
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Fall 2014 

Characterization of 304L stainless steel by means of minimum Characterization of 304L stainless steel by means of minimum 

input energy on the selective laser melting platform input energy on the selective laser melting platform 

Ben Brown 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Manufacturing Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Brown, Ben, "Characterization of 304L stainless steel by means of minimum input energy on the selective 
laser melting platform" (2014). Masters Theses. 7322. 
https://scholarsmine.mst.edu/masters_theses/7322 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/301?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7322?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7322&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



 
 

 

CHARACTERIZATION OF 304L STAINLESS STEEL BY MEANS OF MINIMUM 

INPUT ENERGY ON THE SELECTIVE LASER MELTING PLATFORM 

 

By 

 

BEN BROWN 

 

A THESIS 

Presented to the Faculty of the Graduate School of the 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

In Partial Fulfillment of the Requirements for the Degree 

MASTER OF SCIENCE MANUFACTURING ENGINEERING 

2014 

Approved by 

 

Frank Liou, Advisor 
Joseph Newkirk 
Edward Kinzel 

 
 

 

 

 

 

 
 
©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



 
 

 

 

 

 

 

 

 

 

All data prepared, analyzed and presented has been developed in a specific context of 

work and was prepared for internal evaluation and use pursuant to that work authorized 

under the referenced contract.  Reference herein to any specific commercial product, 

process or service by trade name, trademark, manufacturer, or otherwise, does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government, any agency thereof or Honeywell Federal Manufacturing & 

Technologies, LLC.  

 

 
This presentation has been authored by Honeywell Federal Manufacturing & 

Technologies under Contract No.DE-NA0000622 with the U.S. Department of Energy.  

The United States Government retains and the publisher, by accepting the article for 

publication, acknowledges that the United States Government retains a nonexclusive, 

paid up, irrevocable, world-wide license to publish or reproduce the published form of 

this manuscript, or allow others to do so, for the United States Government purposes

 
©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



iii 
 

ABSTRACT 

Developing parameter sets for new materials on the Selective Laser Melting 

(SLM) platform has traditionally been done through the use of single line processing 

windows and a basic design of experiments (DOE) which would include varying machine 

parameters to maximize density. This study expands the traditional method by 

determining the main effects statistically for density, allowing for a more in depth 

analysis wherein the experimental results are statistically correlated to the variable 

machine parameters used.  With this analysis, parameter optimization with respect to 

achieving near full density, while also considering build rates, can be performed. New 

parameters for 304L stainless steel were developed using this method on a Renishaw 

AM250.  Single line processing windows were used to determine bounds on machine 

parameters.  Utilizing this information, a DOE was implemented in which density 

samples were fabricated and the statistical main effects on density were derived. Several 

methods for density determination were also investigated as part of this study.  In order to 

quantify machine parameters, a novel energy density term was formulated.  Optimal 

parameter sets were found and energy density was reduced to increase build rate.  

Sensitivity of mechanical properties to the reduction was shown to be minimal over the 

range tested. Finally, the effect of decreased energy density on microstructure, part 

density, mechanical properties, and orientation sensitivity were then measured. 
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1 INTRODUCTION AND LITERATURE REVIEW 

1.1  INTRODUCTION TO SLM 

Selective Laser Melting (SLM) also known as Direct Metal Laser Sintering 

(DMLS) or LaserCUSING is an Additive Manufacturing (AM) process that uses a laser 

in an inert atmosphere to selectively melt layers of loose metal powder into a solid, 

building a part layer by layer from the bottom up. AM is a recent innovation in 

manufacturing technology with development beginning in the mid 1980’s[1]. The first 

AM methods developed were the polymer technologies such as Stereolithography in 

1984 and Selective Laser Sintering (SLS) in 1986. The same principles that made these 

polymer technologies possible were eventually applied to metal materials and 

technologies such as Directed Energy Deposition, Electron Beam Melting (EBM), and 

SLM were later developed. Parts processed on AM machines use a 3D CAD file that has 

been sliced into layers that the machine reads and either scans or deposits material on the 

identified interior of the part. This process is repeated for each layer until the build is 

complete. 

Regardless of material, all AM technologies give designers a unique ability to 

build parts that were previously considered uneconomical to produce or even 

unmanufacturable. In the medical industry, the ability to build organic shapes and 

economically produce bespoke components that fit the patient opens many new 

possibilities for more functional orthopedic and dental implants [1-6]. In the general 

manufacturing industry, AM gives an opportunity for innovative ways to reduce weight 

and design parts that are not limited to traditional manufacturing limitations [1, 5-8]. In 
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order to fully realize these benefits, the current pallet of available and characterized 

materials needs to be expanded. In doing so, the usage of AM processes can be expanded. 

The Renishaw AM250 Laser Melting Machine is a commercially available SLM 

machine that was used in this research. A diagram of its build chamber can be seen in 

Figure 1.1.  

 

 

                              

Figure 1.1: Renishaw AM250 SLM Machine Chamber Diagram 
 

 

 

On this machine, the process of building a part begins with a base plate being 

bolted to an elevator that moves along the Z axis. A recoater depresses springs on a 

powder doser, allowing powder to be deposited from the hopper in front of the recoater. 

The elevator is dropped a layer thickness and the recoater is brought forward, laying 
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down a single layer of powder with any excess powder being deposited in the powder 

overflow. A laser beam is then positioned by mirrors through an f-θ lens where it is 

focused at the powder bed and the material is melted into the part layer. The laser scans 

each part layer in a predetermined pattern, illustrated in Figures 1.2 and 1.3.  

 

 

            

Figure 1.2: Spot Exposure Scan Pattern 
 

 

 

                        

Figure 1.3: Scan Pattern After Layer Rotation 
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The Renishaw AM250 uses a point exposure scan pattern where a single point is 

exposed, the laser is turned off, repositioned, and then the next point is exposed. The spot 

exposure strategy allows the AM250 to build finer detail features as a static melt pool is 

more stable than a dynamic one. A meandering pattern as seen in Figure 1.2 is used to 

scan each layer. After the layer is completed, the recoater is the returned to the powder 

doser and the process repeats. When the next layer is scanned, the same pattern as used in 

the previous layer is rotated and translated a specified amount to prevent the same points 

from being exposed multiple times in subsequent layers. An example of this modified 

pattern can be seen in Figure 1.3.  

The scan pattern illustrated is the simplest example of the patterns that are used. 

Here, there is no compensation used for the diameter of the beam and the scan is a simple 

meander pattern. There are no finishing passes along the contour of each layer to create a 

watertight part with a better surface finish. This simple pattern is representative of what is 

used for bulk fill of components. Other common scan strategies implement segmenting 

the build area into stripes or a chessboard-like pattern and meandering the laser path 

within these segments. Other machine manufactures such as EOS GmbH, SLM Solutions 

GmbH, or Concept Laser GmbH use a similar build chamber setup. Machines produced 

by 3D Systems differ slightly in machine setup, as material is rolled and compacted as 

opposed to being spread over the build plate. For all of these machines, the laser is 

continuously on when exposing a layer. Currently the Renishaw system is the only 

commercial machine to use the point exposure scan strategy. Of the commercially 

available systems, most have a similar build volume and laser source. A sample of 

machine offerings can be seen below in Table 1.1. 
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Table 1.1: Selected Machine Build Volume and Laser Type [9] 

Manufacturer (Model) Build Volume (mm) Laser Power (Watts) 

EOS (M280) 250 x 250 x 325 200 or 400  

Concept Laser (M2) 300 x 350 x 300 200 or 400 

3D Systems (PXL) 250 x 250 x 300 500  

Renishaw (AM 250) 245 x 245 x 360 200  

SLM Solutions (SLM 280) 280 x 280 x 350 Dual 400/1000 

 

 

 

1.2  CURRENT METHOD OF MATERIAL DEVELOPMENT 

For the SLM platform, the current method for the development of new materials 

is done utilizing a Design of Experiments (DOE) varying machine parameters with the 

goal of producing a near fully dense part. This can initially be carried out in the form of 

determining a processing window, varying laser power and scan speed for single line 

scans. From this 1D analysis to the development of 3D parts, the additional primary 

parameters that have been varied are scan spacing, and layer thickness [10-28]. 

Secondary parameters such as shield gas composition, laser spot size, preheat 

temperature, etc. are generally not varied and are determined by setup limitations. In the 

building of 3D parts, scan pattern has also been shown to have an effect on the 

mechanical properties and surface finish, and been analyzed for many materials [12, 14, 

16-18, 21, 26, 29, 30].  In addition to manipulating machine parameters to achieve full 

density, the usage of layer remelting has been shown to refine the grain structure and 

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



6 
 

improve density [31-33]. The process of Hot Isostatic Pressing (HIP) completed parts has 

also been shown to improve part density [34].  

Numerous pure metals and alloys have been characterized on the SLM platform 

including iron [13-15, 27, 30, 35], copper [20, 36], stainless steels [15, 20, 21, 25, 31, 37-

42], aluminum [28, 33], tool steels [15, 20, 40, 41], tungsten [19], Co-Cr [3, 4, 20, 22, 

23], nickel based super alloys such as Waspaloy® [17] and Inconel [20], magnesium [11, 

43], and titanium [12, 24, 44]. Of all the materials that have been developed, the material 

of interest, 304L stainless steel, has not been found in any literature. 

The DOE method is effective for finding a parameter sets that work for the given 

material and mapping the regions where these parameters are effective. However, there is 

not a well-defined and developed process for determining an optimal set of machine 

parameters within the determined processing window or mapping the resulting 

mechanical properties across processing window regions. In addition, this basic method 

does not give insight for the optimization of parameter sets. 

1.2.1 Processing Windows. As previously mentioned, results of the DOE 

varying the laser power levels and laser scan speed, a processing window can be 

constructed and has been used for the development of many materials [11, 17-19, 23, 27, 

28, 30, 40, 43]. This is a common practice that allows for easy determination of 

processing regions. These different regions show where parameters have the same 

general effect on the material and can be characterized as either showing vaporized 

material, fully melted material, or not fully melted material. In the case of vaporized 

material, the laser power is too high for the given scan speed. This leads to melt pools 

that show a distinct discoloration and the possibility having the presence of keyhole mode 
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welding in the bed. It has been shown that keyhole mode melting can lead to added 

porosity [45].  On the other end of the failure mode spectrum, material can be not fully 

melted. This is where at the given laser power the scan speed is too high. Here, the melt 

pools could make an incomplete track where the material has balled. The mechanism of 

balling has been well explored [18, 36] and the cause can be described as high surface 

tension causing the material to form the lowest energy geometry and “ball” into spheres. 

In addition, this region might also show where scan tracks do not fully adhere to the base 

plate. In between these two regions, there is a region of what can be assumed to be good 

processing parameters where solid scan tracts are formed and conduction mode heat 

transfer has bonded the scan tract to the substraight.  

1.2.2 Input Quantification Terms. In order to quantify the multiple machine 

parameters being varied into a single parameter, a term most commonly known as energy 

density is often formulated. There are many formulation methods that have been 

presented when developing material on the SLM platform. These terms range from one to 

three dimensions and include many of the primary variables discussed in the previous 

sections.  

A simple linear energy density [18, 21] or input energy per unit speed [16] has 

been used to quantify laser power and laser scan speed. This 1D formulation can be seen 

as Equation 1 where 𝑃𝑃 is laser power is and 𝑣𝑣 is laser scan speed.  

 

 𝜆𝜆 =  
𝑃𝑃
𝑣𝑣

 ( 1 ) 
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A similar formulation was used by Ng [43]. The addition of the size of the laser spot 

diameter creates a 2D term as in Equation 2 where 𝑃𝑃 is laser power is, 𝑣𝑣 is laser scan 

speed, and 𝑠𝑠 is laser spot diameter. 

 𝐸𝐸𝜌𝜌 =  
𝑃𝑃

𝑠𝑠 ∙  𝑣𝑣
 ( 2 ) 

 
 
Simchi [14, 15] gives a 3D specific energy input in J

mm3 by combining laser power, laser 

scan speed, powder layer thickness ℎ , and scan overlap 𝑝𝑝 as seen in Equation 3. This 

formulation is the most commonly used in literature.  

 𝜓𝜓 =  
𝑃𝑃

𝑣𝑣 ∙ ℎ ∙ 𝑝𝑝
 ( 3 ) 

 
 
Olakanmi [28] also uses this formulation. Gu [19] and Thijis [26] refer to this as 

volumetric energy density 𝜀𝜀 and Kruth [13] refers to this as Laser Density (LD). Simchi  

also use a specific energy input that reflects the energy per volume of laser track Q in 

J
mm3  [15]. This is done by compensating for the overlap within a specific volume.  

Coupling efficiently 𝜂𝜂  is also introduced and the final formulation can be seen in 

Equation 4. 

 𝑄𝑄 =  
𝜋𝜋 ∙ 𝜂𝜂 ∙ 𝑃𝑃

4 ∙ ℎ ∙ 𝑣𝑣 ∙ 𝑝𝑝
 ( 4 ) 

 
 
This formulation is unique as it uses a term to attempt to quantify losses in the system.  

All of the presented formulations quantify input parameters for a continuous wave 

laser, being treated as remaining continuously on when exposing a layer. For this 
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research where a point exposure scan strategy is being used, a different approach needs to 

be used to quantify machine parameters. These operating parameters lead to a static melt 

pool as opposed to a dynamic one, similar to what is used in laser spot welding. With this 

connection many similarities can be drawn for quantification formulations.  

Laser spot welding is generally characterized for a single exposure point by the machine 

parameters laser power and laser spot size. These terms are quantified into term known as 

power density [46-48] as formulated in Equation 5 where 𝑃𝑃 is laser power is and 𝑠𝑠 is 

laser spot size. 

 𝑃𝑃𝜌𝜌 =  
𝑃𝑃
𝑠𝑠𝑠𝑠

 ( 5 ) 

 
 

1.2.3 Varying Effects of Energy Input. As energy input increases, there are 

three identified modes of laser welding; conductive, transitional, and keyhole [47]. In a 

continuous wave laser weld, there are clear transitions between the three modes. With a 

laser pulse on the order of milliseconds, penetration depth is linearly proportional to laser 

power and there is no clear separation between the three modes [47]. This effect seen in 

laser welding has also been demonstrated in SLM [45]. 

It has been shown in numerous studies that there is a direct correlation between 

input energy and the resulting density of the part where as input energy increases, so does 

part density. There is a point where increased input energy no longer increases part 

density [28, 35, 37, 49] or in other cases actually decreases resulting density [11, 19, 21]. 

Kempen et al. [33] shows in AlSi10Mg if the relationship of energy input and relative 

density is clarified, that density does in fact begin to drop. In both cases, there is a “cusp” 

where additional energy no longer increases the density of the part being built.  
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It has also been shown that with increased input energy, the average grain size 

also increases [50] decreasing mechanical properties. Not only does the size of the grain 

change, but the shape of the grain is also a function of machine parameters. Niendoef et 

al. [51]  shown that at higher laser power inputs grains become more columnar and at low 

powers become more equiaxed. Another study showed that when the same region is 

exposed multiple times causing a region to retain heat, columnar grains form [52].  

Determining the required energy to reach the cusp can be difficult to model 

because not all of the input energy is absorbed into the system and that there is in fact an 

input to melt ratio in AM processes [53].  

1.3  POWDER REQUIRMENTS  

In the solidification of a porous powder bed, the bed is melted and condenses into 

a near fully dense layer when enough energy is added [38]. In order to achieve a fully 

dense melted layer, a high initial layer density is required. Size distribution and 

morphology of the powder determine the packing efficiency of the powder bed. 

With spherical particles of uniform size, full density is not achievable due to voids 

between particles. In addition, there are also losses in achievable density created due to 

the wall effect where voids are created by spherical particles contact a flat surface [54]. 

However, because surface roughness is effected by particle size [55], this effect decreases 

when powder is deposited on a previously built layer [56]. In order to mitigate these 

effects, a distribution of particle size is needed where small particles fill in the voids 

created by larger particles contacting one another. With different distributions of size, 

certain phenomena are noticed. With a narrow particle size range the powder tends to 

agglomerate, leading to difficulty is powder deposition. With a large range the powder 
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tends to segregate leading to non-uniform deposition [35]. It has been shown that powder 

bed composition has an effect on the required input energy to melt the powder bed [35, 

38].  

For powder to pack well in a powder bed, it needs to flow well. The ratio of tap 

density to bulk density, known as the Hausner Ratio, is an effective approximation of 

friction between particles and therefore of flowability of powder [57]. Tap density is 

defined as the measured bulk density after a “tapping” of the material, allowing for 

powder to settle and compact. As the Hausner Ratio increases, flowability decreases. 

Hausner ratio is dependent on size distribution and shape of the particles. The 

formulation for Hausner ratio can be seen below in Equation 6. 

 

 𝐻𝐻𝐻𝐻 =  
𝜌𝜌𝑇𝑇
𝜌𝜌𝐵𝐵

 ( 6 ) 

 

In addition to the physical characteristics of the powder to achieve dense parts, 

chemical composition also affects the final product. Powder beds with a high oxygen 

content in either the powder or build atmosphere deteriorate build quality and density 

[58]. Variance in the chemical composition of the powder has also been shown to effect 

the final phase of the part due to phase stabilizers and cooling rates [59].  

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



12 
 

2 PREVIEW OF EXPERIMENTS 

The purpose of these experiments is to prove that an ideal parameter set can be 

determined more specifically through the DOE method by identifying minimum energy 

input to still achieves acceptable mechanical properties. To investigate this, the full 

processing window will be developed with single line scans. A three level DOE 

investigating the four major machine parameters will then be conducted and analyzed 

with an Analysis of Variance (ANOVA) to determine the main effects and their 

interactions with respect to part density. From this data, parameter sets will be developed 

for different locations within the determined processing window. Tensile bars in the 

vertical and horizontal directions with be built with the developed parameter sets and 

tested. Finally, micrographs in the XY and Z direction will be analyzed for each 

parameter set. From this data, the region on minimal energy input will be determined and 

mechanical properties will be compared to the rest of the processing window.  
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3 STATEMENT OF OBJECTIVES 

The objective of these experiments was to validate the hypothesis that machine 

parameters for 304L stainless steel that achieve full density can be determined and 

optimized in the region of minimal required energy input by determining the effects of 

machine parameters statistically.  
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4 EXPERIMENTAL 

4.1  POWDER  

Powder was supplied by LPW Technology. Based on the findings of Section 1.3, 

the following requirements were given for the material; +15/-45 μm diameter powder, 

having a log normal distribution, and an average circularity of .8 or better. The powder 

was also required to meet the ASTM A240 standard for 304L.  

4.2  LASER PROFILING  

 
An Ophir camera profiler with BeamGage software was used to determine the 

laser beam size per the factory installation procedure. D%pk values were determined in 

the X and Y directions where D%pk is defined as the 1
𝑒𝑒2

 value or diameter out to 13.5% 

of the peak power. Laser output power was also determined by power meter per the 

factory installation procedure.  

4.3  SINGLE LINE PROCESSING WINDOWS  

Single line experiments were performed on a thin 304L substraight. This allowed 

for easy cross sectioning of the single line scans and a flatter surface than available on 

standard build plates. Drawings for the substraight and leveling hardware can be found in 

Appendix A. This substraight was positioned on four leveling pegs that utilize the 

existing bolt holes in the base plate. When the substraight was positioned on the pegs, a 

small screwdriver was used adjust the pegs and level the plate. To determine how level 

the plate was, a dial indicator was attached to the recoater and ran across the plate. To set 
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the correct layer thickness feeler stock was used between the recoater and the plate. A 

picture of the setup can be seen below in Figure 4.1.  

 

 

 

Figure 4.1: Leveling Fixture Setup Used for Single Line Scans 
 

 

 

Build files were setup using Marcam AutoFab software. Using this software, 

unique exposure parameters were assigned to each part.  For this experiment set, three 

machine parameters were varied. The parameters were laser power, exposure time, and 

point distance. The range of machine parameters was determined by machine limitations, 

supplied parameters for similar limitations, and parameters found in literature. Two 

builds were created, Build 1 varying laser power and exposure time with a constant point 

distance, and Build 2 varying laser power and point distance with a constant exposure 
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time. At each parameter combination, three single line scans approximately 5mm in 

length were made. The combinations and their identification numbers for Single Line 

Build 1 and Build 2 can be seen in Tables 4.1 and 4.2, respectively.  

 

 

Table 4.1: Single Line Scan Build 1 Layout 
 

Power (W) 
      

200 1.31 1.32 1.33 1.34 1.35 1.36 

170 1.25 1.26 1.27 1.28 1.29 1.30 

140 1.19 1.20 1.21 1.22 1.23 1.24 

110 1.13 1.14 1.15 1.16 1.17 1.18 

 80 1.7 1.8 1.9 1.10 1.11 1.12 

50 1.1 1.2 1.3 1.4 1.5 1.6 

Exposure Time 
(μsec) 

50 100 150 200 250 300 
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Table 4.2: Single Line Scan Build 2 Layout 
 

Power (W) 
      

200 2.31 2.32 2.33 2.34 2.35 2.36 

170 2.25 2.26 2.27 2.28 2.29 2.30 

140 2.19 2.20 2.21 2.22 2.23 2.24 

110 2.13 2.14 2.15 2.16 2.17 2.18 

80 2.7 2.8 2.9 2.10 2.11 2.12 

50 2.1 2.2 2.3 2.4 2.5 2.6 

Point Distance 
(μm) 25 50 75 100 125 150 

 

 

 

Once the builds were completed, the substraight was cut by bandsaw into smaller 

sections. Top view images and measurements were taken with A Keyence VHX-100K 

digital microscope. The samples were then mounted in epoxy, ground, polished, and 

etched with 60-40 Nitric Acid. Images and measurements of the mounted samples were 

then taken with a Leica DMI5000M Microscope.  

4.4  DENSITY CUBES 

A three level, four factor DOE was developed to investigate the effects of 

machine parameters on final part density. The four factors used were laser power, point 

distance, exposure time, and hatch spacing. The build file was created using AutoFab. 
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The density sample was a 1.25 cm cube at a 45° angle to the build plate. An image of the 

build can be seen in Figure 4.2. 

 

 

 

Figure 4.2: Density Cube DOE Build Layout 
 
 
 
 

This orientation was chosen to allow the samples to be removed by hand from the 

plate and to eliminate the effect of a machined surface on density determination. The first 

design iteration varied laser power from 50 watts to 200 watts. This range proved to be 

too large as the 50 watt parts where extremely porous and made the build difficult to 

complete without a machine crash. The DOE was redesigned for the laser power range to 

100 watts to 200 watts with all other factor ranges remained the same. Three replicates of 

this build were produced. The factor levels chosen were similar to the single line scans, 
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but their range was reduced to ensure successful builds. The values used can be seen in 

Table 4.3. 

 

Table 4.3: 3 Level DOE Values 
 

Factor Level Value 

P- 100 W 

P0 150 W 

P+ 200 W 

PD- 52.5 μm 

PD0 70 μm 

PD+ 87.5 μm 

ET- 120 μsec 

ET0 150 μsec 

ET+ 180 μsec 

HS- 52.5 μm 

HS0 70 μm 

HS+ 87.5 μm 

 

 

 

The cubes were removed from the plate either by hand or with the use of chisel 

and hammer. Mass for the cubes was taken using an Ohaus Explorer 324 scale. Volume 

was then determined by Helium Pycnometry utilizing a Micromeritics AccuPyc1340 
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where each sample was exposed to ten, 19.5 PSI purge cycles before a reading was taken.  

From these values, density was calculated. 

4.4.1 Density Measurement Comparison. In addition to helium pycnometry, 

several other methods were used to determine density. Four replicates of three samples 

were chosen representing a range of energy densities and each replicate was used to test a 

different method of density determination. The samples tested appeared to be water tight 

from a visual inspection of the outside surface and this was confirmed by the micrographs 

used for optical determination. A full summary of the results is found in Figure 4.4. 

 In addition to helium pycnometry, Archimedes’ method per ASTM B962 in 

water and isopropyl alcohol was performed. The findings of Spierings et al. [60] showed 

Archimedes’ method for watertight samples to be the most accurate and repeatable of the 

tested methods. The study performed by Spierings et al. did not including helium 

pycnometry.  Results found in Figure 4.4 are in agreement with Spierings where 

isopropyl alcohol is the preferred media for Archimedes’ method. From these results, it 

can be concluded that with the constraint of the samples being watertight, helium 

pycnometry is a preferable alternative to Archimedes’ method as results are comparable 

to those determined using alcohol. Helium pycnometry also has the advantage that it is a 

more automated and removes some of the possible human error.  

Density was also determined by an optical method. To determine density by this 

method, the samples were sectioned, mounted, ground, and polished. A macro image was 

then taken with a Lecia DFC290 camera and the image was then processed using 

MATLAB. A program was written to convert the image to grayscale, crop the image, 

threshold the image, remove noise, and finally determine the area difference between 
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black and white pixels. This color difference was recognized and density is calculated. 

The progression of image processing is found in Figure 4.3. 

 

 

 

Figure 4.3: MATLAB Image Processing Progression for a Single Sample 
 

 

 

In comparison to the other methods, it can be seen that the optical method 

consistently returns higher values than the other tested methods. Because only one image 

was taken, the error for the density is potentially high and with only a single image 

porosity can either be high or low, depending on the distribution of pores on the layer 

imaged.   With this taken into consideration and accounted for, although more labor 

intensive and less accurate, for samples that have open porosity and are no longer 

watertight, this method can be used as an alternative. Although labor intensive, optical is 
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still be a preferred method than the alternative of encapsulating parts before performing 

Archimedies’ method.   

For these three samples, open and closed porosity amounts were calculated. 

Porosity was determined by calculating the skeletal volume and taking the dry and wet 

masses. Wet mass was determined by submerging the samples in boiling water, allowing 

the water to fully penetrate the part. The part was then removed from the water and any 

excess water on the surface was removed. It can be seen for the three samples, open 

porosity remained constant where closed porosity increased as energy density increased. 

This follows the trends shown that as energy density increases beyond the apparent cusp, 

part density decreases. The constant open porosity further indicates watertight parts. 

 

 

 

Figure 4.4: Comparison of Density Measurement Methods 
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4.5  OPTIMIZED PARAMETER SET TESTING 

From the results of the single line and density cube DOE, parameter sets of 

decreasing energy density were created. The build file was again created in AutoFab. For 

each of the ten parameter sets three vertical and three horizontal tensile bar blanks were 

built, as well as a density cube.  The setup for the build can be seen in Figure 4.5. Each 

blank was a 9 mm diameter cylinder approximately 45 mm in length. The blanks were 

then machined to a R4 tensile bar per ASTM E8. A drawing of the bar designed used can 

be seen in Figure 4.6. Tensile samples were machine and tested per ASTM E 8, and 

density cubes analyzed by helium pycnometry. After density was determined, the cubes 

were sectioned, mounted, and polished. Macro images were taken using a Lecia DFC290 

camera. The samples were then etched using 60-40 Nitric Acid and micrographs were 

taken using a Lecia DMI5000M Microscope. 
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Figure 4.5: Optimized Parameter Set Build Layout With One Failed Parameter Set 

 
 
 
 
 

  

Figure 4.6: R4 Tensile Bar Design Used for Tensile Study 
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4.6  ENERGY INPUT QUANTIFICATION  

 
For the scan pattern used by the AM250, none of the existing power or energy 

density terms discussed in Section 1.2.2 accurately quantifies the machine parameters. 

Because of this, a new term needed to be formulated. Starting with the power density of a 

single point and multiplying by exposure time, an energy density for a single point can be 

determined. This is seen in Equation 7. From this formula the point and hatch overlaps 

need to be taken into account. These ratios can be seen in equations 8 and 9, respectively. 

 
  𝐸𝐸𝜌𝜌1 =  

𝑃𝑃
𝑠𝑠𝑠𝑠

 ∙ 𝑒𝑒𝑒𝑒 ( 7 ) 

 
 

  

 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝑂𝑂𝑣𝑣𝑒𝑒𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝 =  

𝑥𝑥1
𝑝𝑝𝑝𝑝

 
( 8 ) 

 
 
 𝐻𝐻𝑂𝑂𝑒𝑒𝐻𝐻ℎ 𝑂𝑂𝑣𝑣𝑒𝑒𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝 =  

𝑥𝑥2
ℎ𝑠𝑠

 

 
 

( 9 ) 

Taking equations 6 through 8 and multiplying them together results in a specific energy 

bdensity per unit area. This final formulation can be seen in equation 10.  This 

formulation does not attempt to take any losses into account and is merely used to 

quantify machine parameters into an energy input term in units of J
mm2. 

 
 
 𝐸𝐸𝜌𝜌2 =  

𝑃𝑃
𝑠𝑠𝑠𝑠 ∙ ℎ𝑠𝑠 ∙ 𝑝𝑝𝑝𝑝

 ∙ 𝑒𝑒𝑒𝑒  
(10) 
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5 RESULTS AND DISCUSSION 

5.1  POWDER ANALYSIS 

5.1.1 Sizing and Distribution. Size and morphology analysis was performed by 

Malvern Instruments UK using a Morphologi G3. The Morphologi G3 performs static 

image analysis and then processes the images to determine the samples size and 

morphology distributions. 100,429 particles were analyzed and results show that the 

material has a log-normal distribution between ranging between approximately 5μm and 

100μm. The distribution plot can be seen in Figure 5.1. 

 

 

 

Figure 5.1: Particle Size Distribution Determined by a Morphologi G3 and Supplied 
by LPW 
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Morphology analysis was conducted and the results in the vicinity of the 10th, 

50th, and 90th percentile for size were reported and values were found to be approximately 

9.75µm, 30.5µm, and 61µm, respectively. Results can be seen in Figures 5.2-5.4. 

Although the material was sieved between 15 μm and 45 μm, some particles outside of 

this range are present in the material. However, as shown by the D10 and D90 values, 

most particles are within a distribution close to the sived values. The D10 value below 10 

μm lead to some pluming of powder where some particles became airborne when being 

worked with, but no issues with agglomeration or flowability were noticed.  

 It can be seen that the particles become less spherical as size increases, but still 

remaining close to the .8 or better circularity requirement. SEM images at the 

magnifications of x100, x500, and x1000 were also taken and can be seen in Figures 5.5-

5.7 respectively. In these images, the distribution of size and shape of the material can be 

seen more clearly.   

 

 

 

Figure 5.2: 10th Percentile Region Powder Morphology Determined by a 
Morphologi G3 and Supplied by LPW 
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Figure 5.3: 50th Percentile Region Powder Morphology Determined by a 
Morphologi G3 and Supplied by LPW 

 
 

 

 

 

Figure 5.4: 90th Percentile Region Powder Morphology Determined by a 
Morphologi G3 and Supplied by LPW 
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Figure 5.5: x100 Magnification SEM Image Supplied by LPW 
 

 

 

 

Figure 5.6: x500 Magnification SEM Image Supplied by LPW 
 

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



30 
 

 

Figure 5.7: x1000 Magnification SEM Image Supplied by LPW 
 
 
 
 

5.1.2 Tap Density and Apparent Density. Tap and apparent density of the 

powder was measured to help indicate flowability. Results can be seen below in Table 

5.1. From these results the Hausner Ratio can be calculated to be 1.122 per Equation 6. 

As previously discussed, this value indicates good flowability and was seen to be true 

when working with the powder.  A 14.9938g sample of material was taken to determine 

the density of the powder by Helium Pycnometry. The density of the powder was 

determined to be 7.9467 g
cm2. 

 

 

 

 

 

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



31 
 

Table 5.1: Powder Densities 

  Test 1 Test 2 Test 3 

Mass (g) 100.0 100.0 100.0 

Volume at Zero Taps (𝐜𝐜𝐜𝐜𝟐𝟐) 20.5 20.0 20.5 

25 19.5 19.5 19.0 

50 18.5 19.0 19.0 

100 18.0 18.5 19.0 

200 18.0 18.5 18.5 

400 18.0 18.5 18.0 

800 18.0 18.5 18.0 

Apparent Density � 𝐠𝐠
𝐜𝐜𝐜𝐜𝟐𝟐� 4.9 5.0 4.9 

Tapped Density � 𝐠𝐠
𝐜𝐜𝐜𝐜𝟐𝟐� 5.6 5.4 5.6 

Average Apparent Density � 𝐠𝐠
𝐜𝐜𝐜𝐜𝟐𝟐� 4.9 

Average Tapped Density � 𝐠𝐠
𝐜𝐜𝐜𝐜𝟐𝟐� 5.5 

Skeletal Density � 𝐠𝐠
𝐜𝐜𝐜𝐜𝟐𝟐� 7.9467 

 

 
 

5.1.3 Chemistry. Chemistry was tested at the supplier by inductively coupled 

plasma-atomic emission spectroscopy and the weight percent values and the comparison 

to the ASTM A240 standard can be seen below in Table 5.2 as meeting the standard for 

Type 304L Stainless Steel.  

 

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



32 
 

Table 5.2: Powder Chemistry Comparison 

 ASTM A240 
Type 304L wt% 

Actual wt% 

Carbon .03 Max 0.013 

Manganese 2.00 Max 1.38 

Phosphorus 0.045 Max 0.009 

Sulfur 0.030 Max 0.008 

Silicon 0.75 Max 0.55 

Chromium 17.5-19.5 18.9 

Nickel 8.00-12.00 9.9 

Nitrogen 0.10 Max 0.09 

Iron Balance Balance 

 
 
 
 

5.2  LASER PROFILING  

 
Laser power and beam size as measured at the time of machine installation can be 

seen in Table 5.3. A constant focal offset determined during factory installation was used 

for all powers.   
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Table 5.3: Laser Profile at Various Powers 
 

Apparent 
Laser Power 

Actual Laser 
Power 

D%pkx D%pky Focal Offset 

200 W 194 W 67.8 µm 68.4 µm -3.5 mm 

150 W 147 W 66.0 µm 66.4 µm -3.5 mm 

100 W  97 W 66.3 µm 67.9 µm -3.5 mm 

50 W 48 W 66.9 µm 68.7 µm -3.5 mm 

 

 

5.3  SINGLE LINE EXPERIMENTS  

 
5.3.1 Processing Window. In order to combine Build 1 and Build 2 where 

different parameters were varied into a single window, point distance and exposure time 

were combined into a speed term according to the formulation in Equation 11.  

 

 𝑆𝑆𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝 =  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝐷𝐷𝑃𝑃𝑠𝑠𝑒𝑒𝑂𝑂𝑃𝑃𝐻𝐻𝑒𝑒
𝐸𝐸𝑥𝑥𝑝𝑝𝑃𝑃𝑠𝑠𝐸𝐸𝑂𝑂𝑒𝑒 𝑇𝑇𝑃𝑃𝑇𝑇𝑒𝑒

   
(11) 

 

This combination of terms was considered after reviewing the Main Effect Plots 

created in MiniTab using the width and depth measurements of the scans. These plots for 

width and depth can be seen in Figures 5.8 and 5.9, respectively.  
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Figure 5.8: Single Line Scan Build 1 and Build 2 Main Effects for Width 
 

 

 

 

Figure 5.9: Single Line Scan Build 1 and Build 2 Main Effects for Width 
 

 

 

 

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



35 
 

 Both exposure time and point distance have no significant effect on single line 

geometry over the range tested in Build1 and Build 2. However, power has a clear effect 

on geometry. This is similar to the findings by Averyanova et al. [10] where for one of 

the powder distributions tested, power had the main effect on single line geometry. Speed 

was formulated and its effect can also be seen in Figures 5.8 and 5.9 to have no effect on 

geometry over the range tested in Build 1 and Build 2. With this combination of 

parameters a processing window was made and can be seen in Figure 5.10.  The 

processing window identifies the sample with the first number depicting the Build 

number and the second number depicting the individual parameter set number per Tables 

4.1 and 4.2 found in Section 4.3. 

 

 

 

Figure 5.10: Processing Window Developed From Single Line Scans 
 

 

Power      
(W)

200 2.31 1.36 1.35 
●

1.34 2.32 
●

1.33 2.33 1.32 2.34 2.35 2.36 1.31

170 2.25 1.30 1.29 1.28 2.26 1.27 2.27 1.26 2.28 2.29 2.30 1.25

140 2.19 1.24 1.23 1.22 2.2 1.21 2.21 1.20 2.22 2.23 2.24 1.19

110 2.13 
*

1.18 
*

1.17 
*

1.16 
*

2.14 
*

1.15 
*

2.15 
*

1.14 
*

2.16 
*

2.17 
*

2.18 
*

1.13 
*

80 2.7     
* +

1.12   
* +

1.11  
*

1.10  
*

2.8   
*

1.9   
* 

2.9   
*

1.8    
*

2.10 
*

2.11 
*

2.12 
*

1.7   
* +

50 2.1    
* +

1.6    
* +

1.5    
* +

1.4    
* +

2.2    
*

1.3    
*

2.3     
*

1.2    
*

2.4    
* +

2.5    
* +

2.6     
* +

1.1     
* +

Speed 
(mm/s)
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The developed processing window denotes several regions where the processing 

conditions created failed scan track. Combinations denoted by the asterisk (*) exhibited 

melt pool penetration less than 50 µm. This is undesirable as this penetration is at or 

below the set layer thickness of 50 µm and this can lead to layer separation in a build. 

Two other regions denoted by a plus (+) exhibit incomplete melt. These regions were 

found at low power levels at both the high and low speed extremes. Both of these regions 

appeared to have the same incomplete melt appearance and no clear indication of balling 

or over energizing could be seen. These failure regions appear to be a result of too low of 

an energy input. 

 As denoted in the processing window by a circle (●), porosity was found in a 

total of two samples. As shown by King et al. [45], keyhole mode melting in the SLM 

process can lead to the collapsing of the created vapor column leaving porosity. In the 

first set of images, porosity was only found in 1 scan track of sample 1.35. Upon re 

grinding, samples 2.31, 1.36, 1.35, 1.34, 2.32, 2.25, 1.30, 1.29, 1.28, and 2.26, another 

pore was found in a single line of sample 2.32. Both samples that contained porosity we 

found in the low speed range of the processing window. This corroborates the findings of 

Monroy et al. [22] that at lower speeds pores form and are larger due to retained heat. An 

effort was made to increase the number of point that images were taken, only two 

samples with porosity were found. However, it can be assumed that other samples in the 

high power and low speed region also contain porosity. Although there is no clear visual 

indication from the top surface as seen in other processing windows in literature, this still 

follows the same trend of a region at high power and low speed being over energized. 
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Selected top and cross section view images from across the processing window can be 

found in the following section. 

The data for laser power’s effect on geometry in Build 1 can be found in Figures 

5.11 and 5.12 for width and depth, respectively. Data for Build 2 can be found in Figures 

5.13 and 5.14. Regression equations were found to predict single track width and depth as 

a function of laser power. Plots can be found in Figures 5.15 and 5.16. From the 

predictions seen in Figures 5.15 and 5.16, geometry limitations can be implemented on 

parameter sets.  

 

 

 
 

Figure 5.11: Build Parameter Effect on Width  
  

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



38 
 

 

Figure 5.12: Build 1 Parameter Effect on Depth  
 
 
 
 

 

Figure 5.13: Build 2 Parameter Effect on Width  
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Figure 5.14: Build 2 Parameter Effect on Depth  
 

 

 

Figure 5.15: Best Fit for Width 
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Figure 5.16: Best Fit for Depth 
 
 
 
 
 
 

5.3.2 Micrographs. Images from eight difference parameter sets can be seen in 

Figures 5.17-5.32. The appearance of the top surface as well as the cross section was used 

to develop a processing window. Images of the pores found in samples 1.35 and 2.32 can 

be found in Figures 5.33 and 5.34, respectively.   
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Figure 5.17: Sample 2.31 Top View      

 

   

                  

           

Figure 5.18: Sample 2.31 Cross Section View                            
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Figure 5.19: Sample 1.31 Top View 
 
 
 
 
 

 

Figure 5.20: Sample 1.31 Cross Section View 
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Figure 5.21: Sample 2.13 Top View  
 
 
 

 

 

Figure 5.22: Sample 2.13 Cross Section View  
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Figure 5.23: Sample 1.13 Top View       
 
 
 

             

 

Figure 5.24: Sample 1.13 Cross Section View       
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Figure 5.25: Sample 2.33 Top View 
 
 
 

 

      

Figure 5.26: Sample 2.33 Cross Section View 
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Figure 5.27: Sample 2.15 Top View 
 
 
 

 

 

Figure 5.28: Sample 2.15 Cross Section View     
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Figure 5.29: Sample 1.6 Top View              
 
 
 

 

 

Figure 5.30: Sample 1.6 Cross Section View        
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Figure 5.31: Sample 2.6 Top View Top View  
 

 

  

Figure 5.32: Sample 2.6 Cross Section View 
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Figure 5.33: Pore Found in Sample 1.35 
 
 
 
 

 

Figure 5.34: Pore Found in Sample 2.32  
 
 
 

5.4  DENSITY CUBES 

Three lots of 81 cubes each were built and one full lot of 81 cubes was initially 

evaluated. Each cube was broken off the build plate following build completion. Three 
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levels where initially chosen to determine if the parts exhibited linear responses to 

parameter change. Varying of hatch spacing overlap from 0% to 50% has been shown by 

Guan et al. [61] to have no effect on mechanical properties. However, increasing hatch 

spacing from 0% to +50% can have an effect where scan tracks no longer overlap and 

allowing for porosity in the final part. For this DOE, the nominal factor for both point 

distance and hatch spacing were set at 70 µm which equates to 0% overlap based on laser 

spot size found in Section 5.2. The range for each of these factors was then selected as 

±25% of the nominal value. Data from the three level design was analyzed to determine if 

the three levels where required. A Main Effects Plot was generated to investigate linearity 

and can be seen below in Figure 5.35. 

 

 

 

Figure 5.35: 3 Level DOE Main Effect Plots for Density 
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The main effects plot in Figure 5.35 shows what appears to be non-linear behavior 

for power and hatch spacing. However when the range is taken into consideration for 

hatch spacing, the behavior can be taken as linear. The nonlinear response for power was 

due to some outliers in the data set. From these results, over the range tested the factors 

exhibited a linear response for density. The Original DOE was modified to remove the 

nominal value, leaving only 2 levels reducing the lot size from 81 parts to 16 parts. With 

the redesigned DOE determined, the remaining two lots of 16 parts had their density 

calculated. The data from the three lots was then analyzed. A Main Effects Plot for the 

two level design can be seen in Figure 5.36. 

 

 

 

Figure 5.36: 2 Level DOE Main Effect Plots for Density 
 

 

 

From Figure 5.36 we it can be seen that same as the single line scans, power has a 

significant effect. Exposure time is shown to have a slight effect. However when the scale 
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on the graph is kept in mind, the effect is minimal.  Point distance show the effect of as it 

increases, so does density. This effect if further discussed later in this section. Finally, the 

effect of hatch spacing shows that as this factor increases, density decreases. Like the 

effect of exposure time, this appears to be minimal.  

An ANOVA was then performed on the data to determine the statistical main 

effects of the factors and their interactions. The resulting ANOVA Table can be seen in 

Table 5.4. From these results it can be seen that Power and Point Distance, as well as the 

combinations of Power/Point Distance, Power/Exposure Time, Exposure Time/Point 

Distance, and Exposure Time/Point Distance/Hatch Spacing all have significant effect 

with 95% confidence on Density.  
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Table 5.4: DOE ANOVA 

Source DF Seq SS Adj SS Adj MS F P 

Blocks 2 0.15941 0.15941 0.079707 46.03 0.000 

Main Effects 4 0.052850 0.052850 0.013213 7.63 0.000 

P 1 0.035520 0.035520 0.03552 20.51 0.000 

ET 1 0.002775 0.00278 0.002775 1.60 0.215 

PD 1 0.012890 0.012890 0.01289 7.44 0.010 

HS 1 0.00167 0.00167 0.001665 0.96 0.334 

2-Way 
Interactions 6 0.067160 0.067160 0.011193 6.46 0.000 

P*ET 1 0.02342 0.02342 0.023421 13.53 0.001 

P*PD 1 0.029200 0.029200 0.029201 16.86 0.000 

P*HS 1 0.00112 0.00112 0.001124 0.65 0.427 

ET*PD 1 0.01207 0.01207 0.012067 6.97 0.013 

ET*HS 1 0.00135 0.00135 0.001346 0.78 0.385 

PD*HS 1 1E-06 1E-06 1.2E-06 0.00 0.979 

3-Way 
Interactions 4 0.01947 0.01947 0.004866 2.81 0.042 

P*ET*PD 1 0.006930 0.006930 0.00693 4.00 0.054 

P*ET*HS 1 0.00143 0.00143 0.001432 0.83 0.370 

P*PD*HS 1 1.9E-05 1.9E-05 1.93E-05 0.01 0.917 

ET*PD*HS 1 0.01108 0.01108 0.0110830 6.40 0.017 

Residual Error 31 0.05368 0.05368 0.001732   
Total 47 0.35257     
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To gain further insight on the effects of machine parameters and their interactions, 

an Interactions Plot was made and can be seen in Figure 5.37. The significant interaction 

of power and exposure time shows that at high power increasing exposure time decreases 

part density and at low power it increases it. Taking note that for the single line scans 

exposure time has no effect on geometry, but at the high power level it has an effect on 

density, it can be concluded that this is an indication of keyhole induced porosity at high 

exposure times. The interaction for power and point distance shows that at high power 

increasing point distance decreases density, and at low power the opposite occurs. The 

interaction between power and hatch spacing, while not significant, does begin to explain 

the opposite results for the previously mentioned interactions. Here it can be seen that at 

high power increasing the hatch spacing decreases the part density, but at low power 

hatch spacing has no effect and the recorded value is significantly lower than that for the 

high power. What this shows is that the hatch spacing was too large for the low power 

even though the experiment was designed to only have point distance of 25% of the spot 

size. Taking into account the melt pool size at 100W, should have been sufficient to still 

have overlap between hatches. This shows the sensitivity of increasing hatch spacing 

beyond the distance of the laser spot size.  
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Figure 5.37: 2 Level DOE Interaction Plot for Density  
 

The data collect from the three lots is combined and can be found in Figure 5.38. 

Although this data exhibits a fairly high variance, the same general trend of increasing 

energy input resulting in an increasing part density to a point as discussed in Section 

1.2.3. The high variance can be attributed to the build orientation of the density cubes. 

Although a 45° orientation allowed for easy removal from the plate and eliminated the 

effect of a machined surface, the down facing surfaces created variance due to the laser 

over melting into loose powder and collecting material from the bed.    
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Figure 5.38: 2 Level DOE Data 
 

 

 

5.5  OPTIMIZED PARAMETERS 

Based on the results of the single line scans and density cubes, parameter sets for 

tensile bars were developed. Two power levels were evaluated; 200W and 125 W. 200 W 

was selected as it the highest output power on the machine. 125W was selected as it was 

the minimum power to achieve 50µm penetration depth. Set 1 uses the optimal machine 

parameters as determined from the density DOE. Sets 2 and 3 have all the same 

parameters, except for the decrease of exposure time to out of the tested region, resulting 

in an increased speed and lower energy density. The parameter of exposure time was 

selected for reduction as the trend exhibited by the interactions plot showed increasing 
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hatch spacing and point distance would reduce density at high laser power. From Figure 

5.38, the apparent cusp for this material lies at a 𝐸𝐸𝜌𝜌2 between 1500 and 2000 J
mm2.   

Parameters for 125 W beginning with Set 4 was also based off the ideal from the 

DOE, except the hatch spacing was reduced due to the single line geometry effects at 

lower power. The point distance used was the large value tested in the DOE as it resulted 

in the highest density part. The selected hatch spacing for the 200 W parameters is 

roughly a 30% overlap. Using the determined regression equation for width at the laser 

power of 125 W, a hatch spacing of 37 um was calculated as a 30% overlap. The same 

equivalent speeds were used from the 200 W parameters and exposure time was reduced 

to match. A full summary of the 10 parameter sets used can be found in Tables 5.5 

through 5.7. In addition to the 4 machine parameters, each parameter set included the 

speed that a single line is being scanned at, the energy density, and the time to scan a 

specific area of 1 mm2. The 10 sets were built on two separate builds. Parameter set 10 

failed and was not able to be completed.  
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Table 5.5: Tensile Bar Parameter Set Summary 

Set 1 (BUILD 6)  Set 4 (BUILD 6) 

P (watts) 200.0  P (watts) 125.0 

HS (µm) 52.5  HS (µm) 37.0 

ET (µsec) 120.0  ET (µsec) 180.0 

PD (µm) 52.5  PD (µm) 87.5 

Speed 
(mm/s) 437.5  

Speed 
(mm/s) 486.1 

ED 
(J/mm^2) 2263.7  

ED 
(J/mm^2) 1806.8 

Specific 
Area Time 

(Sec) 
0.0435  

Specific 
Area Time 

(Sec) 
0.0556 

Set 2 (BUILD 6)  Set 5 (BUILD 6) 

P (watts) 200.0  P (watts) 125.0 

HS (µm) 52.5  HS (µm) 37.0 

ET (µsec) 82.2  ET (µsec) 137.0 

PD (µm) 52.5  PD (µm) 87.5 

Speed 
(mm/s) 638.7  

Speed 
(mm/s) 638.7 

ED 
(J/mm^2) 1550.7  

ED 
(J/mm^2) 1375.2 

Specific 
Area Time 

(Sec) 
0.0298  

Specific 
Area Time 

(Sec) 
0.0423 
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Table 5.5: Tensile Bar Parameter Set Summary (cont.) 

Set 3 (BUILD 6)  Set 6 (BUILD 7) 

P (watts) 200.0  P (watts) 125.0 

HS (µm) 52.5  HS (µm) 37.0 

ET (µsec) 62.6  ET (µsec) 104.0 

PD (µm) 52.5  PD (µm) 87.5 

Speed 
(mm/s) 838.7  

Speed 
(mm/s) 841.3 

ED 
(J/mm^2) 1180.9  

ED 
(J/mm^2) 1043.9 

Specific 
Area Time 

(Sec) 
0.0227  

Specific 
Area Time 

(Sec) 
0.0321 

Set 7 (BUILD 7)  Set 8 (BUILD 7) 

P (watts) 200.0  P (watts) 125.0 

HS (µm) 52.5  HS (µm) 37.0 

ET (µsec) 50.0  ET (µsec) 83.3 

PD (µm) 52.5  PD (µm) 87.5 

Speed 
(mm/s) 1050.0  

Speed 
(mm/s) 1050.4 

ED 
(J/mm^2) 943.2  

ED 
(J/mm^2) 836.1 

Specific 
Area Time 

(Sec) 
0.0181  

Specific 
Area Time 

(Sec) 
0.0257 
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Table 5.5: Tensile Bar Parameter Set Summary (cont.) 

Set 9 (BUILD 7)  Set 10 (BUILD 7) 

P (watts) 200.0  P (watts) 125.0 

HS (µm) 52.5  HS (µm) 37.0 

ET (µsec) 35.0  ET (µsec) 58.3 

PD (µm) 52.5  PD (µm) 87.5 

Speed 
(mm/s) 1500.0  

Speed 
(mm/s) 1500.9 

ED 
(J/mm^2) 660.3  

ED 
(J/mm^2) 585.2 

Specific 
Area Time 

(Sec) 
0.0127  

Specific 
Area Time 

(Sec) 
0.0180 

 

 

 

 A comparison of like machine parameters can be found in Table 5.6. Although 

many parameters were found in literature, these parameters used a similar power level for 

the like material of like chemistry, 316L. Regardless of the similarity, the difference in 

powder properties in addition to the chemical difference causes these materials to behave 

differently and therefore requiring different machine parameters.  
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Table 5.6: Parameter Set Comparison 

Power 
(Watts) 

PD 
(µm) 

ET 
(µsec) 

Speed 
(mm/s) 

HS 
(µm) 

Source Material 

180 65 110 590 110 Renishaw   316L 

200 N/A N/A 1600 70% 
overlap 

Kamath, 
C., et al. 

[62] 
316L 

 

 

5.5.1 Density Results. Density cubes built at the 9 successful parameter sets 

were removed from the plate by wire EDM. These cubes were built at a 0° orientation as 

opposed to the 45° as previously used because these samples were intended to be 

micrographed and the goal was to orient the image perpendicular to the build layer. 

Building the samples at an angle would have made this an arduous task. Because of the 

machined surface on the part, at lower energy densities, open porosity could be seen. As 

previously discussed, once the part is no longer water tight, helium pycnometry is no 

longer accurate. To validate density determined by helium pycnometry, by optical 

determination was also used.  Results derived by optical correlate well with those for the 

pycnometry method showing the same trend of higher values that was seen in Section 

4.4.1  except for two outliers. These erroneous measurements emphasize the fact that 

optical methods are not as reliable as the methods previously mentioned and to get 

reliable results several images need to be taken. 

Results are displayed below in Figure 5.39. The samples for the parameter sets 

derived from the DOE are near full dense and begin to reduce as energy density is 

decreased. This confirms that the optimal parameter set was located at the cusp discussed 
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in Section 1.2.3. With the different methods plotted against energy density, it can be seen 

where the use of helium pycnometry breaks down. As discussed in Section 4.4.1, for 

helium pycnometry to be an effective method the sample must be water tight. As 

designated by the dashed line at approximately 96% density, the helium pycnometer 

begins to return false high values. Likewise, error from the optical method can be seen 

resulting in a false low value. Disregarding these errors, trends can be seen where the 

optical shows to return a slightly higher density value over helium pycnometry for these 

samples. 

 

 

 

Figure 5.39: Density Results as a Function of Energy Density 
 

 

 

When the same data is plotted against exposure time instead of energy density the 

data begins to separate by laser power. This plot can be seen in Figure 5.40.  Per Equation 
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11, if point distance is constant a decreasing exposure time is an effective increase in scan 

speed. The data shows that for maximizing build rate, the AM250’s build speed is limited 

by laser power when trying to achieve full density. The results of Kamath et al. [62] on  a 

continuous exposure system show that by increasing laser power, the curve shifts 

allowing full density to be achieved at faster scan speed. These results show that the same 

effect can be seen in a spot exposure platform and in order to achieve a faster build rate at 

full density, a more powerful laser is needed.  

 

 

 

Figure 5.40: Density Results As a Function of Exposure Time  
 

 

5.5.2 Macro Images. Macro images of samples from sets 1, 4, 8, and 9 can be 

seen below in Figures 5.41 through 5.48. These represent the highest and lowest energy 

density parameters sets for the 200 W and 125W parameter sets.  
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Figure 5.41: Sample 1 Horizontal Cross Section 
 
 
 

 

 

Figure 5.42: Sample 1 Vertical Cross Section 
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Figure 5.43: Sample 4 Horizontal Cross Section 
 
 
 

 

 

Figure 5.44: Sample 4 Vertical Cross Section 
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Figure 5.45: Sample 8 Horizontal Cross Section 
 
 
 

 

 

Figure 5.46: Sample 8 Vertical Cross Section 
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Figure 5.47: Sample 9 Horizontal Cross Section 
 
 
 

 

 

Figure 5.48: Sample 9 Vertical Cross Section 
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5.5.3 Micrograph Images. Micrograph images of Samples 1, 4, 8, and 9 can be 

seen below in Figures 5.49 through 5.56. The images from Sample 1 exhibit near full 

dense with some trace random porosity. For Sample 4 where porosity is more 

predominate, the porosity in the horizontal view appears to be mostly random, but the 

porosity in the vertical cross section is constantly at the bottom of the melt pool. This 

shows that although a regression equation based on single line data was used to determine 

the power to achieve 50 µm of penetration, the depth is still no enough to get full bonding 

between layers. For future attempts at low energy parameter sets, a minimum target 

penetration depth of at least 25% greater than the layer thickness. The images for 

Samples 8 and 9 clearly show the gross porosity in the parts as the energy input to the 

part was far too low.   

 

 

 

 

©2014 The Department of Energy’s National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0000622 



69 
 

 

Figure 5.49: Sample 1 Horizontal Cross Section 
 

 

 

 

Figure 5.50: Sample 1 Vertical Cross Section 
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Figure 5.51: Sample 4 Horizontal Cross Section 
 

 
 
 
 
 

 
 

Figure 5.52: Sample 4 Vertical Cross Section 
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Figure 5.53: Sample 9 Horizontal Cross Section 
 

 

 

 

Figure 5.54: Sample 9 Vertical Cross Section 
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Figure 5.55: Sample 8 Horizontal Cross Section 
 

 

 

 

Figure 5.56: Sample 8 Vertical Cross Section 
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5.5.4 Tensile Results. The results for the parameter sets can be seen below in 

Figure 5.57 for the 200W sets and Figure 5.58 for the 125W sets. Build orientation is 

displayed and standard deviation is shown by error bars. Elongation at break for each 

orientation at each parameter set is also found above each set of bars. 

 It can be seen that for all parameter sets that as the energy density for the 

corresponding parameter set is decreased the Ultimate Tensile Strength (UTS) decreases 

as well. This is directly related to the increasing porosity that was discussed in the 

previous sections. Over the range tested, there is consistent decline in UTS and no change 

in the anisotropic behavior. Higher tensile strength in the horizontal build direction as 

seen here is a common occurrence in all the literature surveyed. However, the 125W 

parameters do show more directional sensitivity than the 200 W parameters. This 

reduction in vertical build orientation tensile strength for the 125 W parameters can be 

attributed to the low penetration depth, as discussed in Section 5.5.3. Variance for the 200 

W parameters are low compared to the 125 W parameters. 

For the 200 W parameters, Sets 1, 2, 3, and 7 in both the vertical and horizontal 

built orientations are close to or above the standard minimum UTS for 304L of 70 ksi. 

Elongation at break values show the same trend as UTS where the values for the 

horizontally built samples tend to be slightly higher than the vertical sample values. Only 

Set 1 meets the minimum 40% elongation at break per the ASTM standard where all 

other values fall closer to 20%. In an attempt to increase this value it is parts built could 

receive a process anneal. 
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After machining, horizontal samples exhibited some deformation caused by 

internal stress. When being tested, a nonlinear elastic region on the stress strain curve was 

recorded as a result. Again, the usage of a heat treatment could be used to minimize this 

issue. 

 

 

 

 

Figure 5.57: 200W Parameter Set Results 
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Figure 5.58: 125W Parameter Set Results 
 
 
 
 
 

Because of the high porosity and less than desirable mechanical properties 

exhibited by the 125 W Parameter Sets, it is not feasible to use Sets 4, 5, 6, or 8 to 

produce parts. However, the 200 W Sets would be applicable for part production. 

Although below full density, Sets 2, 3, and 7 show UTS values at or above the 

requirement per ASTM and with the addition of a heat treatment the elongation values 

could be brought into spec. With proper consideration and design these faster parameter 

sets could be used, even with the determined properties.  
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6 CONCLUSIONS 

In this study parameter sets for a material novel to SLM, 304L stainless steel, 

were developed. To begin development material was purchased from a specification 

derived from literature where requirements for size distribution, morphology, and 

chemistry were defined. The standard characterization procedure was then used where 

single line scans were used to define the processing window and determine geometric 

constraints for scan strategy. A DOE was then implemented to determine the main effect 

factors for achieving full density. Using main effect factors and their interactions, a 

parameter set that achieved 99+% density was developed. Again, utilizing the determined 

main effect factors, parameter sets were developed at less than optimized parameter to 

determine at what minimum energy density test samples no longer meet the requirements 

of  ASTM A240. It was shown that the optimal parameter set met the requirements for 

ASTM A240 for type 304L. For the remaining parameter sets, UTS met the standard 

requirements for most sets but the elongation a break value was below minimum value 

per the ASTM spec. In order to meet the elongation requirement, a post process heat 

treatment is required.  It was shown that over the range tested that with the reduction of 

energy density from the determined optimal amount, part porosity increased and 

mechanical properties decreased. By testing the reduced energy parameter sets, 

sensitivity to density reduction for mechanical properties was shown to be minimal.  It 

was also shown that reducing energy density does not reduce anisotropic mechanical 

behavior.  

Overall, it was shown that by using a statistical method for determining optimal 

machine parameters, full dense part can be achieved on a spot exposure SLM platform 
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and that by using an energy input less that optimal close to desirable mechanical 

properties can be achieved.  
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APPENDIX 
Tooling Drawings 
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