Using Tube Furnace 
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Argon gas as a carrier was used to push out the gas emitted during the pyrolysis 

process at a certain flow rate and to prevent potential secondary pyrolysis reaction. The 

experimental procedure is as follows: 

 Open the entrance cover of the tube furnace, then place the crucible containing the 

PWB sample to the middle of the tube, as shown in Figure 5.3. Close the entrance 

cover.  

 Open the gas entrance and exit valves, and pump Ar gas into the pyrolysis system. 

Purging the tube furnace for 30 min before heating with a flow rate of 200 ml/min 

in order to make an inert atmosphere. The temperature varied according to the 

temperature procedure set-up. Temperature was recorded by a data logger, as 

shown in Figure 5.4. 

 Turn on tube furnace to heat PWB sample to 900 oC at 15 oC/min heating rate 

with 200 ml/min gas flow rate. Hold at the top temperature for 120 min. 

 Evolved gases from tube furnace were cooled down by an iced-water condenser. 

Liquid sample was collected in five glass tubes immersed in the ice bath. After 

the experiment, liquid samples were analyzed using Nicolet 670 Fourier 

Transform Infrared Spectrometer (FTIR), as shown in Figure 5.5.  

 Turn off tube furnace.  

 After tube furnace is cooled down to room temperature, take out solid products. 

 
Figure 5.3.  Samples in Crucibles Were Placed in the Middle of Tube 
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Figure 5.4.  Temperature Data Logger 

FTIR spectroscopy is a measurement technique for collecting infrared spectra. 

Instead of recording the amount of energy absorbed when the frequency of the infra-red 

light is varied (monochromator), the IR light is guided through an interferometer. After 

passing through the sample, the measured signal is the interferogram. Performing a 

Fourier transform on this signal data results in a spectrum identical to that from 

conventional (dispersive) infrared spectroscopy [121].  

 
Figure 5.5.  Nicolet 670 Fourier Transform Infrared Spectrometer (FTIR) 



69 

5.2. PYROLYSIS OF PWBS WITHOUT ADDITIVES 

5.2.1. Experiment Conditions. Four regular pyrolysis experiments were 

performed. The experiment conditions are as follows: 50 g PWB unscreened powders; 

Carrier gas: Argon with 200 ml/min flow rate; 15 oC
 

/min heating rate; 900  oC top 

temperature; 120min holding time at top temperature. The recorded temperature curve is 

shown in Figure 5.6. 

 

Figure 5.6.  Recording Temperature Curve 

5.2.2. Pyrolytic Products. Three types of products-solid product, liquid product 

and gas product-were produced during pyrolysis experiments, as shown in Figure 5.7. 

Solid products remained in the crucible after pyrolysis. The liquid products were 

collected by five glass tubes. Gas sample was taken at 300, 400 and 500oC, respectively. 

Finally, the tail gas was treated by 5% NaOH solution, then released into the vent. 
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Figure 5.7.  PWB Sample and Products 

5.2.2.1. Solid products.  Solid products mainly consist of glass-fiber, metals and 

carbon. The yield of solid and liquid products were estimated in each experiment by 

weighing the amount of each obtained, while the gas yields were determined by 

subtracting the yields of solid and liquid products from the initial mass of the PWB 

powders. After the pyrolysis experiment, the solid products were 22-30 g, as shown in 

Table 5.1. In average, the solid product produced without additives is ~24 g, and ~47% of 

the original mass. In other words, as 53% of PWBs were converted to liquid and gas 

products. As shown in Table 4.6, TG/DTA results showed that there is 36% residue 

remaining, which is far less than that in the current tube furnace experiments. Therefore, 

PWB samples in tube furnace might not be completely pyrolyzed. 

Table 5.1.  Solid, Liquid and Gas Products Produced in Pyrolysis Experiment 

Experiment  
Heating 

rate, 
o
C/min 

Solid product Liquid product  Gas product  

g  %  g  %  g  %  

#1  10  23.7  47.4  7.3+2.4 19.4  16.6  33.2  
#2 10  23.3  46.6  8.2+2.4 21.2  16.1  33.2  
#3  5  25.2  50.4  7.05+2.4 18.9  15.35 30.7  
#4  15  22.5  45  8.0+2.4 20.8  17.1  34.2  

Mean 23.68 47.35 10.00  20.08  16.29 32.57 
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5.2.2.2. Liquid products.  The pyrolysis oil obtained during PWB pyrolysis is a 

mixture of organic compounds (usually termed oils), and also contains some aqueous 

products. Similar results in the pyrolysis of different plastics were reported [92-93], 

indicating that water and hydrocarbons by-product could either be a product formed in 

the process (derived from the oxygen-containing functional groups, -COO-, OH-, -

COOH-, etc.) or due to the original moisture in the samples. 

As shown in Table 5.1, the current pyrolysis experiments produced 9.5-10.6 g of 

liquid products, averaging 20% of the original PWB mass. Liquid products could be 

fractionated using separating funnel, as shown in Figure 5.8. Ideally, three main products 

could be separated: heavy oil, water and light oil. Light oil is in the up layer, water is in 

the middle layer, and heavy oil and sediments are in the lower layer. It is difficult to 

separate the light oil using this method because it occupies the least volume and also its 

similar color to water.  

 
Figure 5.8.  Separating Funnel 

FTIR analysis is sensitive to the composition change of the pyrolysis products. 

The collected oil from experiment #1 (Table 5.1) was analyzed using FTIR and the 

spectrum is shown in Figure 5.9. A few chemical functional groups could be found in 

pyrolytic heavy oil. The wide adsorption peak between 3600-3200 cm-1 is caused by the 

stretching vibration of free O-H band. For alkane functional groups, several stretching 

vibration of alkane C-H band could be found at 3000-2850 cm-1. Bending vibration of 

alkane C-H band could be found at 1465-1340 cm-1, and the stretching of aliphatic C-H 

bond occurs below 3000 cm-1. There is stretching vibration of olefin C-H at 3100-3010 

cm-1, stretching vibration of olefin C=C bond at 1675-1640 cm-1, and bending vibration 

of olefin C-H bond at 675 cm-1. A peak occurred at 2250-2100 cm-1 stand for alkyne 

stretching vibration. Stretching vibration of C-H at aromatic ring may occur at 3100-3000 

cm-1. At 1600 cm-1, 1580 cm-1, 1500 cm-1, 1450 cm-1. There are four peaks with different 

density, which stand for aromatic compounds there. For alcohol and phenol functional 
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groups, stretching vibration of C-O takes place at 1300-1000 cm-1, and the out-of-plane 

bending of hydroxy O-H could be found at 769-659 cm-1. 

Figure 5.10 shows FTIR spectra of heavy oil from experiment of #2, #3 and #4 

(Table 5.1) which had different heating rate. Comparing three FTIR spectrums from these 

three different experiments, it is difficult to find any difference among them. For #1 

experiment, heavy oil, water and light oil could be separated from liquid products, and 

the FTIR spectrum is shown in Figure 5.11. FTIR spectrum shows much difference 

between the heavy liquid product and the light liquid product. For example, there are two 

strong absorption peaks at 1550-1400 cm-1, and 1050-800 cm-1 for the light liquid product, 

but not for the heavy liquid product. Around 1500 cm-1 C=C stretching bond vibration for 

aromatic rings could be found. C-H bend vibration for alkenes is at 1050-800 cm-1. 

Consequently, the pyrolysis products from #2, #3 and #4 without additives mainly 

consist of aromatic compounds with phenol and substituted phenol, but few alkane chains. 

 

Figure 5.9.  FTIR Spectra of Heavy Oil from Liquid Product (#1 Experiment). 
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Figure 5.10.  FTIR Spectra of Heavy Oil from Liquid Product (#2, #3 and #4Experiment) 
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Figure 5.11.  FTIR Spectra of Heavy Oil, Water and Light Liquid Product from Liquid 

Product (Experiment: #4) 

5.3. PYROLYSIS OF PWBS WITH ADDITIVE 

Additive CaCO3 was added into PWB powders to control the toxic substance like 

HBr emitted during pyrolysis. The sample was converted to solid, liquid and gas products 

following the routing as shown in Fig. 5.7. Three experiments were performed in the 

current study. 
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5.3.1. Experimental Procedure and Methods.  Experiment procedure of 

pyrolysis of “PWB+additives” is same as the pyrolysis of PWB only. Two methods of 

adding CaCO3 were used: 

 Mixed: PWB sample mixed with CaCO3 sample in the ratio of 5:1. In the current 

study, 10 g CaCO3 powder was used to mix with 50 g PWB powders. 

 Mixed+UP: The same ratio was used in this method. However, 5 g CaCO3 

powder was used to mix with 50g PWB sample, and the other 5 g CaCO3 powder 

was spread out as a layer on the mixed sample, as shown in Figure 5.12. 

 
Figure 5.12.  Mixed+Up Method 

5.3.2. Pyrolysis Products.  In PWB+additive experiments, solid product mainly 

consists of the pyrolysis residue (coke, tar, etc.) and decomposing products of CaCO3 

(CaO, CaBr2). 

Unscreened PWB powders were used for experiment #5. The experimental 

condition is the same as pyrolysis experiment without additive and the temperature 

procedure is shown in Figure 5.13. There were 32.35 g solid product, 9.76 g liquid 

product and 17.89 g gas products, as shown in Table 5.2. It is assumed that CaCO3 had 

been decomposed in this experiment, thus the amount of CO2 evolved from the 

decomposition of CaCO3 could be calculated. Theoretically, decomposing 10 g additive 

CaCO3 is able to produce 4.4 g CO2 gas. Therefore, the actual gas products from the 

pyrolysis of PWB sample should be equal to the gas subtracting the CO2 generated from 

the decomposition of CaCO3 from the total gas products. Roughly, there were 26.75 g 

solid products, 9.76 g liquid products and 13.49 g gas products, and the yield was 

approximately 53.5%, 19.52% and 26.98% respectively. In Chapter 4, as shown in Table 

4.6, the pyrolysis using TG/DTA-MS reported that the final mass of residue is 35% of the 
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sample similar to experiment #5. The mass loses in TG/DTA is higher than that in tube 

furnace. So the pyrolysis of PWB in the tube furnace experiment is incomplete.  

Screened PWB samples with size of 150-250 μm were used in experiments #6 

and #7. For experiment #6, there were 40.58 g solid products, 6.46 g liquid products and 

8.56 g gas products. After subtracting the weight of CaO and CaBr2, there were 34.98 g 

(69.96%) solid products, 6.46 g (12.92%) liquid products and 8.56 g (17.12%) gas 

products. Obviously, the yield of solid products in screened PWB samples (#6 and #7) is 

bigger than, and the yield of liquid and gas products in this experiment is less than that in 

the unscreened samples (#5). The screened PWB powders contain more metal particles 

than unscreened samples.  

Table 5.2.  Solid, Liquid and Gas Products Produced in Pyrolysis Experiments with 
Additives 

Experiment Solid product  Liquid product  Gas product  

NO. 
PWB Particles 

Size 
g  %  g  %  g  %  

#5 (b) 
Unscreened 

32.35 53.91 7.36+2.4 16.1 17.89 29.82 

#5 (a) 26.75 53.5 9.76 19.52 13.49 26.98 

#6 (b) 
150-250 μm 

40.58 67.63 4.06+2.4 10.77 12.96 21.6 

#6 (a) 34.98 69.96 6.46 12.92 8.56 17.12 

#7 (b) 
150-250 μm 

40.31 67.18 5.7+2.4 13.5 11.59 21.23 

7# (a)  34.71 69.42 8.1 16.2 7.19 14.38 
Note: (a): After subtracting CaO or CaBr2; (b): Before subtracting CaO or CaBr2. 

In experiment #7, the heating procedure is different from others, as shown in 

Figure 5.13. There were 40.31 g solid products, 8.1 g liquid products and 11.59 g gas 

products. In order to calculate the real yield of product, the weight of CaO and CaBr2 

should be subtracted. The real yield is 69.42%, 16.2% and 14.38% for solid, liquid and 

gas products respectively. Therefore, increasing holding time at 300, 400 and 500 oC as 

shown in Figure 5.13 have little effect on improving the conversion fraction. 
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Figure 5.13. Recording Temperature Curve for  #5, #6 and #7 Experiment 

5.4 CHAPTER SUMMARY 

PWB samples were pyrolyzed in a tube furnace. Three types of pyrolysis products 

(solid product, liquid product and gas product) were obtained. It is concluded that: 

 As 50 g unscreened PWB samples were pyrolyzed in the tube furnace, in average, 

there were 23.68 g (47%) solid products, 10.00 g (20%) liquid products and 16.29 

g (32%) gas products. 

 The yield of solid products (47%) in tube furnace was far more than that (36%) in 

TG/DTA. PWB sample were not pyrolyzed completely in the tube furnace 

experiments. 

 The pyrolysis liquid products mainly consist of aromatic compounds with phenol 

and substituted phenol, but few alkane chains. 

 Addition of CaCO3 into PWB powder is rarely beneficial to enhance the pyrolysis 

of PWB, but control the emission of the toxic gas like the toxic gas like HBr and 

C6H6. 

 PWB powders with smaller particle size contain more metal during the pyrolysis 

process and thus have more solid products.  
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6. CONCLUSIONS 

PWB materials from different electrical apparatus were combusted and pyrolyzed 

in TG/DTA furnaces and a tube furnace. The evolved gas products were detected by MS 

machine, and liquid products were analyzed by FTIR. The following conclusions are 

derived.  

1. Combustion process in TG/DTA 

During combustion process, there were two exothermic reactions. The first one 

occurred at 300-380 oC, and the second one occurred at 450-500 oC. Due to big amount 

of exhausted heat during these two reactions, the sample temperature in these two 

temperature range abruptly jumped out the heating procedure, lasting 1-3 minutes. The 

gas flow rate and initial sample mass rarely affect the combustion process, only a little 

increasing in temperature at the second peak with increasing gas flow rate. The final 

remaining mass fraction during combustion was ~3% of the original mass for a printer 

PWBs and ~11-13% for a TV PWBs. Holding time at the top temperature affected to a 

little extent the combustion process. The suitable combustion conditions are 15 oC/min 

heating rat, >125 oC/min gas flow rate, 600 oC top temperature and the holding time is 

not important for combustion process.  

The main emitted gases from the combustion of PWB powders are CO, CO2, H2O, 

CH4, C3H5O, C6H6, HBr. The results showed that CaCO3 and Na2CO3 were very efficient 

to control the emission of HBr and benzene, lowering 80% compared to the case without 

additives, Na2CO3 can control the emission of HBr gas but not for benzene, and NaOH 

has no any obvious effect on the control of both gases.  

2. Pyrolysis process in TG/DTA 

During pyrolysis process, the sample temperature followed the heating procedure 

exactly and had little temperature jump as in the combustion cases. The reaction occurred 

during a big temperature range, and there were a few sub-peaks at the big range peak, at 

350 oC, 500 oC, and 700 oC respectively. The sub-peak temperature slightly increased 

with increasing gas flow rate. Longer holding time degraded more PWB. The final mass 

fraction of PWB by pyrolysis was 15-25% of the initial mass. Larger heating rate 

accelerated the pyrolysis process. While the final mass fraction would be the same no 
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matter what heating rate was used. The suitable pyrolysis conditions are 15-20 
oC/min, >100 oC/min gas flow rate, above 900 oC temperature and longer holding time. 

More emitted fuel gas like C2H3O, C2H4O and C3H5O could be produced during 

the pyrolysis of PWBs than the combustion process. Fe2O3 is the most effective additive 

to control HBr and C6H6 during the pyrolysis process. MS signal from PWB+Fe2O3 

experiment has very strong intensity of CH4, H2O, C2H3O and 1st peak CO2 or C2H4O. 

Signal intensity of HCl, Cl2, C6H6 and HBr could be controlled at a lower level by Fe2O3 

than other additives.  

3. Large scale pyrolysis process in the tube furnace 

PWB samples were pyrolyzed in the tube furnace. Three types of pyrolysis products 

(solid product, liquid product and gas product) could be produced in the experiment. As 

50g unscreened PWB samples were pyrolyzed in tube furnace, in average there were 

23.68 g (47%) solid products, 10.00 g (20%) liquid products and 16.29 g (32%) gas 

products. The yield of solid products (47%) in tube furnace was far more than that of 36% 

in TG/DTA. The pyrolysis products mainly consist of aromatic compounds with phenol 

and substituted phenol, but few alkane chains. PWB powders with small size contain 

more metal particle than the unscreened sample, and thus pyrolysis experiment using 

small size PWB particles have more solid products. 
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ABBREVIATION LIST 

Full name Initial 

Printed wire boards PWBs 

Printed circuit boards PCBs 

Waste of electrical and electronic equipment WEEE 

Electronic waste E-Waste 

Electronic scrap E-scrap 

Thermo-gravimetric analysis  TG 

Differential thermal analysis  DTA 

Tetrabromobisphenol A TBBA 

Brominated flame retardant BFR 

Decarbophenyl oxide  DBDPO 

Tetrabromophthaldiphenyl ethane  TBPME) 

Brominated oligmer epoxy  BOE 

Tribromophenoxy ethane  TBPE 

Polybrominated Diphenyl Ethers  PBDE 

Polybrominated dibenzo-p-dioxins PBDD 

Polybrominated dibenzofurans PBDF 

Polybrominated Biphenyls  PBB 

Hexabromocyclododecane  HBCD 

Polyamide 6 PA 6 

Polystyrene PS 

Polyvinyl chloride PVC 

High-density polyethylene HDPE 

Polypropylene PP 

Polyethylene terephthalate PET 

Infrared spectroscopy RAIR 

High impact polystyrene HIPS 

Acrylonitrile–butadiene-styrene copolymer ABS 

Hexabromocylododecane HBCDD 
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Tetrabromobisphenol A TBBPA 

Bromination of bisphenol A BPA 

Tribromoneopentylalcohol TBNPA 

Polycyclic aromatic hydrocarbons  PAHs 

Polychlorinated dibenzo-p-dioxins  PCDDs 

Gas chromatography-mass spectrometry  GC-MS 

Fourier transform infrared  FTIR 

Thermogracimentry TG) 

Thermogravimetry analysis TGA 

Polytetra fluoroethylene  (PTFE) 

Differential scanning calorimetry DSC 
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