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ABSTRACT 

Wireless Sensor Network (WSN) is a class of ad hoc networks that has capability 

of self-organizing, in-network data processing, and unattended environment monitoring. 

Sensor-cloud is a cloud of heterogeneous WSNs. It is attractive as it can change the 

computation paradigm of wireless sensor networks. In Sensor-Cloud, to gain profit from 

underutilized WSNs, multiple WSN owners collaborate to provide a cloud service. Sensor 

Cloud users can simply rent the sensing services which eliminates the cost of ownership, 

enabling the usage of large scale sensor networks become affordable. The nature of Sensor-

Cloud enables resource sharing and allows virtual sensors to be scaled up or down. It 

abstracts different platforms hence giving the impression of a homogeneous network. 

Further in multi-application environment, users of different applications may require data 

based on different needs. Hence scheduling scheme in WSNs is required which serves 

maximum users of various applications. We have proposed a scheduling scheme suitable 

for the multiple applications in Sensor Cloud. Scheduling scheme is based on TDMA 

which considers fine granularity of tasks. The performance evaluation shows the better 

response time, throughput and overall energy consumption as compared to the base case 

we developed. On the other hand, to minimize the energy consumption in WSN, we design 

an allocation scheme. In Sensor Cloud, we consider sparsely and densely deployed WSNs 

working together. Also, in a WSN there might be sparsely and densely deployed zones. 

Based on spatial correlation and with the help of Voronoi diagram, we turn on minimum 

number of sensors hence increasing WSN lifetime and covering almost 100 percent area. 

The performance evaluation of allocation scheme shows energy efficiency by selecting 

fewer nodes in comparison to other work. 
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1. INTRODUCTION 

1.1 CLOUD COMPUTING 

Cloud computing refers to the resources offered as a service. There are many 

definitions on the internet one of which defined in [1] is, “Cloud computing is a model for 

enabling convenient, on-demand network access to a shared pool of configurable 

computing resources (e.g., networks, servers, storage, applications, and services) that can 

be rapidly provisioned and released with minimal management effort or service provider 

interaction”.  

Cloud computing is prevalent than having dedicated resources for applications and 

provides benefits to cloud user and Cloud Service Provider (CSP). Following are some of 

the benefits that cloud computing provides to Cloud Users and CSPs. 

Advantages to the Cloud User 

a) Cost effective than owning the resources 

b) No maintenance cost 

c) Resources can be provisioned and de-provisioned on demand 

d) Provides fault tolerance 

e) Resources can be made available quickly 

f) Improved flexibility 

g) Easy backup and recovery 

h) Ubiquitous network access  

Advantages to the CSP 

a) Idle resources can be utilized and CSP can gain profit out of it 

b) Low cost of maintenance 
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c) Easy to balance load 

d) Virtualization and sharing of resources lead to more profit to CSP 

 

1.2 WIRELESS SENSOR NETWORK (WSN) 

WSNs are popular because of their capability of building network on its own, they 

do not require continuous monitoring, and their small size, small memory, ‘AAA’ battery 

operated nature makes them cheaper. Moreover, they are programmable which makes them 

configurable for different applications. Wireless sensors also called as motes can sense 

physical phenomenon like light, temperature, humidity, radiation, sound, pressure etc. 

WSNs can be deployed in the area where human reach is difficult for instance, at 

inhabitable places on the earth, in jungle to monitor behavior of wild animals. They are 

also used in the medical applications to monitor patient’s health such as body temperature, 

heart beat etc. 

Important characteristics of WSNs 

a) Scalable network 

b) Mobile motes in WSN 

c) Provides fault tolerance 

d) Heterogeneity of nodes 

e) Easy to use 

f) Can stand adverse environmental conditions 

g) In-network processing 

h) Easy deployment 

Wireless sensors in WSN can build network with tree or cluster topology. Each 

WSN will have a Base Station (BS) which is connected to the internet to avail the data to 
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the application. As compared to all other motes in WSN, BS needs to exhibit more power. 

Several types of motes are available in market such as micaz, telosb, zigbee having 

different characteristics. Motes or chosen based on the application they will be used into. 

 

1.3 CHALLENGES PERTAINING TO WSNS 

As explained in section 1.2, WSNs have many characteristics which make them 

suitable for various applications; however they also have some limitations which lead to 

the research opportunities in this field. Following are some of the challenges. 

a) High maintenance cost 

b) Limited battery power hence short lifetime 

c) Limited memory capacity 

d) High ownership cost for large scale network 

e) High cost of programming motes 

 

1.4 SENSOR CLOUD 

Sensor Cloud Computing is a heterogeneous computing environment, which brings 

together multiple WSNs, each of which may contain many wireless sensors owned by 

different entities. In this computing paradigm, the users do not need to own the sensor 

network before using it. They can simply buy the sensing services from the Sensor Cloud. 

From a user’s point of view, since the amount of investment goes down, usage of large 

scale sensor networks becomes affordable. Similar to cloud computing, resources in Sensor 

Clouds can be dynamically provisioned and de-provisioned on demand, providing greater 

flexibility of operations. Sensor Cloud is a cloud of heterogeneous WSNs providing 

homogeneous access to the user. User can access real time data just by subscribing to the 
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Sensor Cloud web service; this feature scales down the cost of owning, programming and 

maintaining the Wireless Sensor Network. Users can access the data from huge 

topographical region with minimal cost. At the same time Sensor Cloud provides 

reliability, scalability, fault tolerance and flexibility to receive data from WSNs without 

dependency on types of wireless sensors used. Data sharing among multiple users not only 

benefits the end user but also the service provider. 

 

1.5 MOTIVATION FOR SCHEDULING AND ALLOCATION OF TASKS 

In Sensor Cloud scenario, WSNs can have different types of tasks and some may 

be requested at the same instance of time. In such cases, it is important that WSNs should 

serve maximum possible tasks gaining profit to the CSP and providing user satisfaction at 

the same time. Hence for the sensors in WSN, an optimal scheduling scheme has to be 

developed. On the other hand, due to the limitation of battery power, short life span of 

wireless sensors, and considering spatial correlation between the adjacent sensors, it is 

unnecessary to activate all sensors in the region where they are densely deployed. Also if 

sensors are sparsely deployed in a region, it is necessary that all sensors are activated, hence 

allocation scheme is needed in Sensor Cloud environment. 

 

1.6 CONTRIBUTION OF THE THESIS 

The thesis is presented in a paper based format. Hence the main contributions 

discussed in the two papers are as follows:   

Paper I: 

 We have explained the layered architecture of Sensor Cloud 
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 We defined the concept of virtualization in Sensor Cloud and their relationship 

between sensors such as one to many, many to one, and many to many. 

 We implemented the Sensor Cloud named as “Missouri S&T Sensor Cloud” and 

presented the detailed block diagram. 

Paper II 

 We proposed the scheduling and allocation schemes for sensors in Sensor Cloud 

and explained in detail 

 Next we designed the algorithms for both the schemes 

 Finally the results of experimental evaluations are presented in the paper 

 

1.7 ORGANIZATION OF THE THESIS 

The thesis is mainly presented in paper format. The thesis is organized as follows; 

Section 1 provides the introduction, and the background. Section 2 presents the related 

work. Section 3 comprises of Paper I on Sensor Cloud: A Cloud of Virtual Sensors. And 

Paper II on Energy Efficient Scheduling and Allocation of Tasks in Sensor Cloud. Section 

4 contains the Conclusion. 
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2. RELATED WORK 

Sensor Cloud is the cloud of virtual sensors built on top of physical WSNs. Many 

researchers have come up with various architectures for Sensor Cloud. Moreover in WSNs, 

scheduling and allocation of sensors is an important issue because of limited resources such 

as battery power, computation capacity etc. To address these issues many schemes have 

been proposed. This section briefly discusses the existing work in the field of Sensor Cloud 

and scheduling and allocation of tasks in Sensor Cloud. 

 

2.1 A FRAMEWORK OF SENSOR – CLOUD INTEGRATION OPPORTUNITIES 

AND CHALLENGES 

Paper [2] defines the framework and architecture of Sensor cloud. However, their 

architecture is completely different than the architecture we have proposed in our work, in 

that they have used pub/sub based model. Sensor data are coming through gateways to a 

pub/sub broker. Pub sub broker is required in their system to deliver information to the 

consumers of SaaS applications as the entire network is very dynamic. Also, they 

considered the inter networking between Cloud Providers (CLP) and then they proposed 

to have Service Level Agreements (SLAs) in case of violation. 

 

2.2 SENSOR-CLOUD INFRASTRUCTURE 

In paper [3], they discussed various components that constitute a Sensor Cloud 

system, its management, and the control flow of various components. Figure 2.1 shows the 

control flow they have proposed for Sensor-Cloud. 
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Figure 2.1 Overview of Sensor Cloud Infrastructure [3] 

 

In the proposed infrastructure, they considered three types of actors Sensor Owner, 

Sensor Admin and End User. Sensor admin builds virtual sensors on top of physical sensors 

owned by sensor owners. In their concept of virtualization, on the basis of demand from 

end user, virtual sensors are provisioned and de-provisioned by the sensor admin. They 

believed if multiple end users control physical sensors, it may result into inconsistent 

commands. Hence, between physical and virtual sensors, they considered many to one 

relationship, but they did not consider one to many and many to many relationships. 

Moreover, they did not implement the Sensor Cloud but defined only the architecture. 

 

 



 

 

8 

2.3 VIRTUAL SENSORS: ABSTRACTING DATA FROM PHYSICAL SENSORS 

  The paper [4] describes the abstraction of virtual sensors from physical sensors. 

Instead of simply aggregating the data from sensors, in their approach, they have focused 

on aggregating and processing the abstract data. The virtual sensor can include multiple 

heterogeneous physical sensors from which information is abstracted.  

First, the developer defines the data requests in the form of classes from the 

respective applications with the help of virtual sensors. Then a program dynamically 

interacts with the virtual sensors, extracting required data which eventually serves the 

application. 

 

2.4 A MIDDLEWARE FOR FAST AND FLEXIBLE SENSOR NETWORK 

DEPLOYMENT 

  In paper [5] authors have proposed Global sensor networks (GSN) which is 

a middleware designed to rapidly deploy heterogeneous wireless sensors. GSN also relies 

on virtual sensors; however, unlike other approaches where virtual sensors are defined 

using classes, the virtual sensors in GSN are defined using XML. GSN, the closest 

approach to our Sensor Cloud model, offers a ready-to-use system, which can integrate 

large number of wireless sensors networks. However, it can’t be classified as a Sensor 

Cloud because GSN’s purpose is to provide efficient and flexible deployment of multiple 

stand-alone WSNs.  

 

2.5 OPTIMIZING PUSH/PULL ENVELOPES FOR ENERGY-EFFICIENT 

CLOUD-SENSOR SYSTEMS 

 This [6] work presents the technique to bring down sensing latency and energy 

consumption in WSNs. They have presented a performance model for sensor-based system 
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(SBS) on top of three tier architecture consisting of Cloud, Edge and Beneath (CEB) layers. 

Hence, in their scheme they have proposed a concept of Optimal Push/Pull envelop (PPE) 

which optimally adjusts the rate of push/ pull actions of each sensor. Figure 2.2 shows the 

model of three layered architecture. 

 

Figure 2.2 Three-layer model of sensor computing with cloud, edge and beneath [6] 

 

In the scheme [6], Sensor Management is performed by Edges so locality is 

preserved. Edges can abstract unnecessary information about sensors and support staging 

and optimization by caching historical data. In addition, they have proposed OPT1 and 

OPT2 algorithms to achieve optimization. In our work, we have extended their concept of 

push and pull tasks; task T1 in our work is similar to push requests however task T2 is to 

pull request. We have also considered task T3 event based requests, which are different 

from push and pull. 
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2.6 MULTIPLE TASK SCHEDULING FOR LOW-DUTY-CYCLED WIRELESS 

SENSOR NETWORKS 

 A task scheduling technique is proposed in [7], which uses scheduling of tasks to 

solve problem of load balancing in low duty cycled WSNs. They proved that load balancing 

problem is NP-Complete and proposed greedy algorithm and heuristic algorithm to balance 

the load and schedule the sensors optimally. However, they assumed that the sensors can 

serve multiple tasks at the same time. Moreover, the scheme is much more dynamic, but 

they did not account for the finer granularity of the tasks, and how would scheme will work 

if length of the tasks are unequal, is not clear. 

 

2.7 SCHEDULING ON WIRELESS SENSOR NETWORKS HOSTING MULTIPLE 

APPLICATIONS 

 Paper [8], addresses the problem of allocation and scheduling of sensors in a multi-

application environment which eventually leads to energy conservation in WSNs. 

Assumption behind the proposed system is that each sensor can be utilized by a single 

application at a time; which brings forth the need of allocation and scheduling algorithms 

in a Sensor Cloud. While designing algorithms, various parameters such as hop distance, 

energy requirement, potential energy are considered. Algorithms are classified as 

Knowledge free and Knowledge based. Furthermore, the paper provides statistical 

information to prove that knowledge based algorithms outperform knowledge free 

algorithms. Allocation algorithm is to reduce the energy consumption, whereas scheduling 

algorithm is to reduce the response time of sensors. However, the proposed approach is not 

suitable in a Sensor Cloud where many application users might be interested into data from 

the same geographical region. 
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2.8 SCHEDULING NODES IN WIRELESS SENSOR NETWORKS: A VORONOI 

APPROACH 

 In [9], authors have proposed the allocation scheme in which, using Voronoi 

diagram some wireless sensors close to each other turn off to increase the overall lifetime 

of WSNs. Their scheme is designed only for densely deployed WSNs. However, in our 

scheme, WSNs can have sparsely and/ or densely deployed regions at the same time. More 

number of sensors are selected from sparsely deployed regions and less from densely 

deployed regions. Thus, our scheme will work in a Sensor Cloud scenario irrespective of 

the type of sensor deployment in individual WSN. 

 Figure 2.3 shows an example of the algorithm where Node 4 is eliminated by 

algorithm from the sensing activity because the area covered by Node 4 is completely 

covered by the area covered by Nodes 1, 2, 3 and 5. 

 

Figure 2.3- Example of the algorithm that uses Voronoi diagram to decide if a node 

should be turned off or on [9] 
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2.9 PARTICLE SWARM OPTIMIZATION AND VORONOI DIAGRAM FOR 

WIRELESS SENSOR NETWORKS COVERAGE OPTIMIZATION 

 In the allocation scheme proposed in [10], authors are using PSO (Particle Swarm 

Optimization) along with Voronoi diagram to select the nodes from ROI (Region of 

Interest). PSO is a computational method that optimizes a problem by iteratively trying to 

improve a candidate solution with regard to a given measure of quality. In particular, their 

solution is not suitable in a Sensor Cloud scenario where we expect WSNs to have both 

sparsely and densely deployed regions. 
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PAPER 

I. SENSOR CLOUD: A CLOUD OF VIRTUAL SENSORS 

 

Sanjay K. Madria, Vimal Kumar, Rashmi Dalvi  

Department of Computer Science, Missouri S & T, Rolla, MO 

 

                                                               ABSTRACT 

While the use of wireless sensors is growing, their full potential remains to be utilized. 

One reason for this is the traditional model of computing which is used to interact with 

wireless sensors. The traditional model of computing imposes restrictions on how efficiently 

wireless sensors can be used. Newer models for interacting with wireless sensors such as 

Internet of Things and Sensor Cloud aim to overcome these restrictions. In this paper we 

present the Missouri S&T Sensor Cloud that we have developed. The Missouri S&T Sensor 

Cloud enables networks spread in a huge geographical area to connect together to be used by 

multiple users at the same time. We also present the concept of virtual sensors which is at the 

core of our Sensor Cloud. We further discuss how virtual sensors assist in creating a multi 

user environment on top of resource constrained physical wireless sensors. 
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1. INTRODUCTION 

The Industrial WIRELESS sensor network market is expected to grow at a yearly 

rate of 43.1 percent and reach US$3.795 billion by the year 2017 [8]. Although the usage 

of wireless sensors continues to grow, their full potential is bounded by the model of 

computation used to handle them. In traditional wireless sensor network (WSN) 

applications, a user needs to own a WSN, program the wireless sensors, deploy them and 

spend time and resources to maintain the network. The user is also restricted to one 

application per sensor network. 

In this article, we describe a new paradigm of computation for wireless sensor 

networks, the Sensor Cloud, which decouples the network owner and the user and allows 

multiple WSNs to interoperate at the same time for a single or multiple applications that 

are transparent to users. We define a Sensor Cloud as a heterogeneous computing 

environment spread in a wide geographical area that brings together multiple WSNs 

consisting of different sensors. Each WSN can have a different owner. The Sensor Cloud 

then virtualizes the wireless sensors and provides sensing as a service to users. Because 

users buy sensing services on demand from the Sensor Cloud, use of large-scale sensor 

networks becomes affordable with ease of use. 

A Sensor Cloud is composed of virtual sensors built on top of physical wireless 

sensors, which users automatically and dynamically can provision or de-provision on the 

basis of applications’ demands. This approach has a number of advantages. First, it enables 

better sensor management capability. The users can use and control their view of WSNs 

with standard functions for a variety of parameters such as region of interest, sampling 

frequency, latency, and security. Second, data captured by WSNs can be shared among 
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multiple users, which reduces the overall cost of data collection for both the system and 

user. Because data reusability in WSNs is transparent to the Sensor Cloud users, redundant 

data capture is reduced, thus increasing efficiency. Third, the system is transparent 

regarding the types of sensors used. The user doesn’t need to worry about low-level details 

such as which types of motes and sensors are used and how to configure them; the Sensor 

Cloud automatically handles these details. 

As a running example for the rest of this article, we’ll consider the following 

scenario. Traffic flow sensors are widely deployed in large numbers in places, including 

Washington, D.C., and Ohio. These sensors are mounted on traffic lights and provide real-

time traffic flow data. Drivers can use this data to better plan their trips. In addition, if the 

traffic flow sensors are augmented with low-cost humidity and temperature sensors, they 

can provide a customized and local view of temperature and heat index data on demand. 

The National Weather Service, on the other hand, uses a single weather station to collect 

environmental data for a large area, which might not accurately represent an entire region. 
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2. RELATED WORK IN SENSOR CLOUD 

We must note that our definition of a Sensor Cloud is different from others, [1] and is 

an extension of the concept of the Internet of Things. [2] The Internet of Things integrates the 

services provided by sensing devices with cloud computing over the Internet. Our Sensor 

Cloud, on the other hand, is a cloud of virtual sensors built on top of physical sensors, and it 

provisions virtual sensors to the user for providing sensing as a service. Gerd Kortuem and 

his colleagues discussed various components that constitute a Sensor Cloud system, its 

management, and the control flow of various components. [3] Nayot Poolsappasit and his 

colleagues provided a layered architecture of a Sensor Cloud and outlined the security 

challenges of such a system. [4] Sanem Kabadayi and her colleagues first described the 

abstraction of virtual sensors. [5] Navdeep Kaur Kapoor and her colleagues designed the 

allocation algorithm to reduce the energy consumption, and scheduling algorithms are 

designed to reduce the response time of sensors in multi-application scenarios. [6] Global 

sensor networks (GSN) is a middleware designed to rapidly deploy heterogeneous wireless 

sensors. [7] GSN also relies on virtual sensors; however, unlike approaches where virtual 

sensors are defined using classes, [5] the virtual sensors in GSN are defined using XML. GSN, 

the closest approach to our Sensor Cloud, offers a ready-to-use system, which can integrate 

large number of wireless sensors networks. However, it can’t be classified as a Sensor Cloud 

because GSN’s purpose is to provide efficient and flexible deployment of multiple stand-

alone WSNs. 
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3. VIRTUAL SENSORS 

A virtual sensor is an emulation of a physical sensor that obtains its data from 

underlying physical sensors. Virtual sensors provide a customized view to users using 

distribution and location transparency. In wireless sensors, the hardware is barely able to run 

multiple tasks at a time and the question of being able to run multiple VMs, such as in 

traditional cloud computing, is out of the question. To overcome this problem, in our Sensor 

Cloud we implement virtual sensors as an image in the software of the corresponding physical 

sensors. The virtual sensors contain metadata about the physical sensors and the user currently 

holding that virtual sensor. Additionally, the virtual sensor can have a data processing code, 

which can be used to process data in response to complex queries from the user. We have 

implemented virtual sensors in four different configurations: one-to-many, many-to-one, 

many-to-many, and derived configurations. 

 

3.1 ONE-TO-MANY CONFIGURATIONS 

In this configuration, one physical sensor corresponds to many virtual sensors. 

Although individual users own the virtual image, the underlying physical sensor is shared 

among all the virtual sensors accessing it. The middleware computes the physical sensor’s 

sampling duration and frequency by taking into account all the users; it reevaluates the 

duration and frequency when new users join or existing users leave the system. Hence, this 

system is dynamic. Figure 3.1(a) shows this configuration. 
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3.2 MANY-TO-ONE CONFIGURATIONS 

In this configuration, the geographical area is divided into regions and each region can 

have one or more physical sensors and sensor networks. When a user requires aggregated data 

of specific phenomena from a region, all underlying WSNs switch on with the respective 

phenomena enabled, and the user has access to the aggregated data from these WSNs. The 

sampling time interval at which all underlying sensors sense is equal to the sampling time 

interval requested by the user. This configuration can be used to provide fault tolerance if the 

underlying physical sensors fail. A virtual sensor communicates with a number of underlying 

physical sensors and it shows the aggregate view of the data to the user. When physical 

sensors fail, the WSN-facing layer of the Sensor Cloud captures the failure and the virtual 

sensor communicates it. A working sensor, which provides data within the quality-of-service 

(QoS) limits, can gather the required data. Thus, the virtual sensor adapts to a change in 

topology and the WSN-facing layer and is transparent to the user. 

 

3.3 MANY-TO-MANY CONFIGURATIONS 

This configuration is a combination of the one-to-many and many-to-one 

configurations. A physical sensor can correspond to many virtual sensors, and it can also be 

a part of a network that provides aggregate data for a single virtual sensor (see Figure 3.1(a)). 

 

3.4 DERIVED 

A derived configuration refers to a versatile configuration of virtual sensors derived 

from a combination of multiple physical sensors. This configuration can be seen as a 
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generalization of the other three configurations, though, the difference lies in the types of 

physical sensors with which a virtual sensor communicates. While in the derived 

configuration, the virtual sensor communicates with multiple sensor types; in the other three 

configurations, the virtual sensor communicates with the same type of physical sensors. 

Derived sensors can be used in two ways: first, to virtually sense complex 

phenomenon and second, to substitute for sensors that aren’t physically deployed. Two 

examples can help us to understand this better. 

 Example 1 - Many different kinds of physical sensors can help us to answer complex 

queries such as, “Are the overall environmental conditions safe in a wildlife habitat?” The 

virtual sensor can use readings of a number of environmental conditions from the physical 

sensors to compute a safety level value and answer the query. 

 Example 2 - If we want to have a proximity sensor in a certain area where we don’t have 

one mounted on a physical wireless node, the virtual sensor could use data from light 

sensors and interpolate the readings and the variance in the light intensity to use as a 

proximity sensor. Figure 3.1(b) shows examples of derived sensors. 

 

Figure-3.1 Various virtual sensor configurations: (a) one-to-many, many-to-one, and many-

to-many, and (b) derived 
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3.5 APPLICATION 

In our running example, the virtual sensor can fall under any of the four configurations. 

A user might interact with one particular traffic flow sensor to assess traffic condition. 

Multiple users might also use the same sensor. A user might configure a virtual sensor to 

provide the average temperature of a region, which may involve multiple sensors. A user 

might also configure derived virtual sensors to calculate a heat index from temperature and 

humidity data. 

 

 

 

 

 

 



 

 

21 

4. MISSOURI S&T SENSOR CLOUD 

The Sensor Cloud infrastructure at the Missouri University of Science and 

Technology (S&T) campus is divided into three prominent layers: client-centric, 

middleware, and sensor-centric (see Figure 4.1). The client-centric layer connects the users 

to the Sensor Cloud, whereas the middleware layer performs service negotiation, 

provisioning and maintenance of virtual sensors, and communication of data from the 

sensor-centric layer to the client- centric layer. The sensor-centric layer deals with the 

physical wireless sensors and their maintenance as well as routing of data and commands. 

From an implementation point of view, we can condense the layered architecture of Figure 

4.1 to the block diagram of Figure 4.1. Each block in Figure 4.1 comprises one or more 

related functionalities in the layered architecture. The block diagram representation in 

Figure 4.2 is a more implementation-friendly illustration of these functionalities. 

 

4.1 THE CLIENT CENTRIC LAYER 

The client-centric layer acts as the gateway between the Sensor Cloud and the user. 

It’s a collection of components that facilitate and manage the interactions between the user 

and the core of the Sensor Cloud that is, the virtual sensors. The client-centric layer comprises 

the user interface, session management, membership management, and the user repository 

components. 

The Missouri S&T Sensor Cloud user interface lets users specify parameters such as 

regions of interest, sensing phenomena, sampling frequency, sensing duration, and mode 
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(secure or not secure). The Web application parses the request and the parameters and 

communicates them to the back-end application server. 

 

Figure-4.1 A layered Sensor Cloud architecture from the Missouri University of Science & 

Technology Sensor Cloud. It’s divided into three prominent layers: client-centric, 

middleware, and sensor-centric. 

 

The session management component handles the secure creation, management, and 

termination of sessions between the middleware and the user. The membership management 



 

 

23 

component of the client-centric layer takes care of the authorization of users and provision of 

access to the services for which they are authorized. 

The user repository component stores detailed user information in the system such as 

account credentials, payment history, billing information, and so on. It also keeps track of 

data sent by WSNs and accessed by the end users. 

In our running example, the client- centric layer will expose a GUI showing the 

locations of the available sensors to the user. The user can create virtual sensors based on 

regions. The information about the selected region, sampling frequency duration, and QoS 

agreement would be sent to the middleware. 

 

4.2 THE MIDDLEWARE LAYER 

The middleware layer acts as the intermediary between the client-centric and sensor-

centric layers and connects the client requests with the data collected from the sensors. The 

middleware performs a number of functions such as provision management, image life-cycle 

management, and billing management. 

Provision management facilitates the service negotiation between the user and the 

Sensor Cloud and provisions virtual sensors for each incoming request. This component of 

the middleware resides in the Web application server block of Figure 4.2. It receives requests 

from UIs of multiple users with their parameters and modes. If a request can be fulfilled, 

control is passed onto the virtual sensor server block which triggers the WSNs associated with 

the selected region and specified parameters via the back-end application server. Once an 
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agreement between the user’s requirement and the Sensor Cloud’s capabilities has been 

reached, the virtual sensors are created. 

 

Figure-4.2 A block diagram representation of the architecture from Figure 4.1. Each block 

comprises one or more related functionalities from the layered architecture. 

 

The image life-cycle management component is implemented in the virtual sensor 

server block of Figure 4.2. The virtual sensor server receives requests for instances from the 

provision management component and takes care of creating instances for the virtual sensors 

provisioned for the users. After creating the instances, it communicates with the back-end 

application server to request a corresponding service instance. Each service instance of the 
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back-end application is registered in the remote method invocation (RMI) registry before any 

request for that region can be satisfied. As shown in the block diagram in Figure 4.2, with 

respect to the user’s selection of region, the associated service instance of the backend 

applications and their registered names are identified by querying the database. Later, these 

RMI-registered names are looked up from the registry to connect a particular user’s virtual 

sensors to the respective service instance. The virtual sensor server mediates the 

communication between the Web application and the back-end application and ultimately 

displays a different set of sensor data to each end user connected to the Sensor Cloud. The 

billing management component of the Sensor Cloud is responsible for keeping track of each 

user session with respect to the types of sensors used, number of sensor used, and mode of 

sensor usage to generate the invoice based on previous service agreements. 

In our example, the middleware layer receives information about the user session from 

the user-centric layer and creates the virtual sensor. The virtual sensor configuration is decided 

on the basis of the type of data the user wants, the user’s region of interest, and the agreed 

upon QoS. If multiple users request information from the same sensors (for example, traffic 

information from the same location), the middleware consolidates the requests. 

 

4.3 THE SENSOR CENTRIC LAYER 

The sensor-centric layer directly communicates with the physical sensors using the 

WSN registration, WSN maintenance, and data collection components. When network owners 

want to provide service through the Sensor Cloud interface, they need to register their WSNs. 

The Sensor Clouds verify the physical sensors and their capabilities, which should also 

provide location information. At this point in time, we aren’t considering mobile sensors, 
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therefore pre-deployed location information in the form of longitude, latitude, region IDs, and 

cluster IDs should suffice. The information collected in the WSN registration phase is used in 

cataloging the information about physical and later virtual sensors.  

Once a WSN is registered, the network owner is in charge of keeping the physical 

sensors in good health. The registration binds the WSN owner and the Sensor Cloud in a trust 

relationship where the WSN owner is expected to provide accurate, untampered sensor 

readings, and the Sensor Cloud is expected to correctly provide compensation for the received 

sensor readings. The trust between the two parties can be enhanced by using secure and trusted 

data collection and aggregation techniques on the WSN side and by performing data 

anonymization and doing computations on encrypted data on the cloud side. (A more detailed 

discussion of the security, privacy, and trust issues in Sensor Cloud can be found elsewhere 

[5].) 

The WSN maintenance component provides interoperability of the heterogeneous 

mote platforms, periodically checks the health of each mote in the Sensor Cloud, provides 

synchronization between sensors, and collects metadata information about the motes and the 

networks. To handle non-interoperability issues, we installed a GumStix computer on module 

(www.gumstix.com) at the junction of two or more incompatible WSNs. The GumStix is 

hooked up with a number of different motes at different ports. The GumStix collects data from 

one port and transmits it to other ports as needed. 

To check the health of the motes and collect metadata information, the WSN 

maintenance component periodically pings each network. The motes in the network reply 

with information such as their battery level, the mote to which they were last connected, their 

location, their region, and so on. Although we haven’t yet tackled the issue of synchronization 
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between the networks and sensors, in the future, global time information can be piggybacked 

on the ping packets. This would provide time synchronization between the networks and the 

sensors. 

To provide a finer-grained synchronization, we can also use the powerful GumStix 

nodes. The data collection component of the sensor-centric layer connects the system directly 

to the wireless sensor networks. Each WSN is connected to the data collection component 

through a base station. The data collection component, which resides in the back-end 

application server, runs one service instance for each base station. The service instance opens 

two dedicated ports, one to communicate with the base station and one to communicate with 

the associated virtual sensor on the virtual sensor server. 

The sensor-centric layer in our example receives a query packet from the middleware 

and replies with the requested data. This layer handles the routing protocol, fault tolerance, 

and other network-related issues. 
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5. SOFTWARE DESIGN 

The Sensor Cloud is multi-tiered client server software architecture with each layer 

logically separated from the other. The sensor-centric layer is the data tier. The layer consists 

of physical wireless sensors that generate real-time data. The middleware is the application or 

the logic tier, which controls the data collection. The client-centric layer represents the 

presentation tier. 

From a software developer’s point of view, there are two different facets to developing 

a Sensor Cloud: the system side and the sensor side. The system side consists of the client-

centric and middleware layer (the presentation and application tiers) and is basically used to 

manage physical resources. The end user’s view will vary depending on the application. The 

heart of any Sensor Cloud application, is going to be the middleware layer. The middleware 

layer is expected to be flexible enough to handle issues when physical and virtual sensors are 

scaled up and down. It’s also expected to aggregate the user requirements and redirect data 

according to these requirements from the sensors to the users, in addition to handling its 

regular tasks. 

The second facet of a Sensor Cloud is the physical sensors side, which consists of the 

sensor-centric layer. WSNs are distributed networks, where a number of physically separate 

entities work together toward a goal (in this case, generating data according to the user’s 

requirements). WSNs face the same general issues as distributed systems such as 

synchronization, fault tolerance, and security. While developing for WSNs, developers need 

to keep these issues in mind, in addition to the wireless sensor-specific constraints such as 

low bandwidth, low processing power, and finite energy sources. 
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6. QOS IN SENSOR CLOUD 

A Sensor Cloud manages QoS at two levels: at the sensor-centric layer and at the 

virtual sensors. The sensor- centric layer handles network-related issues such as responding 

to node failures, network partitioning, and packet losses. The virtual sensor layer then works 

on top of the sensor-centric layer’s services to manage QoS parameters such as reliability, 

data accuracy, and coverage on top of the network layer. As we explained earlier, the many-

to-one virtual sensor configuration can be used to provide data reliability via aggregation. The 

accuracy of data in such cases depends on the spatial and temporal correlation between the 

nearby sensors. The virtual sensor layer makes use of the correlations to retrieve data within 

the QoS limits from nearby sensors. The virtual sensor layer can also switch between 

configurations, for example, from one-to-many to many-to-many to provide data to multiple 

users within the specified QoS limits.    
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7. IMPLEMENTATION 

We used the Linux platform for multiple back-end servers, which cater to multiple 

regions. We programmed the Web application and back-end server application in Java. We 

used RMI along with socket communication for communication among the various back-

end servers. We used TelosB motes as wireless sensors, each equipped with a humidity, 

temperature, light intensity, and infrared sensor. We programmed the sensors using 

TinyOS 2.2 (http://tinyos.stanford.edu/tinyos-wiki/index.php/Installing_TinyOS). 

 

7.1 DATA STREAMING FOR MULTI-USER ENVIRONMENT 

The virtual sensor model can effectively support a multiuser environment. A single 

wireless sensor provides data for multiple users, where the users can request data at varying 

frequencies and of different phenomena. When the Web application server in Figure 4.2 

receives user requests, they are transferred to the virtual sensor server. The virtual sensor 

server performs the mapping between the user’s virtual and physical sensors. If multiple 

virtual sensors correspond to one physical sensor, the virtual sensor server combines the 

request by combining the sampling duration, sampling frequency, and sensing phenomena. 

The combined request is then forwarded to the appropriate service instance of the back-end 

server. The service instance communicates with the WSN and collects the data. Data from 

each WSN is sampled at the minimum frequency of all requests. This data is time stamped 

with the local time and stored in the database and displayed to the user at the requested 

frequency. Users can also select data from multiple base stations at the same time, either by 

selecting locations that includes multiple WSNs or by selecting multiple locations. The data 

http://tinyos.stanford.edu/tinyos-wiki/index.php/Installing_TinyOS
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will then be aggregated periodically at the requested frequency on the basis of the selected 

locations’ hierarchy. 

 

7.2 VIRTUAL SENSOR IMPLEMENTATION 

In this section, we describe the usage of many-to-one virtual sensors; however, one-

to-many, many-to-many, and derived sensors are also implemented in a similar fashion. The 

geographical area that the Sensor Cloud covers is divided into regions that are arranged 

hierarchically. Aggregated data from various networks in a region are based on the user’s 

selection of the region and the selected region’s hierarchy. The scheme can be understood 

well by visualizing a network of WSNs (see Figure 7.1(a)). The topology in Figure 7.1(a) 

shows the hierarchy of WSNs, where each intermediate node and the root node is a network 

in itself and can have any number of children. In this example, we assume that an end user 

needs data from region 1, which is a virtual node. Similarly, all intermediate nodes (2 and 3) 

and the root node in the hierarchy are virtual nodes. On the other hand, all leaf-level nodes (4, 

5, 6, and 7) represent physical WSNs. Thus, we can call this topology a network of VSNs 

(virtual sensor networks) and WSNs. The hierarchy information stored in data table (see 

Figure 7.1(b)) is static and is required while aggregating the information at intermediate and 

root-level nodes. On the other hand, a hierarchy data object is created for each user request. 

Once a many-to-one mapping of the virtual sensor is obtained, the virtual sensor server sends 

a request to the back-end application server, which then forwards the request to the concerned 

WSNs. Once all WSNs providing data to selected VSNs in the hierarchy are switched on, the 

backend application server starts relaying data, which is parsed according to the VSN 

hierarchy. 
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Figure-7.1 Virtual sensor examples: (a) hierarchy of a user’s region of interest and (b) 

hierarchy data object tables for virtual sensors. 
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8. CONCLUSION AND FUTURE WORK 

A major hindrance to the widespread adoption of wireless sensor networks is the 

difficulty in deploying and managing the networks. These tedious tasks take the focus away 

from the usage of WSNs to managing the WSNs. Sensor clouds aim to take the burden of 

deploying and managing the network away from the user by acting as a mediator between 

the user and the sensor networks and providing sensing as a service. In this paper we have 

described the Missouri S&T Sensor Cloud. We discussed the layered architecture of the 

Sensor Cloud and our implementation of it in Java and TinyOS. The Missouri S&T Sensor 

Cloud allows sensor networks spread in wide geographical areas to be connected and used 

as a single entity. It further allows the usage of sensor networks by multiple users at the 

same time by virtualizing the resources in software. Virtualization also helps in creating 

what we term as derived sensors from heterogeneous data streams. While we have 

presented a working model of the Sensor Cloud, our future work would include working 

towards a complete plug and play model of application deployment and energy efficient 

scheduling of wireless sensors. 
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                                                              ABSTRACT 

 

Wireless Sensor Networks (WSNs) are frequently used for a number of reasons like 

unattended environmental monitoring. WSNs also have low battery power hence various 

schemes have been proposed to reduce energy consumption during the processing. Consider 

a Sensor Cloud in which owners of heterogeneous WSNs come together to offer sensing as a 

service to users of multiple applications. In Sensor Cloud environment, it is important to 

manage the requests from multiple applications efficiently. In present work, we have proposed 

a scheduling and allocation schemes suitable for the multiple applications in a Sensor Cloud. 

This scheduling scheme proposed is based on TDMA which considers the fine granularity of 

tasks. The allocation scheme utilizes Voronoi diagram to reduce the number of sensors 

involved to increase the WSN’s short life. It does so by using spatial correlation between the 

sensing ranges of sensors in WSNs. In our performance evaluation, we show that our proposed 

scheme saves energy of sensors and provides substantial coverage of the sensing region for 

much longer duration in comparison to other works. 

 

 



 

 

36 

1. INTRODUCTION 

Wireless sensor networks (WSNs) are quite popular because they can be used in a 

wide range of applications, easy to deploy, withstand adverse conditions, work in 

unmonitored networks, and provide dynamic data access. Unfortunately, WSNs have limited 

amount of battery power and thus, they have shorter lifespan. The sensors must be efficiently 

allocated and scheduled for all tasks so that their lifespan increases, thus improving the 

battery’s longevity. We consider a Sensor Cloud of heterogeneous WSNs as described in our 

work [12]. The WSN owners within a Sensor Cloud collaborate with one another to provide 

sensing as a service and thereby gain profit from underutilized WSNs. The users of the 

applications employ sensing service, to select either single or multiple WSNs. Multiple users 

and applications are served by the Sensor Cloud at the same time. Hence we need scheduling 

and allocation scheme which is suitable for Sensor Cloud. 

Pantazis et al. [2] proposed TDMA based scheduling scheme that balances power 

saving and end-to-end delay in WSNs. Scheme schedules the wakeup intervals such that data 

packets are delayed by only one sleep interval from sensor to gateway. While scheduling the 

sensors however they did not consider a multi-application environment. In a Sensor Cloud, 

users of multiple applications will want to consume the data differently which brings forth the 

need of categorizing user tasks. The scheme proposed in [2] fails to account for various types 

of tasks and thus, it cannot achieve the goal of energy conservation for different types of 

requests. Similar to push requests in [1], a number of users may like to consume data from 

WSNs at a specific frequency. Other users prefer to do so once and in ad-hoc fashion like 

push requests in [1]. Some users may like to be notified when a specific event occurs. In all 
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such needs, in-spite of being energy efficient [2] will not conserve enough energy because 

they did not consider fine granularity of the tasks received from applications and application 

users. 

Viera et al. [4] proposed the allocation scheme for WSNs using Voronoi diagram. 

When many wireless sensors are close to each other, their algorithm turns off some to increase 

the overall lifetime of WSNs. They used distributed strategy to turn off the sensors, therefore 

sensors have to gossip with other sensors that causes communication overhead. Energy spent 

in communicating with other nodes leads to wastage. Additionally, their approach is suitable 

for densely deployed WSNs only. In a Sensor Cloud, WSN owners employing different 

deployment strategies (dense deployment, sparse deployment, combination of dense and 

sparse deployment) may want to participate. So approach proposed in [4] will not be 

applicable in Sensor Cloud. 

In this paper, we have extended the scheduling scheme proposed in [2] by considering 

fine granularity of the tasks. In multi-application environment, tasks are treated differently 

depending on their type. This increases the user satisfaction and by reducing the response time 

of the tasks and improving throughput greatly. It also provides the optimal energy 

conservation. In allocation scheme presented here, in order to save battery power, centralized 

strategy is used to take the decision of turning on required nodes. Moreover, the WSNs within 

the scheme in this work can have densely and/ or sparsely deployed regions at the same time. 

In dense zones, less number of the sensors need not be set at an on state because sensors in 

the vicinity tend to sense the same data. In sparsely deployed zones, the most number of 

sensors are expected to be allocated to the task. It is important to turn only the required sensors 

to an on state in a WSN that contains both densely and sparsely deployed regions. Thus 
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allocation method in this work takes into account all these types of deployments, for better 

results. 

The major contributions of this work also include, experimentally showing that our 

scheduling scheme provides better throughput and response time than the base case we 

developed for the Sensor Cloud. It treats each task differently which leads to optimal energy 

conservation. In allocation scheme, we prove that the centralized approach proposed in the 

paper selects lesser number of nodes than in [4], and eliminates gossiping between the motes. 

With experiment we show that, it provides 95% coverage of the sensing area. We also show 

that, in comparison with [4], percentage improvement in number of nodes compared to, the 

percentage compromise of uncovered area is very less. 
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2. RELATED WORK 

Kapoor et al. [7], addressed the issue of allocating and scheduling sensors in a multi-

application environment. This work eventually led to energy conservation in WSNs. The 

assumption behind the proposed scheme is that each sensor can be utilized by a single 

application. This brings forth the need of allocation and scheduling algorithms in Sensor 

Cloud. Various parameters (e.g. hop distance, energy requirements, and potential energy) 

were considered when the algorithms were being designed. These algorithms were classified 

as either Knowledge-Free or Knowledge-Based. An allocation algorithm was used to reduce 

energy consumption. A scheduling algorithm was used to reduce the sensor’s response time. 

This [7], proposed approach is not suitable in a Sensor Cloud in which many users of different 

applications might be interested in obtaining data from the same geographical region. 

In another work regarding scheduling of WSNs, Xiong et al. [3] proposed, a multi task 

scheduling technique for low-duty-cycled WSNs. They concentrated on load balancing 

problem for multiple tasks among sensor nodes in both spatial and temporal dimensions. 

They, however, did not consider the granularity of the tasks running in a Sensor Cloud. 

Pizzocaro et al. [5] proposed the use of a WSN allocation scheme in a multi WSN 

environment. Their scheme is based on bidding (conducted by sensors within the network for 

pre-empting sensors). Bidding creates extensive intra-communication within a WSN, 

consuming extra energy. In order to conserve the energy, we present an allocation scheme 

executed completely by Base Station (BS), bringing the intra-communication down 

effectively. Moreover, [5] pre-empts the sensors completely for a specific task. As a result, 
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when a many users are interested in the same set of sensors at the same time, they cannot be 

served by their scheme. 

Vuran et al. [6] used a Voronoi diagram to eliminate nodes that share a common 

sensing space that is greater than the threshold. Their algorithm works to turn the nodes off 

according to the distortion that exists between the transmission and reception of packets. This 

scheme is not suitable to a Sensor Cloud scenario because the selection of nodes does not 

change according to requests received from multiple applications. For example, only sensors 

selected to be in an active state serve a specific region until their energy is completely 

depleted. Aziz et al. [10], proposed an allocation scheme that uses PSO (Particle Swarm 

Optimization), with a Voronoi diagram, to select nodes from an ROI (Region of Interest). The 

PSO is a computational method that optimizes a problem by iteratively trying to improve a 

candidate solution with regard to a given measure of quality. Their solution is not suitable in 

a Sensor Cloud scenario in which WSNs are expected to have both densely and sparsely 

deployed regions. Alsalih et al. [11], used a Voronoi diagram to explain an allocation scheme. 

Sensors in the network maintain the adjacency list which is used while communicating with 

neighboring sensors about their position. It finds the partitions in the WSN and selects the 

minimum number of sensors in the region. This method, however involves a higher 

communication overhead. It also requires additional storage space at each sensor to maintain 

an adjacency list. 

Andrei et al. [8] proposed the approach of scheduling tasks. They suggested that the 

Minimum cut theorem be used to partition WSN into zones, reducing the number of 

transmission and receptions. Thus, each convergent transmission (from any node to the BS) 

will have a minimum number of hops. Such a strategy may, however, lead to communication 
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overhead in the process of partitioning and gossiping between the sensors in WSNs. 

Additionally, the minimum cut algorithm runs only once at the network initialization. 

Therefore, this scheme is not suitable for dynamic networks. Xiong et al. [3], proposed a 

scheduling scheme that uses a load balancing approach to solve problems in low duty cycled 

WSNs. Although this scheme is dynamic, did not account for fine granularity of the tasks. 

They also failed to address how the scheme would work if the length of each task was unequal 

to the next. Cao et al. [9] also proposed scheduling in low duty cycled WSNs. Here, multiple 

paths are used to transmit the data from the sensor to the BS when data transmission fails to 

increase the reliability. Although this scheme provides a greater fault tolerance, it requires an 

extensive amount of energy. 

 

 

 

 

 

 

 

 

 

 



 

 

42 

3. SENSOR CLOUD 

3.1 ARCHITECTURE 

The Sensor Cloud’s architecture [12] is illustrated in Figure 3.1. This architecture is 

broadly divided into three layers: Client centric, Middleware, and Sensor centric. 

 

Figure-3.1 Sensor Cloud Architecture 

 



 

 

43 

As the name suggests, a Client centric layer connects end users to the Sensor Cloud; 

it manages a user’s membership, session, and GUI. Middleware is the heart of the Sensor 

Cloud. It uses virtualization, with help from various components (eg. provision management, 

image life-cycle management, and billing management) to connect all participating WSNs to 

the end user. Sensor centric layer connects the Middleware to the physical WSNs. It also 

registers participating WSNs, maintains participating WSNs, and collects data. 

 

3.2 CHALLENGES WITHIN A MULTI-APPLICATION ENVIRONMENT 

A Sensor Cloud is comprised of heterogeneous WSNs. Thus various types of WSNs 

may participate in the cloud. For example, WSNs in a Sensor Cloud can be deployed sparsely 

and/or densely. Deployment transparency provided to the Middleware will lead to selection 

of minimum number of sensors. This will improve life of the network. Hence, to select 

minimum number of sensors, an efficient allocation scheme is needed. 

Conventional schemes that are typically used to schedule and allocate WSNs will not 

work efficiently in multi-application environment, because those schemes are designed for 

single application environment. The scheme proposed here focuses on scheduling and 

allocating sensors in multi-application environment to increase user satisfaction. 

 

3.3 ASSUMPTIONS 

The assumption is that, in a Sensor centric layer, the base station will know where the 

wireless sensors are located. Knowledge of sensor’s physical locations, will aid base station 
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to allocate sensors to a given task. This will eliminate the communication overhead required 

by the sensors in allocation process. 

In WSNs, tree topology and cluster topology are widely used over other network 

topologies. Because of its structure, tree topology provides wider area coverage than cluster 

topology. Thus, in this work a tree topology is assumed for all WSNs that participate in a 

Sensor Cloud.  
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4. SCHEDULING TASKS 

The sensing requests were broadly classified into three categories. In multi-application 

environment, Applications that consume Sensor Cloud services are expected to receive 

requests from one or more of the categories specified in section 4.5.1. These requests are also 

known as Tasks. 

 

4.1 TYPES OF TASKS 

The types of tasks are classified as Task T1, Task T2, and Task T3. 

4.1.1 Task T1. Task Type 1 (referred to as T1) is a task that is requested by users 

when they need sensor data at a specific frequency. These tasks may include a request for 

information on a specific topic (eg. weather broadcast). This information is sampled 

periodically and then broadcast back to the user. These requests have also been referred to as 

Push requests [1]. When this type of request is made, the BS sends data to the sensors only 

once at the beginning of the request. The sensors sense and then send the data to the BS at a 

given sampling frequency and time duration. Task T1 becomes the most expensive of all tasks 

in a WSN that is running at a maximum sampling frequency because this task pre-empts other 

tasks for the same WSN. The cost of this task is high at a higher frequency. It decreases as the 

sampling frequency decreases. 

In a WSN, consider a scenario when n users have requested for n tasks of type T1. 

These tasks are requested for same set of sensors and for same sensing phenomenon, but for 

different data frequencies. In this case the physical data frequency of WSN will be the 

minimum data frequency of all n tasks. Remaining n-1 frequencies will be virtual data 
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frequencies. For n-1 tasks, selection of minimum frequency will lead to some delay in data 

received from sensors. However, this approach will conserve the sensor’s energy because, 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  min(𝑓1, 𝑓2 … 𝑓𝑛). In another approach, LCM (Least Common 

Multiple) of all n frequencies can be set as the minimum frequency. LCM approach will 

reduce delay in response, but will significantly increase sensor’s energy because, 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≤  min(𝑓1, 𝑓2 … 𝑓𝑛). 

We prioritized saving sensor’s energy over latency in receiving data. Therefore, the 

minimum frequency of all requests was used in this study. Users in need of data (based on 

type T1) need to send information (e.g., location, sensing phenomenon, sampling frequency, 

and sampling duration) to the Sensor Cloud. 

4.1.2 Task T2. Type 2 tasks (referred to as T2) are requested by users who need one 

time data on the fly. This type of task is also known as a Pull Task [1], is designed to serve 

ad-hoc requests. BS will send request details (e.g. location, sensing phenomenon) to the 

sensors, and sensors will respond with the latest data. 

4.1.3 Task T3. Task Type T3 (referred to as T3) is used for event-based requests. 

During this type of request, the BS sets the event on sensors according to the requested 

condition on the sensor data. These applications will need several inputs, including location, 

sensing phenomena, event condition, monitoring frequency, and monitoring duration. Sensors 

continue sensing the data at a requested frequency and respond when the event condition 

occurs. Task T3 is useful for a number of applications, including fire detection, intrusion 

detection, and so forth. The algorithm used for T3 is a trade-off between the event occurrence 

frequency and the cost of event detection. If the event occurs very frequently, then a large 

number of duty cycles must be assigned to T3, increasing the effective cost.  
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T3 task can be further classified into ‘Notify once’ and ‘Notify until the condition is 

false’.  

The behavior of ‘Notify once’ would be similar to Task T2. In case of ‘T3 with Notify 

Once’ sensors send data to the BS only once when event condition is met. On the contrary, 

for T2 tasks, on request, sensors respond with data. 

Behavior of ‘Notify until the condition is false’ would be similar to Task T1. When 

event occurs, sensors executing task ‘T3 with Notify until condition is false’ send data to BS 

until condition turns false.  However for task T1, sensors send data to the BS at given 

frequency. As T3 does not require data to be always sent from sensors to the BS, cost of T3 

is lesser than T1. 

 

4.2 HANDLING REDUNDANT REQUESTS 

The handling of redundant requests benefits application users, WSN owners, and 

cloud service providers within a Sensor Cloud. The BS handles the redundant requests without 

affecting the physical frequency. For an instance, assume that a node ‘A’ is already serving 

request 'R1' for task T1 at frequency ‘f’. The following redundant requests to node 'A' can be 

served by the BS from the data received for request 'R1'. 

1) Other T1 requests for node 'A', with a frequency in multiples of ‘f’, until the duration of 

R1 ends 

2) T2 requests for node 'A'. The maximum delay is = ‘f’ 

3) T3 requests for node 'A'. The maximum delay is = ‘f’ until the duration of R1 ends 



 

 

48 

Similarly BS will serve requests for other nodes according to requests already made on the 

WSN. 

 

4.3 SCHEDULING SCHEME 

Scheduling scheme proposed here is divided into Sensor Scheduling and Task 

Scheduling. 

4.3.1 Sensor Scheduling. The scheduling scheme proposed in [2] is extended here to 

avoid the problem of packet collision during transmission and reception. Both wake up and 

sleep modes are used for all types of tasks. For tasks T1 and T2, the BS determines in what 

order the sensors must transmit and receive data. Thus path wakeup is not required for tasks 

T1 and T2. In task T3, however, the event triggers the transmission of data from node(s) to 

the BS. The schedule for T3 is not defined beforehand. On the occurrence of event, data is 

pushed into the vacant duty cycle. Hence, T3 needs the path wakeup strategy proposed in [2] 

to transmit the data from the node(s) to BS. 

Consider the tree topology given in Figure 4.1. Messages between sensors are divided 

into following categories according to the direction of packet transmission. They are further 

classified based on the level of granularity: 
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Figure-4.1 WSN in a Tree Topology 

 

4.3.1.1 BS to node(s) command messages. This type of message has both wakeup 

and command packets [2]. Time is divided (see Figure 4.2) to avoid a collision between 

packets. Wakeup messages have a short duration; Command messages have a longer duration. 

The command packet’s time period is determined by the command’s maximum length of the 

command. These messages are transmitted from the BS to the node(s) for every new request. 

They are not, however, transmitted for redundant requests. 

 

Figure-4.2 BS to Node(s) messages 
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Node 'A' sends data to nodes 'B' and 'C'. Transmitter of 'A' is turned on for the first 

two slots. Receivers of 'B' and 'C' are turned on in the first and second timeslots, respectively. 

Next, nodes 'B' and 'C', in parallel, send data to 'D' and 'F', followed by 'E' and 'G'. This 

procedure continues until the algorithm reaches the leaf nodes. This sequential transmission 

of packets helps in avoiding collision between packets. 

4.3.1.2 Node(s) to BS data messages. This type of messages has both wakeup and 

data packets [2]. The, data packets in task T1 are pushed to the BS at a scheduled frequency. 

The data for tasks T2 and T3 is pushed at the next available duty cycle. Data transmission 

occurs (see Figure 4.3). Nodes 'J', 'K', 'H', and 'I' are leaf level nodes that need to send data to 

the BS. The 'J' and 'H' leaf nodes send data to the 'E' and 'D' leaf nodes, respectively. Later, 

nodes 'K', 'I' send data to 'E' and 'D', in order. Accordingly, the transmitters that are sending 

data are turned on, and receivers receiving data are turned on for a specified amount of time. 

 

Figure-4.3 Node(s) to BS messages 

 

4.3.2 Task Scheduling. The scheme for task scheduling is an extension of the sensor 

scheduling scheme explained in Section 4.3.1. Two types of cycles are given in Figure 4.4. 
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Figure-4.4 Duty Cycle and Task Cycle 

 

4.3.2.1 Duty cycle. The duty cycle includes time slots for the transmission of data 

from BS to all nodes and from the node to the BS. For a particular WSN, the time duration of 

a duty cycle is equal to the time duration of the duty cycle that contains the longest task. Any 

task (T1/ T2/T3) can be assigned to a duty cycle according to whether or not it can serve the 

task. The duty cycle’s length is selected as the length of the largest task in the requests 

currently served. Each slot in Figure 4.4 separated by a brown color line is a duty cycle. Duty 

cycle T1 is further divided into two messages: BS to Node(s) and Node(s) to BS. Duty cycles 

are used for tasks T2 and T3 as per allocated tasks. 

4.3.2.2 Task cycle. A task cycle is a combination of multiple consecutive duty cycles 

that may contain tasks T1, T2, and T3. The task cycle’s length changes when the physical 

operating frequency of the WSN changes. Essentially, task cycle depends on the T1 

frequency. 

 

 



 

 

52 

4.4 DUTY CYCLES IN DETAIL 

A duty cycle’s length is variable. The minimum length of all requested tasks is 

considered to be the length of a duty cycle for a given WSN. When tasks are short in length, 

this strategy reduces the delay in response. Correlation between tasks and messages in duty 

cycle is explained further. 

4.4.1 Duty Cycle For Task T1. Duty cycles for T1 are divided into two types of 

messages, BS to Node(s) messages and Node(s) to BS messages. 

4.4.1.1 BS to node(s) message. The BS to Node(s) message is transmitted on a T1 

request to the WSN. For the first T1 duty cycle, time is allocated on BS to Node(s) message. 

Transmission will start from BS and propagate to the leaf level nodes. 

4.4.1.2 Node(s) to BS message. A Node(s) to BS message is transmitted at each 

occurrence of a sampling frequency. Time slots are assigned by beginning at the leaf level 

node and moving to the BS. These messages are driven by both, as the BS and the Node(s) 

are each aware of the transmission time slots. 

4.4.2 Duty Cycle For Task T2. Duty cycles for T2 are divided into two types of 

messages, BS to Node(s) messages and Node(s) to BS messages. 

4.4.2.1 BS to node(s) message. Task T2 are designed to serve ad-hoc requests. Thus, 

these messages are transmitted when nodes find an empty duty cycle. 

4.4.2.2 Node(s) to BS message. If a request is already received by a node, then the 

response is sent in next available duty cycle. Node(s) to BS slot of the duty cycle is selected 

to transfer the message. Unlike T1 Node(s) to BS messages, these messages are driven 

completely by the BS, because the BS tells the node(s) when to transmit the data. 
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4.4.3 Duty Cycle For Task T3. Duty cycles for T3 are divided into two types of 

messages, BS to Node(s) messages and Node(s) to BS messages. 

4.4.3.1 BS to node(s) message. These messages can be transmitted in next available 

duty cycle. The event is set to the given node(s) once a request is sent to the node(s) with 

monitoring frequency and condition. 

4.4.3.2 Node(s) to BS message. This message transmission uses path wakeups from 

node to the BS. Wake up messages are sent at the beginning of this message to all nodes in 

the path. Data messages are sent once path to the BS is established. These messages are 

completely driven by the monitoring nodes because the BS is unaware of the data received.  

 

4.5 PREEMPTION CONDITION 

The preemption of nodes in a WSN depends on two factors: the availability of duty 

cycles at the root level node and the frequency of requests in T1 mode. The minimum 

frequency of T1 limits a network by restricting other nodes from transmitting the data. 

 
1

∑ (
1

𝐹𝑟𝑒𝑞𝑝
)

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑇1𝐹𝑟𝑒𝑞
𝑃=1

≥ 𝐷                                                 (1) 

Equation (1) defines the pre-emption condition by rejecting requests that do not satisfy 

the above condition. Here, ‘existingT1Freq’ is the list of T1 frequencies operating on a WSN, 

Freqp is the pth operating frequency (of non-redundant requests), and D is the length of the 

duty cycle. 

The, Algorithm 1 ensures that at least one duty cycle is available in the task cycle for 

T2 and T3 requests. This algorithm, however accepts T1 and T3 requests only when the value 
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at L.H.S. in (1) is greater than the value of R.H.S. The algorithm rejects the request when the 

condition is not satisfied. Rejected requests inform users that the WSN does not currently 

have the capacity to serve the given request. 

 

4.6 SCHEDULING ALGORITHM 

Scheduling Algorithm contains Algorithm 1, BS Scheduling that executes on BS, and 

Algorithm 2, Sensor Scheduling that executes on the sensors. 

In Algorithm 1, 𝑅 is the input request, 𝑡𝑎𝑠𝑘 is the type of task from set {T1, T2, T3}, 

𝑝ℎ𝑒𝑛𝑜𝑚 is the phenomena to be sensed, 𝑠𝑒𝑛𝑠 is the set of sensors chosen to both sense and 

forward data, 𝑓𝑤𝑑 is the set of sensors chosen to forward data, 𝑓𝑟𝑒𝑞 is the frequency at which 

the user needs the data, 𝑐𝑜𝑛𝑑 is the event condition for the T3 𝑡𝑎𝑠𝑘, 𝐷 is the length of the 

duty cycle, 𝑚𝑖𝑛𝑠𝑙𝑜𝑡 is the minor timeslot in the task cycle, and 𝑚𝑎𝑗𝑠𝑙𝑜𝑡 is the major timeslot 

in the task cycle. 

Algorithm 1 takes request R as an input. It returns true if the request is served and 

false if the request is not served. This algorithm evaluates the preemption condition 

(
1

∑ (
1

𝐹𝑟𝑒𝑞𝑝
)

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑇1𝐹𝑟𝑒𝑞
𝑃=1

≥ 𝐷) first. If its value is true, the request can be scheduled else the 

request will be rejected by returning false. If the value of preemption condition is true and 

R.task is either T1 or T3 (e.g. a task with a frequency), then it evaluates whether or not the 

desired frequency is in multiples of a duty cycle or vice versa by finding either of 

𝑚𝑜𝑑(𝑅. 𝑓𝑟𝑒𝑞, 𝑇𝑎𝑠𝑘 𝐶𝑦𝑐𝑙𝑒) and(𝑚𝑜𝑑(𝑇𝑎𝑠𝑘𝐶𝑦𝑐𝑙𝑒, 𝑅. 𝑓𝑟𝑒𝑞) = 0)) condition is true. If the 

frequency is in multiples i.e. one of these conditions is true, then the algorithm assigns values 

to minslot and majslot by using methods GetMinorSlot(R) and GetMajorSlot(R) respectively. 
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These methods get minslot and majslot by finding the next vacant timeslot that can be 

scheduled. Further ScheduleWSN(R, minslot, majslot) method schedules the request on 

appropriate duty cycle according to the values of minslot, majslot and returns true. Returned 

value true means that the request is scheduled for T1 or T3. In other case when preemption 

condition is met and R.task is T2, steps same as T1 and T3 will be executed except a difference 

that, as task T2 doesn’t have any frequency; condition 

“𝑚𝑜𝑑(𝑅. 𝑓𝑟𝑒𝑞, 𝑇𝑎𝑠𝑘 𝐶𝑦𝑐𝑙𝑒) and(𝑚𝑜𝑑(𝑇𝑎𝑠𝑘𝐶𝑦𝑐𝑙𝑒, 𝑅. 𝑓𝑟𝑒𝑞) = 0))” will not be checked. 

Rest of the steps for T2 will be same as T1 and T3. 

In Algorithm 2, the DutyCycleTimer fires every 𝐷 seconds. The currentRequests 

refers to the collection of all requests running on a given sensor, 𝑚𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑙𝑜𝑡 is the 

minor slot id for the current Duty Cycle, 𝑚𝑎𝑗𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑙𝑜𝑡 is the major slot id for the current 

Duty Cycle, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑 is the id for the sensor on which code is executing, and 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡 is the id for parent sensor of the sensor on which the code is 

executing. The 𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑑 is a flag; its value is true if the child of the current node has 

detected an event. 

After Algorithm 1 sends requests to sensors, a new request is added into the currentRequests 

in Algorithm 2. The DutyCycleTimer is set to fire (“DutyCycleTimer fired event”) on each 

duty cycle frequency tick. On this event, for each request 𝑅 in currentRequests, the Algorithm 

2 checks whether a 𝑚𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑙𝑜𝑡 is equal to R.minslot and 𝑚𝑎𝑗𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑙𝑜𝑡 is equal to 

R.majslot. If both slots match for any request R, the Algorithm 2 continues else no action is 

taken. Further if R.task is T1 or T2, and current sensor is selected for sensing (i.e. 

𝑅. 𝑠𝑒𝑛𝑠. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑)) then, data is sensed for the phenomenon R.phenom 

using method SenseData(R.phenom). Sensed data is aggregated with the data received from 
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immediate children by method AggregateData() and sent to the parent using 

SendData(currentnode.parent). If the task is either T1 or T2 and the current sensor is selected 

to forward the data (i.e. 𝑅. 𝑓𝑤𝑑. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑)), then sensor just forwards the 

data to its parent using method SendData(currentnode.parent). Now if the request is T1 i.e. 

R.task is T1, algorithm completes. In case if R.task is T2, it continues further. The T2 requests 

are one-time requests, hence after processing T2 request 𝑅. 𝑚𝑖𝑛𝑠𝑙𝑜𝑡 and 𝑅. 𝑚𝑎𝑗𝑠𝑙𝑜𝑡 are set 

to 0, so that this request will not be served further. 

In another case, if the timeslots match i.e. (𝑚𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑙𝑜𝑡 is equal to R.minslot 

and 𝑚𝑎𝑗𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑙𝑜𝑡 is equal to R.majslot), and R.task is T3, it checks whether current 

sensor is selected to sense the phenomena by using a check, 

𝑅. 𝑠𝑒𝑛𝑠. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑). Then a phenomenon is sensed and condition is tested 

by checking CheckEvent(SenseData(𝑅. 𝑝ℎ𝑒𝑛𝑜𝑚), 𝑅. 𝑐𝑜𝑛𝑑). If the condition check has met 

the event criteria i.e. if this check returns true, then the sensor sends a notification to its 

parent using method SendNotification(currentnode.parent). However, if the current sensor 

is selected as the forwarding node (i.e. value of 𝑅. 𝑓𝑤𝑑. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑) is 

true), then sensor assesses whether or not it has received any notifications from its children 

by checking whether notified flag is true. If notified flag is true, it notifies its parent using 

method SendNotification(currentnode.parent). If it has not received a notification (notified 

flag is false), it remains idle. 
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Algorithm 1: BS Scheduling 

Objective: Scheduling the input request 

Input: 𝑅{𝑡𝑎𝑠𝑘, 𝑝ℎ𝑒𝑛𝑜𝑚, 𝑠𝑒𝑛𝑠, 𝑓𝑤𝑑, 𝑓𝑟𝑒q, 𝑐𝑜𝑛𝑑} 

Output: 𝑡𝑟𝑢𝑒 if request is scheduled, 𝑓𝑎𝑙𝑠𝑒 otherwise  

If 
1

∑ (
1

𝐹𝑟𝑒𝑞𝑝
)

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑇1𝐹𝑟𝑒𝑞
𝑃=1

≥ 𝐷 

If 𝑅. 𝑡𝑎𝑠𝑘 ∈ {T1, T3} 

If ((𝑚𝑜𝑑(𝑅. 𝑓𝑟𝑒𝑞, 𝐷) =  0) || (𝑚𝑜𝑑(𝐷, 𝑅. 𝑓𝑟𝑒𝑞) = 0) ) && 

((𝑚𝑜𝑑(𝑅. 𝑓𝑟𝑒𝑞, 𝑇𝑎𝑠𝑘 𝐶𝑦𝑐𝑙𝑒) =  0) || (𝑚𝑜𝑑(𝑇𝑎𝑠𝑘𝐶𝑦𝑐𝑙𝑒, 𝑅. 𝑓𝑟𝑒𝑞) = 0)) 

   𝑚𝑖𝑛𝑠𝑙𝑜𝑡= GetMinorSlot(𝑅) 

   𝑚𝑎𝑗𝑠𝑙𝑜𝑡= GetMajorSlot(𝑅) 

   ScheduleWSN( 𝑅, 𝑚𝑖𝑛𝑠𝑙𝑜𝑡, 𝑚𝑎𝑗𝑠𝑙𝑜𝑡 ) 

   Return 𝑡𝑟𝑢𝑒 

  Else 

   Return 𝑓𝑎𝑙𝑠𝑒    

If 𝑅. 𝑡𝑎𝑠𝑘 = T2 

   𝑚𝑖𝑛𝑠𝑙𝑜𝑡= GetMinorSlot(𝑅) 

   𝑚𝑎𝑗𝑠𝑙𝑜𝑡= GetMajorSlot(𝑅) 

   ScheduleWSN( 𝑅, 𝑚𝑖𝑛𝑠𝑙𝑜𝑡, 𝑚𝑎𝑗𝑠𝑙𝑜𝑡 ) 

   Return 𝑡𝑟𝑢𝑒 

Else 

 Return 𝑓𝑎𝑙𝑠𝑒 
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Algorithm 2: Sensor Scheduling 

Objective: Serving the scheduled requests 

DutyCycleTimer fired event 

For each 𝑅 in currentRequests 

 If (𝑅. 𝑚𝑖𝑛𝑠𝑙𝑜𝑡 = 𝑚𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑙𝑜𝑡) & (𝑅. 𝑚𝑎𝑗𝑠𝑙𝑜𝑡 = 𝑚𝑎𝑗𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑙𝑜𝑡)  

  If 𝑅. 𝑡𝑎𝑠𝑘 ∈ {𝑇1, 𝑇2} 

   If 𝑅. 𝑠𝑒𝑛𝑠. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑) 

    SenseData(𝑅. 𝑝ℎ𝑒𝑛𝑜𝑚) 

    AggregateData() 

    SendData(𝑡ℎ𝑖𝑠. 𝑝𝑎𝑟𝑒𝑛𝑡) 

   If 𝑅. 𝑓𝑤𝑑. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑) 

    SendData(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡) 

   If 𝑅. 𝑡𝑎𝑠𝑘 =  𝑇2 

    𝑅. 𝑚𝑖𝑛𝑠𝑙𝑜𝑡 = 0 

    𝑅. 𝑚𝑎𝑗𝑠𝑙𝑜𝑡 = 0 

  If 𝑅. 𝑡𝑎𝑠𝑘 = 𝑇3 

   If 𝑅. 𝑠𝑒𝑛𝑠. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑) 

    If CheckEvent(SenseData(𝑅. 𝑝ℎ𝑒𝑛𝑜𝑚), 𝑅. 𝑐𝑜𝑛𝑑) = 𝑡𝑟𝑢𝑒 

     SendNotification(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡) 

   If (𝑅. 𝑓𝑤𝑑. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑖𝑑)) & (𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑑 = 𝑡𝑟𝑢𝑒) 

    SendNotification(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡) 
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5. ALLOCATION 

Reducing number of active sensors will result in increasing lifetime of the WSNs. It 

can be achieved by using a spatial correlation between the sensing ranges of sensors. In Sensor 

cloud we are using Voronoi diagram to represent deployment of sensors in a WSN. Voronoi 

diagram can be further used for allocating sensors to a task. This scheme works with the 

following:  

 Densely Deployed WSNs 

 Sparsely Deployed WSNs 

 Combination of Densely and Sparsely Deployed WSNs 

 

5.1 VORONOI DIAGRAM FOR WSN 

Figure 5.1 shows the Voronoi diagram for a WSN in a Sensor Cloud. The rectangular 

region represents the area from which the user needs data. The area covered by the WSN is 

divided into small cells that are centered at points. Each point in the cell is represents a 

wireless sensor in a WSN. The edges of each cell are formed by connecting perpendicular 

bisectors of the segments joining all neighboring points. The sensor located at the center of a 

cell can sense data for the area covered by cell. This data is more accurate as compared to the 

data sensed by other sensors for that region. This Voronoi diagram is built when WSN is 

initialized. 
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Figure-5.1 Voronoi Diagram for WSN 

 

5.2 MINIMUM NUMBER OF SENSORS REQUIRED TO SENSE THE AREA 

Assume a user needs data from a rectangular area in Figure 5.2. Note that, if the 

required area is not rectangular, it can be extended into a rectangle. This calculation is only 

to find minimum number of nodes required to cover area selected by the user. Thus, this 

calculation can be used to extend any irregular area to a rectangular area. 

 

Figure-5.2 Minimum number of sensors needed to cover an area 
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The outer rectangular area (in Figure 5.2) can be divided into smaller, encircled 

rectangles of the same size. Center of each circle is a wireless sensor and area encircled 

represents sensing area of the sensor. Each smaller circle can be represented as shown in 

Figure 5.3. The radius of circle 'r' represents the sensing range of the sensor. 

 

Figure-5.3 Sensed area based on sensing range 

 

      𝜑 = 2 ×  𝑟2                                                                 (2) 

                                                             ∅ =  
θ

φ
                                                                        (3) 

Where ∅ is the minimum number of sensors required to cover an area, 𝜃 is the area of 

the entire rectangular surface, and 𝜑 is the area of smaller rectangles. 

With equation (2) we can find the value of area of smaller rectangles. Equation (2) can 

be used in equation (3) to find the value of minimum number of sensors required to sense 

area. 

In order to achieve better coverage in implementation, we use twice the minimum 

number of sensors required. 
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5.3 ALLOCATION SCHEME 

The allocation scheme is based on the concept that sensors in densely deployed zones 

will have more number of neighbors compared to sparsely deployed zones and hence more 

number of edges in Voronoi diagram. Similarly, sensors in sparsely deployed zones will have 

fewer neighbors as compared to densely deployed zones. 

Voronoi diagram for a WSN is determined when the network is establishment. It is 

assumed that BS has knowledge of physical locations of all nodes in the network (as 

previously noted in section 3.3). The WSN may contain both densely and sparsely deployed 

zones. 

When a user requests data from a specific area, the minimum number of sensors 

required to cover the area are determined. Then value of selection factor for each sensor is 

calculated using equation (4). 

 𝛼 =  𝛽 ×  𝛾                                                                    (4) 

Where 𝛼 is the selection factor, 𝛽 is the area of each cell in the Voronoi diagram, and 

𝛾 is the number of edges surrounding a node whose neighbors are not selected for a task. 

List of nodes in the sensing area are sorted in descending order of selection factor. 

Node with the highest selection factor is chosen first. At the beginning when no node has been 

selected, number of uncovered edges includes all edges surrounding a node. When algorithm 

makes a selection, number of uncovered edges for all neighboring nodes is decremented by 

1. The list of nodes is again sorted in descending order of selection factor. The algorithm 

iterates through the loop until it exceeds the minimum number of sensors required to sense 

the area (Please refer to Section 5.2 for more detailed discussion). 
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5.4 ALLOCATION ALGORITHM 

Algorithm 3: Initialization 

Objective: Initialization based on Voronoi diagram 

Input: 𝑉𝑜𝑟𝑜𝑛𝑜𝑖𝐷𝑖𝑎 < 𝑐𝑒𝑙𝑙 {𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑, 𝑉, 𝐸 } > 

Output: 𝑊𝑆𝑁 < 𝑆{𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑, 𝑎𝑟𝑒𝑎, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, 𝑛𝑜𝑜𝑓𝑒𝑑𝑔𝑒𝑠, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟}> 

For each 𝑐𝑒𝑙𝑙 in 𝑉𝑜𝑟𝑜𝑛𝑜𝑖𝐷𝑖𝑎 

 𝑆. 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑 = 𝑐𝑒𝑙𝑙. 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑 

 𝑆. 𝑎𝑟𝑒𝑎 = GetVoronoiCellArea(𝑐𝑒𝑙𝑙) 

 𝑆. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = GetNeighbors(𝑐𝑒𝑙𝑙) 

 𝑆. 𝑛𝑜𝑜𝑓𝑒𝑑𝑔𝑒𝑠 = GetNoOfEdges(𝑐𝑒𝑙𝑙) 

 𝑆. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = GetLocation(𝑐𝑒𝑙𝑙) 

 𝑆. 𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟 = 0 

 𝑊𝑆𝑁. 𝑎𝑑𝑑(𝑆) 

Return 𝑊𝑆𝑁 

 

 

𝑉𝑜𝑟𝑜𝑛𝑜𝑖𝐷𝑖𝑎 is the algorithm input that is collection of all voronoi cells within 

the sensor network. For each 𝑐𝑒𝑙𝑙 in 𝑉𝑜𝑟𝑜𝑛𝑜𝑖𝐷𝑖𝑎, 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑 is the sensor’s id, 𝑉 is the 

vertex at which the sensor is located, and 𝐸 is the set of edges enclosing the cell. 𝑊𝑆𝑁 

is output of the algorithm which is collection of sensors in sensor Network. For each 𝑆 

in 𝑊𝑆𝑁, 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑 is the sensor’s id, 𝑎𝑟𝑒𝑎 is the area covered by 𝑆, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 

represents the list of neighboring cells of sensor 𝑆, 𝑛𝑜𝑜𝑓𝑒𝑑𝑔𝑒𝑠 are the number of edges 
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𝑆 has in 𝑉𝑜𝑟𝑜𝑛𝑜𝑖𝐷𝑖𝑎, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is the sensor’s physical location, and 𝑠𝑒𝑙𝑓𝑎𝑡𝑜𝑟 is 

selection factor that will be used in Allocation algorithm (algorithm 4). 

Initialization algorithm (algorithm 3) uses Voronoi diagram 𝑉𝑜𝑟𝑜𝑛𝑜𝑖𝐷𝑖𝑎 as input. 

It is used to initialize sensor objects 𝑆 in 𝑊𝑆𝑁. Initialized list of 𝑆 in 𝑊𝑆𝑁 will be used in 

Algorithm 4. In algorithm 3, for each cell in Voronoi diagram VoronoiDia, sensor S in 

collection WSN is set. Initially the S.sensorid is set to cell.sensorid. Later value of voronoi 

area S.area is set using method GetVoronoiCellArea(cell). Similarly to find neighbors of 

the cell S.neighbors and number of edges S.noofedges, methods GetNeighbors(cell) and 

GetNoOfEdges(cell) are used respectively. Value of physical S.location is set using 

methods GetLocation(cell). The value of selection factor S.selfactor is set to 0 initially 

which will be changed in algorithm 4 when number of nodes will be selected. At the end 

of the algorithm, collection WSN will be returned. 

In Algorithm 4, 𝑆𝑒𝑛𝑠𝑒𝑅𝑒𝑔 is the input to the algorithm that represents the sensing 

region requested by the user for sensing, 𝑛𝑎𝑚𝑒 is the name of the sensing region in the 

sensor network, 𝑎𝑟𝑒𝑎 is the area covered by the region, and 𝐸 is the set of edges enclosing 

the 𝑆𝑒𝑛𝑠𝑒𝑅𝑒𝑔. The list of sensor ids selected for sensing purpose is 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠. 

The variable that stores the value of the minimum number of sensors required for a task is 

noofsensors, and the radius of the sensor’s sensing range is SensingRange. 
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Algorithm 4: Allocation Algorithm 

Objective: Allocating sensors for a task 

Input: 𝑆𝑒𝑛𝑠𝑒𝑅𝑒𝑔{𝑛𝑎𝑚𝑒, 𝑎𝑟𝑒𝑎, 𝐸} 

Output: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠{𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑} 

For each 𝑆 in 𝑊𝑠𝑛 

 If 𝑆. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈ GetLocation(𝑆𝑒𝑛𝑠𝑒𝑅𝑒𝑔. 𝐸) 

  𝑆. 𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑆. 𝑎𝑟𝑒𝑎 × 𝑆. 𝑛𝑜𝑜𝑓𝑒𝑑𝑔𝑒𝑠 

noofsensors = 
𝑆𝑒𝑛𝑠𝑒𝑅𝑒𝑔.𝑎𝑟𝑒𝑎

(𝑆𝑒𝑛𝑠𝑖𝑛𝑔𝑅𝑎𝑛𝑔𝑒)2 

While noofsensors > 0 

 𝑊𝑆𝑁. 𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟) 

 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠. 𝑎𝑑𝑑(𝑊𝑆𝑁[0]. 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑) 

 For each 𝑆 in 𝑊𝑆𝑁 

  If 𝑊𝑆𝑁[0]. 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑 ∈ 𝑆. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 

   𝑆. 𝑛𝑜𝑜𝑓𝑒𝑑𝑔𝑒𝑠 = 𝑆. 𝑛𝑜𝑜𝑓𝑒𝑑𝑔𝑒𝑠 − 1 

   𝑆. 𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑆. 𝑎𝑟𝑒𝑎 × 𝑆. 𝑛𝑜𝑜𝑓𝑒𝑑𝑔𝑒𝑠 

 𝑊𝑆𝑁. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑊𝑆𝑁[0]. 𝑆) 

 noofsensors = noofsensors − 1 

Return 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠 

 

Unlike Algorithm 3, Algorithm 4 executes for every incoming request to the sensor 

network. The input is 𝑆𝑒𝑛𝑠𝑒𝑅𝑒𝑔 and the output is 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠. At the beginning of the 

algorithm for all sensors (i.e. for each S in WSN), if they belong to given location which is 

checked by condition “𝑆. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈ GetLocation(𝑆𝑒𝑛𝑠𝑒𝑅𝑒𝑔. 𝐸)”, value of S.𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟 
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(selection) are calculated. Next, the minimum number of sensors required to sense the area 

are identified with the using formula noofsensors = 
𝑆𝑒𝑛𝑠𝑒𝑅𝑒𝑔.𝑎𝑟𝑒𝑎

(𝑆𝑒𝑛𝑠𝑖𝑛𝑔𝑅𝑎𝑛𝑔𝑒)2. The list of 𝑆 is then sorted 

in descending order of 𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟 using method 𝑊𝑆𝑁. 𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟), and 

the sensor with a maximum 𝑠𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟 (which will be the first element in sorted list WSN) is 

selected for sensing. When the sensor is selected, it is added into the list WSN using 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑛𝑠𝑜𝑟𝑠. 𝑎𝑑𝑑(𝑊𝑆𝑁[0]. 𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑑). Another for loop runs for each S in WSN to 

reduce the value of S.noofedges of its neighboring sensors and to recalculate value of their 

selection factor S.selfactor. Selected sensor is then removed from list of available sensors in 

𝑊𝑆𝑁using WSN.remove(WSN[0].S). After the selected sensor is removed from the list, 

𝑛𝑜𝑜𝑓𝑒𝑑𝑔𝑒𝑠 for sensors neighboring the selected sensor are decreased by 1. The while loop 

continues in this manner until the number of selected sensors is equal to the noofsensors. The 

list of selected sensors SelectedSensors is returned as the output for the task. 
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6. IMPLEMENTATION AND EXPERIMENTS 

In this section, we provide the performance results of our proposed scheduling and 

allocation algorithms. 

 

6.1 EXPERIMENTAL SETUP 

For scheduling scheme, we developed the software to run on telosb motes using 

TinyOS 2.0 and java. The telosb motes were powered by two AA rechargeable batteries (1.2V 

- 2600mA). A Sensor Cloud web application programmed using java will communicate with 

the BSs of different WSNs using RMI and socket communication. BS developed in java then 

transfers the messages to the motes which are programmed using TinyOS. For allocation 

scheme, we used an application available on the internet to design the Voronoi diagram. We 

randomly generated the nodes in the Voronoi diagram in a given region. Then we calculated 

the area of each cell and gave that as an input to our allocation scheme developed in java and 

mysql to get results. 

 

6.2 PERFORMANCE EVALUATION 

For scheduling scheme we compared the algorithm results with the base case we 

developed. Also for analyzing the performance of allocation scheme, we compared the results 

with the results in paper [4]. 
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6.2.1 Scheduling. In order to show the efficiency of our design, we compared 

scheduling scheme with the base case. In base case, we did not include proposed scheduling 

scheme but it just has ability to send the data to the BS at a given frequency. There was just 

one type of task with frequency, which can be executed once at a time. For the experiment, 

we deployed a WSN with 5 nodes for base case and scheduling algorithm both. The measures 

we used for performance comparison are, Response Time, Throughput, Network Lifetime and 

Power Consumption. 

6.2.1.1 Response time. To find the Response Time, we considered the tasks of type 

T1 in our experiment because they are most expensive tasks. For increasing number of tasks 

we found the values of response time for the best case, the average case and the worst case. 

Figure 6.1 shows the tasks table used in performing the experiment. Also Figure 6.2 shows 

the graph of Number of Tasks v/s Response Time (in sec) for scheduling algorithm. In the 

best-case scenario, the new request for the task arrives when all other previous requests are 

saved and next duty cycle is vacant to be served. On the other hand we consider a worst case 

when a vacant duty cycle was just got over and a new request arrives. When the number of 

tasks are more in worst case, we have taken the tasks with a higher frequency rate which 

causes the response time to increase rapidly. However, in average case, the new request 

arrives between the two vacant duty cycles. The response time for average case increases 

linearly with the number of tasks. The response time for the base case is shown in Figure 6.3, 

where the overall response time is significantly greater than the response time of scheduling 

algorithm. The response time of scheduling algorithm is shorter than base case because, in 

scheduling algorithm, we allow tasks to execute in parallel. On the contrary, for base case 

they execute serially and hence response time is longer. 
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Figure-6.1 Tasks for the experiment 

 

Figure-6.2 Number of tasks v/s Response time (sec) for scheduling algorithm 
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Figure-6.3 Number of tasks v/s Response time (sec) for base case 

 

6.2.1.2 Throughput. For the results of throughput, refer to the table in Figure 6.1. 

The number of tasks completed with elapsed time for scheduling algorithm is shown in 

Figure 6.4. Throughput of best and worst case increase linearly, however in the worst case, 

with increase in time, initially the number of tasks executed goes on increasing, but later 

they go down. As the elapsed time goes on increasing we select the higher frequencies 

which cause WSNs to accommodate less number of tasks. Hence in worst case throughput 

reflects downward slope at higher values of time elapsed. On the other hand, the throughput 

for the base case in Figure 6.5 was very low as compared to throughput of scheduling 

algorithm because base case allows serial execution of tasks only. 
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Figure-6.4 Elapsed time v/s Number of tasks executed for scheduling algorithm 

 

 

Figure-6.5 Elapsed time v/s Number of tasks executed for base case 
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6.2.1.3 Network lifetime. In Figure 6.6, we have compared the network lifetime of 

scheduling algorithm with the network lifetime of the base case. The length of the duty 

cycle was set as 5 sec. When a task with frequency 5 seconds was executed for infinite 

duration on the base case, the batteries were discharged in 64 hours. Similarly with 

scheduling algorithm, we deployed three WSNs each having duty cycle as 5 seconds and 

were assigned task T1, T2 and T3 respectively. The networks for tasks T1, T2 and T3 lasted 

for 59, 45 and 80 hours respectively. Four tasks of T1 and T3 are set for WSNs, with 

frequency of each task as 20 seconds. However, for task T2, we sent a new request every 

5 seconds. It is observed that WSN with task T2 has shortest life because it involves the 

packets sent from BS to node(s) and node(s) to BS both. T1 has more lifespan than T2 

because it was a push request, which requires data being pushed from node(s) to BS only. 

T3 has the highest lifespan as it mostly involves sensing unless the event condition is not 

met when node(s) have to send notification to BS. 

 

Figure-6.6 Tasks v/s Network Lifetime (hours) 
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6.2.1.4 Power consumption. Based on the results of Network lifetime the power 

consumption was calculated and is shown in Figure 6.7. Although the base case consumes 

lesser power than T1 and T2, the overall power consumption of T1, T2 and T3 is greater than 

the base case. Task T2 consumes more energy because it involves the packets sent from BS 

to node(s) and node(s) to BS both. T1 consumed lesser energy than T2 because it was a push 

request, which requires data being pushed from node(s) to BS only. T3 was the least expensive 

task because it mostly involves sensing unless the event condition is not met when node(s) 

have to send notification to BS. 

 

Figure-6.7 Tasks v/s Power consumption (mW/hour) 

 

6.2.2 Allocation. We compared results of allocation scheme with the scheme proposed 

in [4]. For the experiment, we varied the sensing range of the sensors. Performance 

comparison was done on the basis of parameters Number of nodes in an ‘on’ state and sensing 

area coverage. 
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6.2.2.1 Number of backup nodes. The results of our allocation algorithm and from 

paper [4] are as shown in Figure 6.8. Similar to [4], we performed experiment on 100 nodes 

and changed the node density (in nodes/m2) by changing the sensing area. For different values 

of sensing range of the sensors, we found the number of backup nodes against node density. 

At a lower sensing range of 89m, our scheme selected fewer number of sensors compared to 

scheme in [4], which covered more than 95% of the sensing area. With increasing values of 

sensing ranges, our scheme selected lesser number of nodes and provided more than 99% 

coverage of the sensing area. In addition, for same value of sensing range, at higher node 

densities, the number of selected nodes goes down. Unlike [4], in our scheme, BS is solely 

involved while making allocation decision, and therefore, no energy is spend at nodes whereas 

in [4], allocation is done by sensors and therefore, they consume energy. 

 

Figure-6.8 Node Density (Nodes/m2) v/s Number of backup nodes - for our scheme and for 

scheme from paper [4] 
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6.2.2.2 Percentage area not covered. Figure 6.9 contains the table for the results of 

our allocation scheme. It is observed that percentage of area that is not covered goes on 

decreasing at higher sensing ranges.  Although the allocation scheme in this work requires 

lesser number of nodes compared to the nodes required in [4], it provides area coverage which 

is close to 100 percent. However, with more number of nodes, approach in [4] always provides 

100 percent coverage of the area. When compared with [4], in the worst case, our proposed 

scheme compromise on the amount of area covered by 4.6% only, but needs 42% lesser 

number of nodes. At the best case, proposed scheme and scheme in [4] perform same covering 

area equal to 100% and selecting only 2 nodes for sensing. Thus, in comparison with [4], the 

percentage improvement in the lesser number of nodes used for coverage compare to a smaller 

percentage compromise with respect to uncovered area.  

 

Figure-6.9 Percentage area not covered 
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7. CONCLUSION 

In conclusion, the scheduling and allocation scheme for the Sensor Cloud in multi-

application environment has been proposed. The scheduling scheme accommodates as many 

number of user requests as possible. The allocation scheme helps to increase the network 

lifetime. In our implementation we showed that scheduling and allocation scheme provides 

energy efficient operation leading to energy conservation in WSNs. The scheduling scheme 

improves response time, throughput and overall energy consumption over base case. The 

allocation scheme selects very less number of sensors compared to other scheme and still 

provides area coverage greater than 95 percent. 
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4. CONCLUSIONS 

This document presents the architecture, design and implementation of the Sensor 

Cloud which offers sensing as a service to the cloud user. In Sensor Cloud we define 

virtualization of WSNs and the relations between WSNs to enable virtualization. 

Implementation of Sensor Cloud is followed by Scheduling and Allocation scheme for 

WSNs. Scheduling and allocation scheme have been proposed for Sensor Cloud in multi-

application environment. The scheduling scheme accommodates as many number of user 

requests as possible. The allocation scheme helps to increase the network lifetime. In our 

implementation we showed that scheduling and allocation scheme provides energy 

efficient operation leading to energy conservation in WSNs. The scheduling scheme 

improves response time, throughput and overall energy consumption over base case. The 

allocation scheme selects very less number of sensors compared to other scheme and still 

provides area coverage greater than 95 percent. 
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