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ABSTRACT

Data assimilation is a very powerful and efficient tool to use collected raw

data for improving model prediction in numerical weather forecasting, hydrology,

and many other areas of geosciences. In this thesis, an iterative algorithm [23]

of variational data assimilation with finite element method is utilized to study

different models. One motivation for this fundamental mathematical study is

to provide a potential tool for simulation of CO2 sequestration by extending it to

more realistic and sophisticated models in the future. The basic idea of variational

data assimilation is to utilize the framework of optimal control problems. We apply

the iterative algorithm with corresponding discretization formulation of the model

equations to approximate the optimal control in the variational data assimilation

problems. We conduct a group of comprehensive numerical experiments for both

the second order parabolic equation and Stokes equation. These two models are

critical to study Darcy’s law and Stokes-Darcy problems for CO2 sequestration,

especially for the CO2 storage in fractured reservoir and the leakage around the

natural faults.

One key point for this method of data assimilation is the derivation of the

adjoint models. For the convenience of computation, we discretize the adjoint

models in the operator formulation into the corresponding discretized matrix for-

mulation. We focus on the application of the iterative algorithm to the second

order parabolic equation and Stokes equation with different numerical tests for

the parameter sensitivity, convergence, accuracy, and efficiency of the algorithm.

At each step of the iteration, there are three major stages: solving original

forward equation with the current control, solving backward adjoint equation with

the observation and the current solution of the forward equation, and updating

the control for the next iteration step. Finite elements are utilized for the spatial

discretization, finite difference schemes are utilized for temporal discretization,

and the conjugate gradient method is utilized for solving the control equation in

order to update the control. The numerical results illustrate that the iterative

algorithm is stable and efficient for variational data assimilation problems.
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1. INTRODUCTION OF DATA ASSIMILATION

In this section, we first introduce the background and the motivation of

the data assimilation and then review the history and existing methods for data

assimilation.

1.1. BACKGROUND AND MOTIVATION

Data assimilation is a very powerful and efficient tool to use collected raw

data for improving model prediction in numerical weather forecasting, hydrology,

and many other areas of geosciences.

One motivation for us to study data assimilation technique is to develop

a fundamental mathematical tool for monitoring of CO2 sequestration. Energy

generation by use of fossil fuels produces large volumes of CO2, which has been

shown to have a significant undesirable impact on our environment [2]. Hence, it

is envisioned to capture and sequester a substantial fraction of the produced CO2

since subsurface geologic formations provide a potential long-term storage location

for CO2 sequestration [1, 3, 21]. Currently, industrial professionals and scientists

are developing different methods to sequestrate and monitor the CO2 in the deep

geological formations. Several mechanisms are discussed by scientists to help keep

the CO2 trapped in the deep subsurface. The storage formation should be deep

enough (typically at depths ranging from 1000 to 4000 meters [28] ) to keep the

CO2 in the supercritical state, preventing it from arising into the shallower regions

where it might do harm to the water resources or even escape to the atmosphere.

However, the inaccessibility and complexity of the potential storage forma-

tion and the sealing formations in the subsurface, the wide range of scales of

variability, and the coupled nonlinear processes impose tremendous challenges to

determine the transport and predict the fate of the stored CO2 [20,24,29,30], espe-

cially the long term retention of the CO2 in the geological formations. Therefore,

it is critical to develop a robust, accurate long-term monitoring system for CO2

sequestration.

Currently, an interdisciplinary team is currently working on a DOE project:

“Robust Ceramic Coaxial Cable Down-Hole Sensors for Long-Term In Situ Mon-

itoring of Geologic CO2 Injection and Storage” (DE-FE0009843). Due to the low

cost of ceramic coaxial cable sensors, a large array of sensors can be deployed in
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the system to improve the accuracy and stability. One of the major tasks of this

project is to improve model prediction based on the data measured by the devel-

oped sensors. In order to accomplish this task, we need to develop a fundamental

mathematical tool, for which we study an iterative algorithm of variational data

assimilation in this thesis.

1.2. A BRIEF INTRODUCTION FOR THE HISTORY OF DATA

ASSIMILATION

The basic idea of data assimilation was first introduced in numerical weather

prediction and has been developed rapidly ever since. In this section, we briefly

introduce the history of the development of data assimilation, including the general

ideas of different data assimilation techniques.

1.2.1. Subjective Analysis. Subjective analysis was first started in

the 19th century. It was a labor-consuming process since the initial values for the

grids were determined by subjectively drawing charts and interpolating between

isolines. Although the process was subjective, it was a kind of data assimilation,

where the local observations were combined with the experience to provide the

map [5].

1.2.2. Richarson’s Numerical Weather Prediction. The numerical

weather predicion was first attemped by Lewis F. Richardson in 1922 [25] . He

made it by hand in 1917 since it was before digital computers. His trial failed due

to the fact that the observational data had not been assimilated properly which

led to an unbalanced initial state [5]. But in [16], Lynch showed that with an

appropriate smoothing of the initial condition, Richardson’s prediction could have

been accurate. Richarson’s general philosophy of weather forecasting is still being

used today.

1.2.3. Successive Correction Methods. This approach is in an iterative

manner: The variable at each grid point is updated iteratively based on the first

guess and the observation surrounding the grid point. Within a specified tolerance,

the variable is updated by the following formula [22]:

fn+1
i = fni +

Kn
i∑

k=1

wnij(f
0
k − fnk ) +

Kn
i∑

k=1

wnik + ε2

where fni is the value of the variable at the ith grid point at the nth iteration,



3

f 0
k is the kth observation surrounding the grid point, fnk is the value of nth field

estimate calculated at observation point k derived by interpolation from nearest

grid points, wik is a weighting function, and ε2 is an estimate of the ratio of the

observation error to the first guess field error.

There are two commonly used schemes for the successive correction methods:

Cressman’s scheme which is also referred to as Cressman’s objective analysis [7]

and the Barnes scheme [4]. The Cressman scheme defines the weighting function

as:

wnik =
R2

n−r2ik
R2

n+r2ik
, if r2

ik < R2
n

wnik = 0, if r2
ik > R2

n

where rik is the distance from the observation to the grid point and Rn is the radius

of influence. According to the weighting formula, observations whose distance is

larger than the radius of influence will not be used to update field variables. In the

Cressman’s scheme, the ε2 is set to be 0 which means the observations are perfect.

On the other hand, Barnes(1964) defined the weights to follow a Gaussian or

normal distribution [4]

Wij =

 exp−
(
r2ik
d2

)
if rik ≤ d

0 otherwise ,

where d is the radius of influence. The Barnes scheme is most used when there is

no available first guess field(such as when analyzing small scale phenomena).

1.2.4. Nudging. Nudging is also known as Newtonian relaxation and

dynamic initialization. The standard nudging algorithm adds a feedback term to

the state equations of a dynamical system. If we have a model written as follow

dx

dt
= M(x),

then the nudging equation is

dx

dt
= M(x) + α(y − x)

where y is a direct observation of x [5]. This method is very easy to be implemented

but has several drawbacks: the relaxation coefficient α must be determined; the
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method is not applicable with undirect observations; this method of nudging is

used for some specific applications, mostly when observational data is not real

observation but data from an analysis.

1.2.5. Optimal Interpolation. The optimal interpolation aims at

minimizing the total error of all the observations to form an optimized weighting

for the observations. Based on [22], we write the analysis equation in the following

form:

Xa = Xb +K(y −H[Xb]),

where K is a linear operator referred to as gain or weight matrix of the analysis

and is given by

K = BHT (HBHT +R)−1,

where Xa is the analysis model state, H is an observation operator, B is the

covariance matrix of the background errors (Xb −X), X is the time model state,

Xb is the background model state, and R is the covariance matrix of observation

errors. The analysis error covariance matrix is

A = (I −KH)B(I −KH)T +KRK−1

It is showed that the best linear unbiased estimator may be obtained as the solution

of the following variational optimization problem [6,27]:

min J = (X −Xb)
TB−1(X −Xb) + (y −H(X))TR−1(y −H(X)).

The advantage of Optimal Interpolation is that it is simple to implement and costs

small if appropriate assumptions are made on observations. The disadvantage is

that noise is produced during the process since different observations are used on

different parts of the model state.

1.2.6. The Kalman Filter and Ensemble Kalman Filter. The

Kalman Filter [14], also known as linear quadratic estimation, is an algorithm

that uses a series of measurements observed over time, and produces estimates of

unknown varibales.
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It was first introduced by R.E. Kalman in 1960. Since then, It has been

developed rapidly with numerous applications in different fields such as signal

processing and econometrics.

The Kalman Filter is a group of equations that work in a recursive way

to estimate the state of a process in the way of minimizing the mean of the

squared error. The algorithm works in a two-step process by using a form of

feedback control. In the prediction step, the Kalman filter produces estimates

of the current state variables, along with their uncertainties. Once the outcome

of the next (noisy) measurement is observed, these estimates are updated using a

weighted average, with more weight being given to estimates with higher certainty.

Because of the algorithm’s recursive nature, it can run in real time using only the

present input measurements and the previously calculated state and its uncertainty

matrix; no additional past information is required.

The Ensemble Kalman filter [10] originated as a version of the Kalman filter

for large problems and is an important data assimilation component of ensemble

forecasting. It is a Monte Carlo implementation of the Bayesian update problem.

There are numerous applications involving the emsemble Kalman filter include the

initial work done by Evenson. Some examples are Lorenz equations, ocean model

and two-layer shallow water model which are included in [11].

1.2.7. Variational Data Assimilation. Based on [22], the goal of

variational data assimilation is to find the solution of numerical forecast model

which best fits the observation distributed in space over a finite time interval.

Assuming that our numerical forecast model is given as

B
dX

dt
+ A(X) = 0

with B being identity for a dynamic model or null operator for steady state model.

A can be linear or nonlinear operator. We define U as control variables which

may consist of initial conditions, boundary conditions or model parameters. The

major step consists in formulating the cost function J which measures the distance

between model trajectory and observation as well as the background field at initial

time during a finite time-interval. The minimization of the cost function can be

viewed both in the perspective of finding its gradient in (a) Lagrangian approach,

(b) adjoint operator approach and (c) a general synthesis of optimality conditions

in the framework of optimal control theory approach.
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2. REVIEW OF A VARIATIONAL DATA ASSIMILATION METHOD

Variational data assimilation aims to provide an optimal estimate of the

initial state of a dynamic system by minimizing the cost functional that measures

the difference between the observation and the modeled state over time [8,26]. In

this section, we review a variational data assimilation method [18, 23], including

the target problem with optimal control via initial conditions and an iterative

algorithm for approximating the optimal control.

2.1. TARGET PROBLEM WITH OPTIMAL CONTROL

We consider an evolution problem of the following form [9]: ∂ϕ
∂t

= F(ϕ), t ∈ (0, T )

ϕ |t=0= u
(1)

where ϕ = ϕ(t) is the unknown function belonging for any t to a Hilbert space H,

u ∈ H, F is an nonlinear operator mappingH intoH. Let Y = L2(0, T ;H), ‖·‖Y =

(·, ·)1/2
Y . Let us introduce the functional:

J(u) =
α

2
‖u‖2

H +
1

2

∫ T

0

‖Cϕ− ϕobs‖2
Hdt

where α = const ≥ 0, ϕobs ∈ Yobs is the observation, Yobs is the subspace of Y ,

and C : Y → Yobs is a linear operator. From the problem (1) we can formulate

the data assimilation problem: find the optimal control u to minimize the cost

functional S(u) subject to equation (1). Therefore, the formulated problem can

be written as: 
∂ϕ
∂t

= F(ϕ), t ∈ (0, T )

ϕ |t=0= u

J(u) = inf
v∈H

J(v)

(2)

Following [9] and references therein, the necessary optimality condition reduces
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the problem (2) to the system:

∂ϕ
∂t

= F(ϕ), t ∈ (0, T )

ϕ |t=0= u

−∂ϕ∗

∂t
− (F ′(ϕ))∗ϕ∗ = −C∗(Cϕ− ϕobs), t ∈ (0, T )

ϕ∗ |t=T= 0

αu− ϕ∗ |t=0= 0

(3)

where ϕ, ϕ∗ are unknowns, (F ′(ϕ))∗is the adjoint to the Frechet derivative of F ,

and C∗ is the adjoint to C.

For simplification, in this thesis, we mainly consider the linear version of the

above problem [18,23]:  ∂ϕ
∂t

+A(t)ϕ = f, t ∈ (0, T )

ϕ |t=0= u
(4)

where A(t) is a linear operator acting in Hilbert space H with domain of definition

D(A), f ∈ L2(0, T ;H), u ∈ H. With the same cost function defined above, we

can formulate the corresponding minimization problem as follow:
∂ϕ
∂t

+A(t)ϕ = f, t ∈ (0, T )

ϕ |t=0= u

J(u) = inf
v∈H

J(v)

(5)

According to [17,18], the problem (5) is solvable and equivalent to the system for

seeking the functions ϕ = ϕ(t), ϕ∗ = ϕ∗(t) and the control u in the form:

∂ϕ
∂t

+A(t)ϕ = f, t ∈ (0, T )

ϕ |t=0= u

−∂ϕ∗

∂t
+A∗(t)ϕ∗ = ϕ̂− ϕ, t ∈ (0, T )

ϕ∗ |t=T= 0

αu− ϕ∗ |t=0= 0

(6)

where A∗(t) is the adjoint operator to A(t), ϕ̂ is the observational data.
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In order to approximate the above problem with respect to spatial variables,

we can either apply finite difference methods or finite element methods for the

spatial discretization based on a grid with grid size h. In general, after the semi-

discretization, the system should have the following form:

dϕh
dt

+Ah(t)ϕ = fh, t ∈ (0, T )

ϕh |t=0= u

−dϕ
∗
h

dt
+A∗h(t)ϕ∗h = ϕ̂h − ϕh

ϕ∗h |t=T= 0

αu− ϕ∗h |t=0= 0

where Ωh is a grid domain, Ah(t) is the grid operator that is obtained by approx-

imating the linear operator A from (2.1), A∗h(t) is the operator adjoint to Ah(t);
ϕh = ϕh(t),ϕ

∗
h = ϕ∗h(t), fh = fh(t), ϕ̂h = ϕ̂h(t) are grid functions.

2.2. ITERATIVE ALGORITHM FOR APPROXIMATING THE

OPTIMAL CONTROL

Assume we have an uniform partition for [0, T ] with temporal step size ∆t =

T
M

. Then recall the iterative algorithm with iteration index j for the above system

[18,23]

ϕ
k+1(j)
h − ϕk(j)

h

∆t
+Ak+1/2

h

ϕ
k+1(j)
h + ϕ

k(j)
h

2
= f

k+1/2
h , k = 0, ...,M − 1

ϕ
0(j)
h = uj

−ϕ
∗k+1(j)
h − ϕ∗k(j)

h

∆t
+A∗k+1/2

h

ϕ
∗k+1(j)
h + ϕ

∗k(j)
h

2
= ϕ̂

k+1/2
h − ϕ

k+1(j)
h + ϕ

k(j)
h

2

ϕ
∗M(j)
h = 0, k = 0, ...,M

uj+1 = uj + αj+1Bj(ϕ
∗0(j) − αuj) + βj+1Cj(u

j − uj−1)

where αj+1, βj+1 are iterative parameters, ϕk(j), ϕ∗k(j), uj are iterative sequences;Bj

and Cj are symmetric positive definite matrices.
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For the computation of αj+1, βj+1, we follow [23] to apply the conjugate

gradient method:

αj+1 = 1/qj+1, βj+1 = ej/qj+1

ej =

 qj = 0, j = 0

qj‖ξj‖2/‖ξj−1‖2, j > 0

qj+1 = ‖ξj‖2
L/‖ξj−1‖2, j = 0, 1...

Here ξj = αuj − ϕ∗0(j), ‖ξj‖L = (Lξj, ξj)
1/2

. Lξj is obtained from the successive

solution of the following problems:

φ
k+1(j)
h − φk(j)

h

∆t
+Ak+1/2

h

φ
k+1(j)
h + φ

k(j)
h

2
= 0

φ0
h = ξj

−φ
∗k+1(j)
h − φ∗k(j)

h

∆t
+A∗k+1/2

h

φ
∗k+1(j)
h + φ

∗k(j)
h

2
= −φ

k+1(j)
h + φ

k(j)
h

2

φ∗Mh = 0, k = 0, ...,M − 1

Lξj = αξj − φ∗0h

In our study, we choose Bj = Cj = E where E is the identity matrix.
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3. APPLICATION FOR SECOND ORDER PARABOLIC EQUATION

In this section, we recall the standard derivation of the adjoint system (6)

for a second order parabolic equation. Then the operator formulation of the iter-

ative algorithm reviewed in Section 2 is discretized into the corresponding matrix

formulation for practical computation. Two groups of numerical experiments are

conducted to validate the iterative algorithm and approximate the optimal control.

Consider the following second order parabolic equation, which is also the

second order formulation of Darcy’s law:

∂ϕ

∂t
−∇ · (K∇ ϕ) = f, on Ω× [0, T ] (7)

ϕ |t=0= u, on Ω (8)

ϕ = 0, on ∂Ω× [0, T ] (9)

with the observation ϕ̂ for the data assimilation problem introduced in Section 2.

Here Ω is a 2D bounded domain.

3.1. DERIVATION OF THE ADJOINT SYSTEM FOR SECOND

ORDER PARABOLIC EQUATION

In this section, we will recall the derivation of the adjoint equation (6). First,

we use ϕ(u) to denote the solution with the initial function u. Then

J(u) =
α

2

∫
Ω

u2dxdy +
1

2

∫ T

0

∫
Ω

[ϕ̂− ϕ(u)]2 dxdydt.

With the cost function defined above, we can formulate the minimization problem

as follow: 

∂ϕ
∂t
−∇ · (K∇ϕ) = f, on Ω× [0, T ]

ϕ |t=0= u, on Ω

ϕ = 0, on ∂Ω× [0, T ]

J(u) = inf
v∈H

J(v), on Ω

If ũ is the minimizer of J(u), then

lim
h→0

J(ũ+ hv)− J(ũ)

h
= 0
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for any v in the admissible set of controls. Hence

0 = lim
h→0

α
2

∫
Ω

[(ũ+ hv)2 − ũ2] dxdy

h

+
1
2

∫ T
0

∫
Ω
{[ϕ̂− ϕ(ũ+ hv)]2 − [ϕ̂− ϕ(ũ)]2}dxdydt

h

Note that

(ũ+ hv)2 − ũ2 = 2ũhv + h2v2

and

[ϕ̂− ϕ(ũ+ hv)]2 − [ϕ̂− ϕ(ũ)]2

= [ϕ̂− ϕ(ũ) + ϕ(ũ)− ϕ(ũ+ hv)]2 − [ϕ̂− ϕ(ũ)]2

= [ϕ̂− ϕ(ũ)]2 + 2 [ϕ̂− ϕ(ũ)] [ϕ(ũ)− ϕ(ũ+ hv)]

+ [ϕ(ũ− ϕ(ũ+ hv)]2 − [ϕ̂− ϕ(ũ)]2

= 2 [ϕ̂− ϕ(ũ)] [ϕ(ũ)− ϕ(ũ+ hv)] + [ϕ(ũ)− ϕ(ũ+ hv)]2 .

Using the above three equations, we obtain

0 = lim
h→0

∫
Ω

αũvdxdy +
αh

2

∫
Ω

v2dxdy

−
∫ T

0

∫
Ω

[ϕ̂− ϕ(ũ)]
ϕ(ũ+ hv)− ϕ(ũ)

h
dxdydt

+h

∫ T

0

∫
Ω

[
ϕ(ũ+ hv)− ϕ(ũ)

h

]2

dxdydt. (10)

Recall that ϕ(u) is the solution with initial function u. Then


∂ϕ(ũ)
∂t
−∇ · (K∇ϕ(ũ)) = f, on Ω× [0, T ]

ϕ(ũ) |t=0= ũ, on Ω

ϕ(ũ) = 0, on ∂Ω× [0, T ]

and 
∂ϕ(ũ+hv)

∂t
−∇ · (K∇ϕ(ũ+ hv)) = f, on Ω× [0, T ]

ϕ(ũ+ hv) = 0, on ∂Ω× [0, T ]

ϕ(ũ+ hv) |t=0= ũ+ hv, on Ω
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Hence
∂
∂t

(
ϕ(ũ+hv)−ϕ(ũ)

h

)
−∇ ·

(
K∇(ϕ(ũ+hv)−ϕ(ũ

h

)
= 0, on Ω× [0, T ]

ϕ(ũ+hv)−ϕ(ũ)
h

= 0, on ∂Ω× [0, T ]
ϕ(ũ+hv)−ϕ(ũ)

h
|t=0= v, on Ω

(11)

Define

ϕ̄(v)
∆
= lim

h→0

ϕ(ũ+ hv)− ϕ(ũ)

h
.

Then 
∂ϕ̄(v)
∂t
−∇ · (K∇ϕ̄(v)) = 0, on Ω× [0, T ]

ϕ̄(v) = 0, on ∂Ω× [0, T ]

ϕ̄(v) |t=0= v, on Ω

(12)

Since ϕ(ũ+hv)−ϕ(ũ)
h

is the solution of (11), we can obtain that ϕ(ũ+hv)−ϕ(ũ)
h

is bounded

and the upper bound is independent of h. Hence

lim
h→0

h

∫ T

0

∫
Ω

[
ϕ(ũ+ hv)− ϕ(ũ)

h

]2

dxdydt = 0.

Since lim
h→0

ϕ(ũ+hv)−ϕ(ũ)
h

∆
= ϕ̄(v) and lim

h→0

αh
2

∫
Ω
v2dxdy = 0, then we can simplify (10)

to be ∫
Ω

αũvdxdy −
∫ T

0

∫
Ω

[ϕ̂− ϕ(ũ)] ϕ̄(v)dxdydt = 0. (13)

Multiplying the first equation in (12) by ϕ∗ and taking the integral on Ω× [0, T ],

we obtain∫ T

0

∫
Ω

∂ϕ̄(v)

∂t
ϕ∗dxdydt−

∫ T

0

∫
Ω

∇ · (K∇ϕ̄(v))ϕ∗dxdydt = 0. (14)
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Using integration by parts, we get

∫ T

0

∫
Ω

∂ϕ̄(v)

∂t
ϕ∗dxdydt

=

∫
Ω

[ϕ̄ϕ∗] |Tt=0 dxdy −
∫ T

0

∫
Ω

ϕ̄(v)
∂ϕ∗

∂t
dxdydt

=

∫
Ω

[ϕ̄(v)ϕ∗] |t=T dxdy −
∫

Ω

[ϕ̄(v)ϕ∗] |t=0 dxdy

−
∫ T

0

∫
Ω

ϕ̄(v)
∂ϕ∗

∂t
dxdydt (15)

and ∫ t

0

∫
Ω

∇ · (K∇ϕ̄(v))ϕ∗dxdydt

=

∫ T

0

∫
∂Ω

K
∂ϕ̄(v)

∂n
ϕ∗dsdt−

∫ T

0

∫
Ω

K∇ϕ̄(v) · ∇ϕ∗dxdydt

=

∫ T

0

∫
∂Ω

K
∂ϕ̄(v)

∂n
ϕ∗dsdt

−
[∫ T

0

∫
∂Ω

Kϕ̄(v)
∂ϕ∗

∂n
dsdt−

∫ T

0

∫
Ω

ϕ̄(v)∇ · (K∇ϕ∗)dxdydt
]

=

∫ T

0

∫
∂Ω

K

[
∂ϕ̄(v)

∂n
ϕ∗ − ϕ̄(v)

∂ϕ∗

∂n

]
dsdt

+

∫ T

0

∫
Ω

ϕ̄(v)∇ · (K∇ϕ∗)dxdydt. (16)

Plugging (15) and (16) into (14), we get∫
Ω

[ϕ̄(v)ϕ∗] |t=T dxdy −
∫

Ω

[ϕ̄(v)ϕ∗] |t=0 dxdy

+

∫ T

0

∫
Ω

ϕ̄(v)

[
−∂ϕ

∗

∂t
−∇ · (K∇ϕ∗)

]
dxdydt

−
∫ T

0

∫
∂Ω

K

[
∂ϕ̄(v)

∂n
ϕ∗ − ϕ̄(v)

∂ϕ∗

∂n

]
dsdt = 0. (17)

By comparing (17) with (13), we can see that the equation for ϕ∗ should be defined

as 
−∂ϕ∗

∂t
−∇ · (K∇ϕ∗) = ϕ̂− ϕ(ũ), on Ω× [0, T ]

ϕ∗ = 0, on ∂Ω× [0, T ]

ϕ∗ |t=T= 0, on Ω

Note that ϕ̄(v) = 0 on ∂Ω and ϕ̄(v) |t=0= v on Ω. Then (17) can be simplified to
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be

−
∫

Ω

vϕ∗(0)dxdy +

∫ T

0

∫
Ω

ϕ̄(v) [ϕ̂− ϕ(ũ)] dxdydt = 0. (18)

Adding (18) to (13) we obtain
∫

Ω
[αũ− ϕ∗(0)] vdxdy = 0 for any v in the admis-

sible set of controls. Hence αũ− ϕ∗(0) = 0.

Based on the above derivation, we can obtain the following system for seeking

the optimal control u, function ϕ, and adjoint function ϕ∗:

∂ϕ
∂t
−∇ · (K∇ϕ) = f, on Ω× [0, T ]

ϕ |t=0= u, on Ω

ϕ = 0, on ∂Ω× [0, T ]

−∂ϕ∗

∂t
−∇ · (K∇ϕ∗) = ϕ̂− ϕ, on Ω× [0, T ]

ϕ∗ |t=T= 0, on Ω

ϕ∗ = 0, on ∂Ω× [0, T ]

αu− ϕ∗ |t=0= 0, on Ω.

(19)

3.2. WEAK FORMULATION AND FINITE ELEMENT

DISCRETIZATION

In this subsection, we shortly recall the weak formulation and the finite

element formulation for the above system. First, we multiply a test function v on

both sides of the original equation

∂ϕ

∂t
−∇ · (K∇ϕ) = f, in Ω× [0, T ]

and take the integral on Ω to obtain∫
Ω

ϕtvdxdy −
∫

Ω

∇ · (K∇ϕ)vdxdy =

∫
Ω

fvdxdy,

Based on Green’s formula and the given boundary condition, we get∫
Ω

ϕtvdxdy +

∫
Ω

K∇ϕ · ∇vdxdy =

∫
Ω

fvdxdy.

Define H1(0, T ;H1(Ω)) = {v(t, ·), ∂v
∂t

(t, ·) ∈ H1(Ω), ∀t ∈ [0, T ]}. Then the weak
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formulation is to find ϕ ∈ H1(0, T ;H1(Ω)) such that∫
Ω

ϕtvdxdy +

∫
Ω

K∇ϕ · ∇vdxdy =

∫
Ω

fvdxdy

for any v ∈ H1
0 (Ω). The weak formulation of the adjoint problem can be obtained

similarly.

Assume Uh ⊂ H1(Ω) is a finite element space based on a grid with size h.

Then the finite element formulation is to find ϕh ∈ H1(0, T ;Uh) such that∫
Ω

ϕhtvhdxdy +

∫
Ω

K∇ϕh · ∇vhdxdy =

∫
Ω

fvhdxdy

for any vh ∈ Uh. Assume Uh = span{φj}Nb
j=1 where {φj}Nb

j are the global finite

element basis functions and Nb is the number of the global basis functions. Since

ϕh ∈ H1(0, T ;Uh), then we can assume ϕh =
∑Nb

j=1 ϕj(t)φj. Choose vh = φi(i =

1, ..., Nb). Then we can get,

∫
Ω

(
Nb∑
j=1

ϕjφj

)
t

φidxdy +

∫
Ω

K∇

(
Nb∑
j=1

ϕjφj

)
· ∇φidxdy

=

∫
Ω

fφidxdy

⇒
Nb∑
j=1

ϕ
′

j

[∫
Ω

φjφidxdy

]
+

Nb∑
j=1

ϕj

[∫
Ω

K∇φj · ∇φidxdy
]

=

∫
Ω

fφidxdy, i = 1, ..., Nb.

Define the stiffness matrix

Ah =

[∫
Ω

K∇φj · ∇φidxdy
]Nb

i,j=1

,

the mass matrix

Mh =

[∫
Ω

φjφidxdy

]Nb

i,j=1

,

the load vector

−→
b =

[∫
Ω

fφidxdy

]Nb

i=1

,
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and the unknown vector

−→
X = [ϕ]Nb

j=1 .

Then we obtain the system:

Mh
d
−→
X

dt
+ Ah

−→
X =

−→
b (20)

Similarly, we can obtain the following matrix formulation of the adjoint system:

−Mh
d
−→
X ∗

dt
+ Ah

−→
X ∗ =

−→̃
b (21)

where

−→̃
b =

[∫
Ω

(ϕ̂− ϕ)φidxdy
]Nb

i=1
,
−→
X ∗ =

[
ϕ∗j
]Nb

j=1
.

Note that the adjoint matrix A∗h = Ah because the matrix A is a symmetric real

matrix.

3.3. ITERATIVE ALGORITHM

Assume we have an uniform partition for [0, T ] with temporal step size

∆t = T
M

. Based on the above matrix formulation arising from the finite ele-

ment discretization, we can apply the iterative algorithm, which was recalled in

Section 2.2 with the iteration index j, in the following matrix formulation:

Mh

−→
X k+1(j) −

−→
X k(j)

∆t
+ θAk+1

h

−→
X k+1(j) + (1− θ)Akh

−→
X k(j)

= θ
−→
b k+1 + (1− θ)

−→
b k, k = 0, ...,M − 1 (22)

−→
X 0(j) = −→u j

−Mh

−→
X ∗k+1(j) −

−→
X ∗k(j)

∆t
+ θAkh

−→
X ∗k(j) + (1− θ)Ak+1

h

−→
X ∗k+1(j)

= θ
−→̃
b k(j) + (1− θ)

−→̃
b k+1(j), k = 0, ...,M − 1 (23)

−→
X ∗M(j) = 0,

−→u j+1 = −→u j + αj+1(
−→
X ∗0(j) − α−→u j) + βj+1(−→u j −−→u j−1) (24)
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where αj+1, βj+1 are iterative parameters and θ ∈ [0, 1] is the parameter for dif-

ferent time discretization scheme.

In order to compute the iterative parameters αj+1, βj+1 in our iterative al-

gorithm, we can apply the conjugate gradient method recalled in the previous

section

αj+1 = 1/qj+1, βj+1 = ej/qj+1

ej =

 0, j = 0

qj‖
−→
ξ j‖2/‖

−→
ξ j−1‖2, j > 0

qj+1 = ‖
−→
ξ j‖2

L/‖
−→
ξ j−1‖2, j = 0, 1...

Here
−→
ξ j = α−→u j−

−→
X ∗0(j),‖

−→
ξ j‖L =

(
L
−→
ξ j,
−→
ξ j
)1/2

. L
−→
ξ j is obtained as a successive

solution of the problems:

Mh

−→
Y k+1(j) −

−→
Y k(j)

∆t
+ θAk+1

h

−→
Y k+1(j) + (1− θ)Akh

−→
Y k(j) = 0, k = 0, ...,M − 1

−→
Y 0 =

−→
ξ j

−Mh

−→
Y ∗k+1(j) −

−→
Y ∗k(j)

∆t
+ θAkh

−→
Y ∗k(j) + (1− θ)Ak+1

h

−→
Y ∗k+1(j) = −θ

−→̄
b k(j)

−(1− θ)
−→̄
b k+1(j)

−→
Y ∗M = 0, k = 0, ...,M − 1

L
−→
ξ j = α

−→
ξ j −

−→
Y ∗0(j)

where
−→̄
b k(j) is the discretization of

−→̄
b =

[∫
Ω
ϕφidxdy

]Nb

i=1
with the finite element

solution of ϕ at the jth step of the iteration and time step k.

3.4. NUMERICAL RESULTS FOR SECOND ORDER PARABOLIC

EQUATION

In this subsection, we carry out two numerical experiments to validate the

iterative algorithm for the second order parabolic equation arising from the single-

phase Darcy’s law. The first numerical experiment is designed with known analytic

solutions in order to demonstrate the properties of the iterative algorithm, includ-

ing parameter sensitivity, convergence, accuracy, and efficiency, by comparing the

number of iteration steps and the errors between the numerical solutions and the

analytic solutions.
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The second numerical experiment is a more realistic one for approximating

the optimal control of the variational data assimilation problem.

3.4.1. Numerical Experiment For Validating The Iterative Algo-

rithm. In the first numerical experiment, we consider the following system with

a given observation function ϕ̂ for the iterative algorithm:

∂ϕ
∂t
−∆ϕ = f, in Ω× [0, T ]

ϕ |t=0= u, on Ω

ϕ = 0, on ∂Ω× [0, T ]

−∂ϕ∗

∂t
+ ∆ϕ∗ = ϕ̂− ϕ+ f̃ , on Ω× [0, T ]

ϕ∗ |t=T= 0, on Ω

ϕ∗ = 0, on ∂Ω× [0, T ]

αu− ϕ∗ |t=0= 0, on Ω.

Compared with the original system (19) for the iterative algorithm, we ar-

tificially add the function f̃ here. It does not affect the convergence property of

the iterative algorithm but provides the convenience to set up the first numerical

experiment for the convergence of the iterative solution to the analytic solution

given below(not the optimal control). Then we can compute the errors between

the numerical solution ϕh and the analytic solution ϕ in order to illustrate the

properties of the iterative algorithm. The influence of this additional function f̃

on the iterative algorithm in the discretized matrix formulation of Section 3.3 is to

add the discretization of the following term to the right-hand side of the equation

(23):

−→
b̂ =

[∫
Ω

f̃φidxdy

]Nb

i=1

, (25)

and obtain

−Mh

−→
X ∗k+1(j) −

−→
X ∗k(j)

∆t
+ θAkh

−→
X ∗k(j) + (1− θ)Ak+1

h

−→
X ∗k+1(j)

= θ

(−→̃
b k(j) +

−→
b̂ k
)

+ (1− θ)
(−→̃
b k+1(j) +

−→
b̂ k+1

)
, k = 0, ...,M − 1 (26)

We will use (26) to replace (23).

Set Ω = [0, 1]2, α = 1, ϕ̂ = sin(πx)sin(πy)et. The problem is set up with
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analytic solutions

ϕ = sin(πx)sin(πy)et,

ϕ∗ = sin(πx)sin(πy)et(1− t).

Hence

f = (2π2 + 1)sin(πx)sin(πy)et,

f̃ = sin(πx)sin(πy)et(2π2(1− t) + t+ 1).

Choose linear finite element for the spatial discretization with step size h, and

Crank-Nicolson scheme for the temporal discretization with step size ∆t. The

tolerance to stop the iteration is set to be 10−6. Then we can obtain the following

numerical results for the iterative algorithm.

The first step is to test the effects of the initial guess and the mesh size

on the iterative algorithm. Tables 3.1-3.5 provide the numerical errors for the

solution ϕ at the initial time, which is in fact the control u in different norms

and the number k of iteration steps with respect to the initial vector −→u 0 arising

from u0(x, y) = x2y2,−1, 1, 10, 100 evaluated at all the nodes and the mesh size

h = ∆t = 1/4, 1/8, 1/16, 1/32 respectively. Crank-Nicolson scheme has second

order accuracy for the time discretization. Linear finite element has second order

accuracy in L∞/L2 norms and first order accuracy in H1 norm for the spatial

discretization. Therefore, when we choose h = ∆t, we expect the second order

accuracy in L∞/L2 norms and first order accuracy in H1 norm for our numerical

solution, which can be clearly observed from Tables 3.1-3.5. Using linear regres-

sion, the results in Tables 3.1-3.5 satisfy

‖uh − u‖∞ = 0.7404h2.0418,

‖uh − u‖0 = 1.0613h1.9451,

‖uh − u‖1 = 3.2379h0.9691.

Furthermore, the small numbers of iteration steps clearly indicate the high effi-

ciency of the iterative algorithm.
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The numbers of iteration steps also stay almost the same for different ini-

tial guesses and different step sizes h(= ∆t), which indicates that the iterative

algorithm is not sensitive to the initial guess for the iteration.

Table 3.1. Numerical results with the initial guess u0(x, y) = x2y2

h ,∆t L∞ error L2 error H1 error k

1/4 4.37098e-02 7.35758e-02 8.43646e-01 5

1/8 1.05882e-02 1.93837e-02 4.32501e-01 6

1/16 2.57620e-03 5.10365e-03 2.20566e-01 6

1/32 6.25718e-04 1.34350e-03 1.12520e-01 6

Table 3.2. Numerical results with the initial guess u0(x, y) = −1

h ,∆t L∞ error L2 error H1 error k

1/4 4.37098e-02 7.35758e-02 8.43646e-01 7

1/8 1.05882e-02 1.93837e-02 4.32501e-01 7

1/16 2.57620e-03 5.10365e-03 2.20566e-01 7

1/32 6.25718e-04 1.34350e-03 1.12520e-01 7

Table 3.3. Numerical results with the initial guess u0(x, y) = 1

h ,∆t L∞ error L2 error H1 error k

1/4 4.37098e-02 7.35758e-02 8.43646e-01 7

1/8 1.05882e-02 1.93837e-02 4.32501e-01 7

1/16 2.57620e-03 5.10365e-03 2.20566e-01 7

1/32 6.25718e-04 1.34350e-03 1.12520e-01 7
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Table 3.4. Numerical results with the initial guess u0(x, y) = 10

h ,∆t L∞ error L2 error H1 error k

1/4 4.37098e-02 7.35758e-02 8.43646e-01 8

1/8 1.05882e-02 1.93837e-02 4.32501e-01 8

1/16 2.57620e-03 5.10365e-03 2.20566e-01 8

1/32 6.25718e-04 1.34350e-03 1.12520e-01 8

Table 3.5. Numerical results with the initial guess u0(x, y) = 100

h ,∆t L∞ error L2 error H1 error k

1/4 4.37098e-02 7.35758e-02 8.43646e-01 8

1/8 1.05882e-02 1.93837e-02 4.32501e-01 8

1/16 2.57620e-03 5.10365e-03 2.20566e-01 8

1/32 6.25718e-04 1.34350e-03 1.12520e-01 8

The second step is to test the effect of the accuracy of the observational data

function on the iterative algorithm. We add several different random perturbations

rε to the observational data function ϕ̂ = sin(πx)sin(πy)et where r is a random

number between [0, 1] and then repeat the same numerical experiment with a

fixed iteration step k = 10. For small perturbations we obtain the numerical

results in Tables 3.6-3.8, which indicates that the iterative algorithm is optimally

convergent as long as the observational data is accurate enough. It is also observed

from Tables 3.9-3.10 that larger perturbations deteriorate the numerical solutions.
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Table 3.6. Numerical results with ε = 10−6

h ,∆t L∞ error L2 error H1 error

1/4 4.83787e-02 7.54182e-02 8.43692e-01

1/8 1.42433e-02 2.10126e-02 4.32563e-01

1/16 4.20582e-03 5.80278e-03 2.19013e-01

1/32 1.24141e-03 1.61593e-03 1.12474e-01

Table 3.7. Numerical results with ε = 10−4

h ,∆t L∞ error L2 error H1 error

1/4 4.83787e-02 7.54182e-02 8.43692e-01

1/8 1.42433e-02 2.10126e-02 4.32563e-01

1/16 4.20582e-03 5.80278e-03 2.19013e-01

1/32 1.24141e-03 1.61593e-03 1.12474e-01

Table 3.8. Numerical results with ε = 10−2

h ,∆t L∞ error L2 error H1 error

1/4 4.80414e-02 7.52649e-02 8.43683e-01

1/8 1.38939e-02 2.08364e-02 4.32549e-01

1/16 4.00673e-03 5.83168e-03 2.21661e-01

1/32 1.16039e-03 1.61461e-03 1.13659e-01
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Table 3.9. Numerical results with ε = 1

h ,∆t L∞ error L2 error H1 error

1/4 4.97241e-02 7.63238e-02 8.59217-01

1/8 1.47615e-02 2.17281e-02 4.54129e-01

1/16 4.13253e-03 5.95713e-03 2.34172e-01

1/32 1.25147e-03 1.74562e-03 1.23434e-01

Table 3.10. Numerical results with ε = 102

h ,∆t L∞ error L2 error H1 error

1/4 3.32543e+00 1.62783e+00 8.38266e+00

1/8 3.47997e+00 1.89088e+00 9.02452e+00

1/16 3.49123e+00 1.90345e+00 9.10526e+00

1/32 3.52193e+00 2.04170e+00 9.17321e+00

3.4.2. Numerical Experiment For Approximating The Optimal

Control of A More Realistic Problem of The Second Order Parabolic

Equation. In the second numerical experiment, we consider the following orig-

inal system (19) with given observation function ϕ̂ for seeking the optimal control

u. The system in (19) does not include the function f̃ which was artificially added

in the first numerical experiment. Set Ω = [0, 1]2, ϕ̂ = sin(πx)sin(πy)et + 10−2r,

and f = (2π2 + 1)sin(πx)sin(πy)et where r is a random number between 0 and 1.

The analytic solution ϕ = sin(πx)sin(πy)et. Here we take the initial vecotr −→u 0

with all entries equal to 1 and the tolerance for stopping the iteration to be 10−6

with h = ∆t = 1/16. Table 3.11 provides the numerical errors in the solution ϕ at

the initial time, which is in fact the control u and the number k of iteration steps

for seeking the optimal control u with different parameter.

Note that the cost functional was defined in Section 2 as

J(ϕ) =
α

2
‖u‖2 +

1

2

∫ T

0

‖ϕ̂− ϕ‖2dt
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where the wight coefficient α > 0, ϕ̂(t) is a given function generally defined by

the priori observational data, and ‖·‖ is the norm in a Hilbert space H.

Since α is the weight coefficient of the cost of the control in the cost function,

we expect that smaller α can improve the accuracy with an increased cost. This is

verified by the decreased errors and increased number of iteration steps in Table

3.11.

Table 3.11. Numerical results for different α

α L∞ error L2 error H1 error k

1 9.74315e-01 4.87463e-01 2.36452e+00 6

0.5 9.49825e-01 4.75508e-01 2.31017e+00 7

0.2 8.82750e-01 4.42763e-01 2.16156e+00 10

0.1 7.88512e-01 3.96747e-01 1.95357e+00 14

0.01 2.83542e-01 1.64310e-01 1.44247e+00 51

0.001 4.00371e-02 2.35214e-02 0.94573e-01 76
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4. ITERATIVE ALGORITHM FOR STOKES EQUATION

In this section, we apply the iterative algorithm based on the discretized

matrix formulation in Section 3 to Stokes equation, which is an important prepa-

ration for the Stokes-Darcy model in order to study the CO2 storage in fractured

reservoir and the leakage around the nature faults in the future work. We con-

duct two groups of numerical experiments to validate the iterative algorithm and

approximate the optimal control.

4.1. TARGET PROBLEM AND ITS WEAK FORMULATION

We consider the Stokes equation

−→ϕ t −∇ · T (−→ϕ , p) =
−→
f on Ω× [0, T ] (27)

∇ · −→ϕ = 0 on Ω× [0, T ] (28)

−→ϕ |t=0= −→w on Ω

p |t=0= p0 on Ω

−→ϕ = 0, on ∂Ω× [0, T ]

with the observation
−→
ϕ̂ for the data assimilation problem introduced in Section

2. Here −→ϕ and p are the velocity and pressure of the fluid flow respectively, stress

tensor T (−→ϕ , p) = −pI + 2νD(−→ϕ ), deformation tensor D(−→ϕ ) = 1
2
(∇−→ϕ +∇−→ϕ ′), I

is the identity matrix, and Ω is a 2D domain. With the cost function defined as

J(−→w ) =
α

2
‖−→w ‖2 +

1

2

∫ T

0

‖
−→
ϕ̂ −−→ϕ ‖2dt,

we can formulate the minimization problem as follow:

−→ϕ t −∇ · T (−→ϕ , p) =
−→
f on Ω× [0, T ]

∇ · −→ϕ = 0 on Ω× [0, T ]

ϕ |t=0= −→w on Ω

p |t=0= p0 on Ω

−→ϕ = 0, on ∂Ω× [0, T ]

J(−→w ) = inf−→v ∈H
J(−→v ) on Ω
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In order to derive the weak formulation, we first test function (27) with a vector

function −→v and take the integral in Ω on both sides of the equation,∫
Ω

−→ϕ t · −→v dxdy −
∫

Ω

[∇ · T (−→ϕ , p)] · −→v dxdy =

∫
Ω

−→
f · −→v dxdy.

Applying the divergence theory with the given boundary condition,we can get∫
Ω

−→ϕ t · −→v dxdy +

∫
Ω

2νD−→ϕ : D−→v dxdy −
∫

Ω

p∇ · −→v dxdy =

∫
Ω

−→
f · −→v dxdy,

where D−→ϕ : D−→v = ϕ1xv1x+ϕ2yv2y+ 1
2
ϕ1yv1y+ 1

2
ϕ1yv2x+ 1

2
ϕ2xv1y+ 1

2
ϕ2xv2x. Then

we test equation (28) by multiplying a function q and take the integral in Ω on

both sides of the equation to get

−
∫

Ω

q∇ · −→ϕ dxdy = 0.

Define

H1(0, T ;
[
H1(Ω)

]2
) =

{
−→v : −→v (t, ·), ∂

−→v
∂t

(t, ·) ∈
[
H1(Ω)

]2
, ∀t ∈ [0, T ]

}
,

L2(0, T ;L2(Ω)) =
{
φ : φ(t, ·) ∈ L2(Ω),∀t ∈ [0, T ]

}
,

the weak formulation is to find −→ϕ ∈ H1(0, T ; [H1(Ω)]
2
) and p ∈ L2(0, T ;L2(Ω))

such that∫
Ω

−→ϕ t · −→v hdxdy +

∫
Ω

2νD−→ϕ : D−→v hdxdy −
∫

Ω

p∇ · −→v hdxdy =

∫
Ω

−→
f · −→v hdxdy,

∀v ∈
[
H1(Ω)

]2
,

−
∫

Ω

q∇ · −→ϕ dxdy = 0, ∀q ∈ L2(Ω).

4.2. FINITE ELEMENT DISCRETIZATION AND ITERATIVE

ALGORITHM

Assume Xh ⊂ [H1(Ω)]
2

and Qh ⊂ L2(Ω) are two finite element spaces based

on a grid with grid size h. We assume that Xh and Qh consist of the first order

or higher order of piecewise polynomials and satisfy the inf-sup condition [12,13]:

inf
06=q∈Qh

sup
06=−→v ∈Xh

b(−→v , q)
‖−→v ‖1‖q‖0

> β, (29)
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where β > 0 is a constant independent of the mesh size h and b(−→v , q) =
∫

Ω
q∇ ·

−→v dxdy. This condition is needed to ensure that the spatial discretizations of the

Stokes system are stable. Then the finite element formulation is to find −→ϕ h ∈
H1(0, T ;Xh), ph ∈ L2(0, T ;Qh) such that∫

Ω

d−→ϕ h

dt
· −→v hdxdy +

∫
Ω

2νD−→ϕ h : D−→v hdxdy −
∫

Ω

ph∇ · −→v hdxdy

=

∫
Ω

−→
f · −→v hdxdy, ∀−→v h ∈ Xh (30)∫

Ω

qh∇ · −→ϕ hdxdy = 0, ∀qh ∈ Qh. (31)

Assume Xh = span{φi}N1
i=1, Qh = span{ψi}N2

i=1 where {φi}N1
i=1 and {ψi}N2

i=1 are the

global finite element basis functions. With

−→ϕh =

 ϕ1h

ϕ2h

 =

 ∑N1

j=1 ϕ1jφj∑N1

j=1 ϕ2jφj

 , ph =

N2∑
j=1

pjψi, (32)

we test equation (30) and (31) by the following three steps. First, we use

−→vh =

 φi

0

 , i = 1, ...N1

to test (30) and get∫
Ω

dϕ1h

dt
φidxdy +

∫
Ω

ν

(
2
∂ϕ1h

∂x

∂φi
∂x

+
∂ϕ1h

∂y

∂φi
∂y

+
∂ϕ2h

∂x

∂φi
∂y

)
dxdy

−
∫

Ω

ph
∂φi
∂x

dxdy =

∫
Ω

f1φidxdy. (33)

By plugging (32) into equation (33), we get

N1∑
j=1

ϕ1j

dt

[∫
Ω

φjφidxdy

]
+

N1∑
j=1

ϕ1j

[∫
Ω

ν

(
2
∂φj
∂x

∂φi
∂x

+
∂φj
∂y

∂φi
∂y

)
dxdy

]

+

N1∑
j=1

ϕ2j

[∫
Ω

ν
∂φj
∂x

∂φi
∂y

dxdy

]
+

N2∑
j=1

pi

[
−
∫

Ω

ψj
∂φi
∂x

dxdy

]
=

∫
Ω

f1φidxdy,

i = 1, ..., N1. (34)
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Second, we use

−→v h =

 0

φi

 , i = 1, ..., N1

to test (30) and get∫
Ω

dϕ2h

dt
φidxdy +

∫
Ω

ν

(
2
∂ϕ2h

∂y

∂φi
∂y

+
∂ϕ1h

∂y

∂φi
∂x

+
∂ϕ2h

∂x

∂φi
∂x

)
dxdy

−
∫

Ω

ph
∂φi
∂y

dxdyy =

∫
Ω

f2φidxdy. (35)

By plugging (32) into equation (35), we get

N1∑
j=1

dϕ2j

dt

[∫
Ω

φjφidxdy

]
+

N1∑
j=1

ϕ1j

[∫
Ω

ν
∂φj
∂y

∂φi
∂x

dxdy

]

+

N1∑
j=1

ϕ2j

[∫
Ω

ν

(
2
∂φj
∂y

∂φi
∂y

+
∂φj
∂x

∂φi
∂x

)
dxdy

]
+

N2∑
j=1

pj

[
−
∫

Ω

ψj
∂φi
∂y

dxdy

]
=

∫
Ω

f2φidxdy. (36)

Third, we use qh = ψi to test (31) and get

0 = −
∫

Ω

ψi∇ · −→ϕ hdxdy

=

N1∑
j=1

ϕ1j

[
−
∫

Ω

∂φj
∂x

ψidxdy

]
+

N2∑
j=1

ϕ2j

[
−
∫

Ω

∂φj
∂y

ψidxdy

]
. (37)
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Based on (34), (36), (37), the linear system can be written as

N1∑
j=1

dϕ1j

dt

[∫
Ω

φjφidxdy

]
+

N1∑
i=1

ϕ1j

[∫
Ω

ν

(
2
∂φj
∂x

∂φi
∂x

+
∂φj
∂y

∂φi
∂y

)
dxdy

]

+

N1∑
i=1

ϕ2j

[∫
Ω

ν
∂φj
∂x

∂φi
∂y

dxdy

]
+

N2∑
j=1

pj

[
−
∫

Ω

ψj
∂φi
∂x

dxdy

]
=

∫
Ω

f1φidxdy, i = 1, ..., N1,

N1∑
j=1

dϕ2j

dt

[∫
Ω

φjφidxdy

]
+

N1∑
j=1

ϕ1j

[∫
Ω

ν
∂φj
∂y

∂φi
∂x

dxdy

]

+

N1∑
j=1

ϕ2j

[∫
Ω

ν

(
2
∂φj
∂y

∂φi
∂y

+
∂φj
∂x

∂φi
∂x

)
dxdy

]
+

N2∑
j=1

pj

[
−
∫

Ω

ψj
∂φi
∂y

dxdy

]
=

∫
Ω

f2φidxdy, i = 1, ..., N1

N1∑
j=1

ϕ1j

[
−
∫

Ω

∂φj
∂x

ψidxdy

]
+

N2∑
j=1

ϕ2j

[
−
∫

Ω

∂φj
∂y

ψidxdy

]
= 0, i = 1, ..., N2.

Therefore, we can define:

M =

[∫
Ω

φjφidxdy

]N1

i,j=1

, A1 =

[∫
Ω

ν

(
2
∂φj
∂x

∂φi
∂x

+
∂φj
∂y

∂φi
∂y

)
dxdy

]N1

i,j=1

,

A2 =

[∫
Ω

ν
∂φj
∂x

∂φi
∂y

dxdy

]N1

i,j=1

, A3 =

[∫
Ω

ν

(
2
∂φj
∂y

∂φi
∂y

+
∂φj
∂x

∂φi
∂x

)
dxdy

]N1

i,j=1

,

B1 =

[
−
∫

Ω

ψj
∂φi
∂x

dxdy

]N1,N2

i=1,j=1

, B2 =

[
−
∫

Ω

ψj
∂φi
∂x

dxdy

]N1,N2

i=1,j=1

,

−→
W1 = [ϕ1j]

N1

j=1 ,
−→
W2 = [ϕ2j]

N1

j=1 ,
−→
W3 = [pj]

N2

j=1 ,

−→
F1 =

[∫
Ω

f1φidxdy

]N1

i=1

,
−→
F2 =

[∫
Ω

f2φidxdy

]N2

i=1

,
−→
F3 = [0]N2×1 ,

where
−→
Wi and

−→
Fi are column vectors. Then the discretized linear system can be

rewritten as:

M
d
−→
W1

dt
+ A1

−→
W1 + A2

−→
W2 +B1

−→
W3 =

−→
F1

M
d
−→
W2

dt
+ AT2

−→
W1 + A3

−→
W2 +B2

−→
W3 =

−→
F2

BT
1

−→
W1 +BT

2

−→
W2 =

−→
F3
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Define:

Ms =


M 0 0

0 M 0

0 0 0

 ,As =


A1 A2 B1

AT2 A3 B2

BT
1 BT

2 0

 ,
−→
Ws =


−→
W1

−→
W2

−→
W3

 ,

−→
Wv =

 −→W1

−→
W2

 ,
−→
Fs =


−→
F1

−→
F2

−→
F3

 ,−→p =
−→
W3

where Ms is the mass matrix, As is the stiffness matrix,
−→
Ws is the unknown vector,

and
−→
Fs is the load vector. Then we can rewrite the system as:

Ms
d
−→
Ws

dt
+ As

−→
Ws =

−→
Fs. (38)

Similarly, we can obtain the following adjoint matrix system:

−Ms
d
−→
W ∗
s

dt
+ As

−→
W ∗
s =
−→̃
Fs. (39)

Note that the adjoint matrix A∗s = As because the matrix As is a symmetric real

matrix.

In this section, we apply the iterative algorithm in the following form:

Ms

−→
Ws

k+1(j) −
−→
Ws

k(j)

∆t
+ θAk+1

s

−→
Ws

k+1(j) + (1− θ)Aks
−→
Ws

k(j)

= θ
−→
Fs

k+1(j) + (1− θ)
−→
Fs

k(j), k = 0, ...,M − 1

−→
Ws

0(j) = (−→w j,−→p0)T

−Ms

−→
Ws
∗k+1(j) −

−→
Ws
∗k(j)

∆t
+ θAks

−→
Ws
∗k(j) + (1− θ)Ak+1

s

−→
Ws
∗k+1(j)

= θ
−→̃
Fs

k(j) + (1− θ)
−→̃
Fs

k+1(j), k = 0, ...,M − 1

−→
Ws
∗M(j) = 0,

−→w j+1 = −→w j + αj+1(
−→
Wv
∗0(j) − α−→w j) + βj+1(−→w j −−→w j−1).



31

Here j is the iteration index,
−→
Wv is the velocity component of the solution.

Parameter αj+1 and βj+1 can be obtained similarly by applying the conjugate

gradient method recalled in section 2.

4.3. NUMERICAL RESULTS FOR STOKES EQUATION

Similar to Section 3.3, we carry out two numerical experiments to validate

the iterative algorithm for Stokes equation. The first one is set up with given

analytic solutions so that we can compare the errors between the numerical solu-

tions and the analytic solutions in order to demonstrate the parameter sensitivity,

convergence, accuracy, and efficiency of the iterative algorithm. The second one

is a more realistic numerical test for approximating the optimal control of the

variational data assimilation problem.

4.3.1. Numerical Experiment For Validating The Iterative Algo-

rithm. In the first numerical experiment, we consider the target problem of

Stokes equation with a given observation vector function
−→
ϕ̂ = (ϕ̂1, ϕ̂2)T to test

the iterative algorithm.

Similar to the way of adding
−→
b̂ in (25) of Section 3.4.1, we artificially add

a vector function
−→̄
F and its discretized formulation to the iterative algorithm,

which does not affect the convergence property of the algorithm but provides the

convenience to set up the first numerical experiment for the convergence of the

iterative solution to the analytic solution given below(not the optimal control).

Then we can compute the errors between the numerical solutions and the analytic

solutions in order to illustrate the properties of the iterative algorithm.

Set Ω = [0, 1]× [0, 1], α = 1,

ϕ̂1 = (x5 − x4 − x3 − x2)(5y4 − 4y3 − 3y2 + 2y)cos(2πt),

ϕ̂2 = −(5x4 − 4x3 − 3x2 + 2x)(y5 − y4 − y3 + y2)cos(2πt).

The problem is set up with analytic solution

ϕ1 = (x5 − x4 − x3 − x2)(5y4 − 4y3 − 3y2 + 2y)cos(2πt),

ϕ2 = −(5x4 − 4x3 − 3x2 + 2x)(y5 − y4 − y3 + y2)cos(2πt),

p = sin(πx)sin(πy)cos(2πt).
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Hence

f1 = [πcos(πx)sin(πx) + (60x2 − 24x− 6)(y5 − y4 − y3 + y2)

−(x5 − x4 − x3 + x2)(60y2 − 24y − 6)]cos(2πt)

−2π(x5 − x4 − x3 + x2)(5y4 − 4y3 − 3y2 + 2y)sin(2πt),

f2 = [πcos(πy)sin(πx) + (60x2 − 24x− 6)(y5 − y4 − y3 + y2)

+(5x4 − 4x3 − 3x2 + 2x)(20y3 − 12y2 − 6y + 2)]cos(2πt)

+2π(5x4 − 4x3 − 3x2 + 2x)(y5 − y4 − y3 + y2)sin(2πt).

Choose Taylor-Hood finite elements for the spatial discretization with step size

h. That is, quadratic finite elements are used for the velocity and linear finite

elements are used for the pressure. Furthermore, Crank-Nicolson scheme is used

for temporal discretization with step size ∆t.

The tolerance to stop the iteration is set to be 10−6. Then we obtain the

following results for the iterative algorithm. The first step is to test the effects

of the initial guess and the mesh size on the iterative algorithm. Tables 4.1-4.5

provides the numerical errors for the solution −→ϕ at the initial time in different

norms and the number k of iteration steps with respect to different initial vector

−→w 0(x, y) =

 x2y2

x2y2

 ,

 −1

−1

 ,

 1

1

 ,

 10

10

 ,

 100

100

 ,

Crank-Nicolson scheme has second order accuracy for the time discretiza-

tion. Quadratic finite elements have third order accuracy in L∞/L2 norms and

second order accuracy in H1 norm for the spatial discretization. Therefore, when

we choose ∆t ≈ h3/2, we expect the third order accuracy in L∞/L2 norms and

second order accuracy in H1 norm for our numerical solution, which can be clearly

observed from Tables 4.1-4.5. Using linear regression, the results in Tables 4.1-4.5

satisfy

‖−→wh −−→w ‖∞ = 0.1633h2.9643,

‖−→wh −−→w ‖0 = 0.2429h2.9690,

‖−→wh −−→w ‖1 = 0.5656h1.9449.

Furthermore, the small numbers of iteration steps clearly indicate the high effi-
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ciency of the iterative algorithm. The numbers of iteration steps also stay almost

the same for different initial guess and different step sizes h(= ∆t), which indicates

that the iterative algorithm is not sensitive to the initial guess.

Table 4.1. Numerical results with initial guess equals (x2y2, x2y2)T

h ∆t L∞ error L2 error H1 error k

1/4 1/16 2.6871e-03 3.9732e-03 3.8501e-02 8

1/8 1/32 3.4268e-04 5.0412e-04 9.8409e-03 8

1/16 1/64 4.3979e-05 6.4528e-05 2.5420e-03 8

1/32 1/128 5.6490e-06 8.2714e-06 6.7583e-04 8

Table 4.2. Numerical results with initial guess equals (−1,−1)T

h ∆t L∞ error L2 error H1 error k

1/4 1/16 2.6871e-03 3.9732e-03 3.8501e-02 8

1/8 1/32 3.4268e-04 5.0412e-04 9.8409e-03 8

1/16 1/64 4.3979e-05 6.4528e-05 2.5420e-03 8

1/32 1/128 5.6490e-06 8.2714e-06 6.7583e-04 8

Table 4.3. Numerical results with initial guess equals (1, 1)T

h ∆t L∞ error L2 error H1 error k

1/4 1/16 2.6871e-03 3.9732e-03 3.8501e-02 7

1/8 1/32 3.4268e-04 5.0412e-04 9.8409e-03 8

1/16 1/64 4.3979e-05 6.4528e-05 2.5420e-03 8

1/32 1/128 5.6490e-06 8.2714e-06 6.7583e-04 8
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Table 4.4. Numerical results with initial guess equals (10, 10)T

h ∆t L∞ error L2 error H1 error k

1/4 1/16 2.6871e-03 3.9732e-03 3.8501e-02 9

1/8 1/32 3.4268e-04 5.0412e-04 9.8409e-03 9

1/16 1/64 4.3979e-05 6.4528e-05 2.5420e-03 9

1/32 1/128 5.6490e-06 8.2714e-06 6.7583e-04 9

Table 4.5. Numerical results with initial guess equals (100, 100)T

h ∆t L∞ error L2 error H1 error k

1/4 1/16 2.6871e-03 3.9732e-03 3.8501e-02 9

1/8 1/32 3.4268e-04 5.0412e-04 9.8409e-03 9

1/16 1/64 4.3979e-05 6.4528e-05 2.5420e-03 9

1/32 1/128 5.6490e-06 8.2714e-06 6.7583e-04 9

The second step is to test the effect of the accuracy of the observational data

function on the iterative algorithm. We consider the perturbed observational data

functions

ϕ̂1 = (x5 − x4 − x3 + x2)(5y4 − 4y3 − 3y2 + 2y)cos(2πt) + rε,

ϕ̂2 = −(5x4 − 4x3 − 3x2 + 2x)(y5 − y4 − y3 + y2)cos(2πt) + rε

where r is a random number in [0, 1] and ε = 10−6, 10−4, 10−2, 1, 102. Then we

repeat the same numerical experiment with the iteration number k = 15. As

expected, we observe from Tables 4.6-4.10 that small perturbations can still pro-

vide accuracy numerical results and larger perturbations deteriorate the numerical

solutions.
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Table 4.6. Numerical results with ε = 10−6

h ∆t L∞ error L2 error H1 error

1/4 1/16 2.6871e-03 3.9732e-03 3.8501e-02

1/8 1/32 3.4268e-04 5.0412e-04 9.8409e-03

1/16 1/64 4.3979e-05 6.4528e-05 2.5420e-03

1/32 1/128 5.6490e-06 8.2714e-06 6.7583e-04

Table 4.7. Numerical results with ε = 10−4

h ∆t L∞ error L2 error H1 error

1/4 1/16 2.6871e-03 3.9732e-03 3.8501e-02

1/8 1/32 3.4268e-04 5.0412e-04 9.8409e-03

1/16 1/64 4.3979e-05 6.4528e-05 2.5420e-03

1/32 1/128 5.6490e-06 8.2714e-06 6.7583e-04

Table 4.8. Numerical results with ε = 10−2

h ∆t L∞ error L2 error H1 error

1/4 1/16 2.7371e-03 4.0512e-03 3.9317e-02

1/8 1/32 3.5318e-04 5.1273e-04 9.9018e-03

1/16 1/64 4.4126e-05 6.5782e-05 2.5913e-03

1/32 1/128 5.7061e-06 8.3259e-06 6.9147e-04
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Table 4.9. Numerical results with ε = 1

h ∆t L∞ error L2 error H1 error

1/4 1/16 2.8523e-03 4.1863e-03 4.0782e-02

1/8 1/32 3.6718e-04 5.2319e-04 1.0562e-02

1/16 1/64 4.5179e-05 6.6823e-05 2.7310e-03

1/32 1/128 5.8437e-06 8.4613e-06 7.0715e-04

Table 4.10. Numerical results with ε = 102

h ∆t L∞ error L2 error H1 error

1/4 1/16 3.5138+e00 5.3621e+00 8.2739e+00

1/8 1/32 3.7461+e00 5.3426e+00 8.4578e+00

1/16 1/64 3.7232+e00 5.6253e+00 8.5937e+00

1/32 1/128 4.2437e+00 6.1247e+00 8.7121e+00

4.3.2. Iterative Algorithm For Approximating The Optimal Con-

trol of A More Realistic Problem For Stokes Equation. In the second

numerical experiment, we consider the target problem of Stokes equation with

given observation vector function
−→
ϕ̂ = (ϕ̂1, ϕ̂2)T for seeking the optimal control

vector −→w . We do not artificially add the vector
−→̄
F so that our iterative solution

could converge to the optimal control.

Set Ω = [0, 1]× [−0.25, 0],

ϕ̂1 = (x5 − x4 − x3 − x2)(5y4 − 4y3 − 3y2 + 2y)cos(2πt) + 10−3r,

ϕ̂2 = −(5x4 − 4x3 − 3x2 + 2x)(y5 − y4 − y3 + y2)cos(2πt) + 10−3r

where r is a random number between 0 and 1. The analytic solution, f1, and f2

are the same as those in the Section 4.3.1. Here we take the initial vector to be

−→w whose elements are all 1 and set the tolerance to be 10−6 with h = 1/4 and

∆t = 1/16. Table 4.11 provides the numerical errors in the solution −→ϕ at the

initial time and the number k of the iteration steps for seeking the optimal control
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vector −→w with different parameter α. Recall the cost functional defined in Section

4.1,

J(−→w ) =
α

2
‖−→w ‖2 +

1

2

∫ T

0

‖
−→
ϕ̂ −−→ϕ ‖2dt

where the wight coefficient α > 0, ϕ̂(t) is a given function generally defined by

the priori observational data, and ‖·‖ is the norm in a Hilbert space H.

Since α is the weight coefficient of the cost of the control in the cost function,

we expect that smaller α can improve the accuracy with an increased cost. This is

verified by the decreased errors and increased number of iteration steps in Table

4.11.

Table 4.11. Numerical results for different α

α L∞ error L2 error H1 error k

1 2.7162e-01 3.5856e-01 8.7990e-01 11

0.5 2.4391e-01 3.3872e-01 8.4736e-01 14

0.2 1.8475e-01 2.7743e-01 7.8216e-01 18

0.1 1.4317e-01 2.3651e-01 6.9637e-01 23

0.01 9.9247e-03 1.5392e-02 1.2736e-01 55

0.001 2.8461e-03 4.1038e-03 4.0318e-02 81
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5. CONCLUSIONS

In this thesis, we studied an iterative algorithm [23] with finite elements for

the variational data assimilation. This iterative algorithm was applied with the

corresponding discretization formulations of the model equations to approximate

the optimal control in the variational data assimilation problems. For the three

stages at each step of iteration, we first solved the original forward equation and

the backward equation with finite elements and finite difference schemes, and then

updated the optimal control for the next iteration step with conjugate gradient

method. We conducted a group of comprehensive numerical experiments for both

the second order parabolic equation and Stokes equation.

We first reviewed the formation of the optimal control problem of variational

data assimilation and the corresponding iterative algorithm in [23]. Then we fol-

lowed [23] to apply the iterative algorithm to the second order parabolic equation

in Section 3 for more numerical tests by discretizing the operator formulation into

its discretized matrix formulation, and extended the study to Stokes equation in

Section 4 based on the corresponding dicretized matrix formulation.

Numerical experiments were carried out for the parameter sensitivity, con-

vergence, accuracy, and efficiency of the algorithm. The numerical results demon-

strate the optimal accuracy orders from the numerical errors and the fast con-

vergence from the small number of iteration steps. It is also observed that the

numbers of iteration steps stay almost the same for different initial guesses and

different step sizes h(= ∆t). Moreover, as expected, small perturbations to the

observational data function can still provide accurate enough numerical results

and increasing perturbations deteriorate the numerical solutions. From the nu-

merical experiment for the weight coefficient α in the cost function, we can see

that smaller α can improve the accuracy with an increased cost as expected based

on the definition of the cost function.

One interesting and promising future work is to extend the fundamental

study and numerical experiments in this thesis to more realistic and sophisticated

models with different boundary conditions, such as the interface Darcy model and

the Stokes-Darcy model for subsurface flow.
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