
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Fall 2014 

Development and characterization of spiral additions in a ceramic Development and characterization of spiral additions in a ceramic 

matrix matrix 

Andrea Lynn Els 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Materials Science and Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Els, Andrea Lynn, "Development and characterization of spiral additions in a ceramic matrix" (2014). 
Masters Theses. 7326. 
https://scholarsmine.mst.edu/masters_theses/7326 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/285?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7326?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7326&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


i 
 



i 
 

 

 

 

 

 

 

 

DEVELOPMENT AND CHARACTERIZATION OF SPIRAL ADDITIONS IN A CERAMIC MATRIX 
 

 
by 

 
 

ANDREA LYNN ELS 
 

 
A THESIS 

 
 

Presented to the Faculty of the Graduate School of the  
 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 
 

In Partial Fulfillment of the Requirements for the Degree 
 
 

MASTER OF SCIENCE IN CERAMIC ENGINEERING 
 

 
 

2014 
 

Approved by 
 
 

Dr. Jeremy Watts, Advisor 
Dr. Gregory E. Hilmas 

Dr. William G. Fahrenholtz 

 



ii 
 

  



iii 
 

PUBLICATION THESIS OPTION 

The sections of this thesis are formatted for publication. The Introduction and 

Literature Review sections provide information about the thesis topic as well as 

summarize the manuscripts. Paper I and II, pages 18-35 and 43-53 respectively, are 

formatted for publication in Ceramics International. The thesis concludes with an overall 

summary and suggestions for future work. 



iv 
 

ABSTRACT 

A novel spiral architecture was formed using titanium diboride and silicon 

carbide ceramics as either the spiral or matrix phase. Particulate composites with the 

same compositions were fabricated to compare to the materials in this study. Spiral 

additions were formed using powder loaded polymers followed by a single and/or multi-

filament co-extrusion. For 25 vol% SiC spiral additions to TiB2, boron nitride was added 

to the SiC spiral to alter the bonding at the interface and reduce thermal residual 

stresses. All samples were hot-pressed to near full density at 1980 °C. Hot pressed multi-

filament co-extrusion of 2.4 mm / 1 mm resulted in the smallest, consistent spirals ~50 

µm in diameter. For the SiC spirals in TiB2 study, the room temperature flexure strength 

was 193 ± 17 MPa, with the particulate composite being 488 ± 45 MPa. The fracture 

toughness for the spiral material was as high as 7.5 ± 0.6 MPa·m1/2 with the particulate 

composite being 5.3 ± 0.4 MPa·m1/2. Spiral length was studied with TiB2 spirals in a SiC 

matrix. The resulting average room temperature flexure strength was 313 ± 11 MPa and 

417 ± 41 MPa for spiral and monolithic samples, respectively. Fracture toughness was 

increased from 4.2 ± 0.2 MPa·m1/2 for the monolithic to 6.2 ± 0.4 MPa·m1/2 with the 

addition of spirals. The higher fracture toughness is a result of crack deflection in and 

around the spiral inclusions. Wear testing resulted in a loss of 1.1 mm3 and 3.3 mm3 per 

6000 revolutions for monolithic and uniaxial specimens, respectively. While more wear 

was observed, the strength of the uniaxial samples after wear increased 16% whereas 

monolithic strength decreased 18%.  
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1. INTRODUCTION 

With the improvement of metal alloys, the machinery to shape and cut these 

new alloys must too improve. In order to accommodate the high temperature demands 

(up to ~1000°C), SiC and TiB2 are good candidates. Both materials have advantageous 

properties with respect to high speed machining applications including high melting 

temperature (2700-3200°C), high strength (300-420 MPa), high hardness (20-27 GPa), 

high thermal conductivity (70-120 W·m-1K-1) and are largely chemically inert.1,2  

With machining tools, fracture toughness is a key design factor when considering 

material choices. Many toughening mechanisms have been researched concerning 

ceramics. Previous research on toughening SiC and TiB2 composites have included 

particulate, whisker or fiber additions, or annealing.3-6 Engineered microstructures have 

been another method used to impart toughness and have been researched in other 

ceramic systems. One example is fibrous monoliths which consist of a hard, strong core 

material surrounded by a weaker shell material. The weaker shell allows crack 

propagation perpendicular to the applied force while the core retains the load. The 

core-shell structure can be produced using co-extrusion techniques to create a uniform 

cross-section of the core –shell geometry.7 

One consequence to producing composites of varying materials is the generation 

of thermal residual stresses.  This issue has been studies for certain ceramic systems.  

Modeling of the thermal residual stresses formed during cooling of ZrB2-SiC composites 

has been performed with various geometries of SiC additions such as round, square, 
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hexagonal, peanuts and spirals.8  The round geometry was used as a standard best 

comparable to a particulate addition. The peanut geometry was pursued after observing 

the hexagonal results where an increase in residual stresses was observed near corners 

of hexagons, but not along the flat sides. The peanuts were modeled such that the 

convex side of one was adjacent to the concave side of another. This resulted in a 

reduced magnitude of residual stress field with these additions. The modeling of the 

spiral additions resulted in the least amount of difference in the tensile and compressive 

stresses of all the geometries modeled.  

The current study focused on modifying current co-extrusion methods to create 

unique spiral geometries. Although co-extrusion has most commonly been used for 

axisymmetric or co-axial geometries, previous studies have indicated that the spiral 

architecture can be achieved.9 The spiral inclusions were then incorporated into a 

ceramic matrix to determine the mechanical properties and how they compare to 

simple particulate composites. The strength, fracture toughness and wear properties of 

these materials were then studied to best characterize them in relation to potential 

machining applications.  
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2. LITERATURE REVIEW 

2.1 MECHANICAL PROPERTIES 

2.1.1 Strength. The strength of a material is dependent on the atomic bonding 

of the structure.  The amount of energy required to break a chemical bond is equal to 

the energy under the force-distance curve in Figure 2.1.10 The atoms in the illustration 

have a preferred separation distance xo at which the potential energy is at its lowest 

point. As a tensile force is applied the distance between the two atoms is increased. 

Once the distance at which the bond energy has been exceeded is reached, the atoms 

no longer act on one another and the bond has been broken. This distance can be 

related to a sine wave of the idealized force displacement curve with Equation 1. Where 

λ is the atomic spacing change, x is the displacement and Pc is equal to the cohesive 

force.10 

         (
  

 
) (1) 
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Figure 2.1. Potential bond energy between two atoms (top) and the energy required to 
overcome that bond energy (bottom).10 

 

The cohesive force, proposed by Orowan, which follows an approximate half sine 

function can be used to derive Equation 211 where E is the elastic modulus, γ is the 

fracture surface energy and ao is the equilibrium separation of atoms. 

     (
  

  
)
   

 (2) 

However, this model does not account for flaws in a material, thus relating to 

single crystal materials or in the best case, a high purity fiber. For polycrystalline 
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materials, however, this model is unrealistic.  For example approximate theoretical 

strength values for TiB 2 and SiC are 180 GPa and 132 GPa, respectively. Griffith realized 

this and modified this equation with the consideration of flaws in the material to form 

Equation 3.11 Where π is the geometrical crack constant which can vary and is subject to 

the crack geometry which will be discussed in a later section, and c is the critical flaw 

size.  

     (
   

  
)
   

 (3) 

In order to measure the strength of ceramic materials, flexure testing is most 

commonly used due to cost and convenience. A detailed description of this test method 

for ceramics can be found in ASTM C1161.12 

2.1.2 Fracture Toughness. Irwin continued the study of flaws in brittle 

materials, considering the stress field around cracks. At the tip of a crack the stresses 

can be defined in polar coordinates, in which the direction of the loading is considered. 

There are three different ways, or modes of loading to test a material; tension, in-plane 

shear and out-of-plane shear, illustrated in Figure 2.2. Mode I, tension is most 

commonly used to test materials, where the load is applied normal to the crack plane. 

The stress intensity factor, K, for these materials can be determined for either loading 

method or specimen geometry. With KI being the stress intensity factor in Mode I 

failure. The point at which the stress causes the flaw to propagate becomes the critical 

stress intensity factor, KIC, which can be considered a measure of the fracture toughness 
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of a material. Once a crack in a material has been initiated, fracture toughness is a 

measure of a materials ability to resist the propagation of the crack.  

 

Figure 2.2. Failure modes of materials (a) tension (b) in-plane shear and (c) out-of-plane 
shear 

 

While there are many methods for determining fracture toughness, four main 

techniques are generally used to measure the fracture toughness of ceramics: indirect 

crack, direct crack, chevron and pre-cracked beam method (straight notch), but each 

method has numerous variations. For the direct crack method, a Vickers indent is made 

on the surface of the material and the length of the radial/median cracks that grow from 

the corners of the indent are measured. Using Equation 4,13 KIC can be calculated, where 

ξ is an empirical constant (0.016 ± 0.004). Chevron and straight notch bar cross-sections 

are illustrated in Figure 2.3. The gray area indicates the area that is cut away, 

introducing a known flaw size into the sample. The notch is tested in tension via either 3 

or 4-point bending. Using the maximum load with stable growth and dimensions of the 

(a) (b) (c) 
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flaw, KIC can be calculated. Methods for specimen preparation, testing and data analysis 

are detailed in ASTM C1421-10.14 

      (
 

 
)

 

 
(

 

 
 
 

) (4) 

 

 

Figure 2.3. Schematic of (a) Chevron notch and (b) straight notch cross-sections where 
the gray area is that of the material that is cut away 

 

Relating fracture toughness, KIC, back to the flexure strength gives Equation 513 

where Y is the stress intensity factor dependent on the geometry of a crack and KIC 

relates to twice the elastic modulus times the fracture surface energy, γ. If Y is known, 

the critical flaw size, c, can be calculated, given the experimental measurements of 

fracture toughness and flexure strength.  

 

         
    (5) 

 

 

 

 

 

(a) (b) 
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Griffith proposed several stress intensity factors, Y, for different crack 

geometries13: through thickness internal crack (Y=√π), through thickness surface crack 

(Y=1.12√π), internal circular ‘penny’ crack (Y=2/√π), and through thickness internal crack 

in a finite width body (Equation 6)13 where w is the width of the specimen. If c is much 

less than w, the equation equals that of the geometry for a through thickness internal 

crack (Y=√π), but as c gets closer to w, Y increases to infinity. 

   [
  

 
   (

  

  
)]

  ⁄

 (6) 

2.2 FIBROUS MONOLITHS & CO-EXTRUSION 

2.2.1 Processing. Fibrous monoliths (FM) were originally fabricated using a 

piece of cotton thread drawn through a ceramic paste to coat the thread by Coblenz.15 

The threads were drawn through an alumina paste, dried, then through a titania coating 

to produce the cellular structure. Coblenz cut and laid up the fibers uniaxially and 

pressed them. After binder burnout to remove the organics from the powder processing 

and the cotton threads, the parts were isopressed to remove voids created from 

burnout and sintered. The samples tested in four-point flexure testing resulted in 

graceful failure, which was the first demonstration of increased work of fracture that did 

not include manufactured fibers.  From this development in 1988, two different 

methods of FM fabrication were researched at the University of Michigan, dry spinning 

or melt spinning of the core material followed by a coating for the cell,16 and co-
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extrusion.17 To dry spin the material, ceramic powders to make up the core were 

blended with a polymer, ethyl methacrylate (EMA), and solvent, methyl ethyl ketone 

(MEK). The components were milled and the majority of the solvent was evaporated to 

create a viscous slurry, which was extruded into a drying chamber to complete 

evaporation, resulting in fibers. Melt spinning incorporates the ceramic powders in a 

thermoplastic which was formed into a feedrod and heated to be extruded. Both 

techniques used dip coating to apply the boundary material to the cell fibers. 

The second method, co-extrusion, was patented by the researchers at the 

University of Michigan7 and involves combining the ceramic powder with a 

thermoplastic binder. The harder core material is pressed to a slightly smaller version of 

the extrusion feedrod and the cell material is pressed into c-shaped shells that fit 

around the smaller feedrod, illustrated in Figure 2.4. With the shells around the core, 

the feedrod can then be extruded. After extrusion, the compact must undergo a binder 

burnout to remove the polymer before sintering. As the binder makes up ~50 vol% of 

the compact, burnout often takes days, compared to hours for most ceramics that are 

processed with much lower volume fractions of organic additives. 
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Figure 2.4. Schematic of core and shell. 

2.2.2 Properties. The core and shell structure of FMs allows the material to 

exhibit graceful failure rather than catastrophic failure typical with ceramics as exhibited 

in Figure 2.5. The load displacement curve exhibits multiple instances where load is 

maintained even after the initiation or propagation of a crack.  This becomes beneficial 

for structural applications that the FM’s will be able to sustain some damage and still 

support significant load prior to failure.  
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Figure 2.5. Load displacement curves highlight the difference between flexure behavior 
of monolithic and fibrous monolithic ceramics.18 

 

However, not all fibrous monoliths exhibit improved fracture behavior. 

Zimmermann et al.19 created FMs with a core material of ZrB2 – 30 vol% SiC and shell of 

graphite – 30 vol% ZrB2. This composition failed catastrophically like a typical monolithic 

specimen. The ZrB2 content in the graphite shell had to be reduced to 15 vol% before 

graceful failure was observed. Figure 2.6 illustrates the fracture energies of cell 

boundary/cell ratio from Zimmermann’s work plotted with Dunder’s α-parameter for 

different percentages of graphite in the cell boundaries. The line is based on He and 

Hutchinson’s20 work which indicates the critical ratio threshold which is expected to 

result in crack deflection which is on or below the line. 
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Figure 2.6. Ratio of cell boundary/cell material against Dunder’s α-parameter. Plotted 
based on He and Hutchinson’s 1989 work where crack deflection is expected to occur 

below the line.20 

 

Research at the University of Michigan investigated a silicon carbide/boron 

nitride FM system that also underwent heat treatments.21 The SiC cell fibers were dry 

spun to ~150-200 µm filament and coated in a BN slurry for the boundary phase ~2-25 

µm thick. When tested in 4-point flexure, graceful failure was exhibited and when 

indented, long cracks were not able to form due to interactions with the BN cell 

boundary. Heat treatments were performed with these materials for 10 hours in air at 

1200, 1300, 1400 and 1500°C to determine the effect of oxidation. The samples 

exhibited little to no effect from the oxidation, with little change in strength or graceful 

failure behavior for all samples.  
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The researchers at Michigan also studied the alumina/nickel system, utilizing the 

ductility of Ni as the cell boundary for the alumina cell.22 The alumina cell was dry spun 

to a diameter of ~175 µm and dip coated with NiO slurry. Two sets of samples were 

fabricated, 3 and 8 vol% Ni cell boundary. The 3 vol% Ni boundary resulted in 

catastrophic failure, but the 8 vol% exhibited graceful failure. When indented it also 

exhibited crack blunting and arresting behavior. 

2.3 TITANIUM DIBORIDE AND SILICON CARBIDE CERAMIC COMPOSITES 

2.3.1  Particulate Composites Processing. TiB2 and SiC ceramics are most 

simplistically processed by combining the individual powders with sintering additives, 

such as B4C and C. The powders can then be either pressurelessly sintered or hot-

pressed. B4C and C are necessary for densification of these materials as shown by Basu23 

and Baik24 for TiB2 and Prochazka25 and Greskovich26 for SiC, to name a few. 

There are six mechanisms by which sintering occurs (illustrated in Figure 2.7): (1) 

surface diffusion, in which atoms move along the surface of the particle due to higher 

lattice energy; (2) lattice diffusion of atoms from the surface to the lower energy region 

of the neck; (3) vapor transport in which the atoms vaporize from the surface of the 

atom to condense at the neck of the two atoms and grain boundary; (4) grain boundary 

diffusion; (5) lattice diffusion from the grain boundary; and (6) plastic flow caused by 

dislocation motion. While there are six different mechanisms, only mechanisms four, 

five, and six result in densification. Mechanisms one, two, and three result in 
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microstructural changes which form the neck of the two grains and contribute to grain 

coarsening.27 

 

Figure 2.7. The six mechanisms of sintering: (1) surface diffusion, (2) lattice diffusion 
from the surface, (3) vapor transport, (4) grain boundary diffusion, (5) lattice diffusion 

from the grain boundary, and (6) plastic flow by dislocation motion.27 

 

Baik specifically looked into the effect of oxygen contamination on the 

densification of TiB2. His research showed the presence of excess oxygen led to 

increased grain growth and resulted in entrapped porosity. The density trends also 

indicated the dominating densification mechanism with excess oxygen to be vapor 

transport, rather than grain boundary diffusion. The removal of surface oxides from TiB2 

can follow the carbothermal Reaction 2 and 3 as well as the evaporation of liquid boria 

(B2O3) in Reaction 1. 

        
        

 (1) 



15 
 

        
              (2) 

                         (3) 

 

The equilibrium vapor pressures for reactions 2 and 3 are plotted versus 

temperature in Figure 2.8 where the solid lines represent the equilibrium vapor 

pressures of B2O3 and CO as a function of temperature and the shaded region 

represents a common processing window of vacuum pressures.  The carbothermal 

reaction becomes favorable at ~900°C and the boria that has not been reduced will 

begin to evaporate at  ~ 1250°C. These reactions are critical in order to maximize 

densification of TiB2 by the removal of surface oxides. 

In order to densify SiC, B4C and C are also used. Prochazka et al. were the first to 

note the increased sinterability of SiC with B4C and C additions. The authors also noted 

that without enough B, little densification occurred. The required amount of B added 

needed to exceed the solubility limit of B in SiC. The optimal limit was found to be ~3 

wt%. SiC has a similar reaction as TiB2 for the removal of surface oxides (Reaction 4). In 

addition Kang et al.28 determined that B4C also acts as a pinning agent to slow grain 

coarsening in TiB2 ceramics, aiding in densification and resulting in nominally small, 

equiaxed grains. 

                     (4) 
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Figure 2.8. Equilibrium vapor pressure with temperature of (1) B2O3 and (2) CO for 
reactions 1 and 2 as listed above. 

2.3.2 Properties of TiB2 and SiC Composites TiB2 is strong (400-425 MPa), 

tough (5.8-6.2 MPa·m1/2), thermally conductive (70-96 W/m·K), hard (Vickers hardness 

22-26 GPa) and chemical stable.29-32 These properties make TiB2  an ideal candidate for 

many applications including cutting tools, wear resistant parts and armor materials, just 

to name a few.23,29 
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SiC also has many favorable attributes such as strength (305-412 MPa), hardness 

(20-27 GPa), thermal conductivity (105-123 W m-1 K-1), and chemical inertness.33-35 

These properties make it a candidate for many applications, like TiB2. Combinations of 

the two materials can be made such that their beneficial properties are minimally 

impacted while improving both strength and toughness. The combination of TiB2 and SiC 

has been researched extensively for various ratios of the two materials. King et al. 

studied the hardness and fracture toughness through the concentration range of 100 

vol.% SiC to 100 vol.% TiB2. The highest hardness measured after that of 100 vol% SiC of 

27.8 ± 1.1 GPa was that of SiC-25 vol% TiB2 at 27.2 ± 1.5 GPa. The highest fracture 

toughness was measured from the 40 vol% TiB2 sample with a KIC of 6.2 ± 1.0 MPa·m1/2. 

These materials exhibited a hardness/toughness tradeoff with their intersection at a 

concentration of ~35 vol.% TiB2 in SiC.32  

Chen et al. measured strength, hardness and fracture toughness of 

pressurelessly sintered TiB2-SiC and found with increasing SiC content the strength 

increased and the hardness decreased. There was no clear change in the fracture 

toughness however, until the sample was 100 mol.% SiC.36 Cho et al.37 studied a range in 

SiC-TiB2 composites; however, they studied the effects of annealing and microstructure 

design. Regardless of composition, with increasing annealing time the fracture 

toughness increased while flexure strength decreased. These effects were due to the 

grain coarsening during annealing.37 
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I. PROCESSING AND PROPERTIES OF TIB2-SIC AND TIB2-SIC/BN CERAMICS 
CONTAINING A SPIRAL ARCHITECTURE 

 

 

 

Andrea Els, Jeremy Watts, Greg Hilmas, William Fahrenholtz 

 

ABSTRACT 

A novel ceramic architecture consisting of a titanium diboride matrix containing 

25 vol.% of silicon carbide spirals was processed using a powder loaded thermoplastic 

polymer followed by single or multi-filament co-extrusion. Boron nitride was also added 

to the silicon carbide spiral phase to alter the thermal expansion coefficient and reduce 

the mismatch between the phases. Spiral containing compositions, and a monolithic 

TiB2-SiC composition, were hot pressed to near full density at 1980°C.  After hot 

pressing, single filament co-extrusion resulted in SiC spirals ~180 µm in diameter, 

randomly dispersed in a TiB2 matrix.  Multi-filament co-extrusion resulted in a more 

consistent architecture, with spirals ~50 µm in diameter. The room temperature flexural 

strength for the multi-filament co-extrusion spiral compositions was 193 ± 17 MPa, 

compared to 488 ± 45 MPa for the monolithic ceramic. The fracture toughness of the 

compositions containing spirals was as high as 7.5 ± 0.6 MPa·m1/2 with the monolithic 

material having a toughness of 5.3 ± 0.4 MPa·m1/2. The boost in fracture toughness was 

due to significant crack deflection within and around the spiral inclusions. 

PAPER 

I. PROCESSING AND PROPERTIES OF TIB2-SIC AND TIB2-SIC/BN CERAMICS 
CONTAINING A SPIRAL ARCHITECTURE 
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INTRODUCTION 

Titanium diboride (TiB2), one of a family of transition metal borides, possesses a 

flexure strength in the range of 400-425 MPa, a fracture toughness of 5.8-6.2 MPa·m1/2, 

a thermal conductivity of 70-96 W/m·K, a Vickers Hardness of 22-26 GPa, and good 

chemical stability.1,2,3,5 These properties make TiB2 attractive for applications such as 

cutting tools, wear resistant parts and armor materials.1,4 Many toughening mechanisms 

have been used to extend the life of ceramics such as TiB2 in tribological applications. 

Some methods include particulate, fiber, or whisker additions, as well as annealing.5,6,7,8   

TiB2 is difficult to densify without sintering additives and highly susceptible to 

microcracking during processing due to the large CTE mismatch between the major axes 

of its hexagonal crystal structure (6.6 x 10-6/°C along the a-axis and 8.6 x 10-6/°C along 

the c-axis)4. Silicon carbide (SiC) is a common additive to TiB2, acting as a densification 

aid and limiting TiB2 grain growth.5,9,10 α-SiC has a CTE of 3.63 x 10-6/°C along the a-axis 

and 4.16 x 10-6/°C along the c-axis,11 thus processing of TiB2 - SiC ceramics results in 

residual thermal stresses leaving the TiB2 phase in tension and the SiC in compression. 

TiB2 – SiC particulate composites have been studied extensively, with several studies 

focused on increasing toughness via crack deflection caused by coarsened, elongated, 

TiB2 grains.5,6,12  While thermal stresses can have beneficial results, they can also cause 

microcracking.  Altering the elastic properties and/or the CTE of one or both of the 

phases can reduce the magnitude of residual stress.  Research on monolithic SiC has 

included methods of improving machinability of the material to reduce time and cost 
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while maintaining mechanical properties. Research incorporating 10 wt% BN in a SiC 

matrix resulted in ~30% reduction in elastic modulus with a 2-20% decrease in 

strength.18,19  

The improvement of fracture toughness in ceramics is a major field of study 

within the ceramics community in order to better compete with metals. The task of 

creating a ceramic that exhibits graceful failure has followed a number of paths 

including, the addition of fibers, whiskers or producing engineered architectures such as 

fibrous monoliths. Fibrous monoliths consist of a hard, strong core material with a 

weaker interface or shell material. The shell allows the crack to deflect along the core 

while the core material maintains the load, fracturing individual or small quantities of 

cores at a time rather than the entire matrix. Zimmermann et al.21 studied fibrous 

monoliths with ZrB2-30 vol% SiC as the core and a graphite-ZrB2 shell. The sample with 

30 vol% ZrB2 in the shell exhibited catastrophic failure but when ZrB2 content is reduced 

to 15 vol% in the graphite shell graceful failure was observed. As a trade off with 

improving the fracture toughness, a decrease in strength is typically observed. 

Previous research, using finite element modeling, indicated that altering the 

geometry of SiC additions in ZrB2 may reduce the thermal residual stresses generated 

during cooling from the final sintering temperature13. The geometries of additions 

modeled were round, square, hexagonal, peanuts and spirals. The hexagonal geometry 

array resulted in increased residual stresses near corners of neighboring hexagonal SiC 

inclusions. However, this increase was not observed in the square array. The peanut 

geometry was created in light of the hexagonal and square geometry results to remove 
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sharp corners. The peanuts were oriented in an array in which the convex side of one 

was adjacent to the concave side of another, which resulted in a reduced stress field 

around the particles. In pursuit to model novel geometries, the spirals modeled resulted 

in a small decrease in the maximum tensile stresses, in comparison to that of the 

previous geometries; however, the difference between tensile and compressive stresses 

in the adjacent phases was decreased significantly. Preliminary research was performed 

to develop the processing techniques required to produce spiral shaped SiC inclusions as 

well as other shapes13,14. 

The production of the spiral architecture of SiC in TiB2 matrix was the focus of 

this study with an evaluation of strength and fracture toughness. The nominal 

composition for this study was 75 vol.% TiB2 - 25 vol.% SiC spirals, though variations in 

the composition were used to mitigate microcracking due to the CTE mismatch. A 

conventional TiB2 sample reinforced with 25 vol.% SiC particles was used for 

comparison. 

EXPERIMENTAL METHOD 

TiB2 powders (Grade HCT-F, Momentive Materials, Columbus, OH) and SiC 

powders (Grade UF-10, H.C. Starck, Goslar, Germany) were used as starting materials.   

Boron nitride (BN) powder (Grade HCP, Momentive Materials, Columbus, OH) was used 

as an additive in certain compositions. TiB2 powders were ball milled with 2 wt% carbon 

(C) (Grade 120 Black Pearl, Cabot, Boston, MA) and 1 wt% boron carbide (B4C) (Grade 

HD 20, H.C. Starck) in ethanol with TiB2 media for 18 hours to ensure homogeneous 
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mixing of the sintering aids. The solvent was then removed via rotary evaporation and 

the powder was passed through a 60 mesh sieve.  

Powders were blended with an ethylene ethyl acrylate (EEA) thermoplastic (Melt 

flow index = M.I. 1.5 or 20, Union Carbide, Danbury, CT) using a high shear mixer (C.W. 

Brabender, South Hackensack, NJ) at a temperature of 130°C. The milled TiB2 powder 

was combined with EEA (M.I. 1.5) at ~56 vol.% solids loading, whereas as received SiC 

powder was combined with EEA (M.I. 20) at ~55 vol.% solids loading. Heavy mineral oil 

(Fisher Scientific, Fair Lawn, NJ) and polyethylene glycol methyl ether (Acros Organics, 

NJ) were used as plasticizers to adjust rheological properties. The individual polymer 

batches were then pressed into sheets with a nominal thickness of 1.3 mm using a 

heated hydraulic press (Model G50H-18-CX, Wabash MPI, Wabash, IN). The TiB2 and SiC 

sheets were cut to nominally 22.8 x 7.6 cm and 7.6 x 7.6 cm rectangles, respectively, 

which results in the final respective 75 vol.% TiB2 and 25 vol.% SiC composition. The size 

of each rectangle was adjusted accordingly based on the solids loading of the individual 

batches. The rectangular sheets could then be rolled into the spiral shape (illustrated in 

Figure 1) where the light gray layer is the SiC and the black layer is the TiB2. 

 

Figure 1. Schematic of the initial sheet layup which is then rolled up to the final spiral 
formation where the light gray is SiC and the black is TiB2. 
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The cylindrical spiral was then pressed into a feedrod 22 mm in diameter by 7.6 

cm long utilizing a hydraulic press and a heated die. The feedrod could then be extruded 

to a desired diameter for single filament co-extrusion (SFCX). The SFCX used in this study 

was extruded to a final diameter of 300 µm. For multi-filament co-extrusion (MFCX), 

filament from the SFCX, 2.4 mm in diameter unless otherwise noted, was cut to lengths 

similar to that of the original feedrod length (nominally ~6.5 cm) and gathered and 

pressed to form a secondary feedrod of multiple (~80) filaments. The secondary feedrod 

could then be extruded to a diameter of 1 mm for MFCX. The final filament was wound 

on a mandrel so that each filament lay next to, but not on top of, the other. The strips of 

laid-up filament were removed from the mandrel and chopped to lengths of 0.5 mm, 1.0 

mm or 46 mm. The filament was chopped to 1 mm for the majority of the studies to 

produce a cube-like geometry and maximize the random orientation in the subsequent 

composites.  

Table I lists the compositions along with the orientations of the spiral additions, 

the specimen IDs, the individual matrix and spiral compositions, spiral lengths, and the 

relative densities after hot pressing. The specimen IDs were determined to be the matrix 

component abbreviation before the dash and the spiral component abbreviation after 

the dash with the quantity of BN indicated. All MFCX spirals were extruded to a final 

diameter of 1 mm. 
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Table I. Details and Descriptions of Compositions 

Composite 
Specimen 

ID 
Matrix 

Composition 
Spiral 

Composition 

Spiral 
Length 

(mm) 

Relative 
Density 

(%) 

Monolithic M 
TiB

2 
+ 25 vol% 

SiC 
N/A N/A 97.9 

R.O. Spiral T-S TiB
2
 SiC 1 97.6 

R.O. Spiral T-S10B TiB
2
 SiC + 10 wt% 

BN 
1 93.5 

R.O. Spiral TS-S10B TiB
2
 + 5 vol% SiC *SiC + 10 wt% 

BN 
1  94.7 

R.O. Spiral TS-S TiB
2
 + 5 vol% SiC *SiC 1 96.2 

R.O. Spiral T-S15B TiB
2
 SiC + 15 wt% 

BN 
1  91.9 

R.O. Spiral T-S10B0.5 TiB
2
 SiC + 10 wt% 

BN 
0.5  90.4 

0° T-S10B46 TiB
2
 SiC + 10 wt% 

BN 
46  91.8 

*20 vol% spiral additions 

 

The green, chopped, spirals were poured into a 46 mm x 30 mm metal die and 

placed between heated platens at 130°C mounted on a uniaxial carver press (Model C, 

Fred S. Carver, Inc., Menomonee Falls, WI). The billet was pressed at 7 MPa for ~30 s at 

temperature. The billet was then transferred to a graphite hot press die (Graphite 

Products Corp., Madison Heights, MI) which was lined with grafoil and coated with 

boron nitride spray to limit interaction with the graphite die. The die was placed in a 
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controlled atmosphere retort furnace (Model 51542-HR, SPX: Thermal Product 

Solutions, Watertown, WI) for burnout of the polymer with a ramp rate of 20°C/hour to 

600°C with a 2 hour hold, under an argon atmosphere. Once cool, the die was 

transferred to a graphite hot press (Model HP20-3060, Thermal Technologies, Santa 

Rosa, CA). The billets were heated at ~80°C/min under vacuum to 1650°C and held until 

vacuum pressure reached 200 mTorr (~1 hour).  Following the hold at 1650°C the 

atmosphere was changed to argon, a pressure of 32 MPa was applied and the 

temperature was ramped to 1980°C at ~80°C/min.  Ram travel of the hot press was 

monitored to determine densification.  Specimens were held at temperature and 

pressure until ram travel had ceased for 10 minutes.  The hot press was then cooled at 

~50°C/min and pressure was released once the temperature reached 1650°C. 

The powders for the TiB2 – 25 vol.% SiC monolithic sample were ball milled 

together with 2 wt.% C and 1 wt.% B4C in ethanol with TiB2 media for 18 hrs to ensure 

thorough mixing. The ethanol was removed via rotary evaporation and powders were 

passed through a 60 mesh sieve. The die preparation and hot pressing schedule was 

identical to that of the spiral samples, except that the burnout procedure was omitted. 

Billets were machined into mechanical test bars using an automated surface 

grinder (Model FSG-3A818, Chevalier Machinery Inc., Santa Fe Springs, CA). Flexure bars 

were machined following ASTM C1161-02c for B-bars (3 mm x 4 mm x 45 mm) and 

chevron notch bars were prepared according to ASTM C1421-10 for A-bars (4 mm x 3 

mm x 45 mm) with a 600 grit final surface finish. In addition, the tensile surface of the 

flexure bars was polished to a 0.25 µm finish using successively finer diamond slurries. 
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Specimens were tested in four point bending with a fully articulated fixture (40 mm 

lower span and 20 mm upper span) using a screw-driven load frame (Model 5881, 

Instron, Norwood, MA) controlled by Bluehill 2 software. Fracture toughness was 

measured using chevron notch modified A-bars. The A-bars were modified to be ~22 

mm in length and tested using a semi- articulated fixture (20 mm support span, 10 mm 

upper span).  The load rate was adjusted to remain within the standard strain rate 

(0.00045 s-1) specified by the standard. 

Density of the specimens was measured using Archimedes method. Theoretical 

densities of 4.19, 4.15 and 4.13 g/cm3 for TiB2 – 25 vol.% SiC, TiB2 – 25 vol.% SiC with 10 

and 15 wt% BN, respectively, was used. These densities were calculated using a 

volumetric rule of mixtures using densities of 4.52, 3.21, and 2.10 g/cm3 for TiB2, SiC and 

BN, respectively. 

Vickers indents (Duramin 5, Struers Inc., Cleveland, OH), using a load of 9.8 N (1 

kg) with a 10 s dwell time, were used to observe the crack deflection caused by the 

spiral additions. 

Specimens were polished to a 0.25 µm finish using successively finer diamond 

slurries to be examined using optical microscopy (Epiphot 200, Nikon, Tokyo, Japan) as 

well as scanning electron microscopy (S-570 Hitachi, Tokyo, Japan). Microscopy was 

conducted to view the morphology of the sintered spirals, look for micro/macro-

cracking, and observe crack paths. 
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RESULTS & DISCUSSION 

Hot pressed M and T-S samples reached near full density (>96%) including the 

MFCX experiments conducted to determine the parameters for the most desirable 

outcome of microstructure with respect to the spiral geometry (Figure 2).  Figure 3 

illustrates the resulting microstructure of the SFCX composites. The smallest SFCX 

filaments, 300 µm diameter, resulted in a spiral approximately 180 µm in diameter and 

the lowest density of the T-S compositions of 93%. With optical microscopy, large 

porosity and cracking were observed (Figure 3). The compositions with BN additions 

resulted in lower relative densities, 90-95%, which can be observed in Figure 4. In all the 

MFCX compositions microcracking was observed throughout the TiB2 matrix as well as 

within the TiB2 spiral layers, as shown in Figure 5 and Figure 6, though to varying 

degrees with each of the compositions.  

To mitigate the microcracking, the spiral sizes were reduced by moving to MFCX. 

MFCX with an initial extrusion to 4 mm and final extrusion to 1mm (4 mm/1 mm) 

resulted in a spiral diameter of ~120 um, similar to that of the 300 µm SFCX. Therefore, 

reduction of the initial co-extrusion diameter was considered, keeping the final MFCX 

diameter constant. The initial SFCX diameter of 2.4 mm resulted in consistent spiral 

geometries throughout with a diameter of approximately 50 µm. However, the 1.75 

mm/1 mm SFCX did not produce a consistent architecture. The calculated spiral layers 

from the 1.75 mm/1 mm and 1 mm/1 mm MFCX were 5 µm and 3 µm thick, 

respectively, which is on the same order as the particle size of the starting powders. 
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Thus, the ultimate size of the MFCX spiral architecture was limited by the particle size of 

the TiB2.  

 

Figure 2. Optical images of MFCX experiments 4mm/1mm (a), 2.4mm/1mm (b), 
1.75mm/1mm (c), 1mm/1mm (d). 

 

(a) 

(d) (c) 

(b) 
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Figure 3. Optical image of 300 µm SFCX indicates significant amounts of microcracking 
with spirals ~180 um in diameter. 

 

 

Figure 4. SEM images of T-S, TS-S, T-S10B and TS-S10B specimens show the nominal 
microstructure of the specimens. The light gray is TiB2, dark gray is SiC and black phase is 

residual C.  

TS-S 

T-S10B 

T-S 

TS-S10B 
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Within the 2.4 mm/1 mm MFCX microcracking could be observed throughout 

the matrix, as well as within, and around the spirals. Ultimately, spirals were not able to 

be produced small enough to eliminate cracking due to the CTE mismatch between the 

TiB2 and SiC. Thermal stresses generated from processing can be estimated using 

Equation 1.15 

        
 

    
[
 

 

  

     ] (1) 

This discribes for the tangential stress, σtan, at the surface of a particle where P is 

the stress within the particle, a is the radius of the particle, r is the distance from the 

center of the particle and Vp is the volume fraction of particles. For the tangential stress 

at the surface of a particle, a=r. For TiB2-25 vol% SiC the tangential stress created is ~4 

GPa, considerably higher than that of a stress which either monolithic material is able to 

withstand. Previous research indicates a TiB2 grain size >15 µm results in spontaneous 

microcracking in the TiB2 matrix due to TiB2’s CTE mismatch and the resulting residual 

stresses. 2,16,17  

Up to this point no additives other than the sintering aids were employed. In a 

further attempt to mitigate the microcracking, additives were used to alter the elastic 

properties as well as the CTE mismatch between phases. SiC was added in particulate 

form to the TiB2 matrix and BN was added to the SiC spirals. BN has been used in studies 

to improve machinability and thermal shock resistance of SiC with minimal effect on 

strength while decreasing the elastic modulus.18,19 The microstructures in Figure 4 

illustrate the nominal microstructure of the different compositions. The density 

decreased with the addition of BN in the spiral with a noticeable presence of pore 
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coalescence in the TS-S specimen. Visually there was no apparent reduction in 

microcracking. Though not evident in Figure 4, Figure 6 illustrates the microcracking 

observed in between the spiral layers of the T-S specimen, specifically, which was 

observed in all other specimens as well. 

 

 

Figure 5. Spiral from 4 mm/1 mm MFCX surrounded by microcracking in the TiB2 matrix 

 

 

Figure 6. Example of microcracking between spiral layers in T-S specimen. 
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The mechanical testing results are summarized in Table II. The monolithic 

specimens resulted in an average fracture strength of 488 ± 45 MPa and fracture 

toughness of 5.3 ± 0.4 MPa·m1/2. The maximum strength of the spiral samples was 

measured from the T-S10B specimen at 222 ± 20 MPa, which is below 50% of the 

monolithic in strength.  However, with respect to other co-extruded architectures, 

fibrous monoliths, a significant decrease in strength is common, such as a 55% reduction 

for ZrB2 – 30vol% SiC with a graphite-based cell boundary phase in comparison to a 

simple particulate addition20,21. In comparison, an approximate 30% reduction with the 

addition of fibers such as TiB2 with 5 wt.% carbon fiber8 or SiC chopped fibers in a ZrB2 

matrix.22,23. 

Table II. Spiral Mechanical Properties 

Specimen 
ID 

Relative 
Density 

Fracture 
Strength    

(MPa) 

Fracture 
Toughness 
(MPa·m1/2) 

M 97.9% 488 ± 45 5.3 ± 0.4 

T-S 97.6% 212 ± 7 8.2 ± 0.0 

T-S10B 93.5% 222 ± 20 7.0 ± 0.8 

TS-S10B 94.7% 146 ± 35 7.7 ± 0.8 

TS-S 96.2% 201 ± 7 8.0 ± 0.8 

T-S15B 91.9% 214 ± 16 6.8 ± 0.9 

T-S10B0.5 90.4% 185 ± 39 7.3 ± 0.4 

T-S10B46 91.8% 200 ± 2 7.5 ± 0.4 
 

The reduction of strength is a tradeoff for the added fracture toughness. The 

addition of spirals led to an average 40% increase in fracture toughness. When 

measuring fracture toughness, the direct crack method could not be used due to 

substantial crack deflection in and around the spirals, as can be observed in Figure 7. 
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The indent placed in the TiB2 matrix (a) is in a region where there are multiple spirals 

with the same orientation. The radial-median cracks from the indent follow the same 

orientation as the spirals instead of extending straight out from the corners of the 

Vickers indent. The indent, seen in image b, within the SiC spiral shows that the radial 

cracks are deflected along the SiC – TiB2 boundary layers, never escaping the final spiral 

layer and returning to the matrix. 

 

Figure 7. Vickers indent in TiB2 matrix (a) as well as within SiC spiral (b) indicates 
significant crack deflection. 

 

In order to determine trends in the specimens tested, the results were analyzed 

as three related categories; increasing BN content, increasing additives, and increasing 

spiral length. With increasing BN content of 0 wt%, 10 wt% and 15 wt% within the SiC 

spiral layer, illustrated in Figure 8, there is a slight decrease in fracture toughness, from 

~8.2 to 6.8 MPa·m1/2, but not a significant difference in strength (212 MPa to 222 MPa).  

As the additive content increased from none to 5 vol.% SiC in the TiB2 matrix, 

with as 10 wt% BN in the SiC spirals, the fracture toughness remained relatively 

a b 
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unchanged, from 8.2 to 7.7 MPa·m1/2, with strength showing a significant decrease, 

from ~212 MPa to 146 MPa, as illustrated in Figure 9. 

In an effort to determine the dominating critical flaw size, the study continued 

with a variation of spiral length from the nominal 1 mm to 0.5 mm and a 46 mm, 0° 

uniaxial layup. The T-S10B composition was chosen to continue the study due to the 

similar or superior mechanical properties compared to other compositions in the study 

and the visual evaluation of the microstructures. There was not a significant change in 

fracture toughness as the spiral length changed 7.0-7.5 MPa·m1/2, as illustrated in Figure 

10. Though the magnitude of the strength did not vary considerably, 185-222 MPa, the 

standard deviation of the strength narrowed from ± 39 MPa for the 0.5 mm spiral 

lengths to ± 2 MPa for the uniaxial specimen. As the spiral length changed, there was no 

noticeable difference in fracture toughness, though the opposite would have been 

thought true if the spiral length were related to the critical flaw size.  

The critical flaw size was calculated using the Griffith criteria (Equation 1)24  

   (
   

   
)
 

 (1) 

 Where c is the critical flaw size, KIC is the fracture toughness, σf is the failure 

strength, and Y is the crack geometry constant for an internal circular or penny crack 

found in Equation 2.24 

   
 

√ 
 (2) 

The calculated critical flaw sizes were around the 1 mm range, which is about the 

same as the spiral length for most of the samples. However, the 0.5 mm and the 46 mm 
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specimens, also resulted in critical flaw sizes of approximately 1 mm, which indicates the 

critical flaw size may correlate with the filament diameter rather than the spiral length.   

While matrix cracking was reduced, it was still present in all the specimens 

tested. Thus, concluding the critical flaw size is related to the filament diameter is 

difficult. Future work with a change in composition will be considered to determine the 

acting flaw size in the MFCX materials. 
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Figure 8. Fracture strength and toughness of specimens with increasing BN content from 
0 wt%, 10 wt% and 15 wt% within the SiC spiral layer. 
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Figure 9. Fracture strength and toughness of specimens with increasing additives from 
the base TiB2-SiC to 5 vol% SiC in the TiB2 matrix and finaly both 5 vol% SiC in the TiB2 

matrix as well as 10 wt% BN in the SiC spiral layer 
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Figure 10. Fracture strength and toughness of constant composition and increasing 
spiral length of 0.5 mm, 1 mm, and 46mm spirals. 
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Figure 11. Calculated critical flaw size with respect to density is unrelated, though the 
critical flaw size for the majority of the specimens is ~1000 µm. 

 

CONCLUSIONS 

Co-extrusion was used to develop a spiral architecture to improve the fracture 

toughness of TiB2-25 vol% SiC ceramics. The spiral size was minimized to ~50 µm in 

diameter, at which point the particle size of the constituent powders became the 

limiting factor. The additions of the spirals decreased the fracture strength ~60% on 

average with an average strength of 193 MPa in comparison to the 488 MPa exhibited 

by the monolithic material. However, a fracture toughness boost was achieved of ~40% 

on average, exhibiting a peak fracture toughness of 8.2 MPa·m1/2 (an increase of 55%). 
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Various compositions were used in attempts to mitigate microcracking. While cracking 

was reduced, it was not eliminated.  The critical flaw size correlates well with the 

filament diameter, though the microcracking throughout the matrix must be resolved 

before this can be determined conclusively. A major alteration in bulk composition will 

be investigated in the future. 
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II. PROCESSING AND PROPERTIES OF SIC-TIB2 CERAMICS CONTAINING A 
SPIRAL ARCHITECTURE 

 

Andrea Els, Jeremy Watts, Greg Hilmas, William Fahrenholtz 

ABSTRACT 

Titanium diboride spirals were incorporated into a silicon carbide matrix at a 

nominal 25 vol.%. Powder loaded thermoplastic was used to create the geometries, 

followed by single and/or multi-filament co-extrusion. Varying spiral lengths and 

diameters were studied in order to determine critical flaw size of the composites with 

spiral additions and compared with that of a monolithic SiC-TiB2 composition. All 

samples were hot pressed to near full density at 1980°C. Room temperature flexure 

strength of the monolithic composition was 418 ± 41 MPa with the spiral compositions 

averaging 313 ± 11 MPa. The fracture toughness of 3.8 ± 0.6 MPa·m1/2 for the 

monolithic was increased to 6.2 ± 0.4 MPa·m1/2 with the addition of spirals. The boost in 

fracture toughness is due to increased crack deflection in and around the TiB2 spiral 

inclusions. Wear testing of the monolithic and uniaxial spiral specimens resulted in 1.1 

mm3 and 3.3 mm3 of wear per 6,000 revolutions, respectively, with preferential wear of 

the uniaxial spiral sections. Post-wear flexure tests resulted in a 16% increase in the 

flexure strength of the uniaxial spiral architectures, whereas the monolithic exhibited an 

18% decrease. 
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INTRODUCTION 

Silicon carbide (SiC) is strong (305-412 MPa), hard (20-27 GPa), thermally 

conductive (105-123 W m-1 K-1), and chemically inert 1,2,3.  These properties make it ideal 

for high temperature applications as well as structural, armor, and electrical. However, 

it has a low fracture toughness which makes it especially difficult to implement in 

structural applications due to catastrophic failure. Through incorporation of expensive 

fibers and 3D fiber braids, however, some researchers have cited KIC values as high as 

29.7 MPa·m1/2.4 Many armor researchers have investigated particulate titanium diboride 

(TiB2) additions due to its desirable properties in the similar categories as SiC which 

makes it a compatible additive. They have shown with the addition of TiB2  to SiC 

fracture toughness is improved due to increased crack deflection.5,6  

The improvement of fracture toughness in ceramics is a major field of study 

within the ceramics community. The task of creating a ceramic that exhibits graceful 

failure has been attempted through a variety of methods, including, the addition of 

fibers, whiskers, particulates or engineered architectures such as fibrous monoliths. 

Fibrous monoliths consist of a hard, strong core material with a weaker interface or shell 

material. The shell allows the crack to deflect along the core while the core material 

maintains the load, fracturing individual or small quantities of cores at a time rather 

than the entire matrix. By altering the microstructure to improve fracture toughness 

however, comes at the expense of decreased strength. 6,7,8  

In many cases, forming a composite with multiple phases results in the 

generation of thermal residual stresses due to the variation in coefficients of thermal 
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expansion (CTE) between materials.  These residual stresses can be beneficial, however 

if they are too large, micro or even macro cracking can develop.9,10  Previous studies 

with finite element modeling suggest that altering the geometry of SiC additions to a 

spiral shape in a zirconium diboride matrix may reduce the difference in thermal 

residual stresses11. Co-extrusion has been used to form SiC spiral geometries 

successfully in the as modeled ZrB2 matrix12 as well as in a TiB2 matrix13.  However, in 

both of those studies the residual thermal stresses were such that spontaneous 

microcracking occurred in the matrix phase.  

The current study focuses on the production of a spiral architecture consisting of 

TiB2 spirals in a SiC matrix. A nominal composition of 25 vol.% TiB2 spirals in SiC matrix 

was used along with a particulate composite of the same overall composition for 

comparison.  Unlike the previous studies13, the material with the higher CTE will be used 

as the spiral phase which should reverse the CTE mismatch and eliminate the matrix 

cracking. 

EXPERIMENTAL METHOD 

SiC powder (Grade UF-10, H.C. Starck, Goslar, Germany) and TiB2 powder (Grade 

HCT-F, Momentive Materials, Columbus, OH) were used for the starting compositions. 

SiC and TiB2 powders were ball milled separately, each with 2 wt% carbon (C) (Grade 120 

Black Pearl, Cabot, Boston, MA) and 1 wt% boron carbide (B4C) (Grade HD 20, H.C. 

Starck) in ethanol with TiB2 media for 18 hours to ensure homogeneous mixing of the 

sintering aids. The solvent was then removed via rotary evaporation and the powder 

was passed through a 60 mesh sieve.  
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Powders were blended with an ethylene ethyl acrylate (EEA) thermoplastic (Melt 

flow index = M.I. 1.5 or 20, Union Carbide, Danbury, CT), using a high shear mixer (C.W. 

Brabender, South Hackensack, NJ) at a temperature of 130°C. The milled SiC powder 

was combined with EEA (M.I. 20) at ~55 vol.% solids loading, whereas TiB2 powder was 

combined with EEA (M.I. 1.5) at ~56 vol.% solids loading. Heavy mineral oil (HMO) 

(Fisher Scientific, Fair Lawn, NJ) and polyethylene glycol methyl ether (MPEG) (Acros 

Organics, NJ) were used as plasticizers to adjust rheological properties. The individual 

polymer batches were then pressed into sheets with a nominal thickness of 1.3 mm 

using a heated hydraulic press (Wabash MPI, Model G50H-18-CX, Wabash, IN). The SiC 

and TiB2 sheets were cut to nominally 22.8 x 7.6 cm and 7.6 x 7.6 cm rectangles, 

respectively, which results in the final respective 75 vol.% SiC and 25 vol.% TiB2 

composition. The size of each rectangle was adjusted accordingly based on the solids 

loading of the individual batches. The rectangular sheets could then be rolled into the 

spiral shape illustrated in Figure 1 where the light gray is the SiC and the black layer is 

the TiB2. 

 

Figure 1. Schematic of the initial sheet layup which is then rolled up to the final spiral 
formation where the light gray is SiC and the black is TiB2 
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The cylindrical spiral was then pressed into a feedrod 22 mm in diameter by 7.6 

cm long utilizing a hydraulic press and a heated die. The feedrod was extruded to a 

diameter of 300 µm for single filament co-extrusion (SFCX). For multi-filament co-

extrusion (MFCX), filament was initially extruded to a diameter of 2.4 mm. The filament 

was then cut to lengths similar to that of the original feedrod length (~6.5 cm) and 

gathered and pressed to form a secondary feedrod of multiple filaments. The secondary 

feedrod was then extruded to a diameter of 1 mm (MFCX). The final filament was 

wound on a mandrel so that each filament lay next to, but not on top of, the other. The 

strips of laid-up filament were removed from the mandrel and chopped to 300 µm for 

the SFCX and 0.5 mm, 1.0 mm or 46 mm for the MFCX. Details of the compositions 

studied are listed in Table I. 

Table I. Description and Details of Compositions Studied. 

Composite 
Specimen 

ID 
Matrix 

Composition 
Spiral 

Composition 
Spiral 

Length 
Relative 
Density 

Monolithic SM SiC + 25 vol% TiB
2
 N/A N/A 98.0 

R.O. Spiral S-T300 SiC TiB
2
 300 µm 97.1 

R.O. Spiral S-T0.5 SiC TiB
2
 0.5 mm 97.7 

R.O. Spiral S-T1 SiC TiB
2
 1 mm 97.2 

0° S-T46 SiC TiB
2
 46 mm 98.0 

 

The green, chopped, spirals were poured into a 46 mm x 30 mm metal die and 

placed between heated platens at 130°C mounted on a uniaxial press (Fred S Carver, 
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Inc., Model C, Menomonee Falls, WI). The billet was pressed at 7 MPa for ~30 s at 

temperature. The billet was transferred to a graphite hot press die (Graphite Products 

Corp., Madison Heights, MI) which was lined with grafoil and coated with boron nitride 

spray to limit interaction with the graphite die. The die was placed in a furnace 

atmosphere retort (SPX: Thermal Product Solutions, Model 51542-HR, Watertown, WI) 

for burnout of the polymer with a ramp rate of 20°C/hour to 600°C with a 2 hour hold all 

under an argon atmosphere. Once cool, the die was transferred to a graphite hot press 

(Thermal Technologies, Model HP20-3060, Santa Rosa, CA). Specimens were heated at 

~80°C/min under vacuum to 1650°C and held until vacuum pressure reached 200 mTorr 

(~1 hour).  Following the hold at 1650°C the atmosphere was changed to argon, a 

pressure of 32 MPa was applied and the temperature was ramped to 1980°C at 

~80°C/min.  Ram travel of the hot press was monitored to determine densification.  

Specimens were held at temperature and pressure until ram travel had ceased for 10 

minutes.  The hot press was then cooled at ~50°C/min and pressure was released once 

the temperature reached 1650°C. 

Billets were machined into mechanical test bars using an automated surface 

grinder (Chevalier Machinery Inc., Model FSG-3A818, Santa Fe Springs, CA). Flexure bars 

were machined following ASTM C1161-02c14 for B-bars (3 mm x 4 mm x 45 mm) and 

chevron notch bars were prepared according to ASTM C1421-10 for A-bars (4 mm x 3 

mm x 45 mm) with a 600 grit final surface finish. In addition, the tensile surface for 

flexure B-bars was polished to a 0.25 µm finish using successively finer diamond slurries. 

Specimens were tested in four point bending with a fully articulated fixture (40 mm 
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support span and 20 mm load span) using a screw-driven load frame (Instron, Model 

5881, Norwood, MA) controlled by Bluehill 2 software. Fracture toughness was 

measured using chevron notch modified A-bars for the spiral compositions. The A-bars 

were modified to be ~22 mm in length and tested using a semi- articulating fixture (20 

mm support span and 10 mm load span).  The load rate was adjusted to remain 

maintain a strain rate in the range specified in the standard. For the monolithic 

specimen, chevron notch tests produced invalid load-deflection curves; therefore, 

fracture toughness was measured using direct crack measurements. Indents (Leco 

Corporation, Model V-100-A2, St. Joseph, MI) were made using a 49 N (5 kg) load for 15 

s with a diamond Vickers indenter. 

Vickers indents (Struers Inc., Duramin 5, Cleveland, OH) using a load of 19.6 N (2 

kg) with a 10 s dwell time were used to observe the crack deflection caused by the spiral 

additions.  

Wear testing was done according to ASTM G65.15 The faces of the hot pressed 

billets were ground parallel with a 600 grit diamond wheel. For post-wear flexure tests, 

the billets were cut so that two flexure B-bars could be made from the wear scar as well 

as three bars from the unworn portion of the same billet. The three sides of the bar that 

were not on the wear surface were ground to meet the B-bar specimen size indicated in 

ASTM C1161.14 The worn specimens were oriented such that the wear scar in tension 

spanned the entire 20 mm load span.  

Specimens for microscopy were prepared by polishing to a 0.25 µm finish 

utilizing diamond pads or diamond slurries in decreasing increments. The specimens 
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could then be examined using optical microscopy (Epiphot 200, Nikon, Tokyo, Japan) as 

well as scanning electron microscopy (S-570 Hitachi, Tokyo, Japan). 

 

RESULTS & DISCUSSION 

All the samples reached greater than 97% of their theoretical density via hot 

pressing. Similar to previous studies with spiral architectures12,13, microcracking can be 

observed in the uniaxial sample (S-T46) in Figure 2, pointed out by the arrows.  

However, unlike those previous studies, the microcracking is confined to the spiral 

phase instead of the matrix material. This was expected due to the CTE mismatch 

between the TiB2 and SiC. The SFCX to 300 µm (S-T300) resulted in a spiral diameter of 

~180 µm, whereas the MFCX of 2.4 mm/1 mm resulted in a spiral diameter of ~50 µm. 
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Figure 2. Optical images at various magnifications of MFCX specimen lengths of 0.5 mm 
(S-T0.5), 1 mm (S-T1) and 46 mm (S-T46) and SFCX specimen with spiral length of 300 

µm (S-T300). 

 

With respect to mechanical testing, results of which are detailed in Table II and 

Figure 3, the conventional particulate composite resulted in an average fracture 

strength of 418 ± 41 MPa and a fracture toughness of 3.8 ± 0.6 MPa·m1/2. The strength 

of the spiral samples increased with increasing spiral length, with the maximum strength 

exhibited by the uniaxial sample at 294 ± 21 MPa. On average, the spiral additions had 

approximately 46% lower strength than that of the monolithic, 224 ± 51 MPa. Fracture 

toughness also increased with increasing spiral length up to the 1 mm specimen with a 

S-T0.5 

S-T1 

S-T300 

S-T46 
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KIC of 7.5 MPa·m1/2, then dropped to 6.0 ± 0.2 MPa·m1/2 for the uniaxial spiral lengths. 

The average fracture toughness was 6.1 ± 0.2 MPa·m1/2, an increase of ~45%.  

Table II. Mechanical Properties 

Specimen 
ID 

Relative 
Density 

Flexure 
Strength 

(MPa) 

Fracture 
Toughness 
(MPa·m1/2) 

SM 98% 418 ± 41 3.8 ± 0.6 

S-T300 97% 175 ± 8.3 4.4 ± 0.4 

S-T0.5 98% 201 ± 4 6.4 ± 0.3 

S-T1 97% 225 ± 9.3 7.5 ± 0.6 

S-T46 98% 294 ± 21 6.0 ± 0.2 
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Figure 3. Fracture strength and toughness of SiC - TiB2 specimens in order of increasing 
spiral length. 
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Optical micrographs of Vickers indents in Figure 4 show the crack deflection 

caused by the addition of spirals in the matrix, increasing the fracture toughness. Image 

(a) illustrates what a typical indent for a direct crack fracture toughness measurement 

should look like. Image (b) consists of an indent in close proximity to two spirals. The 

radial cracks protrude from the tips of the indent as expected; however, due to residual 

stresses in the matrix, the cracks curve and deflect away from the spiral additions. Most 

notably in image (c) of the uniaxial sample, the radial cracks parallel to the spirals 

extend laterally as they do in image (a); though the radial cracks perpendicular to the 

spiral orientation are deflected as the fracture energy is absorbed in the microcracking 

present in the spiral layers. Image (d) is an indent placed in the middle of the TiB2 spiral. 

The indent geometry cannot be distinguished from the amount of spalling in the TiB2, 

though it should be noted that none of the radial/median cracks from the indent extend 

past the outermost layer of the spiral.  
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Figure 4. Fracture toughness indents (a) within a spiral, (b) near spirals with residual 
stresses, (c) between uniaxial spirals, and (d) in SiC matrix 

 

Utilizing the data from mechanical properties, the critical flaw size (c) was 

calculated with Equation 1 using the Griffith criteria assuming the crack geometry 

follows a semicircular, penny, shape where Y=2/√π.  

   (
   

   
)
 

 (1) 

The calculated critical flaw sizes are plotted in Figure 6 with respect to the spiral 

geometry. The uniaxial spiral geometry had the smallest c of 325 µm, whereas the 1 mm 

long spirals resulted in a maximum c of 872 µm. The critical flaw size for the randomly 

oriented 300 µm and 0.5 mm spiral lengths correlate with approximately twice the spiral 

(a) (b) 

(c) (d) 
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length. It could be proposed based on this observation that two of the randomly 

oriented spirals filaments oriented such that the microcracking was able to continue 

through two filament lengths, increasing c.  

For wear testing, the uniaxial and monolithic compositions from the study were 

chosen to move forward with characterization of the wear behavior. The uniaxial 

specimen was chosen due to its high strength relative to the other spiral compositions 

and increased fracture toughness over the monolithic composition. The wear testing 

conducted following ASTM G65 resulted in minimal wear scars, with volume losses for 

the monolithic and uniaxial spiral specimens approximately 1.8 ·10-4 mm3 rev-1 and 5.5 

·10-4 mm3 rev-1, respectively (Table III and Figure 7). Cross-sections, illustrated in Figure 

5, of the wear scar indicate a uniform wear across the surface of the monolithic 

specimen (c and d); however, in the uniaxial sample (a and b), preferential wear of the 

spiral regions was observed with the SiC matrix wearing slower, resulting in a wave-like 

pattern, most evident in c. Images a and b are towards the edge of the wear scar where 

there is less force on the sample and b and d near the center, where the 30 lb force was 

at its maximum. The depth of the wave-like pattern was maximum in this area, with 

almost negligible wave depth near the center, evident in image b. 
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Figure 5. SEM images of wear scar cross-sections of the uniaxial sample, (a) and (b), and 
the monolithic, (c) and (d). Images (b) and (d) are towards the center of the wear scar, 

whereas (a) and (c) are towards the edge of the wear scar. 

 

Flexure testing of the composites as well as the monolith post wear testing was 

performed in an effort to better understand surface damage affected their mechanical 

properties (a minimum of 3 bars were tested for each set). Results of specimen 4-pt 

flexure after wear testing are illustrated in Figure 8 and tabulated in Table III. As a result 

of wear testing, the monolithic sample had an 18% lower strength than the as ground 

surface of the same original billet whereas the uniaxial specimen increased in strength 

by 16%. Examination of the wear scar cross-sections did not reveal a significant 

 (a) (b) 

(c) (d) 
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difference in sub surface damage in the monolithic surface, though when compared to 

polished flexure strength bars in the initial portion of the study, they are approximately 

the same, especially considering the standard deviations. King16 also observed higher 

strength of the as-ground to 600 grit 4-pt bend specimens in comparison to those 

specimens polished to 0.25 µm. 

It can be proposed that the increased strength of the uniaxial spiral samples is 

due to preferential wear of the microcracked spirals. If the flaws are recessed into the 

sample, thus under reduced tension in flexure, the strength would more dependent on 

that of the matrix material. 
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Figure 6. Calculated critical flaw size using Griffith criteria assuming     √  
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Table III. Wear Testing Results 

Specimen 
ID 

Average 
Wear Loss 

(mm3) 

Flexure 
Strength 

Post- Wear 
(MPa) 

Flexure 
Strength    

As-Ground 
(MPa) 

SM 1.1 ± 0.6 405 ± 28 494 ± 36 

S-T46 3.3 ± 0.6 320 ± 20 275 ± 38 

Uniaxial Monolithic
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Figure 7. Average volume loss for uniaxial and monolithic samples after ASTM G65 
Procedure A. 
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Figure 8. Flexure strength of uniaxial and monolithic samples as surface ground with 600 
grit diamond wheel and after undergoing wear testing following ASTM G65. 

 

CONCLUSIONS 

TiB2 spiral additions, ~50 µm in diameter, were incorporated into a SiC matrix at 

a nominal 25 vol% with varying spiral lengths. The addition of the spirals resulted in a 

46% decrease in strength with an average strength of 224 MPa in comparison to the 418 

MPa exhibited by the monolithic composition. The maximum strength from the spiral 

additions was 294 ± 21 MPa exhibited by the uniaxial sample (spirals spanning the full 

length of the test specimens). The average fracture toughness increased ~45% with the 
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greatest toughness exhibited by the 1 mm spiral length at 7.5 MPa·m1/2. The critical flaw 

size was calculated using Griffith criteria and correlated well with twice the length of the 

randomly oriented spiral lengths.  With respect to the wear testing, the monolithic 

composition exhibited less wear than the uniaxial specimen 1.1 mm3 and 3.3 mm3 per 

6,000 revolutions, respectively. However, the uniaxial spirals exhibited a post-wear 

strength increase of 16%; whereas the monolithic exhibited a reduced strength of 18% 

after wear testing. 
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3. SUMMARY AND CONCLUSIONS 

 

3.1 SUMMARY OF RESULTS 

The addition of ceramic spirals in a ceramic composite was studied. Two studies 

were presented in this manuscript. Paper I focused on the formation of a consistent 

spiral and measuring the mechanical properties to determine the spiral addition’s 

effects. Conclusions in regards to critical flaw size were not able to be made due to the 

microcracking present in the TiB2 matrix. Paper II focused on a better designed 

experiment with determining the critical flaw size of the co-extruded spiral materials. 

Spirals of the same multi-filament co-extrusion method were chopped to different 

lengths as well as a randomly oriented 300 µm single filament co-extrusion filament 300 

µm in length. In this section, each paper is summarized followed by overall conclusions 

from the present work. 

3.1.1 Paper I. Co-extrusion techniques were modified in order to consistently 

fabricate a SiC spiral microstructure in a TiB2 matrix. The SiC spiral size was minimized to 

a diameter of ~50 µm, achieved by a MFCX of 2.4 mm/1 mm. Smaller extrusions 

resulted in an inconsistent spiral microstructure due to particle size limitations. The 

average fracture strength of the spiral architectures was 193 MPa which was a 60% 
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reduction when compared to the particulate composite strength of 488 MPa. The 

fracture toughness on the other hand increased by ~40% on average with a maximum 

fracture toughness of 8.2 MPa·m1/2. Critical flaw size was calculated from experimental 

values and correlated with the filament diameter; however, the microcracking in the 

matrix must be resolved before making this conclusion. 

3.1.2 Paper II. TiB2 spirals were incorporated into a SiC matrix extruded to a 

~50 µm diameter via 2.4 mm/1 mm MFCX. The lengths of the spiral additions were altered 

to determine the relation of the critical flaw size to the spiral addition. The addition of 

spirals resulted in a 46% decrease in strength, but a 45% increase in toughness with a 

maximum fracture toughness of 7.5 MPa·m1/2 exhibited by the 1 mm long randomly 

oriented spiral. The calculated critical flaw size correlates with twice the oriented spiral 

length for the shorter spirals lengths, and the length of a single filament for the 1 mm 

randomly oriented sample. The volume loss after wear testing of the uniaxial spirals was 

greater than that of the particulate composite, 3.3 mm3 and 1.1 mm3, respectively. The 

wear scars of the uniaxial sample indicated preferential wear of the TiB2 spiral phase. 

When tested in flexure with the wear scar in tension, the uniaxial spiral samples 

exhibited an increase in strength whereas the monolithic resulted in a decrease in 

strength in comparison to the as ground equivalent. 
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3.2 OVERALL CONCLUSIONS 

Overall, this research modified the co-extrusion technique to create novel 

geometries in a matrix that are not axisymmetric or co-axial. The research focused on 

producing a consistent microstructure and characterizing the mechanical properties. 

Some of the overall conclusions that can be made from the studies described in this 

manuscript are as follows:  

 Multi-filament co-extrusion can be used to produce a consistent spiral 

microstructure 

 With the starting powders used in this research, a 50 µm diameter spiral is the 

smallest that can be achieved before encountering particle size limitations 

 The residual stresses induced by the thermal expansion mismatch of TiB2 and SiC are 

too significant to be overcome with small compositional changes 

 The tradeoff between strength and fracture toughness in ceramics was observed in 

each study. Study II at a near even tradeoff of ~45% 

 Fracture toughness increased in both studies I and II conducted by 40% and 45%, 

respectively 

 Post-wear strengths of the uniaxial spiral composition exceeded that of the as-

ground samples whereas the monolithic sample decreased in strength. 
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4. FUTURE WORK 

In this research, a multi-filament co-extrusion procedure of extruding with 2.4 

mm spinneret to 1 mm spinneret, resulted in the most consistent spiral microstructure 

without particle size being a limiting factor. However, if the particle sizes were reduced, 

smaller spiral additions could then be fabricated, reducing the size of the inclusion. This 

may result in an increased strength value. 

The calculated flaw sizes from this research assume a crack geometry using 

Griffith’s criteria. In order to better understand the failure mechanisms in the spiral 

materials, fractography should be done to analyze the fracture surfaces to determine 

where the crack is originating from. This would be beneficial in determining the critical 

flaw, thus possibly linking it to an extrusion or processing parameter that can be 

improved upon in the future.  

The wear results from ASTM G65 caused minimal amounts of wear on the SiC-25 

vol% TiB2 sample. To better understand the wear behavior of the materials studied, a 

high shear wear test, pin-on-disk for example, should be tested to better understand the 

wear mechanisms of the materials and determine if the wear observed in this study is 

consistent with that in a high shear setting. In addition, the strength post-wear should 

also be measured to be compared with the findings in this study. 

It is also advised to utilize the EDM on the S&T campus to cut a machining tip 

from the studied material to test in machining applications. 
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