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ABSTRACT 

Optimal control will be used to derive four guidance laws for the 

purpose of defending an aircraft from incoming missiles. The dynamics of 

the defending missile, and the overall engagement are used in these 

derivations. They are evaluated first in two degrees of freedom, then in six 

degrees. The guidance objective is to move a defending missile between 

the aircraft and the attacker. Optimal control is used to derive different 

commanded accelerations. Utilizing small changes in the cost functions, 

four applications will be derived. Triangle Guidance is used for 

inspiration, and initially a direct approach is attempted. In the course of 

this application a linear weight on the time-to-go, and a hyperbolic on the 

control weight are used. Three more variations are derived by changing 

how the dynamics are expressed, and the cost function that is minimized. 

The results are mixed, with unique problems appearing for each 

derivation. The final derivation provides a simple expression that proves 

to be effective. The capture envelope is increased while keeping the 

control effort low. 

Ill 
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NOMENCLATURE 

ac commanded acceleration (m/s2) 

A-CLOS Augmented Command to Line of Sight 
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LOS angle between i,j, (rad) 

Hamiltonian parameter k 

line-of-sight from the vehicle j to the vehicle i 

optimal triangle guidance 

OTG parameter, weight on control 

red missile (attacking missile or target) 

and LOSij range, (m) 

OTG parameter, weight on a 

exterior angle, (rad) 

final time (s) 

current time (s) 

time to go (s) 

time of flight (s) 

control for body i, (m/s2) 

closing velocity between a BM and aRM (m/s) 

velocity magnitude for body i (mls) 

state vector 
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1. INTRODUCTION 

Defending aircraft from guided missile attacks is of increasing concern for the Air 

Force. Current defensives include the use of electronic counter measures, stealth, altitude, 

defensive maneuvers, decoys, and simply moving faster than the attacking missile. These 

are mostly passive measures. Stealth works to an extent but does not completely remove 

an aircraft's radar signature. Defensive maneuvers are restricted by the physical 

limitations of the aircraft and the pilot. An aircraft moving at subsonic speed has no 

chance of outrunning a missile. Due to the limitations of using passive countermeasures, 

a more active approach of destroying an incoming missile is desirable. To this end the 

concept of aerial defense is introduced. This uses a defensive missile to intercept an 

attacking missile before it reaches the aircraft. To understand the challenge of 

intercepting a guided missile with another missile, the history of missile guidance is 

studied. Missile guidance has been researched, developed and implemented by the Air 

Force, Navy and the Army. The Navy and the Army are concerned with shooting down 

aircraft and missiles in order to protect army bases and ships. The development of guided 

missiles, for the purpose of intercepting an aircraft began after World War II. During 

World War II, it was clear that a more effective defense was needed to counteract 

kamikaze attacks. The Navy began development of Lark guided missile in 1944 [1]. After 

six years of research and development, the Lark missile was the first to successfully 

intercept an unmanned aircraft. The Lark missile used a widely known control law called 

proportional navigation (PN). In PN it is desired for the rate of change of the missile's 

heading to be proportional to the rate of rotation of the LOS from the missile to its target 

[2]. The commanded acceleration is perpendicular to the LOS from the missile to the 

target [3]. This commanded acceleration is: 

(1.1) 

The commanded acceleration (nc) is proportional to the closing velocity (\'c) and 

the rotation of the LOS vector (.A). Consider an engagement scenario where both the 

missile and the target are moving at the same velocity in one direction, but always 

moving closer together. This is essentially the goal of PN. For the angle of the LOS to 

remain constant, both ends must be moving at the same speed perpendicular to the LOS 
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vector. When this is achieved the missile is on a collision course. This can be seen, in Fig 

1.1, by drawing the collision triangle: 

y 

Target 

X 

Figure 1.1 Collision Triangle 

Simply put the missile and target will be in position in they direction, including 

when their relative distance in the x direction reaches zero, resulting in a collision. PN 

counteracts the rotation of the LOS vector, changing the direction of the missile's 

velocity so that its component perpendicular to the LOS matches the target's 

perpendicular velocity. PN is simple yet effective. However, it does not take into account 

gravity, or any maneuvers the target may employ. There is also no optimization of the 

commanded acceleration. A variation of PN called augmented proportional navigation 

(APN), contains an extra term to compensate for a maneuvering target. The commanded 

acceleration is changed to 

(1.2) 

One obvious problem is that a reliable estimate of the target's acceleration ( nr) is 

required. One advantage to PN is that the closing velocity and LOS rate are relatively 
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easy to measure. The target's acceleration can be found from this information; however it 

is not directly measured. It is measured by taking previous information and creating an 

estimate based on the change of the target's velocity. 

The first USAF air-to-air intercept was achieved during the Vietnam War. This 

was done by an F-4 Phantom using a AIM-9 Sidewinder [4]. This success was soon 

shadowed by another F-4 Phantom that was shot down by an enemy SAM. The F-4 

Phantom was also the first United States aircraft to be shot down by an enemy air-to-air 

missile. These events highlight the importance of protecting aircraft from missiles. The 

fact that aircraft continue to be shot down, shows that the current measures are not 

completely effective. 

The most widely known missile defense system is the Patriot missile. It was the 

first missile defense system to be proved in combat. In the early 90's the Patriot missile 

was used during the Gulf War to intercept Scud missiles. Its effectiveness was the topic 

of some debate. Success is typically defined as the percentage of engaged missiles that do 

not hit their target. Accuracy is typically defined as the percentage of engaged missiles 

that are destroyed. For the Patriot missile system it was sufficient to merely deflect an 

incoming missile, so that it did not hit its target. One idea to improve the intercept of 

ASM with a SAM is the concept of the Earliest Intercept Line (ElL). The specific goal of 

ElL is to improve missile-to-missile single shot kill probability [6]. For the Navy and the 

Army, the concept of area defense is important. This is deploying a missile system so that 

it can protect a military outpost, or for one ship to protect several ships. Robb uses the 

ElL to develop a concept of reachability in area defense. This is done by calculating the 

earliest possible intercept point given the missile's current position and heading. These 

concepts are important to keep in mind. 

The specific problem that will be addressed in this thesis will be that of defending 

an aircraft from an incoming missile. The goal will be to have a missile, the blue missile 

(BM), intercept an attacking missile, the red missile (RM), before it hits the aircraft (BA). 

The engagement can be illustrated by drawing a triangle with one of the vehicles at each 

point. This is shown in Fig 1.2. 
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--- ---

Figure 1.2 Engagement Geometry 

Rusnak [8] wrote about applying differential game theory to the problem of 

defending an aircraft with a missile. The problem is broken into two parts: first, the 

attacking missile and the target, and second, the defender intercepting the attacker. It is 

assumed that the target is evading the attacker while the defender is intercepting the 

attacker. To achieve this Rusnak uses optimal control to minimize the distance between 

the defender and the attacker, while maximizing the distance between the attacker and the 

target. 

The geometry of the engagement leads to a common objective for many control 

schemes. The goal is to move the BM between the BA and RM. It is reasonable to 

assume that the RM is on a collision course with the BA. If the RM is not on a collision 

course there is not need to protect the aircraft. The benefit of the RM trying to intercept 

the BA, is that the LOS at is always decreasing. This means that if the BM is between the 

BA and RM, the RM will eventually hit the BM. This engagement is considered by 

Boyell [7] , which considers the dynamics in defending a moving target. Boyell calculates 

the optimal launch angle for a defending missile to achieve a minimum time to intercept. 

Missile intercept guidance is typically broken into two parts, mid-course and terminal. 

This partially comes from the hardware limitations of the missiles used. Whether using 

infrared or radar, most missiles are not able to track a target when launched. They use 



information from an external radar source during mid-course guidance. Terminal 

guidance is the last stage of the intercept, when the missile has locked on to the target. A 

new problem comes when using an aircraft to fire a missile. Missiles are typically fired 

straight forward from an aircraft. If a missile is fired at an aircraft with a significant 

heading error, the intercept missile would also have a significant heading error. The 

infrared or radar used by a missile may not be able to see the incoming missile, until this 

heading error is reduced. This idea of moving the BM to LOS at has lead to many LOS 

guidance laws called command to line of sight (CLOS). Perelman [9] deals with 

dynamics in 2D, and specifically deals with testing the effects of a maneuvering aircraft 

on a defending missile's intercept. A common assumption of constant velocities is also 

used. In PN, when a missile wants to intercept a target, the rotation of the LOS from 

missile to target is reduced. Remember that the goal is to keep the LOS constant and 

reduce the range. In this LOS guidance law the goal is for all three of the LOS vectors to 

rotate at the same rate. This makes sense because if the BM stays on LOS at• the LOS 

vectors to and from the BM must rotate at the same rate as LOSat· The major focus 

seemed to be more on what the aircraft can do to make the attacking missile work harder 

than the defending missile. A slightly different approach to the problem was explored by 

Rantoo [10]. Rantoo also deals with dynamics in 2D. The aircraft is used by providing 

information to the BM about the RM. It is shown is that if the aircraft provides a more 

accurate estimate, the defender expends less effort. 

A guidance law that does directly use the geometry of the aerial defense problem 

is triangle guidance (TG) [11]. This guidance law takes a unique approach to the 

problem. It focuses on the idea of collapsing the engagement triangle. This is done by 

using the exterior angle a, and can be calculated using the two LOS angles to and from 

the BM. The exterior angle is seen in Fig 1.3. 

(1.3) 

5 



6 

--- ---

Figure 1.3 Exterior Angle a 

The control law proposed was: 

(1.4) 

It was found that using a commanded control proportional only to the current 

value of CJ preforms poorly. It is desirable for the BM to move between the BA and RM, 

and stay there. Using only the current value of the angle, the BM tends to overshoot and 

move from one side of LOSat to the other side. The advantage to TG is that it used an 

approach that directly uses the geometry of the engagement. It does not require the 

aircraft to provide additional information. In TG the commanded acceleration ac is 

perpendicular to LOS at· In theory the focus is on moving to the LOS rather than moving 

down it. However, in application we have little control over the BM's velocity. Control 

surfaces on a missile are used to rotate the body axis. In most simulations the body axis is 

assumed to coincide with the velocity vector. This means that the applied acceleration 

will be different than the commanded acceleration. In TG the applied acceleration 

perpendicular to the velocity is increased so that its component perpendicular to LOSat is 

the magnitude of the commanded acceleration. The guidance laws discussed provide 

several important concepts to keep in mind. A common concept used in guidance laws is 

to include the aircraft by having it measure the acceleration of the incoming missile. This 
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is most notably done by Shima who does propose using information from both the 

defending missile and the aircraft's sensors to create a perfect estimation of the incoming 

missile's acceleration. Furthermore, he proposes estimating the guidance law used by the 

attacker [12]. This paper will focus on deriving an optimal control guidance law using a 

geometric approach similar to what is seen in TG. 



2. OPTIMAL CONTROL 

The goal of this thesis is to apply optimal control to the aerial defense problem. 

Before this can be done a general form of the optimal control will be derived. First, a 

performance index is chosen of the form 

I= cp(x(T)) + ft: L(x, u)dt (2.1) 

subject to the system dynamics 

.X =f(x,u) (2.2) 

with initial conditions 

x(t0 ) = x0 (2.3) 

The Hamiltonian is formed from the performance index and the system model 

H(x,u,A.) = L(x,u) + A_Tf(x,u) (2.4) 

Augment the performance index with the Hamiltonian 

(2.5) 

To find the minimum of the performance index taking the first variation 

Consider that the fixed variation 8x is related to the time free variation 8x 

8x = 8x +x8t (2.7) 

8 
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Using the fact that HA. = f(x, u) leads to 

(2.8) 

and 

1 f.T{ - - } J.T{ T - ·} T · T lS] = ifJxlSXr + to HxlSx + HulSu dt- to A lSx dt + {H(x, u, A.) -A x}t0 (2.9) 

Expanding the third term using integration by parts yields 

(2.10) 

(2.11) 

Considering the initial time, final time and state are known 

(2.12) 

(2.13) 

Using (7) and (10) in (9) 

(2.14) 

Combining like terms 

(2.15) 

Consider that the Lagrange multipliers A. can be chosen to eliminate the dependent 

variations. This leads to the costate equation 

_AT- -H - _aH 
- X- ax 

and boundary condition 

1T _ _ arp 
llf - (/Jx-­ax 

(2.16) 

(2.17) 
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This leaves only 

(2.18) 

To ensure the cost function is minimized, the first variation must be zero. This 

leads to the necessary condition 

aH 
Hu =-= 0 au (2.19) 
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3. SYSTEM DYNAMICS 

Consider the dynamics of a missile. The rocket motor does not have a throttle so 

there is no control over the thrust of the missile. The control comes from the fins of the 

rocket, which are used to rotate the missile. This can be shown as a force perpendicular to 

the body axis. It is assumed that the velocity is in the same direction as the body axis. The 

missile will go through a thrusting faze and a coasting phase. During the thrusting phase, 

the velocity will increase rapidly, but during the coasting phase, drag will slowly 

decrease the velocity. For 2D simulations the velocity magnitude of the both defending 

missile and the incoming missile's is assumed to be constant along the body axis seen in 

Fig 3.1. The aircraft is moving with a constant velocity and direction. A state space 

representation of the system is needed to apply optimal control. How the system 

dynamics, derived from the forces seen in Fig 3.2, are modeled has a large impact on 

applying optimal control. The coordinate system that is used changes how the dynamics 

are expressed and thus how the derivatives in optimal work out. 

y 

downrange ..._ __ ......._ _____ _. X 

Figure 3.1 Flight Path Angle 
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Figure 3.2 Forces 

Each application needs a state space representation of the dynamics in Fig 3.3 and 

an expression for the position and velocity of each body. 

Downrange 

Figure 3.3 Engagement 
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The simplest way to do this is to use the inertial position and velocity of each 

body. A similar method is to use the inertial position and flight path angle FPA for each 

body. This assumes the velocities are constant. A third way used is to express the 

dynamics in a different coordinate system. These differences lead to large changes in the 

final control expression. 



4. APPLICATIONS 

Optimal control was applied to this problem in several different ways. They all 

center on how the state dynamics are expressed, and which cost function is chosen. 

(4.1) 

.X =f(x,u) (4.2) 

4.1. APPLICATION I 

Triangle guidance centered on reducing the exterior angle u. This was the first 

method considered. To this end the following cost function was chosen 

1 2 T 1 J = -su +f. -Ru2 dt 
2 t 0 2 m (4.3) 

This would attempt to minimize the control effort used while reducing cr . This 

leads to 

H(x, u,A) = ~Ru~ + AT f(x, u) (4.4) 

.T a A =-AT -f(x u) ax I 
(4.5) 

aH- 1T a f( ) au - Rum + /l au X, u (4.6) 

A -- __ z_ T a({J I a!:.sa2 1 
f -ax t=T- ax (4.7) 

t=T 

The optimal control equations are subject to the system dynamics 

x = f(x,u) (4.8) 

There are many different ways to express the system dynamics. At first it was 

desired to express them in the form 

a= f(cr, u) (4.9) 

14 
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If a can be expressed as an explicit function of a, then the equations seen in (4.4) 

through (4.7) can be easily evaluated. However, no such function was found. Consider 

that a is not dependent on the velocity of the vehicles. If the velocity of the BM is 

rotated, it will not change the value of a, but it could cause it to rotate faster or slower. In 

the end, a simpler set of dynamics was chosen 

x = [BAx BAy BMx BMy RMx RMy YA Ym Ytf (4.10) 

These dynamics assume that each vehicle is moving at a constant velocity. The 

FPA is used because, in application, a missile's velocity is controlled by the rocket 

motor. We have no control over the magnitude of the velocity, but the direction can be 

controlled. To this end the dynamics are expressed in terms of the position and FPA of 

each body. 

Taking the derivative of the Hamiltonian with respect to A gives the state 

equation: 

The derivative with respect to U111 produces the stationary condition: 

aH = Ru +As= 0 au m Vm 

- R-l As u -- -
m Vm 

(4.13) 

(4.14) 

The A8 term corresponds to the control for the BM. Expanding the costate 

equation, A1 through A6 are constant because the derivative of the state vector is not a 

function of the current position. The velocity of each vehicle does not depend on its 

current position. The derivative of the A vector is: 
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( 4.16) 

The last three differential equations .A.7 , .A.8 , and .A.9 are a function of the first six, 

the velocity of each body, and their flight path angles. 

(4.17) 

(4.18) 

(4.19) 

These equations can be written in terms of derivatives of the positions of each of 

the bodies: 

(4.20) 

(4.21) 

(4.22) 

These equations can be integrated with A1 -A6 as constants. This is a very 

important step in optimal control. In many optimal control problems, the derivative of the 

state and the derivative of the A vector must be solved simultaneously. This can be 

difficult in the best of cases and not possible in others. Because every element in the A 

vector is constant or a function of the state derivative, these equations can be easily 

integrated. 

(4.23) 

(4.24) 

(4.25) 
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The Cb C2 , and C3 terms are constants of integration and can be solved using the 

boundary condition from optimal control. 

(<px- A.)lrdx(T) = 0 

a<pr A __ t 
f- ax 

(4.26) 

(4.27) 

This gives the values for A at the final time in terms of the derivative of the final 

state constraint with respect to the state vector. From equation ( 4.3), the final state 

constraint is: 

<p(x(T), T) = ~S(a(T)) 2 (4.28) 

The angle a can be calculated using the two LOS angles: 

(4.29) 

(4.30) 

The derivatives of <p(x(T), T) with respect to the state for A1 through A6 are: 

(4.31) 

(4.32) 

(4.33) 

A - _a_<fJ t_r - - Sa { 1 + -=---=-1---} I 
4 - aBMy - (1+/Ji)(BMx-BAx) (1+/Ji}(RMx-BMx) T 

(4.34) 

(4.35) 

(4.36) 
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From equation (4.14) only As is needed in the control equation. The A7 and A9 

terms are not directly needed, and do not show up in any of the other derivatives. Only 

two of the first six derivatives, A3 and A4 , are needed for control. These two elements are 

only a function of the final state and can be reduced to: 

(4.37) 

(4.38) 

The FP A of the missile is not needed to calculate a at the final time. The 

condition <p(x(T), T) is a function of the final position only makes the value of As at the 

final time zero. 

(4.39) 

All of the information needed to calculate the desired control is available, except 

the positions of each body at the final time. The final positions are calculated assuming 

constant velocities in constant direction. This prediction will become more accurate as 

the BM approaches the RM, and is similar to how the zero effort miss ZEM is calculated. 

If both of the missiles do not maneuver their closest point is the ZEM. The only 

difference is that tgo is used instead of whatever time takes the missiles to reach their 

closest point. The tgo term is easier to calculate. Therefore the state can be calculated at 

the final time: 

x(T) = x(t)t90 + x(t) (4.40) 

The C2 term in A.8 can now be calculated using the information at the final time: 

(4.41) 

(4.42) 

(4.43) 
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(4.44) 

(4.45) 

- R-1 A.s u -- -
m Vm 

(4.46) 

This leads to the control as: 

(4.47) 

Equation (3.47) provides the magnitude of the control for the BM. The direction, 

from the dynamics, is perpendicular to the velocity of the missile. 1!.3 and /1.4 are 

calculated from equations (4.37) and (4.38). In this guidance law it is desired for (J to go 

to zero before the BM is predicted to reach the RM. This is done by scaling t80 : 

t90 = 0. 70 ~mt 
rmt 

(4.48) 

The simulation used to test optimal triangle guidance OTG has the RM starting 

lOkm downrange and 16.5km cross range. Both the BM and the RM are traveling at a 

constant velocity of 800 rnfs. The aircraft is traveling at 250 rnfs without changing 

direction. The weight on (J (S) is 1 while the weight on control (R) varies from 8x 10-6 to 

8x10-9 using a hyperbolic tangent function. The RM is using PN to chase the aircraft. The 

target's acceleration is not required in OTG, but it is used in this simulation. When it is 

not used, the miss distance is larger, but is still below 1/10 of a meter. The trajectory is 

shown in Fig. 4.1: 

In this simulation the BM misses the RM by 0.034 m. Fig. 4.2 shows the 

acceleration demanded by OTG. The value of u111 is initially high, because the control is 

rotating the trajectory of the BM to intercept the RM. This can be seen in the LOS rate 

and closing velocity. The LOS between the BM and RM is rotated so that their velocities 

are pointed towards each other, causing the closing velocity to increase. 
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The weight on control in Fig 4.3 is decreased as the BM approaches the RM, 

causing the guidance law to demand more acceleration to intercept the RM. The goal of 

the OTG formulation is met as seen in the plot of rJ in Fig. 4.4. The value for rJ increases 

slightly at the beginning of the simulation. This is due to system dynamics. It can be seen 

in the plot of a that rJ is increasing at the beginning of the simulation, due to initial 

conditions. 
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Sigma decreases exponentially, which is desirable, but in the last time steps of 

2ms the value of a dips below zero. Fig. 4.5 shows a. The steep decrease in a can be 

seen in the last second in Fig. 4.4. Despite this the BM comes within three hundredths of 

a meter of the RM. 
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Additional simulations were run with the RM having slightly different initial 

conditions. These can be seen in Fig. 4.6 Three were placed above the x axis and three 

below. The RM was placed from 67° above to 67° below the aircraft. The miss distances 

are slightly larger, because the tuning parameters were not changed from the previous 

results shown. When the RM is placed higher or lower, the tuning parameters must be 

changed slightly. 
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Though this derivation was successful in 2D, it did not perform well in 3D. The 

state dynamics were expressed in a similar manner, adding a z component to the position 

for each vehicle and a second FPA (W) corresponding to the component of the velocity 

out of the x-y plane. This led to a second control term, which is to be expected. 

(4.49) 

(4.50) 

(4.51) 

Vm = Vm cos(w) sin(y) x + Vm cos(w) cos(y) y + Vm sin(w) 2 (4.52) 

The problem comes when trying to solve the costate equation, specifically when 

solving for the derivative of the Hamiltonian with respect tow. 
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(4.54) 

Unlike the 2D derivation, this equation cannot be easily integrated. This means 

that an analytical solution for ..113 cannot be found. Another idea that was attempted was 

that of using a coordinate frame attached to the plane made by the three bodies. The 

coordinate frame in Fig4.7 has one axis along the LOS from the BA to the BM, a second 

perpendicular to the first in the a-plane, and a third perpendicular to the plane. 

RM 

Figure 4.7 a-plane Coordinate System 

The idea was to force the 2D solution into this rotating coordinate frame. If 

optimal control can reduce the engagement triangle in 2D, then that solution can rotate 

with the a-plane. Ignoring the rotation ignores dynamics of the system. Specifically, 

velocities out of the plane would be ignored. 
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Sigma decreases exponentially, which is desirable, but in the last time steps of 

2ms the value of a dips below zero. Fig. 4.5 shows a. The steep decrease in a can be 

seen in the last second in Fig. 4.4. Despite this the BM comes within three hundredths of 

a meter of the RM. 
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Additional simulations were run with the RM having slightly different initial 

conditions. These can be seen in Fig. 4.6 Three were placed above the x axis and three 

below. The RM was placed from 67° above to 67° below the aircraft. The miss distances 

are slightly larger, because the tuning parameters were not changed from the previous 

results shown. When the RM is placed higher or lower, the tuning parameters must be 

changed slightly. 
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4.2. APPLICATION II 

Similar to previous derivations the state chosen for this new idea is simply the 

position and velocity of each vehicle. The state dynamics are easily calculated: 

(4.55) 

(4.56) 

The acceleration for the missile is described using the inertial x-y frame. The 

original OTG derivation assumes the control direction to be perpendicular to velocity 

which also assumes there is no direct control of the missile's velocity magnitude. These 

assumptions will be addressed later in simulations. Using the inertial acceleration 

simplifies the optimal control equations. 

The cost function and Hamiltonian is the same as used previously 

] = <p + f.tr ~ ( ui + u~) dt 
o2 

State equation: 

aH = x = f(x) 
ail 

Stationary condition: 

aH 
-a = 0 = Ruy + ..110 

Uy 

Costate equation: 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 



(4.63). 

aH . 
-=-A. ax 

Expanding (4.64) gives: 

i)H 

iJBAy 

i)H 

iJRMy 
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(4.64) 

_..!!!_]T = 0 
iJRMz 

(3.65) 

The first six elements of A are constant. The two elements of A that are needed in 

(3.66) 

Because the derivatives in (4.66) are in terms of constants, the equations can be 

integrated: 

(4.67) 

(4.68) 

The values for the elements in A are calculated from the boundary condition: 

A(T) =a~~ 
ax T 

(4.69) 

This means that if the boundary condition is chosen independent of the missile's 

velocity then A9 (T) and A10 (T) will be zero. This leads to: 

(4.70) 

The boundary condition will be used to find the values of A3 and A4 . However, 

before it can be evaluated the final values for the missile need to be calculated. 

Combining (4.63) and (4.68) leads to: 

(4.71) 

From the state equation: 

(4.72) 
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Integrating (4.72) leads to: 

rT · -1 rr 1t Vmxdt = -R A3 1t (T- t) dt (4.73) 

V. (T) - V. (t) = -R-1 A (T-t)z mx mx 3 2 (4.74) 

V. (t) = V. (T) + R-1 A (T-t)z mx mx 3 2 
V. (t) = V. (T) + R-1 A (T-t)z 
my my 4 2 (4.75) 

Integrating the velocity gives the position: 

(4.76) 

(4.77) 

BM (T)- BM (t) = V. (T)t + R-1A (T-t) 3 
x x mx go 3 6 (4.78) 

The missile's velocity at the final time is needed. This can be solved using (4.75). 

BM (T) = BM (t) + (v. (t)- R-1A tooz) t + R-1A too3 x x mx 3 2 go 3 6 (4.79) 

(4.80) 

(4.81) 

Now the boundary condition can be evaluated. The boundary condition chosen for 

this derivation is simply the difference between the missile's current position and its 

desired position: 

1-- 2 
<p = 2S(BM- BMa) (4.82) 

(4.83) 

Given that the objective is to move the defending missile between the aircraft and 

the attacking missile, the desired position BMd will be on the LOS between the BA and 
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RM. Because they are constant, A.3 and i!.4 can be obtained by finding their values at the 

final time. This is done by evaluating the derivative of (4.83) at T. 

A3 = :(qJ) I = S(BMx(T)- BMxd(T)) A4 = o(q~) I = s(BMy(T)- BMyd(T)) (4.84) 
uBMx T oBMy T 

Because the boundary condition is independent of the missile's velocity, i1.9 (T) 

and A.10(T) are zero. Next, the missile's final position can be inserted into (4.84), and i!.3 

and il.4 can be found. 

(4.85) 

(4.86) 

(4.87) 

1 _ S(BMx(t)-BMxd(T)+Vmx(t)t90 ) 

A3 - ( 3) l+!(tg;) (4.88) 

Similarly: 

_ s( BMy(t)-BMyd(T)+Vmy(t)t90 ) 

i!.4- ( 3) l+!(tg;) (4.89) 

This leads to the control as: 

S (BMx(t)-BMxd(T)+Vmx(t)tgo) 

Ux = -- ( 3) tgo R s(tgo) 
1+~ 

(4.90) 

_ s (BMy(t)-BMyd(T)+Vmy(t)t90 ) 
u -- t 

Y - R ( l+!(tg;)3) go 
(4.91) 



29 

As stated previously it is desired for the missile to move between the aircraft and 

the incoming missile. To do this the following equations for the missile's desired position 

are proposed: 

BMxd(T) = BAx(T) + (1- T5 t902
2 )(RMx(T)- BAx(T)) 

TOF 
(4.92) 

(4.93) 

Several considerations were taken into account. First, at the end of the 

engagement, the BM must hit the RM. This means that as t90 ~ 0 the BM's desired 

position should coincide with the RM's predicted position. It can clearly be seen that 

when t90 is zero, (4.92) and (4.93) reduce to: 

and BMyd(T) = RMy (T) (4.94) 

The consideration is how far to start the BM's desired position away from the 

RM. This can be adjusted with the scaling factor (T5 ) . As the scaling factor is increased 

the BM's desired position is moved farther from the RM and closer to the aircraft. This 

will effectively cause the BM to react slightly slower. This reaction time can be seen in 

the trajectories in Fig 4.8 , and Fig 4.9. 
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8000 

In all of the plots for this application, the baseline is denoted by a solid line. The 

effect of changing Ts can be seen as it ranges from 0 to 0.9. The way that the scaling 

works can be seen in Fig 4.1 0. Essentially, the way this derivation works the target of the 

BM is placed on the LOS from the BA to RM. As t90 approaches zero, this target 

approaches the current position of the RM. 

Time (s) 

Figure 4.10 Scaling Factor Ts vs Time 
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In Fig. 4.10 the baseline is at 0, and the top line starting at 0.9 places the BM's 

target much closer to the BA. In the end, this application must outperform the baseline. 

The first two parameters that were considered were the miss distance and the TOF seen in 

Fig 4.11. In both of these parameters the baseline outperforms the new derivation. The 

miss distance is more than doubled as Ts increases. The TOF also increases which will 

cause the RM to be closer to the aircraft. 
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Figure 4.11 Miss Distance and TOF 

In this engagement it is desirable for the BM to move between the RM and the 

BA. The parameter d denotes the distance from the BM to the LOS. It would be desirable 

to keep the BM closer to the LOS. However, it can clearly be seen that increasing Ts does 

not do this. Fig 4.12 shows that as Ts increases the BM drifts farther away from the LOS 

before it turns back toward the RM. This is because the BM reacts slower due to the 

lower initial weight on control. 
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These issues could be overlooked, if the control effort is significantly decreased. 

Two aspects of the commanded control must be considered: first, the magnitude in Fig 

32 

4.13; and second, the portion of the magnitude that is perpendicular to the velocity in Fig 

4.14. This derivation gives commanded control in the x andy directions. However, it is 

assumed that the missile cannot control its velocity. The missile is only able to rotate by 

applying the portion of the commanded acceleration that is normal to the missile. 
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Figure 4.13 Commanded Control Magnitude 
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It can clearly be seen that as Ts increases the control effort also increases. This 

means that there is no benefit from using the Ts scaling. Another problem comes 

calculating t90 . In all of the simulations t90 was calculated using the range and range rate 

from the BM to the RM. There is a problem in this application, because the new target, 

moves between the BA and RM. This puts the target that the optimal control is shooting 

for closer to the initial position of the BM. This means that the BM is trying to intercept 

at a closer position than the predicted t90 is calculated for. In simulations, this lead to the 

commanded control trying to reduce the missile's velocity. If a missile moving at 800 m/s 

is told to hit a target 8,000 m away, but to take longer than lOs, it will require either a 

reduction in velocity or extreme weaving to burn time before hitting the target. This 

demonstrates the importance of t90 in optimal control. Using a fixed final time problem, 

optimal control will try to hit the target at the precise time. By contrast, a regulator 

problem has no need to reach its goal at a specific time. However, with a regulator 

problem, there is no guarantee, that the goal will be reached at a specific time. 

Using this derivation does cause the BM to intercept the RM, but it does not 

outperform the baseline of T5 = 0. When T5 is zero the BM goes directly to the RM. 

Regardless of what metric was used, there was no performance increase from increasing 

Ts. 
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4.3. APPLICATION III 

This derivation uses a coordinate frame with one of the axes along the LOS from 

the BA to the RM. This vector is assumed to be non-rotating because the RM uses PN. 

The coordinate change that rotates from the internal frame to a new frame can be 

expressed using two rotations, and is seen in Fig 4.15. 

z" 
z' 

,, 
1. 

Figure 4.15 Coordinate Rotation 

The LOS from the BA to the RM is denoted as LOSat· The first rotation is about 

the inertial z axis, shown by the angle 81• The new coordinate system is denoted as 

[x' y' x']. 

~] [~] (4.95) 

The second rotation is about the y' axis, shown by the angle 82• After this rotation, 

x'' will be the same direction as LOS at· The transition from inertial to the new coordinate 

frame is: 

[x"] x [ Co y II = [T] [y] = 0 2 

z" z -So2 ~] [~] (4.96) 
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Finally, it is important to note that the BA is moving. To compensate for this, 

relative positions and velocities will be used. Also it is assumed that the BA is moving in 

a straight line. The relative position and velocity of the BM will be considered in this new 

coordinate frame 

(4.97) 

X= f(x) = [Vx Vy Yz Ux Uy Uz]T (4.98) 

with 

f~] = [Tl[Vm,- V.,,] (4.99) 

The subscript (i) denotes the inertial frame. In this problem will assume the 

acceleration to be perpendicular to LOSat· 

Expanding the second term yields 

State equation: 

oH = x = f(x) 
o.il 

Stationary condition 

oH 
-= 0 = Ruy +A.5 
OUy 

_ R-11 
Uy-- 11.5 

_ R-11 
Uz-- 11.6 

(4.100) 

(4.101) 

(4.102) 

(4.103) 

(4.104) 

(4.105) 

(4.106) 



Costate equation 

iJH • 
-=-A. ox 

The first three terms of A. are constant 

The last two terms are functions of the second and third term 

• iJH 
A.s = --= -A.z 

iJVmy 

Integrating (4.109) yields 

t90 = (T- t) 
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(4.107) 

(4.108) 

(4.109) 

(4.110) 

(4.111) 

(4.112) 

The term t90 refers to the time until the end of the simulation. In this derivation it 

is assumed to be known. This leads to 

(4.113) 

Next we need to find the position and velocity of the BM at the final timeT. The 

first step is to integrate the velocity. 

(4.114) 

(4.115) 

(4.116) 

The position can be found by integrating the velocity. 
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J.T · J.T t BMydt = t Vy(t)dt (4.117) 

(4.118) 

(4.119) 

Rearranging (4.115) gives 

(4.120) 

( t 2 ) ( t 3 t 2) BMy(T) = BMy(t) + Vy(t)t90 - R-1 Az 9: + A.s(T)t90 t00 + R-1 A2 7 + A.s(T) 9: (4.121) 

(4.122) 

The position and velocity in the z" direction (BMz(T) and Vz(T)) can be found in 

a similar manner. The position and velocity at the final time can be used to evaluate qJ. 

To achieve an intercept the following function is proposed 

1 ( 2 2) 1 ( 2 2) qJ = 2s1 BMy + BMz + 2s2 Vy + Vz 

The desire is for the BM to be on LOS at at the final time. 

A.1 (T) = _..!..!!!_1 = 0 
iJBMx T 

iJcp I A.2 (T) =--a - = S1BMy(T) 
BMy T 

A.s(T) = _aacp' = S2Vy(T) 
Vy T 

(4.123) 

(4.124) 

(4.125) 

(4.126) 

(4.127) 

(4.128) 

(4.129) 
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Using (3.122) in (3.125) leads to 

(4.130) 

Using (4.119) in (4.128) leads to 

(4.131) 

Given that A.2 = 0, ..12 is a constant. This means that the problem is reduced to a 

set of two equations and two unknowns. 

(4.132) 

(4.133) 

(4.134) 

(4.135) 

Equations (4.134) and (4.135) can be reduced to a simplified form 

a1it2 + b1iis = c1 a2it2 + b2it5 = c2 (4.136) 

1 sl 3 52 2 (4.137) al = +-tgo a2 = -tgo 3R 2R 

b sl 2 
1 = 2R tgo b 52 2 = 1 +Rtgo (4.138) 

c1 = S1{BMy(t) + Vy(t)t90 } c2 = s2{Vy(t)} (4.139) 

These equations can easily be solved using simple matrix operations. 

(4.140) 

(4.141) 
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(4.142) 

This gives all the information needed to calculate uy, and Uz can be calculated in 

a similar way. The only change is in the equations seen in (4.139). This application 

showed initial success, but the final miss distance was not acceptable. The BM would 

miss the RM by 1-1Om depending on the initial conditions. One large issue is the rotation 

of the coordinate system. It is assumed that the RM is using proportional navigation. This 

will reduce the rotation of the LOS from the BA to the RM, but it will not be zero. Even 

if this rotation is very small, when the distance from the RM to the BA is very large, this 

error becomes significant. These errors could be as high as 40 m/s. When the desired 

accuracy is much lower than lm having that large of an error in velocity is unfeasible. 

4.4. APPLICATION IV 

Consider application III except weighting the final miss distance more. First 

change (4.123) to 

(4.143) 

This will mean that As (T) and A6 (T) are zero. From ( 4.134) 

1 _ S {BMy(t)+Vy(t)tgo} 

11.2 - ( 3) 
1+!tg; 

(4.144) 

A _ {BMy(t)+Vy(t)t90 } 

2 - (.!./903) 
S 3R 

(4.145) 

Taking the limit as S --+ oo leads to 

A _ {BMy(t)+Vy(t)t90 } 

2 - e~~3) 
(4.146) 

Leading to 

_ {BMy(t)+Vy(t)tgo} 

Uy-- eg:z) (4.147) 
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_ 3 [BMy(t) Vy(t)} 
Uy-- --z-+--

tgo tgo 
(4.148) 

Now consider the interior angle¢ seen in Fig4.16. In the coordinate system based 

on the LOS from the BA to the RM, the angle can be easily expressed as 

. A. BMy s1n.,., =­
Rmt 

(4.149) 

Figure 4.16 Interior Angle </J 

The sine of the interior angle is the distance from the BM to the LOS, divided by 

the range from the BM to the RM. The range to the target can be expressed as 

(4.150) 

Assuming ¢ is small this leads to 

(4.151) 

Taking the derivative yields 



41 

(4.152) 

Combining (4.152) with (4.148) yields 

(4.153) 

This is very close to PN seen in Equation ( 1.1 ), with a navigation constant of 

three, weighting a different angle. The results from this application are much more 

favorable. One major reason for this is that cb can be calculated to include the rotation of 

the LOS between the BA and RM. This guidance law will put the BM directly on the 

desired LOS. Next, consider the issue seen in application II, with the difference between 

the commanded acceleration, and the normal acceleration. The commanded acceleration 

is the acceleration that optimal control tells the missile to have. The difference between 

these two vectors is shown by the angle e seen in Fig 4.17. In this derivation the 

commanded acceleration is perpendicular to the LOS. However, the missile will not be 

able to provide acceleration in only this direction. In previous derivations, the portion of 

the commanded acceleration that is not normal to the velocity is ignored. 

Figure 4.17 Control Angle (} 
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Considering that in applying optimal control to a simulation, the goal of the 

application should be to follow optimal control as closely as possible. In the first 

application this is done by forcing the optimal control derivation to be normal to the 

velocity. This causes major problems when moving to 3D. Therefore, rather than taking a 

projection of the commanded acceleration onto a vector normal to the velocity, the 

opposite will be done. Essentially, this is increasing the magnitude along the normal 

direction so that its component in the LOS frame has the same magnitude as the 

commanded acceleration. 

1 
a =--a n cos e c (4.154) 

This derivation bypasses the problem seen in the previous one due to how ¢is 

calculated. It can be seen from Fig. 4.18 that 

(4.155) 

(4.156) 

BA 

Figure 4.18 4J Calculation 



This means that ¢ can compensate for the rotation of the coordinate system, 

because A-at represents this rotation. The problems seen earlier do not appear in this 

derivation. Using the same initial conditions it has a miss distance of 3.44x 10·7 m. The 

trajectory is shaped similar to what is seen in the second application. This is due to the 

slightly lower control effort at the beginning of the simulation. One of the objectives of 

applying optimal control to the Aerial Defense scenario was to reduce the initial control 

effort of TG. In the same engagement TG will require a much larger control effort 

initially. The trajectory is seen in Fig 4.19. 
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In this engagement the incoming missile has an initial heading error of 40°. 

Despite this, the control effort is just over 10 g. There is no overreaction seen in previous 

derivations. The control effort is only in one direction. One problem encountered earlier 

was that of overshoot, when the BM crosses the LOS and must correct itself causing extra 

effort. It can be seen from Fig 4.20 that overshoot is not a problem, because the BM's 

acceleration does not change direction. 
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The distance from the BM to the LOS is seen in Fig. 4.21. This does look similar 

to the previous derivations, but when taken with the control there is an improvement. 

When the control effort is larger initially the BM will stay closer to the LOS, but it may 

require a correction later. This can be seen if control effort is spent counteract the initial 

effort. It must be kept in mind that in the optimal control formulation, there is no 

intermediate state weighting. TG weights a and 0" at the current time, and this causes the 

BM to reach the LOS sooner. However, this requires more effort. The formulation 

weights the distance to the LOS at the final time, and can be seen in Fig. 4.22. 
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14 

14 

The time-to-go is known, and given the current position and velocity, the ZEM 

can be calculated. The ZEM is the miss distance if no effort is expended. It can be clearly 

seen that this is sent to zero with no overshoot. 
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The expansion into 3D is simpler than previous applications. The magnitude of 

the acceleration is the same as seen in 2D. The interior angle¢ can be easily calculated in 

3D. Representative results are shown in Fig 4.23 through Fig 4.25. The BM successfully 

intercepts the RM in each engagement, even when the RM starts behind the BA. The first 

application could not intercept the RM if it had an initial heading error larger than 65°. 

For the results shown the miss distance is below 0.2m. The simulations are done in 

GENSIM6 courtesy of the USAF. The missiles are no longer a point mass as seen in the 

results from the previous applications. The velocities of the missiles are no longer 

constant, but change due to thrust and aerodynamic drag. 
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For a more in-depth analysis, the most extreme engagement will be examined 

more closely. With the RM starting behind the aircraft the BM must make a very quick 

turn initially. Despite this the BM is able to successfully intercept the RM. The trajectory 

is seen in Fig 4.26. The large initial turn is due to a large amount of control effort, seen in 

Fig 4.27, at the beginning of the simulation. In the simple 2D simulations the control is 

smooth throughout the entire simulation. This is seen only after the missiles end their 

thrusting phase. During the first 2.5 seconds of the simulation the BM is thrusting, and 

this is clearly seen in Fig. 4.28. After this short thrusting period the missile's velocity 

slows down due to drag. The incoming missile's velocity behaves in a similar way. 
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5. CONCLUSIONS 

The basic goal of this paper is to apply optimal control to the Aerial Defense 

engagement. This was done with four applications of the optimal control derivation. The 

first applications are a more direct using a similar to what is seen in TG. TG weights the 

angle a so this was put into optimal control by using a in the final state constraint. This 

derivation works well initially, but requirs a hyperbolic weight on control, and a scaling 

on the t90 . With these additions the miss distance was decreased to acceptable levels. The 

goal seemed to be achieved, because the initial control effort was decreased from TG. 

However, there was a major problem when applying the derivation to 6-DOF. 

Essentially, the differential equation for the additional Lagrange multiplier is not 

solvable. This means that no expression can be found for the additional control term. 

Without this the 6-DOF derivation does not work. 

The second derivation uses an inertial expression for the control vector. It is 

broken up into its x andy components. This will bypass the problem seen when applying 

the first derivation to 6-DOF. This causes a new problem dealing with the fact that the 

missile cannot control its velocity. To get around this problem, the axial acceleration is 

ignored. In the end the second derivation fails to outperform the baseline. Using the entire 

engagement does not provide any benefits over merely having the BM intercept the RM. 

The optimal route for the second derivation is to set Ts to zero, which ignores any 

information from the aircraft. 

The third derivation weights the distance to the LOS rather than a. A new 

coordinate system is used to simplify the optimal control expressions. Both position and 

velocity relative to the LOS are used. This was done in an attempt to prevent overshoot. 

In the end the rotation of the coordinate system causes enough error to increase the miss 

distance beyond acceptable levels. 

The final derivation is similar to the third, but takes the limit as the final state 

weight goes to infinity. This changes the problem from free final state to fixed final state. 

Only the final position is weighted, which simplifies the control expression. Taking the 

limit allows it to be simplified even further. The final expression is similar to PN, and 
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proves to have very good results. The problem seen with the coordinate system rotation is 

accounted for in the calculation of 4>. The control effort is low, while still keeping the 

miss distance small. This derivation uses the engagement geometry in optimal control to 

have the BM intercept the RM. 
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