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ABSTRACT 

 

Trace metal contamination studies were conducted near the Buick Resource 

Recycling Division. This study used sequential extraction, total digestion, X-Ray 

Diffraction (XRD), and Scanning Electron Microscopy-Energy Dispersive Spectroscopy 

(SEM-EDS) to study trace metals in two soil cores. Sequential extraction analysis of the 

soil cores revealed that lead was associated with either iron or manganese oxides. Zinc 

and copper were bound to soil components, extracted mainly from organics, sulfides, and 

clays. Total digestion results compared favorably to the sum of the sequential extraction 

results for lead, thus validating the sequential extraction methodology. The highest 

concentration observed for lead was 4,743 parts per million (ppm) in the Oh soil horizon 

in the core located 0.72 km NW from the smelter.  

Most trace metals were concentrated in the top few inches of each core, a finding 

consistent with previous studies. However, nickel and copper concentrations increased 

from 9 to 16 inches of depth in one core. Antimony and cadmium were present in small 

amounts (<20 ppm) in the upper portion of the soil cores. Iron concentrations increased 

with depth in both cores.  

Samples were analyzed for mineral species and pH. SEM-EDS analysis revealed 

lead-bearing particles with a subhedral, platy habit, and a composition suggesting the 

presence of cerussite (PbCO3). XRD results suggest that the majority of the clay-sized 

fraction of the soil is comprised of both kaolinite and illite. Smectite was present in small 

amounts and may influence metal immobilization. Soil acidity increased with depth, 

which is consistent with previous studies. The data from this study can be added to 

previous studies conducted in the area to provide nearly a 40 year record.  
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1. INTRODUCTION 

Missouri, host to several lead districts, is familiar with deleterious environmental 

effects of metals mining, smelting, and recycling smelting processes (Butherus, 1975; 

Bornstein, 1989; Rucker, 2000). Primary smelting processed several metal sulfides that 

occur naturally, one of which is galena (PbS). Processes now involve the retrieval of lead 

from recycled materials. When lead-bearing particles are released from smelter stacks 

and interact with oxidizing environments, they become unstable due to: the oxidation of 

sulfur from the sulfide (S
2-

) to higher valence states (e.g., SO4
2-

); reactions with dilute 

acids present in the soil profile; or solubility constraints between water and the lead-

bearing minerals that are present. Both the release of lead into the atmosphere and 

subsequent reaction of the lead in the soil leads to increased transport, posing a potential 

health risk to all those who live near smelters. 

Elevated levels of trace metals in the soil, including lead, have been noted around 

the Buick lead recycling smelter for many decades. The four previous studies conducted 

by Bolter (1974), Butherus (1975), Bornstein (1989), and Rucker (2000) provide a 30 

year record of trace metal contamination. Rucker’s study included four sample sites 

northwest of the Buick smelter. The present study revisits two of these four sites.  

The purpose of this study is to determine recent levels of metal concentrations in 

the soils in regards to the distance from the smelter and increasing depth of the soil core. 

Analysis of the soil for concentrations of zinc, iron, manganese, cobalt, nickel, copper, 

cadmium, antimony, lead, arsenic, and phosphorus were conducted for comparison to 

previous studies.  This data is compared to previous studies to determine changes in 
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metal concentrations over time. In addition, studies on soil mineralogy and pH provide 

valuable information on factors influencing trace metal transport and adsorption. 

 

1.1. LOCATION AND HISTORY 

 

The Doe Run Company’s Buick Resource Recycling Division (BRRD) smelter is 

located 4 miles south of Bixby, Missouri in Iron County. Highway 32 is just north of the 

facility, while Highway KK is west and southwest of the facility (Figure 1.1). The BRRD 

and core locations are denoted on the Viburnum West Quadrangle, 7.5 minute series 

(Figure 1.2). Core 2 is located 0.72 km N 40 W direction of the smelter. Core 4 is located 

1.55 km along the same path from the smelter. Both core locations were located on 

hillcrests to minimize water runoff and erosion. The overall area sees an annual average 

temperature of 54 to 59°F. Precipitation averages 39 to 49 inches per year (U.S.D.A., 

2013). 

Originally opened in 1968 as a primary lead smelter for the Buick Mine, the 

smelter was owned by the AMAX Lead Company of Missouri and Homestake Mining 

Company (Bornstein, 1989; Jackson and Watson, 1977; Rogers and Davis, 1977; Rucker, 

2000). It was originally referred to as the AMAX smelter during AMAX Lead Company 

ownership; it was subsequently named the Buick Smelter. The smelter had a brief shut 

down in 1986 and sporadic operations in 1987 and 1988 (Bornstein, 1989; Rucker, 2000). 

In 1988, the smelter was converted to a secondary smelter, with only the responsibility of 

recycling lead. A forest fire burned the areas of cores 1 and 2 in 1991 (Rucker, 2000). 

Rucker (2000) stated during his study that the facility was producing around 120 

thousand tons of recycled lead yearly. As reported in the 2012 Sustainability Report  
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Figure 1.1. Location map of the Buick Resource Recycling Smelter (A) in Iron County, 

Missouri. The smelter is located about 25 miles east of Salem, Missouri, and just south of 

Highway 32 (Google Maps, 2014).  

 

 

 

 

Figure 1.2. Locations of the four soil core sampling points of Rucker (2000). The 

samples align in the northwest direction from the smelter (denoted by red star). Sample 

cores for the present study were collected at locations Bz2JB8 and BZw4Jb4 (core 2 and 

core 4, respectively) and were taken as close as possible to those in Rucker’s.  
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published by the Doe Run Company, the secondary smelter has the ability to recover 160 

thousand tons of lead from nearly 13.5 million recycled lead-acid batteries yearly. Other 

lead-bearing materials are also recycled at the facility and it has become one of the 

world’s largest single-site recycling centers (The Doe Run Company, 2012). 

 

1.2. LEAD IN SOIL 

 Lead is usually introduced to the environment by being weathered from Pb-

bearing solids (bedrock), use of leaded gasoline, and mining related activities 

(Hettiarachchi and Pierzynski, 2004). Additionally, movement of ores, via trains or trucks 

to a smelting facility, provides the opportunity for metal contaminants to be inadvertently 

released and introduced into the soil along transit routes. Each of these processes release 

different phases of lead, all of which have different solubility products and dissolution 

rates. 

1.2.1. Lead Minerals. Ruby et al. (1994) stated that ore lead phase materials are 

generally galena, anglesite (PbSO4), and cerussite (PbCO3) while paint contains a basic 

lead carbonate (2PbCO3·Pb(OH)2). The most stable phases are lead phosphates 

(pyromorphite), which are less soluble than the carbonate, sulfate, oxide, and hydroxide 

phases of lead (Hettiarachchi and Pierzynski, 2004; Ruby et al., 1994).  While galena can 

be stable in reduced systems with sulfur, exposure to oxygen or other redox sensitive 

materials may destabilize the S
2-

 ion, and allow lead to complex with other local 

components to form minerals like anglesite, cerussite, and pyromorphite (Hettiarachchi 

and Pierzynski, 2004).  
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McBride (1994) stated that solubilized lead usually exists as Pb
2+

 in soil. This ion 

becomes less soluble with higher pH conditions in oxidizing conditions. Due to its strong 

ability to complex with organic material in the soil, lead is often retained in the upper 

organic-rich layers of soil. Its movement downward is the slowest of all the heavy metals, 

and is slowest in reduced or nonacidic conditions (McBride, 1994). 

Rucker (2000) analyzed a cubic particle isolated from a soil sample in the 

Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS) analysis, 

which he believed represented the presence of an altered galena grain, with an oxidized 

coating of anglesite (PbSO4) on the galena crystal. Witt et al. (2013, 2014) in a study of 

road dusts in southeast Missouri (Viburnum Trend district) near the current study area 

found a weathered galena particle (2013) and cerussite crystals (2014). The presence of a 

galena particle in the soil almost 25 years after primary smelting denotes a slow kinetic 

weathering process. 

 1.2.2. Use of Leaded Gasoline. Deposition of automotive exhaust from leaded 

gasoline is another viable source of lead release into the soil. The U.S. Clean Air Act of 

1970 has since limited the use of leaded gasoline. Wu and Boyle (1997) studied lead 

concentrations in the North Atlantic Ocean and noted that the concentrations decreased in 

the 1980s due to the phasing out of leaded gasoline. Wong and Li (2004) conducted a 

study of lead in soils in Hong Kong and found that those areas or soils in close proximity 

to greater traffic volumes were contaminated. This was most likely due to vehicle 

emissions in the past, since leaded gasoline was phased out in Hong Kong in 1999. 

Leaded gasoline is likely to play a minimum role in the soil contamination in the current 

study area, due to the fact that the sample locations are located in a forested area away 
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from any nearby influence of urban centers and high traffic roads. Core 4 resides the 

closest to a road, around 0.1-0.2 miles south of Missouri Highway 32. 

1.2.3. Smelting Related Activities. There are two separate types of recycling 

processes that accompany the processing of lead batteries. Sometimes a site will only 

break the battery and retrieve lead. Other sites also smelt and refine the lead. The latter is 

responsible for causing contamination via stack emissions (Nedwed and Clifford, 1997). 

McBride (1994) stated that soils contaminated as a result from aerial emissions do not 

show significant metal leaching over time spans of years.  

Smelting of ore was most likely the reason for the introduction of trace metals 

into the soil at the BRRD site in the past. Current additions, if any, to those metals are 

most likely associated with air emissions from recycling processes now underway at the 

smelting site. Primary smelting is a potential source of lead currently in the soil.  

1.2.4. Vegetation. Metals available in the soil also become susceptible to plant 

uptake. This poses a potentially severe risk to the vegetation and the organisms that live 

in the soil. Jackson and Watson (1977) studied the effects of heavy metals in soils near 

what is now the BRRD. They noted depletion of soil and litter nutrient pools, which was 

supported by the lack of decomposer communities. In regards to vegetation, they found 

high concentrations of lead in the soil, roots, boles, and leaves of mature oaks. In addition 

to the direct fallout of metals onto the soil and forest floor litter, the leaves provide a 

potential source of metals. Metals accumulated on the vegetation canopy can be 

introduced into the soil each year with the annual litterfall onto the soil surface. 

1.2.5. Factors that Affect Mobility. Several other factors affect the mobility of 

the heavy metals through the soil profile. Stevenson and Welch (1979) speculated that 
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movement of lead in their study of field soil is due to several factors, one of which is 

organisms moving downward through the soil. They also suggest that during times of 

extreme dryness, soils could be transported by physical processes through cracks that 

may form. Chemical and mineralogical variations within the soil in regards to pH, clay 

content, and organics play large roles in heavy metal mobility (Martínez-Villegas et al., 

2004; Zimdahl and Skogerboe, 1977).  

 

1.3. OTHER METALS IN SOIL 

 While lead is the primary metal of concern in this study, other metals like zinc, 

cobalt, cadmium, antimony, nickel, and copper are of interest as they are also present in 

the lead-zinc ores or lead-acid batteries. Low concentrations are generally not of concern, 

because organisms and plants can adapt to slight increases of metal concentrations. 

However, when concentrations increase in soils and waters, organisms may not adapt to 

such a large variation, and the metal becomes toxic (NIOSH, 2007). Trace metal 

movement through the soil is influenced by soil conditions and potential adsorption sites 

in the soil. 

1.3.1. Soil pH and Conditions. Soil pH appears to be a major factor in the 

mobility and solubility of the trace metals as well as the minerals these metals may 

associate with. For example, manganese oxides show a greater adsorption over a larger 

pH range than iron oxides (Figure 1.3). 

Zinc in acidic and oxidizing conditions is very soluble and mobile when in the 

Zn
2+

 state (McBride, 1994). Cobalt adsorbs best in oxidizing conditions in soils and 

mobility is best in acidic soils (McBride, 1994). Cadmium in acidic soils has high  
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Figure 1.3. Metal adsorption vs. pH plots.  On A) manganese oxide (birnessite) and on 

B) iron oxide (hematite). The blue boxes indicate the range of pH values observed in the 

soils in the current study. Y-axes have different scales. Modified from McKenzie (1980). 

 

 

mobility, and is soluble and mobilized by oxidizing conditions (McBride, 1994). Also, 

when pH increased, solubility of cadmium decreased (Street et al., 1978). Antimony is 

stable in oxidizing conditions in the Sb
5+

 state, with the Sb
3+

 oxidation state common in 

reducing environments (McBride, 1994). Hammel et al. (2000) stated that the pH value is 

a minor factor in the mobility of antimony, and also that speciation of antimony with 

sulfide can reduce mobility due to its low solubility. Nickel is only found stable in the 

Ni
2+

 state due to its stability over a wide range of conditions, but in lower pH conditions 

is soluble and exchangeable, thus giving it a medium mobility in acidic conditions 

(Adriano, 2001; McBride, 1994).  

McBride (1994) assumes copper mobility in acidic soils as the metal has low 

mobility in near-neutral conditions. A study by Martínez and Motto (2000) found the 

solubility of copper increased with a decrease in soil pH, as did lead and zinc due to their 

similar solubility curves in various soils used in their study (Figure 1.4). They suggest 

similar reactions with the metals and soil components as a potential factor. They also  
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Figure 1.4. Solubility of lead, zinc, and copper vs. pH plots. The blue boxes indicate the 

range of pH values observed in the soils in the current study. Different symbols denote 

the different soils from Martínez and Motto’s study. Modified from Martínez and Motto 

(2000). 

 

 

determined specific pH values where the elements’ solubility differed from the noted 

solubility of the metals at normal values (natural). The pH value for zinc was 6.2, while 

the pH for copper was 5.5, and the authors suggest pH values below these levels can 

increase the mobility of the metals in soil. 

1.3.2. Soil Constituents. Lindsay (1979) stated that chelating agents are an 

important factor in zinc mobility. A study by Prokop et al. (2003) revealed that cadmium 

showed a strong bonding to organics rather than clays within the soil. Antimony 

associates with sulfides (McBride, 1994). Copper is found in soils mainly as Cu
2+

, and 

adsorption onto the oxides, clays, and humus is common in soils (McBride, 1994).  

McBride (1994) stated that manganese oxides have strong sorption preferences 

for elements like Cu
2+

, Ni
2+

, Co
2+

, and Pb
2+

, while iron and aluminum oxides adsorb Pb
2+

 

and Cu
2+

 preferentially. Cobalt associates mainly with iron and manganese oxides, 

predominantly as the Co
2+ 

form. Taylor and McKenzie (1966) noticed that manganese 

minerals strongly adsorbed cobalt in soil. 
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 While the environment obviously is a large factor in mobility and solubility of an 

element, the element itself and its speciation does as well. Adriano (2001) lists the 

elements according to their ionic potential, and thus their ability to bond in the soil. The 

order is listed as Ni > Mg > Cu > Co > Zn > Cd > Sr > Pb (all considered as 2+ valence 

ions). A complete table with different factors in soil that can affect mobility of trace 

elements can be found in Adriano (2001).  

 

1.4. GEOLOGICAL BACKGROUND 

 

The bedrock geology of southeast Missouri is dominated by dolomites that range 

from early Ordovician to late Cambrian in age. The Gasconade Dolomite of Ordovician-

age covers ridge tops within the area and is cherty and light brown dolomite (Thompson, 

1995). Below the Gasconade is the Eminence Dolomite, which is a massive bedded, 

coarsely crystalline, highly burrowed dolomite. The Eminence is upper Cambrian-age, 

but the contact between it and the Ordovician-age Gunter Sandstone Member of the 

Gasconade Dolomite is difficult to pinpoint (Thompson, 1995). The Potosi Dolomite lies 

conformably below the Eminence. The Potosi is a fine to medium grained dolomite that 

is massively bedded, highly burrowed, and vuggy with quartz druse. Below the Potosi 

Dolomite is the Derby-Doe Run Dolomite of the Elvins Group. The lower portion of the 

Derby-Doe Run is thin beds of fine to medium crystalline, argillaceous dolomite, while 

the upper portion has massive beds and is burrowed. The Davis Formation, also Elvins 

Group, underlies the Derby-Doe Run Dolomite, and differs as it contains more shale 

(Mulvany and Thompson, 2013). The Bonneterre Formation conformably lies beneath the 

Davis Formation and is characterized by a medium bedded, medium to fine grained 



 

 

11 

dolomite that is light gray (Mulvany and Thompson, 2013). While the Buick Mine was in 

production, ore was mined from the upper portions of the Bonneterre (Mulvany and 

Thompson, 2013). The Lamotte Sandstone underlies the Bonneterre Formation and 

unconformably overlies the Precambrian basement rock. The Lamotte is composed of 

medium to fine grained quartz that is rounded in the upper portion and becomes angular 

and coarse with depth. In some of the lower portions, the formation becomes arkosic and 

in some of the upper portions shale occurs (Mulvany and Thompson, 2013). 

1.4.1. Soils of the Study Area. Using the soil map generated for the study area in 

Iron County, Missouri, the soil types at the sample point locations can be approximated. 

Both cores are located near the Clarksville-Scholten soil complex and Viburnum silt loam 

(Figure 1.5).  

The Clarksville-Scholten complex is composed of approximately 50 percent 

Clarksville and 30 percent Scholten. The Clarksville is described as coming from slope 

alluvium that overlies weathered dolomite. The most limiting layer has the ability to 

diffuse water in low to higher rates (0.06 to 1.98 in/hr). From 1 to 6 inches depth, the 

material is a very gravelly silt loam, while from 6 to 13 inches is described as being only 

a gravelly silt loam. From 13 to 21 inches, the soil goes back to very gravelly silt loam. 

The Scholten also comes from slope alluvium that ultimately overlies weathered 

dolomite. The ability to transfer water in the limiting layer is much lower than the 

Clarksville soil (0.00 to 0.06 in/hr). However, similar to the Clarksville, the Scholten is 

mainly a very gravelly silt loam from 1 to 13 inches and an extremely gravelly clay loam 

from 13 to 34 inches. Overall, both are associated with hillside landscaping (U.S.D.A., 

2013). 
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Figure 1.5. Soil survey northwest of the Buick Recycling Smelter (denoted by red star). 

Both soil cores are near the Clarksville-Scholten complex and Viburnum silt loam, 

denoted by 73140 and 73197, respectively, on the map (U.S.D.A., 2013). 

 

 

The Viburnum silt loam (73197) appears to cover many of the hilltops within the 

area. The Viburnum soil is typically found on ridges and derives from loess over slope 

alluvium. The most limiting layer can move water at a fast rate (0.20 to 0.57 in/hr). The 

first 6 inches of depth is characterized by silt loam, with 6 to 18 inches a gravelly, silty 

clay loam. A gravelly, silty clay occupies the space from 18 to 35 inches.  

An earlier study (U.S.D.A., 1991) states the soil in the study area is in the 

Clarksville-Wilderness Association. This soil is typically characterized as being 

excessively drained and moderately well drained soils that are cherty and loamy. The 

hillsides are only classified as Clarksville soils, a very cherty silt loam. For the depth of 
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the core for the current study, clay content is 14 to 20 percent, and the soil pH is around 

3.6 to 6.0. Ridge tops are still mapped as Viburnum silt loam. For 0 to 7 inches depth, the 

clay content is 15 to 25 percent, and the pH is 5.1 to 7.3. The remaining depth of the core, 

7 to 20 inches, clay content is much greater at 30 to 40 percent and pH decreases to 4.5 to 

5.5. This report also states that permeability for the Clarksville soil is 2.0 to 6.0 in/hr, 

while it is 0.6 to 2.0 in/hr for the Viburnum soil. 

 1.4.2. Soil Horizons. Well defined soil profiles may display up to five separate 

horizons. The O horizon (referred to as Oh in the current and past studies) contains most 

of the organic-humic materials. Typically the upper portion is composed of loose leaves; 

the lower portion is partly decomposed organic matter. Below the O horizon is the A 

horizon, which is composed mainly of mineral matter, but can contain some organics 

(Figure 1.6). The E horizon is a zone of finer particles and soluble inorganic soil 

components from the upper portions of the profile. The E horizon lies below the A 

horizon and is referred to as a zone of eluviation and leaching. The B horizon (below the 

E horizon), commonly referred to as the zone of accumulation, contains clay particles 

that are transported from overlying zones. The C horizon (below the B horizon) contains 

fragments of altered parent material, which lies directly below this horizon (Tarbuck and 

Lutgens, 2008).  
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Figure 1.6. Typical soil horizon profile. Black line is approximate depth of current study 

(Modified from Tarbuck and Lutgens, 2008). 

 

 

 

1.5. PREVIOUS STUDIES OF THE AREA 

 

The current study is the fifth conducted in the area over a 40 year time span. The 

first was by Bolter et al., in 1974. Another study in 1975 by Butherus, Bolter’s student, 

takes into consideration results from Bolter’s previous study and incorporated more data. 

Bornstein completed another study of the area in 1989. The last study completed in the 

area was Rucker (2000). 

The Bolter et al. (1974) study was focused mainly on soil sample analysis and leaf 

litter for trace metal contamination. Soil was only analyzed at one inch depth in the areas 

of the current study, while other areas around the smelter were studied to greater depths. 

In the Bolter study, it was found that a large amount of metals resided in the leaf litter, 

especially the decomposed leaf litter and in the first inch of soil. The soil had reduced 
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amounts of metals in comparison to the overlying leaf litter. Elevated levels for lead 

above regional background levels (20 ppm) continued in the NNW direction of the 

smelter for around 12 to 15 miles (Bolter et al., 1974).  

Butherus (1975) incorporated and furthered the Bolter et al. (1974) study. These 

samples were collected in the late fall and winter of 1972-73, and followed eight trend 

lines that extend outwards from the smelter and at 45° angles to one another. Soil cores 

were taken 0.25 mile, 0.5 mile, and every mile position thereafter along each ray. 

Butherus’ lead values are the same as those in the Bolter et al. study. Some of the soil 

cores he analyzed followed a N45W traverse from what was then termed the AMAX 

Smelter (Butherus Octant Ray samples). Data from cores along this traverse will be used 

for comparison to the current study, as it gives concentrations for all trace metals. 

Around 15 years after Butherus, Bornstein (1989) collected soil samples in 

October and December 1988 to greater depths than the previous study, providing more 

extensive analyses. In addition, Bornstein also looked at pH, clay mineralogy, and soil 

hydrologic conditions. He concluded that there was no increase in the concentration of 

metals within the soils relative to the previous studies, and attributed this to the soils 

being saturated with metals in the early years of smelting. He did not address the fate of 

excess lead in the system. Additionally, he suggests low soil permeability allowed the 

soluble metals and complexes to be washed away by precipitation. Acidic pH values near 

the smelter (3.5 to 4) were accredited to greater amounts of sulfur being released and 

deposited onto the soil. 

In 2000, Rucker presented data on four soil core samples that were collected in 

1998. Rucker conducted the same analyses as Bornstein, but added Scanning Electron 
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Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) to help determine metal 

associations within the soil. He concluded that metal concentrations were similar to the 

previously conducted studies. He attributed smectite clays to sorbing contaminants. SEM-

EDS data showed metals in association with iron and manganese oxides as well as 

residual galena (PbS) grains that were only partially dissolved. Rucker found the soil pH 

became overall more acidic with depth. He noted the pH values in the Oh were higher 

than those found by Bornstein (1989). However, Rucker used the pH values Bornstein 

reported that compared forested and pasture pH variations instead of pH depth profiles. 

Witt et al. (2014) studied dust produced from unsurfaced roads in the Missouri 

Viburnum trend mining district. Similar to the current study, the samples were digested 

using the sequential extraction procedure, and analyzed using the SEM-EDS. They found 

the exchangeable-plus-carbonate extract contained a large portion of the lead 

concentration. This was in comparison to dust from unsurfaced roads outside the district, 

where the lead concentration was mainly in the immobile oxidizable and non-silicate 

bound residual phases. SEM-EDS analysis suggested the mobile lead was associated with 

the lead carbonate, cerussite. An earlier study by Witt et al. (2013) found that dust from a 

road located approximately 0.1 to 0.2 of a mile north of core 4 in the same northwest 

direction from the smelter contained the highest concentrations of lead, zinc, copper, and 

cadmium.   
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2. EXPERIMENTAL PROCEDURES 

 

 

 

2.1. SAMPLE LOCATION AND CORING 

 

Sample locations were at approximately the same distances from the BRRD on a 

N40W transect line that Rucker (2000) used for his studies. Distances from the smelter to 

core 2 and core 4 were approximately 0.72 km and 1.55 km, respectively (from Rucker’s 

thesis). Cores were collected, sampled, crushed and sieved by a Missouri S&T student 

under the supervision of David Wronkiewicz in June 2010. Procedures were as follows. 

Leaf litter was collected from the sampling sites and stored in plastic bags. A 

handheld Shelby Tube sampler was used to collect the core. This piece of equipment 

utilizes an inner core barrel and an outer core barrel attached to a core driving hammer to 

drive the Shelby tubes to depth. This depth was variable between sample locations and 

depends on when the resistance becomes too much for the hammer to go any further. At 

this point, the driving hammer was removed and a T-shaped tool was used to remove the 

outer core barrel from the ground. The inner steel core barrel was removed by pushing it 

at the core bit end. The inner core barrel was then capped, labeled accordingly, and stored 

in the upright position while in the field.  

Back in the lab, the cores were carefully transferred from the barrels into a pre-

cleaned PVC pipe using a pre-cleaned stainless steel extrusion plunger. The core was 

then removed from the PVC onto plastic wrap, where the length and other observations 

were noted. Starting at the bottom of the core, a one inch section was cut off using a clean 

knife. Once this section was removed from the core, the outer surface was carefully 

removed to avoid any down-core contamination produced by soil smearing during 
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collection. The inch thick core circle was cut in half, and each was placed into a labeled 

core box to dry. 

Crushing, sieving, and splitting were performed the same way as that listed in 

Rucker (2000). The crushed soil that passed through a #80 sieve (less than 180 microns) 

was collected and hand crushed using an agate mortar and pestle. Using stainless steel 

sieves #10, #20, and #80, the samples were mechanically shaken and checked for clumps 

of soil. If any were present, the sample was re-crushed. Any sample that passed the #80 

sieve was split using an aluminum V-splitting trough to obtain two near-equal fractions. 

The splits were placed in clean glass vials labeled with the collector’s initials, the core 

number, the inch interval, and the letter a or b for the split. Butherus (1975) and 

Bornstein (1989) also analyzed the soil that passed through the #80 mesh. 

 

2.2. SEQUENTIAL EXTRACTION 

 

Sequential extraction analyses were executed on sample splits from cores 2 and 4. 

This process was adopted from the Community Bureau of Reference (BCR, now 

Standards, Measurements and Testing Programme; Rauret et al., 2001). The modified 

procedure by Witt et al. (2014) was used to determine trace metal association with soil in 

this study. The BCR procedure originally called for three-step procedure, with an aqua 

regia of the residual. Witt et al. (2014) combined these to form a four-step procedure, 

with slight modification of the aqua regia segment.  Refer to Appendix C for the reagents 

used in this procedure.  

In this procedure, progressively stronger acids are used to remove trace metals 

from different components within in the soil. Extract A reflects trace metals released 



 

 

19 

from carbonates or water exchangeable fractions. Extract B shows the amount of trace 

metals released from iron or manganese oxides. Extract C contains the trace metals 

released from organic substances or sulfides. The final extract, Extract D, shows the 

remaining trace metals in the residual that was attached to any remaining non-silicates in 

the soil. Some minerals like quartz require stronger acids to dissolve them, or minerals 

like zircon are resistant to weathering and alteration.  These latter fractions likely 

represent the natural silicate-rock background fraction and are not extracted during the 

procedure.   

The procedure used for the current study was as follows:  

1. One gram of sample was added to a 50 mL centrifuge tube (polypropylene 

copolymer, Environmental Express) which was pre-cleaned with 5 percent HNO3 

(high purity nitric acid) for at least 16 hours in a 90°C oven. After the addition of 

40 mL of 0.11 mol/L acetic acid (glacial, trace metal grade), or Reagent A, the 

test tube was capped and shaken for at least 16 hours at room temperature. 

2. After shaking, the extract was then separated from the residue by centrifuging at 

3000 g for 20 minutes. The extract was decanted into a 50 mL digestion vessel 

(homopolymer polypropylene, Environmental Express) and filtered using a 0.45 

µm plunger filter (FilterMate PTFE Certified Filter).  All digestion vessels were 

capped and stored at 4°C until analysis. This first step resulted in Extract A. 

3. The remaining residue in the centrifuge tube was washed by adding 20 mL of 

high purity deionized water (MST Milli-Q system) to the centrifuge tube. After 

manually shaking the residue (approximately 15 minutes), the tube was 
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centrifuged using the same settings listed above. After centrifuging, the 

supernatant was discarded. 

4. After washing, the residue was then ready for the addition of 40 mL of Reagent B, 

0.5 mol/L hydroxaylammonium hydrochloride (ACS Reagent Grade, crystalline). 

The centrifuge tube was then capped and shaken for at least 16 hours at room 

temperature. 

5. Similar to the step in Extract A, after shaking, the test tube was centrifuged and 

the extract decanted to a clean digestion tube and filtered with a 0.45 µm plunger 

filter (FilterMate PTFE Certified Filter). This extract (Extract B) was stored at 

4°C until analysis. The remaining residue was washed, centrifuged, and the 

supernatant discarded (keeping the residue) similar to the procedure used at the 

end of Extract A. 

6. Taking the washed residue remaining after Extract B, 10 mL of 8.8 mol/L 

hydrogen peroxide (ACS Certified) was added to the residue in small increments 

while the samples were digested using a 90°C hot block. Occasional manual 

shaking was provided over an hour after peroxide addition. A reflux cap was used 

to contain evaporation of the mixture to about 3 mL. 

7. After the previous step, 10 mL more of 8.8 mol/L hydrogen peroxide was added 

and covered with a reflux cap and digested for an hour at 90°C in the hot block. 

After an hour, the cap was removed and the sample was allowed to dry to near 

dryness. 

8. When the sample was nearly dry, 50 mL of 1.0 mol/L ammonium acetate 

(Certified ACS, crystalline) was added and manually shaken to ensure the entire 
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residue interacted with the reagent. After all the residue was in suspension, the 

sample was capped and shaken for at least 16 hours at room temperature.   

9. Similar to the previous extracts, after shaking, the test tube was centrifuged, the 

extract decanted to a clean digestion tube, filtered with a 0.45 µm plunger filter 

(FilterMate PTFE Certified Filter), and stored at 4°C until analysis. This provided 

Extract C. The remaining residue was washed, centrifuged, and the supernatant 

discarded (the residue was saved) similar to the procedure used at the end of 

Extract A. 

10. The final step of the extraction process included adding 6 mL of high purity 

deionized water (MST Milli-Q system), 3 parts HCl, and 1 part HNO3 (trace 

metal grade) to each sample centrifuge test tube. After suspending the sample by 

manually shaking each test tube, the tubes were left to digest 1 hour in a 90°C hot 

block with a reflux cap.   

11. After the reaction period, the reflux cap was removed to allow the mixture to 

evaporate to near dryness. 

12. After step 11 was completed, 25 mL of 1 mol/L HNO3 was added, and the sample 

manually shaken.  The sample was then centrifuged, the extract decanted into a 

clean digestion tube, filtered with a 0.45 µm plunger filter (FilterMate PTFE 

Certified Filter) and stored at 4°C until analysis. This was the final extract 

(Extract D). 

13. The samples were analyzed on the Perkin-Elmer Optima 2000 DV Inductively 

Coupled Plasma - Optical Emission Spectrometry (ICP-OES). 
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For quality control, BCR-701 standard reference material was processed through 

the procedure and analyzed. Additionally, a digestion blank of each reagent was run to 

check for contamination.  

 

2.3. TOTAL DIGESTION 

 

Samples were processed according to the United States Environmental Protection 

Agency’s “Standard Operating Procedure for the Digestion of Aqueous and Solid 

Samples,” Method 200.2 (USEPA, 2003). This procedure should release metals from 

most soil components with the exception of those components resistant to acid treatment 

which may require a stronger acid to digest completely. One-inch sample intervals from 

each core were digested according to the following procedure: 

1. Approximately 0.5 grams of each sample was weighed out and placed into a 5% 

HNO3 (high purity) cleaned screw top 50 mL centrifuge tube (polypropylene, 

Corning). For samples that did not contain enough material, 0.25 grams was used, 

and subsequent processing procedures altered accordingly. For each run, a 

digestion blank was analyzed for possible contamination. A BCR-701 sample was 

run to check process recovery. A digested 5 ppm spike, spiked with a known 

standards solution prior to digestion, was run to check the digestive procedure. 

Duplicate and triplicate samples were run to test for consistency in the measured 

values. 

2. 2 mL of 1+1 HNO3 and 5 mL of 1+4 HCl acid (1 HCl [Optima Grade] + 4 ASTM 

Type 1 water) was added to each of the digestion tubes. A swirling stirring 
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procedure was used to ensure all sediments interacted with the acids before being 

placed in the hot block. 

3. The hot block was set to 115°C and allowed to warm to obtain digestion 

temperatures of 91°C to 93°C. Care was exercised to keep the acid from boiling. 

4. The digestion vessels with acid and sample were placed into the hot block and 

covered with a plastic watch glass which was pre-cleaned with 3% HNO3 acid 

(trace metal grade; MST Environmental Research Center). They were then 

allowed to digest for 65 minutes within the hot block. 

5. After 65 minutes, the hot block was turned off and the samples were allowed to 

cool to approximately 40°C (about 4 hours).  

6. After the samples were cooled, they were removed from the hot block. The watch 

glasses were held by clean tweezers and were rinsed into the digestion vessels 

using ASTM Type 1 water. The samples were brought to a 50 mL volume using 

the markings on the digestion vessel. The screw top lids were placed on the 

vessels and the samples were hand shaken. Watch glasses were discarded. 

7. After a 24 hour settling period, the liquid was filtered using a 20 mL syringe and 

0.45 µm Nalgene syringe filter into a 30 mL Nalgene bottle and 18 mL test tube, 

both of which were cleaned using 5% HNO3 acid (high purity). 

8. The samples were stored at room temperature until analysis on the Perkin-Elmer 

Optima 2000 DV ICP-OES. 
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2.4. X-RAY DIFFRACTION (XRD)  

 

The XRD analysis was a continuous, fast scan with a Cu-Kα1 radiation source 

with a wavelength of 1.540598. A 2-theta scan range of 1.99° to 59.99959° was used. 

XRD slides were prepared using a sample split of approximately 0.5 grams of pulverized 

soil from each sample. These sections were created by combining two, one-inch 

increments to produce a one gram total for XRD slide preparation (e.g., 0.5 g of BZ4-2a 

and 0.5 BZ4-3a). Due to the small amount of sample available, two-inch sections were 

analyzed at two-inch intervals down the depths of the cores. 

These combined soil samples were mixed into approximately 40 to 50 mL of 

deionized water (DIW) and stirred. Five minutes was allotted for settling, before mixing 

the water and soil again. This time, after 15 seconds, the material was decanted into 

another beaker. This removed any sand-size or larger particles that settled rapidly through 

the solution. At this point, a few drops of Calgon were added to the decanted fraction to 

prevent the clay materials from flocculating. After remaining in suspension for ten 

minutes, the clay-sized particles were removed from the upper few millimeters of the 

solution in the beaker and placed onto a glass slide using a pipette.  

Due to time constraints between preparation and analysis, slides were oven dried 

at a low temperature (90°C) for around 30 to 60 minutes (until dry) which is not part of 

the typical procedure. The low temperature should not affect the clay structures. 

Typically, kaolinite begins to dehydrate around 400 to 525°C (Deer et al., 1966). This is 

not considered a significant factor in the current study as many of the XRD peaks in the 

location where kaolinite occur are narrow, suggesting a well-ordered structure. In 
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addition, this peak shows very little decrepitation with heating (250, 300 and 375°C; 

Appendix E). 

Three separate runs were conducted using the PANalytical X’Pert Pro Multi-

Purpose X-ray Diffractometer (PANalytical, Netherlands) in the Missouri S&T Materials 

Research Center. The first was an untreated run. The second was an ethylene glycol 

treated run. The untreated slides were placed in an enclosed chamber over ethylene glycol 

for 24 hours before being run again. This determined if there was smectite in the sample 

because the clay would absorb the glycol, and thus produce a shift of peaks in 

comparison to the untreated run. The third was the heat-treated run. The slides were 

heated for 30 minutes at 375°C in an oven. This latter run helps differentiate between 

clays whose peaks may show significant overlap. Chlorite, smectite, and vermiculite have 

similar 2-theta peaks with the potential to overlap at 6.2°. Differentiation between the 

three is by heat and ethylene glycol treatments. Kaolinite and chlorite share a similar 2-

theta peak location at around 12.4°. Kaolinite is only verified if a secondary peak at 24.9° 

is present. After the initial three runs, two separate additional heat runs (250°C and 

300°C for an hour each) were conducted on two samples to determine the decrepitation 

point at the 6.0 to 6.2° 2-theta peaks. The relative proportion of each clay mineral type 

was quantified using the equations found in Appendix E. 

 

2.5. SCANNING ELECTRON MICROSCOPY - ENERGY DISPERSIVE 

SPECTROSCOPY (SEM-EDS) 

 

High density particles were selected for SEM-EDS analysis, as those particles 

were likely to contain contaminant metals. Therefore, to eliminate lighter minerals, a Na-

polytungstate solution was used to separate the minerals by a heavy liquid separation 
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process. The Na-polytungstate comes in powder form, but can be dissolved in water to 

produce a density of about 2.85 g/mL. This solution was tested against standards of 

quartz (2.65 g/cm
3
), dolomite (2.85 g/cm

3
), and calcite (2.72 g/cm

3
) to produce a solution 

of the desired density. High specific gravity minerals like galena, cerussite, and iron oxy-

hydroxides are expected to sink in the solution, while lower specific gravity minerals like 

clays and quartz will be segregated as the float fraction. 

After mixing the Na-polytungstate to the correct density, 0.25 grams of soil 

sample (determined to be high in lead concentration by the ICP-OES results) was added 

to a glass vial that was half-filled with the Na-polytungstate solution. The vials were then 

placed in an ultrasonic vibrator for 30 minutes. The samples were removed from the 

ultrasonic vibrator and allowed to cool to room temperature and settle for approximately 

24 hours.  

After the settling period, most of the lighter minerals were removed from the top 

surface with a pipette, without disturbing the particles sitting on the bottom. This was 

done to reduce the chance of accidentally collecting particles from the top surface when 

removing the heavy particles for analysis from the bottom. Pipette tips were changed and 

inserted all the way down to the bottom of the vial to pick up the heavier particles. These 

were then transferred to a new clean vial, where deionized water (DIW) was added to 

remove any residual Na-polytungstate off the particles. When rinsing was complete, the 

particles were vacuum filtered using a 0.45 µm cellulose filter. 

An aluminum stub was prepared with a carbon sticky paper and a section of the 

filter paper with particles from the sample was adhered to the carbon paper. An air gun 

was used to remove any loose dust particles before coating with gold and palladium in 
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the Denton coater.  This coating was applied for 90 seconds to reduce any chances of 

overcoating, which can hinder EDS data and prevent surface features from being visible. 

With this amount of time, particles will become slightly charged but not overcharged in 

the SEM. The sputter set point was at 8 mA. 

To recycle any remaining Na-polytungstate, the liquid was first filtered through a 

Kimwipe in a glass funnel to remove larger soil particles. That liquid was then filtered 

through Whatman 54 Filter Paper to remove any remaining finer sized particles. The Na-

polytungstate was then tested using the mineral density standards specified above. If the 

liquid still floated the minerals, the Na-polytungstate was then ready to be re-used. If 

standards did not float, the Na-polytungstate was heated in order to evaporate water, then 

cooled and re-tested. 

Samples were analyzed using the Hitachi S-4700 scanning electron microscope 

(SEM), with a 15 kV accelerating voltage using secondary electron mode. This lower 

accelerating voltage prevents the particle being analyzed from becoming charged, and 

also allows for better imaging of the particle surface, where metals are likely to be 

present.  The secondary electron lower detector was utilized because it allows metals to 

illuminate brighter and thus differentiates them from background particles. The EDS 

system was then used to semi-quantitatively determine the element composition on a 

specific area of focus. 

 

2.6. SOIL pH 

 

In order to conserve the limited amount of soil samples, pH tests were run with 

combined inch intervals. Five soil pH samples were run for each soil core along with one 
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deionized water (DIW) blank. One-half gram of soil from each inch was weighed into a 

clean plastic vial (i.e. 0.5 g from Core 4, 0 to 1 inch and 0.5 g from Core 4, 1 to 2 inches) 

to produce 1 gram total of soil. To this, one mL of DIW was added to the soil and stirred 

occasionally. The first soil-DIW mixture pH reading was taken 30 minutes after initial 

mixing and the remaining readings taken during 24 hour intervals the following days. An 

Orion 920A pH meter with a Fisher Scientific soil pH probe (13-620-289), calibrated 

using 4.00 and 7.00 pH standards, was used for all readings. The probe was checked 

using the standards both before and after running all the soil samples. The before and 

after standard checks were averaged, and produced a standard deviation of 0.01 and 0.02 

for pHs of 4 and 7, respectively. The accuracy was measured from the average of the 

quality controls for the eight days and measured 3.99 and 6.97, for pHs of 4 and 7, 

respectively. 

The pH was measured once daily, until values remained steady over a span of 

three days. The average of those three days was used as the final pH value for the soil. 

 

2.7. ICP-OES PROCEDURE AND QUALITY CONTROL 

 

All sequential extractions and total digestion solutions were analyzed using the 

Perkin-Elmer Optima 2000 DV Inductively Coupled Plasma - Optical Emission 

Spectrometry (ICP-OES) in the Missouri S&T Environmental Research Center. The 

method was set to analyze the samples for lead, zinc, nickel, copper, cadmium, cobalt, 

antimony, arsenic, phosphorus, iron, and manganese.  

The ICP-OES was calibrated using 0.1, 1, 10, and 100 ppm of freshly mixed 

standard solution. After calibration and quality control checks, the samples were 
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analyzed. After each sample, the tubing was washed for 45 seconds with 1% HNO3 (trace 

metal grade) before moving on to the next sample. After every 10 samples, quality 

control checks were run for the one and 10 ppm standards. The lower and upper limit of 

failure was set to 0.8 and 1.2 ppm for the one ppm standard and 9.0 and 11.0 ppm for the 

ten ppm standard with the exception of phosphorus (8.0 and 12.0 ppm limits). A review 

of all quality control values is in Appendix B. 

2.7.1. Sequential Extraction Quality Control. For sequential extractions, 

precision of the ICP-OES instrument was measured by the standard deviation of quality 

control values. The standard deviation was usually below 0.1 for quality control standards 

of 0.1 and one ppm, but was around 0.25 to 2.90 for ten ppm quality controls in 

sequential extractions.  

Maximum error percentage was calculated to determine accuracy. This 

calculation takes into consideration the largest deviated value from the known standard 

value to determine the largest potential accuracy percentage error. Typically, most of 

these maximum error values for the 0.1, one, and ten ppm quality controls were at or 

below ±10%.  

Elements not meeting the ±10% maximum error values in core 2 sequential 

extractions were: cadmium, antimony, arsenic, and phosphorus in the 0.1 ppm quality 

control; cadmium, antimony, and arsenic in the one ppm quality control; zinc and 

cadmium in the ten ppm quality control.  

In core 4 sequential extractions, cadmium, antimony, and arsenic all had 

maximum errors higher than 10% at ±30%, ±20%, and ± 60%, respectively. All of the 

one ppm quality controls for core 4 sequential extractions were above the ±10% with the 
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highest deviations in zinc (±16%), cadmium (±26%), antimony (±17%), and arsenic 

(±24%). The 10 ppm quality controls were slightly better with 4 of the elements analyzed 

at or below ±10% with the exception of zinc (±14%), iron (±11), nickel (±11%), 

cadmium (±42.2%), antimony (±12%), and arsenic (±11%).  

It should be noted that in quality control checks of reagent blanks, Reagent C 

Blank returned results indicating a minor contamination in zinc (0.52 ppm). This 

contamination only affected the zinc concentrations in the Reagent C extract; therefore, 

analyses with greater concentrations of zinc would be acceptable, while those with 

concentrations below one ppm should be of concern. Additionally, some crystallization 

occurred on the outside ridge lid portions of some of the Extract C vessels. Care was 

taken to not allow these crystals to fall into the solution being analyzed.  

BCR-701 reference material consists of known values of five metals (zinc, nickel, 

copper, cadmium, and lead). This material was processed to validate the recovery of the 

sequential extraction procedure. The percentage change (expected vs. actual reading) of 

each element is variable from extract to extract (Appendix B). In addition, some spike 

analyses were conducted. Spike recovery for sequential extracts was not very accurate. 

Due to the limited amount of sample for analysis, spike samples had to be diluted. Given 

the instrumental detection limit (0.1 ppm), spike values may be off due to being diluted 

and thus below the accurate detection limit. Those elements which had greater 

concentrations (above 1 ppm) generally had the better accuracy in the spikes. 

2.7.2. Total Digestions Quality Control. Similar quality control checks were run 

for total digestion analysis. Standard deviations were once again used to calculate the 

precision of the instrument.  
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Core 2 total digestions had standard deviations of the elements below 0.1 for one 

ppm quality control, and 0.25 for 10 ppm quality control. Quality control results for core 

2 total digestions showed large maximum error percentages (>10%) in arsenic (0.1 and 

1.0 ppm), antimony (1.0 ppm), iron (1.0 ppm) and phosphorus (0.1 and 1.0 ppm). BCR 

reference material was fairly accurate (<10% change) with the exception of zinc, which 

had a -33.5 percent change from the expected value.  

Core 4 total digestions had standard deviations of elements below 0.15 for one 

ppm quality control and 1.75 for 10 ppm quality control. Core 4 total digestions had large 

maximum error percentages (>10%) for cadmium (1.0 and 10 ppm), arsenic (0.1 and 1.0 

ppm), lead (0.1 and 1.0 ppm), zinc (1.0 and 10 ppm), iron (0.1 ppm), nickel (10 ppm), 

antimony (0.1 and 1.0 ppm), and phosphorus (0.1 ppm). Reference material percent 

change was greater (about -10 percent to -30 percent) than those values from core 2 

reference material analysis.  

A digested spike sample was very close to expected values, suggesting that there 

was no issue of recovery of contaminants through the digestion process. Duplicate 

analyses were below ±10 percent change. Full quality control data can be seen in 

Appendix B. 

2.7.3. Manganese Quality Control. The element manganese was analyzed in all 

the samples at a later date. None of the reagents showed signs of contamination. Quality 

control results for this run were varied from the previous 10-element analysis. The 0.1 

ppm quality control repeatedly registered as a negative value in the ICP-OES. The 0.1 

ppm solution was prepared from the one ppm quality control solution. In order to verify 

that the error was indeed the machine and not the standards solution, new solution was 
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mixed and reanalyzed. The machine still failed to register a 0.1 ppm reading. However, 

the one ppm standard had a ±14 percent maximum error percentage, while the 10 ppm 

had a ±16 percent maximum error percentage. Therefore, in the datasets in Appendices C 

and D, concentrations in red indicate values that have been calculated from instrument 

values between 0.1 and one ppm, and have the potential to reflect error of the ICP-OES. 

All concentrations for the current study have been corrected for soil weight, and 

thus are reported as determined soil concentrations (ppm [mg/kg]).  
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3. RESULTS 

 

3.1. TOTAL DIGESTION CONCENTRATIONS 

 Total digestions differ in respect to sequential extractions as it used a combination 

of strong acids (hydrochloric and nitric) to remove the majority of the metals from the 

soil in one step instead of in several steps. Theoretically, in this respect, total digestion 

concentrations should equal the sum of all four sequential extract concentrations for a 

one-inch interval (i.e. Oh total digestion lead concentration = Oh lead concentrations for 

Extracts A+B+C+D).  

The results from comparing these two methods vary, but appear to be consistent 

for the most part between cores 2 and 4. While concentrations do not match perfectly, the 

trends with increasing depth are very similar. Lead, the metal of main concern in this 

study, has concentration levels almost the same in both methods, with some minor 

variations. In core 2, total digestion concentration (4743 ppm) of lead in the Oh (0 

inches) was 89 percent of total lead concentration of all the extracts in sequential 

extraction (5303 ppm). In core 4, sequential extraction total lead (4260 ppm) in the Oh (0 

inches) was 99 percent of the total lead in total digestion (4303 ppm). Total digestion 

concentrations (Appendix D) are discussed for each core and are compared to 

background concentration levels for the regional soil (Table 3.1). Total digestions were 

run on each inch interval. 

 

 

 

Table 3.1. Background concentration levels for regional soils (Tidball, 1984). 

 

As Cd Co Cu Fe Ni P Pb Sb Zn Mn

Concentration (ppm) 8.7 <1.0 10 13 2.11% 14 0.059% 20 N/A 49 740
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 3.1.1. Core 2 Results. Core 2 results are plotted in Figure 3.1. Lead from total 

digestions showed a similar trend, with the exception of higher concentrations, to the 

sequential extractions. Lead concentrations decreased substantially over the first three 

inches of depth (Oh – 4743 ppm to 2 to 3 inches – 212 ppm), before a slight jump in 

concentration at 3 to 4 inches depth (673 ppm). Below 4 to 5 inches of depth, the 

concentrations remained below 41.0 ppm, but revealed an inconsistent trend.  

Zinc had its highest concentration in the Oh (184 ppm) before decreasing to 

below regional soil background values at 0 to 1 inches. For the remaining depth of the 

soil core, concentrations remained fairly constant, with the exception at 3 to 4 inches 

where a slight spike occurs.  

Nickel was detectable in the Oh (13.0 ppm), before falling below detection limit 

(<10 ppm) from 0 to 1 to 8 to 9 inches. At 9 to 10 inches, nickel became measureable 

again, and displayed an overall increasing trend with increasing depth to the bottom of 

the soil core.  

Copper was concentrated in the Oh (103 ppm), and decreased with depth. After 

spiking slightly at 3 to 4 inches (19.5 ppm), the levels fell below the detection limit (<10 

ppm) from 4 to 5 inches until 6 to 7 inches. At 9 to 10 inches, the concentration was 

detectable again and showed increasing concentrations with increasing depth until the 

bottom of the soil core, following a trend similar to nickel for this portion of the core.  

Antimony was only detected at 1 to 2 inches (13.2 ppm). Arsenic was 

concentrated in detectable amounts in the first two inches of this core. Cobalt and 

cadmium were below instrument detection levels for the entire depth profile (<10 ppm).  
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Major elements analyzed were phosphorus, iron, and manganese. Phosphorus was 

present throughout the entire core depth profile, with the highest concentration in the Oh 

(186 ppm). The concentration remained fairly steady with increasing depth. Iron 

concentrations showed a definite increase with increasing depth, with a concentration in 

the Oh of 5939 ppm to a high at 14 to 15 inches of 61,951 ppm. Manganese was present 

throughout the core, with the highest concentrations at depth (12 to 15 inches) in the soil 

core (255 ppm at 14 to 15 inches). 

 

 

 
Figure 3.1. Concentration trends for core 2 total digestion experiments. Cobalt and 

cadmium were below analytical detection limit (10 ppm). Antimony was only above 

detection limit at 1 to 2 inches (13.2 ppm). Plotted using the average depth value and with 

Oh at 0 inches. 

 

 

 

 3.1.2. Core 4 Results. Core 4 results are plotted in Figure 3.2. Lead, unlike in 

core 2, had concentrations in the thousands of ppm for both the Oh (4303 ppm) and 0 to 1 

inch (3235 ppm) depths. Levels began to show significantly decreasing concentrations 
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with increasing depth after 1 to 2 inches (577 ppm). From 4 to 5 inches, concentrations 

fluctuated between increasing and decreasing, before falling below the detection limit 

(<10 ppm) at 10 to 11 inches.  

Zinc also had high concentration levels in the Oh (239 ppm) and 0 to 1 inches 

(145 ppm) before falling near the regional soil background levels at 1 to 2 inches. 

Concentrations remained near constant for the rest of the depth of the core with the 

exception of a decreasing concentration tail from around 12 to 15 inches.  

Nickel was only detectable in the Oh (16.2 ppm), 0 to 1 inches (11.3 ppm), and 10 

to 11 inches (13.4 ppm) in depth.  

Copper was present in the first two inches of depth, with highest concentrations in 

the Oh (93.3 ppm) and 0 to 1 inch interval (62.7 ppm). Below 1 to 2 inches, the 

concentrations were below detection limit (<10 ppm). Copper reappeared with constant 

concentrations from 7 to 8 inches to 11 to 12 inches in depth.  

Cadmium and antimony were only detectable in the Oh. Arsenic was detected in 

the first 4 inches of depth. Cobalt was below instrument detection levels for the entire 

depth of the core (<10 ppm for entire depth of the core with exception of <20 ppm in the 

Oh horizon).  

Phosphorus was present throughout the soil core profile, and had a slight decrease 

in concentrations with increasing depth. Iron concentrations did not provide a definite 

trend as they did in core 2, but still displayed overall increasing concentration with 

increasing depth (Oh – 7159 ppm, 14 to 15 inches – 14,055 ppm). Manganese 

concentrations in the core were opposite of those in core 2.  Concentrations decreased 

overall with increasing depth, with the highest concentrations in the shallow depths of the 
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soil core. The greatest concentration was in the 0 to 1 inch depth (457 ppm). Complete 

datasets for the total digestions can be found in Appendix D. 

 

 

 

 
Figure 3.2. Concentration trends for core 4 total digestion experiments. Cobalt was 

below analytical detection limit (20 ppm in Oh; 10 ppm 0 to 15 inches). Cadmium and 

antimony were only above detection limit in the Oh horizon (11.5 and 16.1 ppm, 

respectively). Plotted using the average depth value and with Oh at 0 inches. 

 

 

 

 

3.2. SEQUENTIAL EXTRACTION RESULTS 

Sequential extraction procedures were executed on both cores 2 and 4 for each 

inch of soil below the top Oh layer to seven inches and then for every other inch interval 

(8 to 9 inches, 10 to 11 inches, 12 to 13 inches, etc.). Extract A used acetic acid to 

remove any metals from carbonates or exchangeable sites (surfaces and interlayers of 

clays). Extract B used hydroxylammonium hydrochloride to reduce and dissolve iron or 

manganese oxides (which includes oxide, hydroxide, and oxyhydroxide phases), and 

release any trace metals associated with these phases. Extract C used hydrogen peroxide 
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and ammonium acetate to release metals from organics or sulfides in the soil. Extract D 

used hydrochloric and nitric acid to release metals attached with any remaining soil 

components except for acid insoluble silicates (e.g., zircon). 

3.2.1. Core 2, Extract A Results. In Extract A (Figure 3.3), lead decreased with 

increasing depth (Oh: 2218 ppm; 14 to 15 inches: <4 ppm), with the exception of at 3 to 4 

inches where it deviated from the trend with a slight increase (382 ppm). Lead fell below 

background levels for regional soils at 4 to 5 inches.  

Zinc was present in low concentrations throughout the entire core depth (<12.5 

ppm). Copper, arsenic, and phosphorus all had their highest concentration in the Oh 

before dropping below background values for regional soils, and eventually below 

detection limit (<4.0 ppm) at 4 to 5 inches. Cobalt, nickel, cadmium, and antimony were 

all below the detection limit of the ICP-OES machine at <16.0 ppm in the Oh and <4.0 

ppm for the remaining depth of the core. Iron varied in concentration with increasing 

depth, but ranged from 4.8 ppm to 21.2 ppm. Manganese varied in concentrations, but 

fell below analytical detection limit at 5 to 15 inches. 

3.2.2. Core 2, Extract B Results. In Extract B (Figure 3.4), lead once again had 

its greatest concentration in the Oh layer (2756 ppm) and followed an overall trend of 

decreasing concentration with increasing depth. Deviations from the trend occurred at 3 

to 4 inches (268 ppm) and 6 to 7 inches (18.7 ppm). However, after 6 to 7 inches, 

concentrations began to decrease again.  

Zinc was only detectable in the Oh layer (13.8 ppm), and this value is below 

regional soil background values. Copper, arsenic, and phosphorus had their greatest 

concentrations in the Oh layer, and had overall decreasing concentrations with increasing  
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Figure 3.3. Extract A concentrations (in ppm) for core 2. This graph shows trends for 

elements released from carbonates and exchangeable ions in the soil. Cobalt, nickel, 

cadmium, and antimony were all below the analytical detection limit of 4.0 ppm. Plotted 

using the average depth value and with Oh at 0 inches. 

 

 

 
Figure 3.4. Extract B concentrations (in ppm) for core 2. This graph shows trends for 

elements released from iron or manganese oxides in the soil. Cobalt, nickel, cadmium, 

and antimony all below the analytical detection limit (4 ppm). Plotted using the average 

depth value and with Oh at 0 inches. 
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depth. These all fell below the ICP-OES detection limit (<4.0 ppm) at around 4 to 5 and 5 

to 6 inches. Cobalt, nickel, cadmium, and antimony were once again below the ICP-OES 

detection limit (<4.0 ppm). Iron concentrations were much greater in the top section of 

this core (618 ppm) and displayed an overall decreasing trend with increasing depth. 

Manganese concentrations decreased over the first few inches of depth, with a slight 

increase at 3 to 4 inches (34.4 ppm), before falling below the analytical detection limit for 

all but one of the remaining intervals in the soil core. 

 3.2.3. Core 2, Extract C Results. In Extract C (Figure 3.5) lead had its greatest 

concentration in the Oh horizon (247 ppm), with overall decreasing concentrations with 

increasing depth; exceptions were at 3 to 4 (44.4 ppm) and 8 to 9 inches (7.7 ppm).  

Zinc was detected at all intervals and had fairly constant concentrations with 

increasing depth (52.4 ppm to around 25.3 ppm at depth). Copper concentration was 

greatest in the Oh horizon (22.0 ppm), before dropping below detection limit (<5.0 ppm) 

at 1 to 2 inches. Phosphorus had its greatest concentrations in the Oh horizon (49.7 ppm) 

before following an overall decreasing concentration with increasing depth trend, with an 

exception at 3 to 4 inches (28.3 ppm). Cobalt, nickel, cadmium, antimony, and arsenic 

were all below detection limit (<5.0 ppm) in this extract. Iron concentrations had an 

overall trend of increasing concentration with increasing depth. Manganese was below 

analytical detection limits (<5.0 ppm) for the entire depth of the core. 

 3.2.4. Core 2, Extract D Results. In Extract D (Figure 3.6), lead had its lowest 

starting concentrations in this extract (82.3 ppm). It fell below detection limit (<5.0 ppm) 

at 4 to 5 inches.  
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Figure 3.5. Extract C concentrations (in ppm) for core 2. This graph shows trends for 

elements released from organics or sulfides in the soil. Cobalt, nickel, cadmium, 

antimony, and arsenic were all below the analytical detection limit (5 ppm). Plotted using 

the average depth value and with Oh at 0 inches. 

 

 

 

Figure 3.6. Extract D concentrations (in ppm) for core 2. This graph shows trends for 

elements released from any remaining non-silicates within the residual soil. Cobalt was 

only above detection limit in the Oh horizon (6.2 ppm). Cadmium, antimony, and arsenic 

were all below the analytical detection limit (5 ppm). Plotted using the average depth 

value and with Oh at 0 inches. 
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Zinc was in detectable concentrations throughout the soil core, with the highest 

concentration in the Oh (133 ppm) before remaining fairly constant in concentrations 

with increasing depth (around 14.0 to 33.9 ppm). Cobalt was only detectable in the Oh 

(6.2 ppm); that value was below regional soil background. Nickel and copper were both 

present throughout the soil core profile. Both see their highest values at 14 to 15 inches in 

depth (Ni: 43.0 ppm, Cu: 53.1 ppm). These two metals behaved in a similar manner with 

increasing depth and both showed a significant concentration increase at 10 to 11 inches 

that continued until 14 to 15 inches in depth. Phosphorus was present throughout the soil 

core, showing an overall increase in concentration with increasing depth. Cadmium, 

antimony, and arsenic were all below analytical detection levels (<5.0 ppm). Iron posted 

the highest concentration levels in this extract, and showed an overall increasing 

concentration with increasing depth (5684 ppm in Oh to 54,601 ppm at 14 to 15 inches). 

Manganese showed an overall increase in concentrations with increasing depth (Oh 

horizon: 51.1 ppm to 244 ppm in 14 to 15 inches). 

Comparing all the extracts against each other for core 2, Extracts A and B contain 

the greatest percentages of total lead from all the extracts. Extract B holds the greatest 

percentage of lead in the Oh (52.0 percent) and 4 to 5 (45.3 percent) to 10 to 11 (61.5 

percent) inches, while Extract A has the greatest percentages from 0 to 1 (46.5 percent) to 

3 to 4 (54.2 percent) inches. Zinc concentrations are most prominent in Extract C, with 

the exception of the Oh layer where 66.4 percent of the zinc is found in Extract D. 

Copper is almost equal across all extracts for the Oh level to 1 to 2 inches, but with 

increasing depth, all of the copper was found in Extract D. Arsenic was found mainly in 

Extracts A and B. Phosphorus was equally split between all the extracts for the Oh layer, 



 

 

43 

but Extract D held the most of the total phosphorus from all the extracts. Iron was 

dominantly recovered in Extract D, with percentages ranging from 84.6 percent to 98.4 

percent of total iron. All datasets for the sequential extracts and percentage breakdowns 

can be found in Appendix C. 

 3.2.5. Core 4, Extract A Results. In Extract A (Figure 3.7) for core 4, the highest 

concentrations of lead were found in the first two inches of depth, with the highest 

concentration at 0 to 1 inches (389 ppm). At 2 to 4 inches, the concentrations of lead fell 

below the regional soil background levels.  

Zinc concentrations started below regional soil background levels and saw a 

further decrease in concentration with depth. Copper was only detected at 1 to 2 inches 

depth (4.4 ppm), while arsenic was only present at 0 to 1 inches depth (4.3 ppm); both 

values were below regional soil background values (not displayed on Figure 3.7). 

Cadmium was present in the first inch of depth of the core (4.4 ppm in the Oh and 4.7 at 

0 to 1 inch). Phosphorus was detectable only in the first two inches of depth. Cobalt, 

nickel, and antimony were all below instrument detection levels (<4.0 ppm). Iron 

concentrations were low and remained fairly constant with increasing depth, with the 

exception from 4 to 5 inches to 8 to 9 inches, where concentrations were below 

instrument detection limits (<4.0 ppm). Manganese overall decreased in concentration 

with increasing depth, with an exception at 8 to 9 inches. The greatest concentrations for 

this element were in the Oh horizon with a reading of 497 ppm. 
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Figure 3.7. Extract A concentrations (in ppm) for core 4. This graph shows trends for 

elements released from carbonates or exchangeable ions within the soil. Cobalt, nickel, 

and antimony were below the analytical detection limit (4 ppm). Copper is only above 

detection limits at 1 to 2 inches (4.4 ppm), and arsenic only at 0 to 1 inch depth (4.3 

ppm). Plotted using the average depth value and with Oh at 0 inches. 

 

 

3.2.6. Core 4, Extract B Results. In Extract B (Figure 3.8), high lead 

concentrations were found in the first two inches (Oh – 3452 ppm, 0 to 1 inch – 2476 

ppm, 1 to 2 inches – 362 ppm). The trend with increasing depth was similar to Extract A, 

with concentration level spikes at 5 to 6 and 8 to 9 inches.  

Zinc was only detected in the first four inches of depth, with the only 

concentration above regional background values occurring in the Oh soil layer. Cobalt, 

nickel, and cadmium were only detected in the Oh layer. Copper was present in the first 

two inches of depth, with a peak at 0 to 1 inches. Arsenic was present in the top two 

inches with the Oh and 0 to 1 inches being above background levels (Oh – 14.8 ppm, 0 to 

1 inch – 13.3 ppm). Phosphorus was only detectable in the first four inches of depth. 

Antimony was below the detection limit for the entire depth of the core (<4.0 ppm for  
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Figure 3.8. Extract B concentrations (in ppm) for core 4. This graph shows trends for 

elements released from iron or manganese oxides within the soil. Antimony was below 

the analytical detection limit (4 ppm), while several elements were below detection limit 

(40 ppm) at 10 to 11 inches. Cobalt, nickel, and cadmium were only above detection limit 

in the Oh horizon, with values of 4.3, 5.8, and 5.5 ppm, respectively. Plotted using the 

average depth value and with Oh at 0 inches. 

 

 

 

entire core with exception of <40.0 ppm at 10 to 11 inches). Iron displayed varying 

concentrations with increasing depth in the core, with two of the highest concentrations at 

0 to 1 and 1 to 2 inches (0 to 1 inch – 1156 ppm, 1 to 2 inches – 1155 ppm). Manganese 

showed an overall decrease with increasing depth with an exception at 8 to 9 inches.  

 3.2.7. Core 4, Extract C Results. In Extract C (Figure 3.9), the highest 

concentration of lead was found in the Oh horizon (569 ppm) and 0 to 1 inch range (224 

ppm), and had a decrease in concentration with increasing depth, with small spikes at 5 to 

6 and 8 to 9 inches.  

Zinc was present throughout the core depth with concentrations decreasing over 

the first two inches before remaining constant. Copper was detected in the Oh horizon 

(63.1 ppm) and first inch (18.3 ppm) of depth, while arsenic was only detected in the Oh  
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Figure 3.9. Extract C concentrations (in ppm) for core 4. This graph shows trends for 

elements released from organics or sulfides within the soil. Cobalt, nickel, cadmium, and 

antimony were below the analytical detection limit (5 ppm). Arsenic was only above 

detection limit in the Oh horizon (7.9 ppm). Plotted using the average depth value and 

with Oh at 0 inches. 

 

 

layer (7.9 ppm). Phosphorus was present throughout the entire core depth, with 

concentrations decreasing the first two inches before steadying in the rest of the core. 

Cobalt, nickel, cadmium, and antimony were all below instrument detection levels (<5.0 

ppm). Iron concentrations showed a decrease in the upper portion of the core, until 

around 4 to 5 inches before it started an increasing trend to the bottom of the soil core. 

Manganese concentrations were variable for this extract, but remained below 18.7 ppm. 

 3.2.8. Core 4, Extract D Results. Extract D (Figure 3.10) revealed lead only 

being detected in the first inch of depth of the soil core (Oh – 102 ppm, 0 to 1 inch – 34.7 

ppm).  

Concentrations for zinc showed a decrease with increasing depth, with the highest 

reading in the Oh (80.5 ppm). Nickel and copper were measureable throughout the entire 
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core depth. Copper decreased in concentration with increasing depth, while nickel had a 

slight increase with increasing depth. Phosphorus was also present throughout the core, 

with a variable concentration, but showing an overall decreasing trend. Cobalt, cadmium, 

antimony, and arsenic all came in below the detection limit of the ICP-OES instrument 

(<5.0 ppm). Iron had its highest concentrations out of all the extracts and showed an 

overall increase in concentration with increasing depth through the first 12 inches of core 

before decreasing at 12 to 13 and 14 to 15 inches, after the highest concentration at 10 to 

11 inches (19,933 ppm). Manganese showed an overall increase in concentration with 

increasing depth. 

 

 

 
Figure 3.10. Extract D concentrations (in ppm) for core 4. This graph shows trends for 

elements released from any remaining non-silicates within the soil. Cobalt, cadmium, 

antimony, and arsenic were all below the analytical detection limit (5 ppm). Plotted using 

the average depth value and with Oh at 0 inches. 
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 Comparing all the extracts to each other, 81 percent of the total lead from all 

extracts in the Oh horizon resides in Extract B. Extract B also holds the majority of the 

lead for the remaining depth of the core. The majority of the zinc resides in Extracts C 

and D. Copper is found heavily in association with Extract C in the Oh, before the 

remaining amount of copper is found mostly in Extract D. Arsenic is found mostly in 

Extract B. Extract D accounts for most of the phosphorus concentrations, with similar 

percentages of the element found in Extract C. Iron sees most of its concentrations in 

Extract D. All datasets for core 4 sequential extractions and percentage breakdowns can 

be found in Appendix C. 

 

3.3. SOIL MINERALOGY 

In X-Ray Diffraction (XRD), clays are identified by specific 2-theta peak 

positions. Kaolinite is identified by its 2-theta peaks at 12.4° and 24.9°, while illite by its 

8.8° and 17.9° peaks. Mixed-layered clays are variable in their 2-theta peak locations, 

dependent upon the clay composition. Proportions of the two or more clay amounts and 

the stacking order also affect the 2-theta location. This situation is somewhat comparable 

to the potential smectite peak that can exist in between the two smectite end-member 

peaks due to mixing of the two.   

The variability in the modal abundance of clays as a function of depth is reported 

in Table 3.2 and shown in Figures 3.11 and 3.12. XRD results indicate that the majority 

of the clay-sized particles in the two soil cores were kaolinite (46 to 89 percent). Illite 

was the second most common (3 to 49 percent) while montmorillonite (smectite) 

represented the least amount of clay (0 to 6 percent). Significant amounts of mixed layer  
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Table 3.2. Clay distribution in soil cores in percent. 

 
 

 

 

 

 
Figure 3.11. Percentages of isolated clay-sized fraction particles in core 2. Collected by 

gravity separation. Kaolinite comprises most of the clays in the core. Plotted using the 

average depth values. 

Inches Illite Kaolinite Smectite

Mixed-

Layer 

Clay

1-3 24 70 6 0

6-8 33 58 0 9

10-12 7 77 4 11

14-16 3 89 1 4

Inches Illite Kaolinite Smectite

Mixed-

Layer 

Clay

0-2 16 47 4 33

5-7 49 48 3 0

9-11 25 46 1 28

13-15 18 71 5 7

Percentage of Total Clay

Core 2

Percentage of Total Clay

Core 4
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Figure 3.12. Percentages of isolated clay-size fraction particles in core 4. Collected by 

gravity separation. Kaolinite comprises most of the clays in the core. Plotted using the 

average depth values. 

 

 

clays were also noted, but in extremely variable concentrations (0 to 33 percent). Large 

peaks for quartz were present, but were not included in the quantification procedures to 

determine the relative proportion of clay minerals in the clay-sized fraction of the soils.  

In core 2, kaolinite and illite concentrations were inverse with increasing depth 

(Figure 3.11). Kaolinite increased with depth while illite decreased, with the exception at 

6 to 8 inches where kaolinite decreased slightly and illite increased. Smectite 

concentration was variable with increasing depth, while mixed-layer clays showed an 

increase with depth until 10 to 12 inches before decreasing in concentration.  

In core 4, kaolinite remained fairly constant with increasing depth before 

increasing significantly at 13 to 15 inches (Figure 3.12). Illite showed a large jump in 

concentration at 5-7 inches (49 percent), which was virtually indistinguishable from the 

kaolinite concentrations (48 percent), before illite then tapered off with increasing depth. 
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Smectite showed a slight increase with depth, while mixed-layer clays had extremely 

variable concentrations with increasing depth. 

Quantifying the proportion of smectite in these soils proved difficult. In the 

quantification procedures, only the smectite peak at 5.2° 2-theta in the glycol run is used. 

There was never a significant peak at this location. In all samples, a peak existed between 

6.175°-6.35° 2-theta in the untreated run, which correlated with peaks between the Ca-

montmorillonite (5.7° 2-theta) and Na-montmorillonite (7.1° 2-theta). In the glycol run, 

however, this peak never shifted, except for one sample when the shift was relatively 

minor. A shift is expected with smectite clays. After heating, this peak no longer existed, 

and in some samples, the illite peak intensity increased slightly. These varying smectite 

peaks were not included within the quantifications; however, if they were substituted for 

the 5.2° 2-theta peak in calculations, concentration percentages of smectite in both cores 

increased (with a 7 to 20 percent range in core 2 and 7 to 17 percent range in core 4). 

Consequently, changes in the percentage concentrations of kaolinite, illite, and mixed-

layer clays would also occur with this calculation. Therefore, given the complexity of the 

situation, values are only reported utilizing the original calculation procedure in 

Appendix E. All XRD data can also be found in Appendix E. 

 

3.4. SEM-EDS RESULTS/MINERAL SPECIES 

Soil fractions from a one inch interval from each soil core with the highest lead 

concentrations (Core 2, Oh; Core 4, 0 to 1 inch) were processed and analyzed using 

SEM-EDS analysis. In both cores, the textures of the particles varied. There were no 
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definitive crystal forms observed to support the EDS results for a particular mineral 

phase.  

 The background carbon dot and filter paper, which, when an empty section of 

filter paper was analyzed, had a substantial amount of carbon (57.0 atomic (molar) 

percent), nitrogen (11.9 atomic (molar) percent), and oxygen (30.1 atomic (molar) 

percent) and minor amounts of silicon (0.8 atomic (molar) percent) and gold (0.2 atomic 

(molar) percent). Tungsten (W) peaks can be disregarded as the use of Na-polytungstate 

in sample processing can remain as a coating on the particles. EDS spectra have been 

corrected to remove tungsten (W) from quantifications. Gold (Au) and palladium (Pd) 

peaks can also be disregarded due to coating of the particles to prevent charging in the 

microscope. Tungsten (W) and silicon (Si) share similar peak locations (~1.7-1.8 keV), 

and thus may affect correct identification. Oxygen is not detected accurately in EDS data, 

and should be used sparingly when trying to determine compositions. 

Between the two soil cores, particles containing appreciable lead concentrations 

displayed textures that were somewhat botryoidal or flaky (Figures 3.13 to 3.15). Figure 

3.13 shows an image from core 2 of a particle with lead that had a botryoidal habit. EDS 

analysis indicated 9.2, 25.1, and 57.8 atomic (molar) percent of lead, carbon, and oxygen, 

respectively. Figure 3.14 is also from core 2; this particle displayed a more flaky texture. 

Regardless, the EDS data for this particle was similar to that in Figure 3.13. Figure 3.15 

is another image of two particles from core 2. It had a botryoidal texture that is composed 

of much smaller masses than in Figure 3.13. Both particles had similar EDS data (7.3 

atomic (molar) percent Pb, 42.9 atomic (molar) percent C, and 48.1 atomic (molar) 
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Figure 3.13. SEM image of a botryoidal-textured particle containing lead in core 2. The 

EDS data of the area highlighted in red is presented at right. Tungsten is a residual 

contaminant from the gravity separation process used to isolate the grains from the soil.  

 

 
Figure 3.14. SEM image and EDS data of a flaky-textured particle containing lead in 

core 2. 

 

 
Figure 3.15. SEM image of two particles with lead in core 4. The textures are more 

granular, but the EDS spectra between the two particles are similar, suggesting they are 

the same mineral. 
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percent O) to one another, but the values were slightly less than EDS data values obtained 

from earlier particles.  

One particle containing lead in core 4 varied texturally from the others, as it 

appeared to be smoother (Figure 3.16). Analytically, the atomic molar percentages for 

this particle are very close to the atomic weight percentages of the other particles 

containing lead analyzed in core 2 (10.3 atomic (molar) percent Pb, 28.9 atomic (molar) 

percent C, and 54.5 atomic (molar) percent O).  

While EDS data is semi-quantitative, the values recorded appear to best fit the 

cerussite composition of PbCO3. However, there is some discrepancy as the lead peak 

and sulfur peak in EDS spectra are very close. Typically, sulfur peaks appear as a 

“shoulder” to the lead peak, therefore making the lead peak much broader (Figure 3.17). 

This makes quantification difficult when trying to differentiate between the two elements. 

Lead peaks in many of the EDS spectra were broad, which could mean the presence of 

some sulfur in the particle. Given the other elements present and the potential presence of 

sulfur, particles could reflect galena that has weathered to cerussite, or the presence of 

galena or anglesite.  

When a sample of cerussite from Lake County, Colorado (mounted on copper) 

was analyzed in the microscope, values of lead, carbon, and oxygen came out almost 

equal (Figure 3.18). Technically, this would be fairly accurate, since a large crystal was 

analyzed and very little influence from the background would occur. The oxygen values 

were most likely off due to its inability to be measured accurately using the EDS system. 

Analysis of smaller particles in the soil samples allow for more interaction with the 

background which can reflect inaccurate values.  
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Figure 3.16. SEM image of a smooth particle with lead in core 4. This particle displays a 

smoother surface, but still has EDS data that is similar to the previously analyzed 

particles. 

 

 

 

 
Figure 3.17. SEM image and EDS spectra of a flaky particle containing lead in core 4. 

This particle has similar elemental composition to previously analyzed particles. Notice 

sulfur peak shoulder adjacent to the lead peak. 
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Figure 3.18.  EDS spectra for a cerussite (PbCO3) mineral standard in the Hitachi S-4700 

Microscope. The atomic percent determinations for Pb vs. C occurred at approximately 

the expected 1:1 ratio, however, the EDS detection for C vs. O was below the anticipated 

value. 

 

 

 

 

Other elements in the contaminated particles were silicon, aluminum, potassium, 

calcium, and sodium. Most of these elements are common soil constituents, but do not 

reflect the results of the sequential extracts, where lead was associated Extract B and 

where metals were released from manganese or iron oxides. One particle containing lead 

in core 2 reflected possible association with iron-oxide (Figure 3.19). The particle to 

which the lead-bearing particle is attached had 49.7 atomic (molar) percent oxygen and 

20.3 atomic (molar) percent of iron. Finalizing a list of associated minerals is difficult 

given the variability in oxygen and carbon readings, but it is likely that 

aluminum/potassium could be associated with clays, with potassium reflecting illite. 
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Figure 3.19. SEM-EDS results of a particle containing lead in core 2. The larger soil 

particle is possibly an iron-oxide (EDS spectra on bottom). 

 

 

3.5. SOIL pH 

Both core 2 and core 4 followed similar pH trends in regards to increasing depth 

(Figure 3.20). Core 2 was slightly acidic in the Oh to 1 inch depth with a pH of 5.20. This 

value became more acidic with increasing depth. At 11 to 13 inches, the pH bottomed out 

at 3.80 before slightly rebounding to 3.89 at 14 to 16 inches. 

Core 4 had a pH that was less acidic at 0 to 2 inches at 5.95. The soil continued to 

become more acidic with increasing depth. The most acidic reading of 3.83 was at 10 to 

12 inches depth, and rebounded slightly back to 3.89 at 13 to 15 inches in depth. 
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Figure 3.20. Soil pH profiles for core 2 and core 4. Each profile displays a decreasing pH 

with increasing depth. Plotted using average depth values.  



 

 

59 

4. DISCUSSION 

 

4.1. TOTAL DIGESTIONS 

Total digestion results suggested metal concentrations decrease with increasing 

distance from the smelter and are primarily within the first few inches of soil. 

Concentration levels of lead from Oh horizon in core 2 (4737 ppm) were slightly greater 

than those in core 4 (4303 ppm), which would be expected due to its location closer to the 

smelter than core 4 (0.72 km vs. 1.55 km). However, core 2 lead concentrations dropped 

below 1000 ppm between 0 to 1 inches in depth, whereas core 4 had lead concentrations 

still above 3000 ppm at 0 to 1 inches of depth (Figures 3.1 and 3.2).  

Varying lead concentrations could be due to variability in soil constituents that 

allow the lead greater downward mobility in core 4. At 0 to 2 inches depth in core 4, 

mixed-layered clays composed 33 percent of the soil and could be a factor in reducing 

lead mobility by adsorption. It is also probable that variations in the soil mineralogy 

forms a more adsorptive layer in core 2 at 3 to 4 inches that increases concentrations of 

lead, zinc, copper, and phosphorus (Figure 3.1). However, the majority of the clay-sized 

fraction was kaolinite at the 1 to 3 inch depth in core 2, which should not affect lead 

immobilization and thus increase concentrations. The effect of clays on trace metals will 

be discussed later in the discussion. 

In core 2, zinc, copper, lead, and arsenic showed an initial decrease in 

concentration within the first three inches of depth. It appeared that copper, zinc, iron, 

and nickel have similar increasing trends at depth (9 to 16 inches), suggesting that factors 

that affect their mobility through the soil profile are the same (Figure 3.1).  



 

 

60 

Correlation coefficients comparing linear behavior of iron versus each respective 

contaminant element produced R
2
 values of 0.06, 0.77, and 0.98 for zinc, nickel, and 

copper, respectively from 9 to 16 inches of depth (Figure 4.1). This suggests that the iron 

is a strong factor in concentration of copper and nickel, but has minimal influence on zinc 

distributions. The same elements in core 2 were compared to manganese and resulted in 

R
2
 values of 0.11, 0.79, and 0.65 for zinc, nickel, and copper, respectively at 9 to 16 

inches.  

Core 4 correlations were difficult to determine due to lower overall metal 

concentrations and several intervals that were below the ICP-OES detection limit (<10 

ppm) for nickel and copper. However, zinc versus iron correlation resulted in a R
2
 value 

0.97 for 9 to 15 inches of depth. Copper versus iron correlation for 7 to 12 inches of 

depth resulted in a R
2
 value of 0.04 (Figure 4.2). These are opposite of those found in 

core 2, and suggest that while zinc might be absorbed or adsorbed by iron oxides or 

smectite, copper is likely being affected by other factors. Lead versus manganese 

correlations for core 4 total digestions resulted in a R
2
 value of 0.13 for 4 to 11 inches 

depth. This is unexpected considering lead was associated with the iron or manganese 

oxides extract in sequential extractions. 
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Figure 4.1. Correlation coefficients for zinc, nickel, and copper in core 2 total digestions. 

All are plotted against iron (left column) and manganese (right column). 
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Figure 4.2.  Correlation coefficients for zinc, copper, and lead for core 4 total digestions. 

Zinc and copper plotted against iron, while lead is plotted against manganese. 

 

 

 

 

4.2. SEQUENTIAL EXTRACTION 

 

Sequential extractions, while providing support to the total digestion results, 

mainly help determine what metals are associated with each soil constituent and how 

easily they are released. Lead concentrations for both cores were highest in the upper 



 

 

63 

portions of the core in Extract B (Figures 3.4 and 3.8). This suggests that lead is in 

association with iron or manganese oxides (Appendix C).  

Hettiarachchi and Pierzynski (2004) report preferential adsorption of lead by 

manganese oxides compared to other oxides. These adsorption processes are almost 

irreversible, limiting the metal’s bioavailability. McKenzie (1980) found that lead 

adsorbs to manganese oxides 40 times more effectively than it did to iron oxides. Wong 

and Li (2004) study of urban soils in Hong Kong stated that around 60 percent of their 

total lead was associated with iron and manganese oxide fractions. They also noted that 

the two most mobile fractions in soils are the exchangeable and carbonate fractions, 

which would correlate with Extract A in the current study. 

 In the current study, core 2 lead was associated mainly with the iron or 

manganese extract (49 percent) and carbonates or exchangeable sites (44 percent; Figure 

4.3). In core 4, the majority of the lead was associated with the iron or manganese oxide 

extract (78 percent; Figure 4.4). These results correlate with those reported in Wong and 

Li (2004). Iron is found to be greatest in Extract D in the current study. This extract is 

associated with iron that is not readily removed from the soil.  

Similar to total digestions, correlations were calculated for iron versus zinc, 

nickel, and copper in Extract D. In core 2, R
2
 values for iron versus zinc, nickel, and 

copper were 0.40, 0.93, and 0.98, respectively for 8 to 15 inches in depth (Figure 4.5). 

The R
2
 values for manganese versus zinc, nickel, and copper were 0.52, 0.89, and 0.96, 

respectively, for 8 to 15 inches in depth. In core 4, R
2
 values with iron were 0.79, 0.86, 

and 0.97 for zinc, nickel, and copper, respectively, for 5 to 15 inches (Figure 4.6). The R
2
 

for the same elements compared to manganese was 0.67, 0.82, and 0.94 for zinc, nickel,  
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Figure 4.3. Percentage of lead contained in each extract for core 2 sequential extractions. 

These percentages are based on all measurable lead concentrations in each extract. 

 

 

 

 

 

 
Figure 4.4. Percentage of lead contained in each extract for core 4 sequential extractions. 

These percentages are based on all measurable lead concentrations in each extract. 
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Figure 4.5. Correlation coefficients for zinc, nickel, and copper in core 2, Extract D. All 

are plotted against iron (left column) and manganese (right column). 
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Figure 4.6. Correlation coefficients for zinc, nickel, and copper in core 4, Extract D. All 

are plotted against iron (left column) and manganese (right column). 

 

 

and copper, respectively, for 5 to 15 inches.  The correlation coefficients for iron and 

manganese versus these elements are very similar, suggesting both iron and manganese 

are likely factors in their adsorption or lack thereof. This also suggests that the iron and 

manganese correlating with these metals are not oxides, as they do not show this trend in 

the Extract B.  

Considering lead concentrations are highest in Extract B, which releases lead 

from iron or manganese oxides, one would expect the trends for iron, manganese, and 
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lead to be similar. This is not the case. This is validated when the R
2
 value for lead versus 

manganese in core 2, Extract B was 0.45 for the depth from the Oh horizon to 4 inches.  

All of the metals (zinc, copper, nickel) that showed an increase in concentration at 

depth appeared to have greater downward mobility than lead, which is contained mainly 

in the upper three inches of depth of soil. Factors that affect trace metal mobility will be 

discussed later. Lead, the main metal of concern, did not appear to be above background 

levels (in ppm) below 10 to 11 inches of depth in both soil cores. 

 

4.3. SEM-EDS 

SEM-EDS analysis was used to determine what mineral species of lead and what 

minerals are associating with lead in the soil. SEM-EDS analysis in the current study did 

not strongly support lead-bearing particles being associated with iron or manganese 

oxides as found with the sequential extraction results. It is possible that those particular 

associations were not found and analyzed by the microscope.  

SEM-EDS data reflected the presence of a lead carbonate, cerussite, which could 

be a product of weathered galena. Galena can alter to anglesite, cerussite, or 

pyromorphite when in the presence of an oxidized environment (Hettiarachchi and 

Pierzynski, 2004). X-ray diffraction of particles from leaves gathered in a study of the 

BRRD area by Jackson and Watson (1977) indicated the presence of lead oxide (PbO) 

and lead sulfate (PbSO4). Galena (PbS), the mineral smelted at the Buick Smelter at the 

time of their study and before conversion to a recycling smelter, was minimally present.  

Ruby et al. (1994) noticed in photomicrographs of galena particles from a port 

facility that several lead mineral associations were present around galena crystals. They 
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inferred that the galena, which was the primary phase, altered to anglesite or cerussite and 

eventually to lead phosphate. A similar alteration process may be occurring in the soils 

near the BRRD. 

Ruby et al. (1994) noted the relative Ksp values of lead compounds under 

equilibrium earth-surface conditions. The values from Ruby et al. were used because they 

provided Ksp for all lead mineral species. Using these values, the solubility of lead for the 

various mineral states can be calculated. Lead sulfide was not calculated, because it will 

not precipitate in an oxidizing environment. For lead oxide, lead solubility is calculated 

to be 2.8x10
6 
m. Lead sulfate has a calculated lead solubility of 1.41x10

-4
 m, while lead 

carbonate has a lead solubility of 3.97x10
-7

 m. Finally, lead phosphate has a calculated 

lead solubility of 4.15x10
-9

 m. Outside variables of the soil, like pH, will affect these lead 

solubility values.  

Lead phosphate is the most stable form of lead in soil and is less soluble than 

other forms (Nedwed and Clifford, 1997; Ruby et al., 1994). While no phosphorus 

suggestive of phosphate formation was found associated with the lead during SEM-EDS 

analysis, there is still a significant amount (59.0 to 410 ppm) of phosphorus in the results 

from the total digestion analyses. If phosphates were controlling mobility, there should be 

a correlation between lead and phosphorus, which there is not (Figures 3.1 and 3.2). This 

may indicate that the lead occurs in concentrations in excess of what the phosphate can 

complex with or the phosphate is bound to other soil components and was unavailable to 

bind with lead. 

Previous studies SEM-EDS analyses of lead-bearing particles in the area did not 

indicate the presence of lead phosphate mineral species, but rather the slightly less 
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soluble minerals of anglesite and cerussite. Rucker (2000) found particles that were cubic 

in nature, but the EDS spectra did not support the presence of galena. He suggested an 

oxidized coating (probably anglesite) on a galena crystal. In Witt et al. (2013), a cubic 

crystal was also found using SEM-EDS, with weathering of anglesite and cerussite. In 

2014, Witt et al. found dipyramidal cerussite crystals using SEM-EDS. These findings 

correlate to the presence of cerussite, or potentially anglesite in the current study. 

 

4.4. FACTORS POTENTIALLY AFFECTING LEAD MOBILITY 

 Since soils are heterogeneous and complex chemically and physically, it is 

difficult to attribute metal concentration changes to one specific thing. Overall, clay 

content, soil pH, and weather conditions can all affect the distribution of metals in a soil 

profile. 

 4.4.1. Clay Mineralogy. Clay mineralogy can be a factor in the reduction of lead 

mobility. While smectite does not compose a majority of the soil, there is a slight 

increase in its quantity deeper in the soil core (Figures 3.11 and 3.12). Smectite is a 2:1 

phyllosilicate, with two tetrahedral layers sandwiched between an octahedral layer. This 

structure repeats in a stacking behavior, with an interlayer site located between each 2:1 

phyllosilicate sheet. This interlayer is capable of exchanging cations present in the local 

environment in an effort to balance the charge of the clay, and could remove 

contaminants from within the soil (Deer et al., 1966).  

Typically, smectite has a 5.2° 2-theta peak in the glycol run and shows a shift 

when compared to the untreated runs. However, there is the issue of the unidentified peak 

that occurred around between 6.175°-6.35° 2-theta and showed no shrink/swell properties 
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(Appendix E). In addition, some samples showed a presence of mixed clays. This peak 

might correspond to a mixed-layer clay that contains illite and smectite. It is difficult to 

predict the stacking sequence and the ratio of smectite to illite if this is the case. With 

little shifting in the glycol run, illite could compose a majority of the structure. Plus, in 

some instances after the heated XRD runs, the illite peak at 8.8° 2-theta increased 

slightly, which is indicative when smectite dehydrates.  

The quantification procedures do not account for smectite identification if it is 

contained in a mixed-layer clay, and therefore it is possible that more smectite exists 

within the soil than was calculated. Lead and other trace metals are susceptible to 

adsorption to the interlayer of these clays, which could then prohibit them from migration 

downwards to the water table. Alternatively, depending on chemical composition, layers 

may be more strongly linked together, which could reduce the sorptive capability for 

metals. Rucker (2000) attributed non-swelling behavior seen in his XRD study to metal 

adsorption in the interlayer of smectites. 

Iron concentrations were greater at depth in the soils could be a result of iron 

oxides or the iron-rich smectite, nontronite. These provide potential sorptive materials for 

removing nickel, zinc, and copper from the soil and thus increasing concentrations in the 

deeper soil profiles. Considering the largest concentrations of iron were in Extract D 

instead of B (which is the association with iron oxide extract), it is possible that most of 

the iron at this depth is due to the presence of the clay mineral nontronite, rather than iron 

oxy-hydroxides.  

Kaolinite and illite make up the majority of the clays in the two soil cores, similar 

to what Rucker determined in his study. Due to their structures and low cation exchange 
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capability (McBride, 1994), these clays are less likely to be a significant factor in metal 

adsorption. While concentrations of smectite are low in his study, Rucker (2000) believed 

they might control a small portion of the metal adsorption, and resulted in an increase in 

concentrations of some metals at depth. In the current study, nickel and copper were the 

two metals that showed increased concentrations at depth.  

Witt et al. (2014) stated that lead has a smaller ionic potential, which can hamper 

its adsorption rate onto clays. Ionic potential is determined by dividing the ion’s charge 

by its radius. Lead has a potential of 1.14, while nickel and copper have potentials of 1.61 

and 1.56, respectively. The fact that nickel and copper concentrations both increase at 

depth and that both have nearly the same ionic potential could be a factor for their 

potential adsorption on clays.  

4.4.2. Soil Grain Size. Additionally, the size of soil grains or particles have the 

potential to affect metal adsorption. Bradl (2004) stated that coarse-grained soils are less 

likely to adsorb heavy metals in comparison to finer-grained soils. This is attributed to 

the finer-grained fraction having larger surface areas of clays, oxides, and compounds, 

which is prime for adsorption. Witt et al. (2014) found that the <1µm particle fraction had 

larger concentrations than the >1 µm particle fraction. It was also noted that Al-Si clay 

particles existed in the <1µm, which could be weak adsorption sites for lead metal. It is 

impossible to say if soil particle size is a factor in the current study since it was not 

studied, but it would be useful to include in future studies. 

4.4.3. pH.  Overall, pH plays the most important role in lead stability and sorption 

within the soils, as it can affect lead speciation and charges on the soils surface groups 

(Martínez-Villegas et al., 2004).  
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The current study had a general decreasing pH (more acidic) trend with increasing 

depth for both cores (Figure 3.18). Rucker’s (2000) study also presented a general 

decrease in pH with increasing depth; however the values were not steady and fluctuated 

heavily between intervals. Bornstein’s (1989) sampling points are offset from the current 

study, but he noted that the pH decreased slightly with depth, and increased overall with 

increasing distance from the smelter stack. He also noted that acidity of the soil was 

much higher near the smelter due to sulfide minerals weathering and producing sulfuric 

acid.  

A higher pH or increasing soil pH can increase the sorption of lead (Martínez-

Villegas et al., 2004). In the current study, the majority of the lead resided in the first few 

inches of soil where the pH is highest, where it would be stable/insoluble. Thus, it is 

possible that pH is the major controlling factor in the mobility of trace metals in the upper 

portion of the soil cores.  

4.4.4. Potential Weather Conditions. The weather conditions (precipitation, 

temperatures) during the sampling years are not noted. This information would be a 

valuable addition to future studies of this area.  

Nedwed and Clifford (1997) cited two main mechanisms for controlling lead 

mobility at lead battery recycling sites, or more specifically, mobility in the soils around 

the battery-breaking area. These are the removal of lead-bearing soils during heavy rains 

and the transport of lead-containing dust through the air. While this study did not analyze 

soils in direct contact with battery processing, similar processes could occur in soils 

contaminated by air emissions.  
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In the current study, if a lack of rainfall and more drought conditions persisted, it 

may have affected the lead concentrations. Average rainfall values for St. Louis for the 

time period of 2000 to 2009 was 40.92 inches per year, with the highest rainfalls of 57.96 

inches and 50.92 inches in 2008 and 2009, respectively. This average is greater than the 

38.06 inches of rain average for the years 1988 to 1997, right before Rucker’s (2000) 

study. Likewise, the average temperature for 2000 to 2009 was 57.3°F, while for 1988 to 

1997 it was 56.8°F (National Weather Service, 2014). All of these values are very close 

to the averages listed by the U.S.D.A.  None of these values suggest a possible drought; 

however, the increased levels of rainfall in the two years prior to sampling in 2010 could 

have influenced the removal of lead.  

The standard solubility constant (Ksp: 7.40 x 10
-14

) for cerussite was used to 

determine the solubility of lead in cerussite (2.7x10
-7

 m). Using the solubility of lead in 

cerussite, the highest lead concentration observed in total digestions (4743 ppm), and the 

average rainfall (40.92 in/yr), the amount of lead that can be removed from soil can be 

calculated. This assumes that the lead phase present in the soil is cerussite and the density 

of soil is around 2.0 g/cm
3
. It was calculated that 4.58x10

-5
 moles of lead/cm

3
 exist within 

a theoretical block of soil (1 cm
3
). With the average rainfall for the area and the solubility 

of lead in cerussite, it was calculated that 2.78x10
-8

 moles of lead/year can be removed 

from the soil. This value is less than the amount of lead calculated in a block of soil, 

which means it will take a much longer time to remove all of the 4743 ppm (around 

1647.5 years). This means that rainfall is not a large factor in the removal of lead from 

soil, but it is possible it still plays a role in the removal of some lead. 
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4.5. COMPARISON TO PREVIOUS STUDIES 

Comparison between the previous studies and the current study is limited in some 

cases, due to differences in study structures. Butherus (1975), Bornstein (1989) and 

Rucker (2000) only analyzed to one, six, and seven inch depths, respectively. Butherus 

studied soils to greater depths in other areas around the smelter, but found that most 

contamination was in the Oh horizon and first inch of soil. The current study analyzed to 

depths of 16 inches in core 2 and 15 inches in core 4; some greater concentrations are 

seen in the greater depths of the cores. To the depths available, trends in core 2 appear to 

best match Rucker’s study.  

Variations in the metal concentrations could be influenced by changes within the 

smelting facility. The facility switched to a recycling smelter in 1988, thus Butherus’ 

(1975) and Bornstein’s (1989) data would reflect effects of only primary lead ore 

smelting. Rucker’s (2000) study was the first conducted after a significant amount of time 

since the conversion of the smelter to lead recycling.  

4.5.1. Lead Concentrations. Compared to previous studies, trace metal 

concentrations have varied over time. Butherus’ (1975) soil data for Oh horizon near core 

2 shows lead to be much lower than Rucker (2000) and Bornstein’s (1989) values, but 

close to the current measured value (4743 ppm). Core 4 lead concentrations in the Oh 

from the previous studies are all similar with the exception of Rucker’s study, which is 

more than 3 times as much as the current study (Figures 4.7 and 4.8). The reason for 

Rucker’s greater lead value is unknown.  

Bornstein (1989) described a “maximum loading” theory which Rucker (2000) 

references as the reason for minimal variation in lead concentrations between the two  
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Figure 4.7. Metal concentration trends for core 2 compared to cores from similar 

locations in previous studies. Points plotted at average depths, with Oh at 0 inches. 

Review data values in Appendix A for detection limits. 
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Figure 4.8. Metal concentration trends for core 4 compared to cores from similar 

locations in previous studies. Points plotted at average depths, with Oh at 0 inches. 

Review data values in Appendix A for detection limits. 

 

 

studies. Bornstein believed the soil reached maximum loading within the first years of 

smelting. Rucker suggested that if this is the case, any other metals added could be 

solubilized and washed away. While maximum loading can occur when all sorptive sites 
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in the soil are occupied, this does not mean particulate lead concentrations within the soil 

cannot increase.  

4.5.2. Other Metal Comparisons. In core 2, zinc concentrations from the current 

study are generally lower than the Rucker (2000) and Bornstein (1989) studies 

throughout the soil core. Bornstein’s zinc concentration trend appeared to stay fairly 

constant in the first 2 inches of depth, when most of the other studies showed a decrease 

in concentration. In core 4, zinc concentrations in the Oh were highest in Bornstein’s 

study (1970 ppm) compared to the other studies (216 to 531 ppm). Overall, all the trends 

decrease with increasing depth. 

In core 2, copper concentrations from the current study and Rucker’s (2000) study 

were greater at depth than the previous two studies. In the current study, values steadied 

out at 10 ppm at around 7 to 9 inches of depth, and then increased to 58.9 ppm around 14 

to 15 inches depth. Without the greater depths in the other studies, it is impossible to 

compare, but all the previous studies showed a decline in the first 2 inches of depth. In 

core 4, all of the previous studies appeared to decrease significantly in concentrations 

over the first two inches of depth, similar to the current study.  

In core 2, nickel concentrations in the Oh were highest in Rucker’s (2000) study 

(62.7 ppm). The current study, Rucker’s study, and Bornstein’s (1989) study all showed 

decreasing concentration with increasing depth. However, Rucker’s study showed a slight 

increase in concentration at the bottom of his soil core. In core 4, Rucker provided the 

best overall trend, which decreased with increasing depth and then slightly increased in 

concentration at 8 to 9 inches depth. Bornstein’s concentrations decreased significantly 

over the first three inches of depth (25 ppm to 2 ppm). 
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Cadmium, cobalt, and antimony in the current study were sporadically present or 

below detection limits. Cadmium was detected in all previous studies. Butherus (1975) 

and Bornstein (1989) had their highest cadmium concentrations in the Oh horizon and 

then decreasing concentrations with increasing depth. Rucker (2000) found his highest 

cadmium concentrations in the Oh horizon, a decrease in concentration with increasing 

depth, and a slight increase in concentration at the bottom of the soil core.  

Cobalt in Rucker’s (2000) study was highest in the Oh horizon for both cores 

(Core 2: 18 ppm; Core 4: 15 ppm) and decreased with increasing depth. Bornstein (1989) 

had a similar trend to Rucker’s but at higher concentrations in both cores (Oh Core 2: 

58.33 ppm; Oh Core 4: 23 ppm). Antimony was only analyzed for in Rucker’s study, and 

was only present in the Oh horizon of core 2 (1.46 ppm). 

Lead-based batteries contain antimony, arsenic, cadmium, copper, selenium and 

tin as additives, and thus are present in significantly lower concentrations than lead 

(Nedwed and Clifford, 1997). In comparison to primary smelting times, the Buick 

orebody was chiefly lead, zinc, and copper sulfides (Rogers and Davis, 1977).  

4.5.3. Sequential Extraction Comparison. The sequential extraction procedure 

was not applied to the soils collected in any of the previous studies near the Buick 

smelter. However, comparisons can be made between Rucker’s (2000) SEM-EDS data 

and sequential extraction results from this study. 

 Rucker (2000), utilizing SEM-EDS, found particles of lead in association with 

iron and manganese hydroxides, which would correspond with Extract B in the current 

study. Rucker also mentioned complexes with organic compounds, which, in the current 

study, would likely be associated with Extract C. Stevenson and Welch (1979) mentioned 
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that concentrated organic matter can complex with lead to become a soluble chelate 

complex. They go on further to mention that downward movement of lead in soil profiles 

is due to decaying organics. While Extract C was not associated with a large amount of 

the metals, except for zinc in both cores and copper in core 4, organic concentrations are 

likely greatest in the upper portion of the soil profile (the Oh and 0 to one inch intervals), 

as indicated by a darker, black color present in these soil horizons. This could explain the 

large concentrations of metals retained in the first few inches of soil depth. 

 

4.6. COMPARISON TO OTHER SMELTER STUDIES 

Several studies conducted on soils around other smelters produced similar results 

to those of the current study. Soils near zinc smelters in Pennsylvania, studied by 

Buchauer (1973), noted concentrations of zinc, cadmium, copper, and lead that decreased 

significantly with increasing depth. In fact, 85 to 95 percent of the total zinc resided in 

the top 15 cm of the soil core. Soil pH also decreased around smelters that released sulfur 

(Buchauer, 1973).  

Increased metal concentrations in soil, grasses, and aerosol tests were found in a 

study near a smelter in Idaho. The soils closest to the smelter showed the greatest 

concentrations, which were similar to concentrations in tailing pile samples (Ragaini et 

al., 1977).  

Prapaipong et al. (2008) studied soil and trees surrounding a primary lead smelter 

in Glover, Missouri (located ~28 miles [45 km] southeast from the Buick smelter) which 

was in operation from 1963 to 2003. The authors found that lead concentrations 

decreased substantially with increasing distance from the smelter. In tree cores, the 
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highest concentrations were not found until samples dated 1975-1990. While within 1.5 

km of the smelter, concentration levels were lower below 30 cm in depth. Their study of 

lead in tree cores yielded results where concentrations were below 0.5 mg/kg for samples 

earlier than 1970, while from 1975 to 1990 there was a significant increase. After 1990, 

the concentrations only increased, with maximum concentrations varying from 1 to 10 

mg/kg.  

With tree cores showing larger amounts of lead present, Prapaipong and 

coworkers suggested the contamination is likely to have come through the roots of the 

tree. If this theory is correct, and roots are tapped into the groundwater, tree cores have 

the potential to point to groundwater lead contamination. However, they cited the source 

of lead within the tree rings most likely to come from the vadose zone and not 

groundwater.  

Since analyses in the current and past studies of the Buick smelter did not go to 

great soil depths, it is beyond our knowledge to know if lead is concentrated at a greater 

depth than the current study spans. Trees would be a valuable way to determine if trace 

metal concentrations are increasing at depth, or how far trace metals have migrated. 
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5. CONCLUSIONS 

 

 In this study, current metal concentrations and their distribution in the soils 

around the Buick Resource Recycling Division smelter were determined. This data was 

compared to previous studies to determine any changes in metal concentrations over 

time. Additionally, analyses on soil mineralogy and soil pH provided information on soil 

properties that may affect metals within the soil. 

 This study used sequential extraction methodology, which had not been used in 

previous studies of the area, to determine trace metal associations and concentrations 

within the soil. Similar to previous studies, total digestions were conducted to determine 

trace metal concentrations. X-Ray Diffraction (XRD) was used to determine clay 

mineralogy and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-

EDS) was used to determine mineral species and trace metal associations. 

Several differences exist when comparing metal concentrations from the current 

study to previous studies conducted in the area. Lead concentrations were lower in the 

current study. Lead was still significantly retained in the upper portions of the soil profile. 

Other trace metals, like cadmium, cobalt, and antimony were variably distributed 

throughout both cores. Concentrations in the Oh horizon decreased as distance from the 

smelter increased. Concentrations of some metals decreased sharply with increasing 

depth in the soil cores.  

Sequential extraction results indicated that the majority of lead is associated with 

iron or manganese oxides, carbonates, and exchangeable ions. Other metals like zinc, 

nickel, and copper were more often associated with organics, sulfides, and any non-
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silicates remaining in the soil. Lead concentrations from total digestions and sequential 

extractions were in agreement.  

Clays were primarily kaolinite. However, smectite, with the ability to sorb metals, 

was present in small amounts. Another clay, potentially a smectite/illite combination, did 

not show expansive properties and could also be a factor limiting metal movement in the 

soil profile. Some quantitative issues existed in clay mineral analysis. SEM results 

indicated lead potentially in association with clays.  

SEM-EDS also suggested the presence of the mineral cerussite. However, there 

were some issues in EDS spectra peaks that prevented a definitive answer as to what lead 

mineral was present. A pH decrease with increasing depth in the soil cores does not 

promote stability of lead and other trace metals through the soil column.  
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APPENDIX A. 

 

PREVIOUS STUDIES DATASETS 
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Table A-1. Lead concentrations (in ppm) from previous studies conducted at or near core 

2 site (0.72 km). 

 

 

 

Table A-2. Nickel concentrations (in ppm) from previous studies conducted at or near 

core 2 site (0.72 km). 

 

 

Depth (in.) Rybacki (2014) Rucker (2000) Bornstein (1989) Butherus (1975)

Oh 4743 13,600 12,166.66 4400

0-1 971 1250 1019.66 49

1-2 473 1010 596.66

2-3 212 170 195.55

3-4 673 170 62.22

4-5 40.3 83 43.66

5-6 13.3 44 33.66

6-7 35.4 40

7-8 20.3

8-9 40.9

9-10 26.8

10-11 17.2

11-12 <10

12-13 <10

13-14 <10

14-15 <10

15-16 <10

Depth (in.) Rybacki (2014) Rucker (2000) Bornstein (1989) Butherus (1975)

Oh 13.0 62.7 28

0-1 <10 12 25.33

1-2 <10 13 18.66

2-3 <10 14 9.66

3-4 <10 16 4.66

4-5 <10 17 2.33

5-6 <10 20 1.66

6-7 <10 21

7-8 <10

8-9 <10

9-10 11.8

10-11 25.0

11-12 19.6

12-13 31.2

13-14 30.5

14-15 41.8

15-16 24.7
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Table A-3. Copper concentrations (in ppm) from previous studies conducted at or near 

core 2 site (0.72 km). 

 

 

 

 

Table A-4. Zinc concentrations (in ppm) from previous studies conducted at or near core 

2 site (0.72 km). 

 

Depth (in.) Rybacki (2014) Rucker (2000) Bornstein (1989) Butherus (1975)

Oh 103 277 38.5 80.0

0-1 29.6 61 31.33 4.8

1-2 17.4 62 23.33

2-3 10.5 48 10.33

3-4 19.5 49 8.66

4-5 <10 49 3.66

5-6 <10 51 1.66

6-7 <10 52

7-8 10.1

8-9 10.8

9-10 15.7

10-11 31.8

11-12 25.4

12-13 36.2

13-14 40.1

14-15 58.9

15-16 42.5

Depth (in.) Rybacki (2014) Rucker (2000) Bornstein (1989) Butherus (1975)

Oh 184 411 526.66 240

0-1 43.2 90.3 523 23.0

1-2 27.7 71.3 430

2-3 26.0 60 326.66

3-4 45.2 73 100.33

4-5 29.7 79 25.66

5-6 19.6 90 24.33

6-7 16.8 94

7-8 17.4

8-9 19.4

9-10 20.2

10-11 28.7

11-12 24.4

12-13 26.8

13-14 24.5

14-15 22.9

15-16 12.3
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Table A-5. Lead concentrations (in ppm) from previous studies conducted at or near core 

4 site (1.55 km). *The 3 and 4 inch intervals were combined 

 

 

 

 

Table A-6. Nickel concentrations (in ppm) from previous studies conducted at or near 

core 4 site (1.55 km). 

 

Depth (in.) Rybacki (2014) Rucker (2000) Bornstein (1989) Butherus (1975)

Oh 4303 14,300 1367 4600

0-1 3235 866 1268 69.0

1-2 577 65 786.66

2-3 74.0 59 43.33

3-4 *3/4 inch 65 21.66

4-5 25.5 77 16.33

5-6 49.9 27 16.66

6-7 22.1 23

7-8 44.8 --

8-9 64.6 29

9-10 32.9 --

10-11 <10 17

11-12 <10 --

12-13 <10 17

13-14 <10

14-15 <10

Depth (in.) Rybacki (2014) Rucker (2000) Bornstein (1989) Butherus (1975)

Oh 16.2 39 24

0-1 11.3 11 24.33

1-2 <10 9 3

2-3 <10 9.9 2.33

3-4 *3/4 inch 12 1.66

4-5 <10 10 <1

5-6 <10 13 <1

6-7 <10 15

7-8 <10 --

8-9 <10 20

9-10 <10 --

10-11 13.4 17

11-12 <10 --

12-13 <10 17

13-14 <10

14-15 <10
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Table A-7. Copper concentrations (in ppm) from previous studies conducted at or near 

core 4 site (1.55 km). 

 

 

 

Table A-8. Zinc concentrations (in ppm) from previous studies conducted at or near core 

4 site (1.55 km). 

 

 

Depth (in.) Rybacki (2014) Rucker (2000) Bornstein (1989) Butherus (1975)

Oh 93.3 247 59 75.0

0-1 62.7 49 57.66 3.8

1-2 22.8 38 3.66

2-3 <10 36 1

3-4 *3/4 inch 40 <1

4-5 <10 41 <1

5-6 <10 41 <1

6-7 <10 44

7-8 13.0 --

8-9 13.0 46

9-10 13.4 --

10-11 13.5 43

11-12 12.5 --

12-13 <10 43

13-14 <10

14-15 <10

Depth (in.) Rybacki (2014) Rucker (2000) Bornstein (1989) Butherus (1975)

Oh 239 531 1970 216

0-1 145 76.2 1738.9 27.0

1-2 51.1 39 73.3

2-3 34.6 36 17.33

3-4 *3/4 inch 37 12.66

4-5 24.4 42 14.33

5-6 28.4 46 12

6-7 32.6 51

7-8 37.6 --

8-9 36.2 57

9-10 37.1 --

10-11 37.1 43

11-12 35.7 --

12-13 23.3 38

13-14 12.5

14-15 15.2
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APPENDIX B. 

 

QUALITY CONTROL DATA 
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Table B-1. 0.1 ppm ICP-OES Quality Control core 2 sequential extractions. Bold 

indicates value used to calculate maximum error percentage. 

 

 

 

 

Table B-2. One ppm ICP-OES Quality Control checks core 2 sequential extractions. 

Bold indicates value used to calculate maximum error percentage. 

 

 

 

 

Table B-3. Ten ppm ICP-OES Quality Control checks core 2 sequential extractions. Bold 

indicates value used to calculate maximum error percentage. 

 

 

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 0.09 0.10 0.09 0.10 0.10 0.10 0.01 0.10 0.18 0.11

Trial 2 0.09 0.10 0.10 0.10 0.10 0.10 0.12 0.11 0.14 0.13

Trial 3 0.09 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.16 0.12

Trial 4 0.10 0.11 0.10 0.11 0.11 0.16 0.12 0.11 0.10 0.10

Average 0.09 0.10 0.10 0.10 0.10 0.12 0.09 0.11 0.15 0.12

Standard Deviation 0.01 0.01 0.01 0.01 0.01 0.03 0.05 0.01 0.03 0.01

Maximum Error % ± 10 % ± 10% ± 10% ± 10% ± 10% ± 60% ± 20% ± 10% ± 80% ± 30%

Zn Fe Co Ni Cu Cd Sb Pb As P Notes

Trial 1 1.03 0.99 1.02 1.03 1.04 1.02 1.07 1.05 1.21 1.03

Trial 2 1.03 1.01 1.04 1.05 1.07 1.05 1.10 1.06 1.22 1.05

Trial 3 1.01 0.98 1.01 1.02 1.04 1.03 1.07 1.03 1.17 1.03

Trial 4 1.04 1.01 1.04 1.06 1.07 1.05 1.11 1.07 1.22 1.08

Trial 5 1.05 1.01 1.04 1.06 1.06 1.04 1.09 1.06 1.22 1.08

Trial 6 1.05 1.02 1.05 1.07 1.06 1.05 1.11 1.07 1.21 1.07

Trial 7 1.06 1.02 1.05 1.07 1.06 1.05 1.09 1.06 1.23 1.08

Trial 8 1.04 1.01 1.04 1.06 1.05 1.03 1.09 1.06 1.19 1.05

Trial 9 1.06 1.04 1.04 1.05 1.06 1.14 1.12 1.08 1.20 1.03

Trial 10 1.04 1.02 1.04 1.05 1.06 1.11 1.09 1.06 1.13 1.04

Trial 11 1.06 1.06 1.07 1.08 1.07 1.67 1.12 1.08 1.16 1.04

Trial 12 1.05 1.04 1.05 1.07 1.06 1.64 1.10 1.07 1.16 1.02

Trial 13 0.93 0.94 0.96 0.97 0.99 1.51 1.00 0.97 1.02 0.94

Trial 14 0.94 0.94 0.96 0.96 0.98 1.51 1.01 0.97 1.10 0.93

Trial 15 0.97 0.99 1.00 1.01 1.03 1.56 1.05 1.01 1.09 0.98

Trial 16 0.99 1.00 1.01 1.02 1.02 1.57 1.05 * * * *Ran out of standard solution

Average 1.02 1.01 1.03 1.04 1.05 1.25 1.08 1.05 1.17 1.03

Standard Deviation 0.04 0.03 0.03 0.04 0.03 0.26 0.04 0.04 0.06 0.05

Maximum Error % ± 7% ± 6% ± 7% ± 8% ± 7% ± 67% ± 12% ± 8% ± 23% ± 8%

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 10.10 9.63 9.96 9.99 10.20 10.20 10.10 10.00 10.30 9.99

Trial 2 10.60 10.10 10.40 10.50 10.50 10.40 10.40 10.40 10.70 10.40

Trial 3 10.70 10.00 10.50 10.50 10.40 10.50 10.30 10.40 10.40 10.20

Trial 4 11.20 10.60 10.70 11.00 10.70 10.60 10.70 10.80 10.80 10.70

Trial 5 11.00 10.50 10.60 10.70 10.60 10.40 10.60 10.70 10.70 10.50

Trial 6 10.50 10.40 10.40 10.50 10.60 16.40 10.40 10.50 10.40 10.20

Trial 7 10.60 10.30 10.50 10.60 10.60 16.20 10.50 10.40 10.50 10.10

Trial 8 9.49 9.55 9.51 9.68 9.90 15.10 9.61 9.56 9.58 9.14

Trial 9 9.97 9.99 10.10 10.20 10.30 15.80 10.20 10.10 9.93 9.77

Average 10.46 10.12 10.30 10.41 10.42 12.84 10.31 10.32 10.37 10.11

Standard Deviation 0.53 0.37 0.38 0.39 0.25 2.90 0.32 0.38 0.39 0.46

Maximum Error % ± 12% ± 6% ± 7% ± 10% ± 7% ± 64% ± 7% ± 8% ± 8% ± 8.6%
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Table B-4. 0.1 ppm ICP-OES Quality Control checks core 4 sequential extractions. Bold 

indicates value used to calculate maximum error percentage. 

 

 

 

Table B-5. One ppm ICP-OES Quality Control checks core 4 sequential extractions. 

Bold indicates value used to calculate maximum error percentage. 

 

 

Table B-6. Ten ppm ICP-OES Quality Control checks core 4 sequential extractions. Bold 

indicates value used to calculate maximum error percentage. 

 

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 0.10 0.10 0.10 0.10 0.10 0.10 0.12 0.10 0.10 0.10

Trial 2 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.11

Trial 3 0.10 0.10 0.09 0.10 0.10 0.07 0.11 0.10 0.16 0.11

Average 0.10 0.10 0.10 0.10 0.10 0.09 0.12 0.10 0.12 0.11

Standard Deviation 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.03 0.01

Maximum Error % ± 10% ± 10 % ± 10% ± 10% ± 10% ± 30% ± 20% ± 10% ± 60% ± 10%

Zn Fe Co Ni Cu Cd Sb Pb As P Notes

Trial 1 1.07 1.06 1.06 1.06 1.06 0.80 1.12 1.08 1.15 1.06

Trial 2 1.06 1.05 1.06 1.07 1.06 1.09 1.13 1.08 1.13 1.05

Trial 3 1.06 1.05 1.06 1.06 1.06 1.09 1.12 1.09 1.11 1.06

Trial 4 1.05 1.05 1.05 1.06 1.05 1.08 1.12 1.08 1.15 1.05

Trial 5 1.03 1.03 1.03 1.04 1.04 1.05 1.10 1.05 1.09 1.03

Trial 6 1.07 1.07 1.06 1.08 1.06 1.08 1.11 1.08 1.18 1.07

Trial 7 1.13 1.12 1.11 1.13 1.11 1.13 1.17 1.13 1.21 1.11

Trial 8 1.12 1.11 1.12 1.11 1.11 1.11 1.15 1.11 1.21 1.09

Trial 9 1.04 1.02 1.02 1.04 1.06 1.07 1.07 1.07 1.24 1.12

Trial 10 1.16 1.06 1.07 1.09 1.02 1.03 1.08 1.12 1.24 1.10

Trial 11 1.04 1.01 1.00 1.02 1.03 1.01 1.08 1.04 1.15 1.01

Trial 12 1.07 1.05 1.04 1.07 1.06 1.05 1.11 1.07 1.20 1.02

Trial 13 1.11 1.08 1.08 1.10 1.08 1.07 1.14 1.10 1.18 1.08

Trial 14 1.01 0.99 0.99 1.01 1.01 0.99 1.07 1.02 1.10 0.99

Trial 15 1.04 1.03 1.02 1.05 1.04 0.74 1.10 1.05 1.03 * *Ran out of Standard Solution

Average 1.07 1.05 1.05 1.07 1.06 1.03 1.11 1.08 1.16 1.06

Standard Deviation 0.04 0.03 0.04 0.03 0.03 0.11 0.03 0.03 0.06 0.04

Maximum Error % ± 16% ± 12% ± 12% ± 13% ± 11% ± 26% ± 17% ± 13% ± 24% ± 12%

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 10.60 10.70 10.50 10.50 10.40 10.60 10.60 10.40 10.40 10.30

Trial 2 10.60 10.30 10.30 10.40 10.30 10.50 10.40 10.30 10.30 10.10

Trial 3 10.80 10.60 10.60 10.70 10.40 10.60 10.70 10.60 10.70 10.40

Trial 4 11.20 10.90 10.90 11.10 10.70 11.10 11.10 11.00 11.10 10.80

Trial 5 11.30 11.10 11.00 11.00 10.90 11.00 11.20 11.00 11.00 10.80

Trial 6 11.00 10.70 10.60 10.80 10.70 10.50 10.60 10.60 10.80 10.40

Trial 7 11.40 10.80 10.80 11.00 10.70 10.50 10.80 10.80 11.00 10.60

Trial 8 11.30 10.90 10.80 10.90 10.70 10.70 10.80 10.80 10.90 10.50

Trial 9 10.40 10.10 10.00 10.20 9.95 9.86 10.20 9.97 10.10 9.78

Trial 10 10.60 10.30 10.20 10.50 10.20 5.78 10.30 10.10 10.20 9.83

Trial 11 11.20 10.90 10.60 10.90 10.70 10.50 10.70 10.30 10.40 10.10

Average 10.95 10.66 10.57 10.73 10.51 10.15 10.67 10.53 10.63 10.33

Standard Deviation 0.36 0.31 0.31 0.29 0.28 1.48 0.31 0.35 0.36 0.35

Maximum Error % ± 14% ± 11% ± 10% ± 11% ± 9% ± 42.2% ± 12% ± 10% ± 11% ± 8%
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Table B-7. ICP-OES analysis of reagent blanks for sequential extractions (in ppm). 

 

 

 

Table B-8. Community Bureau of Reference (BCR) reference material sequential 

extraction results. The letter behind the BCR indicates the extract. 

 

 

 

 

 

 

 

 

 

 

 

 

Zn Fe Co Ni Cu Cd Sb Pb As P

Reagent A 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 -0.03 0.01

Reagent B 0.04 0.04 0.00 0.00 0.00 0.00 0.03 0.00 -0.01 0.01

Reagent C 0.52 0.01 0.00 0.00 0.00 0.00 0.02 0.01 -0.08 0.02

Reagent D 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.02 0.00

BCR-A 

Expected
BCR-A

% 

Change

BCR-C 

Expected
BCR-C

% 

Change

Zn 205 ± 6 223 8.8 Zn 45.7  ± 4 <5.0 -

Ni 15.4 ±  0.9 16.2 5.2 Ni 15.3  ± 0.9 17.5 14.4

Cu 49.3 ±  1.7 51.7 4.9 Cu 55.2  ±  4 76.5 38.6

Cd 7.34 ± 0.35 6 -18.3 Cd 0.27  ±  0.06 <5.0 -

Pb 3.18 ±  0.21 3.2 0.6 Pb 9.3  ± 2 11.1 19.4

BCR-B 

Expected
BCR-B

% 

Change

BCR-D 

Expected
BCR-D

% 

Change

Zn 126  ±  3 106 -15.9 Zn 95  ±  13 55.8 -41.3

Ni 26.6  ± 1.3 31.2 17.3 Ni 41.4  ± 4 36.1 -12.8

Cu 124  ± 3 109 -12.1 Cu 38.5  ± 11.2 41.0 6.5

Cd 3.77  ± 0.28 <4.0 - Cd 0.13 ± 0.08 <10.0 -

Pb 126  ± 3 116 -7.9 Pb 11.0  ± 5.2 <10.0 -



 

 

92 

 

Table B-9. 0.1 ppm ICP-OES Quality Control checks core 2 total digestions. 

 

 

 

 

Table B-10. One ppm ICP-OES Quality Control checks core 2 total digestions. Bold 

indicates value used to calculate maximum error percentage. 

 

 

 

 

Table B-11. Ten ppm ICP-OES Quality Control checks core 2 total digestions. Bold 

indicates value used to calculate maximum error percentage. 

 

 

 

 

Table B-12. ICP-OES analysis (in ppm) of blanks for core 2 total digestions. 

 

 

 

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 0.09 0.11 0.10 0.10 0.10 0.11 0.09 0.11 0.12 0.13

Maximum Error % ± 10% ± 10 % ± 0% ± 0% ± 0% ± 10% ± 10% ± 10% ± 20% ± 30%

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 1.06 1.04 1.03 1.05 1.05 1.04 1.21 1.06 1.34 1.09

Trial 2 1.01 1.02 1.04 1.05 1.07 1.05 1.17 1.07 1.38 1.09

Trial 3 0.99 1.00 1.00 1.03 0.99 1.00 1.11 1.05 1.31 1.07

Trial 4 1.01 0.99 1.01 1.03 1.00 1.02 1.14 1.05 1.32 1.07

Trial 5 1.04 1.20 1.06 1.08 1.07 1.05 1.16 1.09 1.33 1.11

Trial 6 1.03 1.06 1.03 1.07 1.06 1.04 1.18 1.07 1.32 1.09

Trial 7 1.00 1.06 1.03 1.05 1.04 1.01 1.09 1.05 1.39 1.06

Trial 8 0.97 1.01 1.01 1.04 1.04 1.01 1.12 1.03 1.33 1.06

Average 1.01 1.05 1.03 1.05 1.04 1.03 1.15 1.06 1.34 1.08

Standard Deviation 0.03 0.07 0.02 0.02 0.03 0.02 0.04 0.02 0.03 0.02

Maximum Error % ± 6% ± 20% ± 6% ± 8% ± 7% ± 5% ± 21% ± 9% ± 39% ± 11%

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 10.30 10.20 10.20 10.40 10.40 10.10 10.30 10.10 10.50 10.20

Trial 2 10.20 10.30 10.60 10.60 10.60 10.20 10.60 10.30 10.80 10.60

Trial 3 9.99 10.10 10.20 10.30 10.50 10.20 10.40 10.00 10.30 10.30

Average 10.16 10.20 10.33 10.43 10.50 10.17 10.43 10.13 10.53 10.37

Standard Deviation 0.16 0.10 0.23 0.15 0.10 0.06 0.15 0.15 0.25 0.21

Maximum Error % ± 3% ± 3% ± 6% ± 6% ± 6% ± 2% ± 6% ± 3% ± 8% ± 6%

Zn Fe Co Ni Cu Cd Sb Pb As P

BLANK 0.02 0.00 0.00 0.00 0.01 0.01 0.11 0.03 -0.01 0.00
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Table B-13. Community Bureau of Reference (BCR) reference material for total 

digestions core 2 (in ppm). 

 

 

 

Table B-14. Duplicate Quality Control on core 2, 1-2 inches (in ppm). 

 

 

 

 

 

 

 

 

 

 

 

Expected Result % Change

Zn 454 ± 19 302 -33.5

Ni 103 ± 4 99.6 -3.3

Cu 275 ± 13 291 5.8

Cd 11.7 ± 1 <40.0 -

Pb 143 ± 6 154 7.7

Result Duplicate % Change

Zn 27.7 26.8 -3.3

Fe 6319 6522 3.2

Co <10.0 <10.0 -

Ni <10.0 <10.0 -

Cu 17.4 17.9 2.9

Cd <10.0 <10.0 -

Sb 13.2 <10.0 -

Pb 473 454 -4.0

As 19.4 20.6 6.2

P 80.3 79.9 -0.5
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Table B-15. 0.1 ppm ICP-OES Quality Control checks core 4 total digestions. 

 

 

 

 

Table B-16. One ppm ICP-OES Quality Control checks core 4 total digestions. Bold 

indicates value used to calculate maximum error percentage. 

 

 

 

 

Table B-17. Ten ppm ICP-OES Quality Control checks core 4 total digestions. Bold 

indicates value used to calculate maximum error percentage. 

 

 

 

 

Table B-18. ICP-OES analysis (in ppm) of blanks for core 4 total digestions.

 

 

 

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 0.11 0.12 0.11 0.11 0.11 0.11 0.12 0.12 0.18 0.12

Maximum Error % ± 10% ± 20% ± 10% ± 10% ± 10 % ± 10% ± 20% ± 20% ± 80% ± 20%

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 1.03 1.02 1.02 1.04 1.07 0.93 1.11 1.05 1.27 1.03

Trial 2 1.08 1.07 1.06 1.09 1.09 1.08 1.13 1.10 1.27 1.06

Trial 3 1.09 1.05 1.06 1.09 1.09 1.07 1.14 1.09 1.29 1.07

Trial 4 1.11 1.08 1.08 1.10 1.07 0.92 1.10 1.10 1.26 1.09

Trial 5 1.11 1.07 1.06 1.10 1.07 0.71 1.14 1.09 1.27 1.06

Trial 6 1.11 1.09 1.06 1.10 1.08 1.06 1.14 1.11 1.29 1.09

Trial 7 1.12 1.07 1.07 1.10 1.07 1.07 1.13 1.10 1.24 1.09

Average 1.09 1.06 1.06 1.09 1.08 0.98 1.13 1.09 1.27 1.07

Standard Deviation 0.03 0.02 0.02 0.02 0.01 0.14 0.02 0.02 0.02 0.02

Maximum Error % ± 12% ± 9% ± 8% ± 10% ± 9% ± 29% ± 14% ± 11% ± 29% ± 9%

Zn Fe Co Ni Cu Cd Sb Pb As P

Trial 1 11.00 10.60 10.70 10.90 10.70 10.90 10.70 10.60 10.80 10.60

Trial 2 11.00 10.70 10.70 10.90 10.70 10.80 10.80 10.70 11.00 10.70

Trial 3 11.30 10.70 10.70 11.00 10.70 10.90 10.80 10.70 11.00 10.70

Trial 4 11.20 10.70 10.70 10.80 10.60 6.54 10.70 10.70 11.00 10.70

Trial 5 11.40 10.90 10.70 11.10 10.60 10.90 10.80 10.80 11.00 10.90

Trial 6 11.40 10.70 10.70 11.10 10.60 10.50 10.80 10.80 10.90 10.80

Average 11.22 10.72 10.70 10.97 10.65 10.09 10.77 10.72 10.95 10.73

Standard Deviation 0.18 0.10 0.00 0.12 0.05 1.75 0.05 0.08 0.08 0.10

Maximum Error % ± 14% ± 9% ± 7% ± 11% ± 7% ± 34.6% ± 8% ± 8% ± 10% ± 9%

Zn Fe Co Ni Cu Cd Sb Pb As P

BLANK 0.03 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.01
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Table B-19. Community Bureau of Reference (BCR) reference material for total 

digestions core 4 (in ppm). 

 

 

 

Table B-20. Duplicate Quality Control on Core 4, 5-6 inches (in ppm). Duplicate run 

only used 0.25 g of material instead of 0.5 g. 

 

 

 

 

 

 

 

 

 

Expected Result % Change

Zn 454 ± 19 317 -30.2

Ni 103 ± 4 86.2 -16.3

Cu 275 ± 13 239 -13.1

Cd 11.7 ± 1 <40.0 -

Pb 143 ± 6 129 -9.8

Result Duplicate % Change

Zn 28.4 26.0 -8.5

Fe 11,482     10,558     -8.1

Co <10.0 <10.0 -

Ni <10.0 <10.0 -

Cu <10.0 <10.0 -

Cd <10.0 <10.0 -

Sb <10.0 <10.0 -

Pb 49.9 46 -7.8

As <10.0 <10.0 -

P 113 102 -9.7
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SPIKES 

 

Table B-21. One ppm spike of core 4, 6-7 inches Extract C, sequential extraction 

solution. The sample was spiked with standard solution after digestions, but before 

analysis. Spike corrected is the concentration after accounting for dilution and spike 

amount. Sample expected is concentrations obtained from original ICP-OES analysis. 

 

 

 

 

Table B-22. One ppm spike of core 2, 3-4 inches, total digestion solution. The sample 

was spiked with standard solution after digestions, but before analysis. Spike corrected is 

the concentration after accounting for dilution and spike amount. Sample expected is 

concentrations obtained from original ICP-OES analysis. 

 

 

 

 

Table B-23. Five ppm spike of core 4, 5-6 inches, total digestion solution. The sample 

was spiked prior to digestions with standard solution. Spike corrected is the concentration 

after subtracting spike amount. Sample expected is concentrations obtained from original 

ICP-OES analysis. 

 

Zn Fe Co Ni Cu Cd Sb Pb As P

0.24 1.19 0.13 0.11 0.10 0.09 0.13 0.10 0.12 0.10

1.37 10.90 0.28 0.12 -0.04 -0.11 0.29 0.04 0.15 -0.02

0.70 10.90 0.02 0.03 0.05 0.00 0.01 0.13 -0.11 0.21Sample Expected

1:10 Spike (1 ppm)

Spike Corrected

Zn Fe Co Ni Cu Cd Sb Pb As P

1.0 39.5 0.9 1.1 1.2 1.1 1.2 4.2 1.5 1.7

1 78 0.8 1.2 1.4 1.2 1.4 7.4 2 2.4

0.5 73.1 0.0 0.1 0.2 0.0 0.0 6.7 0.1 1.1Sample Expected

 1:2 Spike (1 ppm)

Spike Corrected

Zn Fe Co Ni Cu Cd Sb Pb As P

5.9 115 5.3 5.4 5.3 5.5 2.9 5.9 5.6 6.6

0.9 110 0.3 0.4 0.3 0.5 -2.1 0.9 0.6 1.6

0.3 115 0.0 0.1 0.1 0.0 0.0 0.5 -0.1 1.1

Spike (5 ppm)

Spike Corrected

Sample Expected
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Table B-24.  ICP-OES Quality Control for manganese analysis. Maximum error 

percentage calculated off bolded value. 

 

 

 

Table B-25.  ICP-OES analysis of reagents for manganese (in ppm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1 ppm 1 ppm 10 ppm

Trial 1 -0.06 0.88 10.50

Trial 2 -0.06 0.91 10.90

Trial 3 -0.06 0.88 10.80

Trial 4 -0.07 0.88 10.60

Trial 5 -0.06 0.88 10.80

Trial 6 -0.06 0.91 10.60

Trial 7 -0.06 0.90 10.70

Trial 8 0.94 11.00

Trial 9 0.95 11.10

Trial 10 0.89 10.50

Trial 11 0.91 10.90

Trial 12 0.86 10.80

Trial 13 0.94 11.60

Trial 14 0.95 11.30

Trial 15 0.96 10.90

Average 0.91 10.87

Standard Deviation 0.03 0.30

Maximum Error % ± 14% ± 16%

Reagent A -0.17

Reagent B -0.17

Reagent C -0.17

Reagent D -0.17

Total Digestions -0.17
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APPENDIX C. 

 

SEQUENTIAL EXTRACTION DATASETS 
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Reagents used for each extract. Refer to Witt et al. (2014) on how to prepare 

reagents. 

 

Reagent A: 0.11 mol/L acetic acid 

Reagent B: 0.5 mol/L hydroxylammonium hydrochloride (made using 2 mol/L HNO3) 

Reagent C: 8.8 mol/L hydrogen peroxide (1.0 mol/L ammonium acetate added after 

evaporation) 

Reagent D: 3 HCl:1 HNO3 (1 mol/L HNO3 added after evaporation) 
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Table C-1. Soil weight and dilution corrected dataset for Core 2, Sequential Extract A (in 

ppm). Red values indicate values that can reflect error due to manganese quality control 

results.  

 

 

 

 

Table C-2. Soil weight and dilution corrected dataset for Core 2, Sequential Extract B (in 

ppm). Red values indicate values that can reflect error due to manganese quality control 

results. 

 

 

 

 

 

 

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh <16.0 <16.0 <16.0 <16.0 29.4 <16.0 <16.0 2218 34.3 49.3 39.9

0-1 11.1 11.8 <4.0 <4.0 8.8 <4.0 <4.0 460 8.8 6.0 20.8

1-2 5.7 9.8 <4.0 <4.0 4.9 <4.0 <4.0 231 4.9 <4.0 11.6

2-3 4.1 21.2 <4.0 <4.0 <4.0 <4.0 <4.0 109 <4.0 <4.0 26.8

3-4 7.2 5.1 <4.0 <4.0 5.2 <4.0 <4.0 382 6.4 5.1 69.6

4-5 5.1 19.7 <4.0 <4.0 <4.0 <4.0 <4.0 16.0 <4.0 <4.0 38.5

5-6 <4.0 13.6 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0

6-7 <4.0 21.2 <4.0 <4.0 <4.0 <4.0 <4.0 12.6 <4.0 <4.0 <4.0

8-9 <4.0 20.5 <4.0 <4.0 <4.0 <4.0 <4.0 15.4 <4.0 <4.0 <4.0

10-11 8.0 18.6 <4.0 <4.0 <4.0 <4.0 <4.0 6.0 <4.0 <4.0 <4.0

12-13 12.5 6.5 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0

14-15 12.2 4.8 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 13.8 618 <4.0 <4.0 31.8 <4.0 <4.0 2756 19.1 43.1 36.5

0-1 <4.0 736 <4.0 <4.0 8.4 <4.0 <4.0 428 7.3 9.3 17.7

1-2 <4.0 526 <4.0 <4.0 5.1 <4.0 <4.0 200 7.6 4.9 11.3

2-3 <4.0 487 <4.0 <4.0 <4.0 <4.0 <4.0 76.7 5.0 4.7 11.0

3-4 <4.0 409 <4.0 <4.0 5.0 <4.0 <4.0 268 8.0 7.1 34.4

4-5 <4.0 304 <4.0 <4.0 <4.0 <4.0 <4.0 17.7 <4.0 3.9 <4.0

5-6 <4.0 218 <4.0 <4.0 <4.0 <4.0 <4.0 5.8 <4.0 <4.0 <4.0

6-7 <4.0 241 <4.0 <4.0 <4.0 <4.0 <4.0 18.7 <4.0 <4.0 <4.0

8-9 <4.0 317 <4.0 <4.0 <4.0 <4.0 <4.0 18.3 <4.0 <4.0 8.5

10-11 <4.0 253 <4.0 <4.0 <4.0 <4.0 <4.0 9.6 <4.0 <4.0 <4.0

12-13 <4.0 160 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0

14-15 <4.0 204 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0
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Table C-3. Soil weight and dilution corrected dataset for Core 2, Sequential Extract C (in 

ppm).  

 

 

 

 

Table C-4. Soil weight and dilution corrected dataset for Core 2, Sequential Extract D (in 

ppm).  

 

 

 

 

 

 

 

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 53.4 266 <5.0 <5.0 22.0 <5.0 <5.0 247 <5.0 49.7 <5.0

0-1 37.4 227 <5.0 <5.0 5.1 <5.0 <5.0 84.0 <5.0 31.2 <5.0

1-2 31.6 224 <5.0 <5.0 <5.0 <5.0 <5.0 47.9 <5.0 20.7 <5.0

2-3 31.9 208 <5.0 <5.0 <5.0 <5.0 <5.0 17.9 <5.0 20.5 <5.0

3-4 35.6 170 <5.0 <5.0 <5.0 <5.0 <5.0 44.4 <5.0 28.3 <5.0

4-5 34.5 164 <5.0 <5.0 <5.0 <5.0 <5.0 5.5 <5.0 14.7 <5.0

5-6 28.2 171 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 8.4 <5.0

6-7 27.8 267 <5.0 <5.0 <5.0 <5.0 <5.0 5.3 <5.0 8.7 <5.0

8-9 27.4 241 <5.0 <5.0 <5.0 <5.0 <5.0 7.7 <5.0 7.8 <5.0

10-11 29.1 484 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0

12-13 25.3 583 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0

14-15 26.8 705 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 133 5684 6.2 10.6 27.0 <5.0 <5.0 82.3 <5.0 58.8 51.1

0-1 24.4 5351 <5.0 5.6 8.7 <5.0 <5.0 16.3 <5.0 51.0 54.5

1-2 21.2 4356 <5.0 5.2 6.1 <5.0 <5.0 9.3 <5.0 32.7 55.5

2-3 21.1 5890 <5.0 6.0 5.2 <5.0 <5.0 <5.0 <5.0 46.0 62.4

3-4 33.9 5356 <5.0 6.7 8.2 <5.0 <5.0 10.1 <5.0 39.5 63.6

4-5 23.8 6422 <5.0 6.6 5.5 <5.0 <5.0 <5.0 <5.0 41.4 68.1

5-6 18.2 6245 <5.0 6.6 5.4 <5.0 <5.0 <5.0 <5.0 29.7 68.9

6-7 18.6 7605 <5.0 7.4 6.5 <5.0 <5.0 <5.0 <5.0 33.2 76.1

8-9 18.8 10,313   <5.0 8.8 8.3 <5.0 <5.0 <5.0 <5.0 41.1 76.0

10-11 21.9 29,283   <5.0 25.6 27.6 <5.0 <5.0 <5.0 <5.0 101 128

12-13 17.0 27,667   <5.0 30.5 31.6 <5.0 <5.0 <5.0 <5.0 50.8 135

14-15 14.0 54,601   <5.0 43.0 53.1 <5.0 <5.0 <5.0 <5.0 109 244
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Table C-5. Soil weight and dilution corrected dataset for Core 4, Sequential Extract A (in 

ppm). Red values indicate values that can reflect error due to manganese quality control 

results. 

 

 

 

 

Table C-6. Soil weight and dilution corrected dataset for Core 4, Sequential Extract B (in 

ppm). Red values indicate values that can reflect error due to manganese quality control 

results. 

 

 

 

 

 

 

 

 

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 43.6 6.1 <4.0 <4.0 <4.0 4.4 <4.0 138 <4.0 60.2 497

0-1 40.7 8.5 <4.0 <4.0 <4.0 4.7 <4.0 389 4.3 24.8 168

1-2 12.7 8.3 <4.0 <4.0 4.4 <4.0 <4.0 184 <4.0 4.8 91.3

2-4 6.2 4.2 <4.0 <4.0 <4.0 <4.0 <4.0 13.3 <4.0 <4.0 88.8

4-5 4.1 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 5.4 <4.0 <4.0 39.2

5-6 5.5 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 14.8 <4.0 <4.0 15.3

6-7 5.7 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 6.4 <4.0 <4.0 <4.0

8-9 7.1 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 18.4 <4.0 <4.0 30.3

10-11 5.5 5.6 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0

12-13 <4.0 6.5 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0

14-15 <4.0 5.8 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 51.3 721 4.3 5.8 6.1 5.5 <4.0 3451 14.8 34.7 640

0-1 20.9 1156 <4.0 <4.0 12.8 <4.0 <4.0 2476 13.3 27.2 234

1-2 6.7 1155 <4.0 <4.0 7.5 <4.0 <4.0 362 6.4 11.2 231

2-4 4.0 718 <4.0 <4.0 <4.0 <4.0 <4.0 50.5 <4.0 3.7 225

4-5 <4.0 452 <4.0 <4.0 <4.0 <4.0 <4.0 16.4 <4.0 <4.0 105

5-6 <4.0 308 <4.0 <4.0 <4.0 <4.0 <4.0 28.0 <4.0 <4.0 36.7

6-7 <4.0 382 <4.0 <4.0 <4.0 <4.0 <4.0 16.2 <4.0 <4.0 9.8

8-9 <4.0 690 <4.0 <4.0 <4.0 <4.0 <4.0 45.0 <4.0 <4.0 67.8

10-11 <40 993 <40 <40 <40 <40 <40 <40 <40 <40 6.4

12-13 <4.0 453 <4.0 <4.0 <4.0 <4.0 <4.0 7.5 <4.0 <4.0 <4.0

14-15 <4.0 454 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 6.4
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Table C-7. Soil weight and dilution corrected dataset for Core 4, Sequential Extract C (in 

ppm). Red values indicate values that can reflect error due to manganese quality control 

results. 

 

 

 

 

Table C-8. Soil weight and dilution corrected dataset for Core 4, Sequential Extract D (in 

ppm).  

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 100 1123 <5.0 <5.0 63.1 <5.0 <5.0 569 7.9 163 18.7

0-1 51.8 436 <5.0 <5.0 18.3 <5.0 <5.0 224 <5.0 116 <5.0

1-2 39.5 361 <5.0 <5.0 <5.0 <5.0 <5.0 39.0 <5.0 51.6 6.8

2-4 29.1 334 <5.0 <5.0 <5.0 <5.0 <5.0 7.3 <5.0 23.3 10.4

4-5 28.4 248 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 16.7 <5.0

5-6 28.7 338 <5.0 <5.0 <5.0 <5.0 <5.0 7.7 <5.0 12.4 <5.0

6-7 33.7 529 <5.0 <5.0 <5.0 <5.0 <5.0 6.2 <5.0 10.0 <5.0

8-9 32.7 523 <5.0 <5.0 <5.0 <5.0 <5.0 11.3 <5.0 12.2 10.9

10-11 31.0 699 <5.0 <5.0 <5.0 <5.0 <5.0 4.9 <5.0 7.7 8.4

12-13 31.0 601 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 7.8 <5.0

14-15 26.6 503 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 5.5 <5.0

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 80.5 6025 <5.0 8.0 23.1 <5.0 <5.0 102 <5.0 173 42.4

0-1 79.7 6728 <5.0 8.2 24.9 <5.0 <5.0 34.7 <5.0 131 66.0

1-2 29.4 6202 <5.0 5.4 7.2 <5.0 <5.0 <5.0 <5.0 66.5 62.8

2-4 38.8 8934 <5.0 6.2 <5.0 <5.0 <5.0 <5.0 <5.0 30.3 72.1

4-5 35.1 11,944 <5.0 5.6 <5.0 <5.0 <5.0 <5.0 <5.0 44.1 77.6

5-6 23.2 8233 <5.0 7.1 5.1 <5.0 <5.0 <5.0 <5.0 41.6 84.5

6-7 25.8 13,200 <5.0 8.0 6.3 <5.0 <5.0 <5.0 <5.0 69.9 97.5

8-9 31.2 16,391 <5.0 9.7 8.0 <5.0 <5.0 <5.0 <5.0 90.7 107

10-11 36.8 19,933 <5.0 11.0 9.2 <5.0 <5.0 <5.0 <5.0 69.5 115

12-13 23.0 13,848 <5.0 10.1 6.5 <5.0 <5.0 <5.0 <5.0 51.6 99.0

14-15 14.8 9072 <5.0 7.5 5.1 <5.0 <5.0 <5.0 <5.0 13.7 92.0
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Table C-9. Breakdown of lead distribution between extracts in core 2. 

 

 

 

 

Table C-10. Breakdown of zinc distribution between extracts in core 2. 

 

 

 

 

 

Depth 

(inches)

Total SE 

Pb (ppm)

Extract A 

Pb (ppm)

% of 

Total in 

Extract A

Extract B 

Pb (ppm)

% of 

Total in 

Extract B

Extract C 

Pb (ppm)

% of 

Total in 

Extract C

Extract D 

Pb (ppm)

% of 

Total in 

Extract D

Oh 5303 2218 41.8 2756 52.0 247 4.7 82.3 1.6

0-1 988 460 46.5 428 43.3 84.0 8.5 16.3 1.6

1-2 488 231 47.3 200 41.0 47.9 9.8 9.3 1.9

2-3 204 109 53.5 76.7 37.7 17.9 8.8 <5.0 --

3-4 705 382 54.2 268 38.0 44.4 6.3 10.1 1.4

4-5 39.2 16.0 40.8 17.7 45.2 5.5 14.0 <5.0 --

5-6 5.8 <0.1 -- 5.8 100.0 <5.0 -- <5.0 --

6-7 36.6 12.6 34.4 18.7 51.1 5.3 14.5 <5.0 --

8-9 41.4 15.4 37.2 18.3 44.2 7.7 18.6 <5.0 --

10-11 15.6 6.0 38.5 9.6 61.5 <5.0 -- <5.0 --

12-13 -- <4.0 -- <4.0 -- <5.0 -- <5.0 --

14-15 -- <4.0 -- <4.0 -- <5.0 -- <5.0 --

Depth 

(inches)

Total SE 

Zn (ppm)

Extract A 

Zn (ppm)

% of 

Total in 

Extract A

Extract B 

Zn (ppm)

% of 

Total in 

Extract B

Extract C 

Zn (ppm)

% of 

Total in 

Extract C

Extract D 

Zn (ppm)

% of 

Total in 

Extract D

Oh 200.2 <16.0 -- 13.8 6.9 53.4 26.7 133 66.4

0-1 72.9 11.1 15.2 <4.0 -- 37.4 51.3 24.4 33.5

1-2 58.5 5.7 9.7 <4.0 -- 31.6 54.0 21.2 36.2

2-3 57.1 4.1 7.2 <4.0 -- 31.9 55.9 21.1 37.0

3-4 76.7 7.2 9.4 <4.0 -- 35.6 46.4 33.9 44.2

4-5 63.4 5.1 8.0 <4.0 -- 34.5 54.4 23.8 37.5

5-6 46.4 <4.0 -- <4.0 -- 28.2 60.8 18.2 39.2

6-7 46.4 <4.0 -- <4.0 -- 27.8 59.9 18.6 40.1

8-9 46.2 <4.0 -- <4.0 -- 27.4 59.3 18.8 40.7

10-11 59.0 8.0 13.6 <4.0 -- 29.1 49.3 21.9 37.1

12-13 54.8 12.5 22.8 <4.0 -- 25.3 46.2 17.0 31.0

14-15 53.0 12.2 23.0 <4.0 -- 26.8 50.6 14.0 26.4
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Table C-11. Breakdown of copper distribution between extracts in core 2. 

 

 

 

 

Table C-12. Breakdown of lead distribution between extracts in core 4. 

 

 

 

 

 

Depth 

(inches)

Total SE 

Cu (ppm)

Extract A 

Cu (ppm)

% of 

Total in 

Extract A

Extract B 

Cu (ppm)

% of 

Total in 

Extract B

Extract C 

Cu (ppm)

% of 

Total in 

Extract C

Extract D 

Cu (ppm)

% of 

Total in 

Extract D

Oh 110.2 29.4 26.7 31.8 28.9 22.0 20.0 27.0 24.5

0-1 31.0 8.8 28.4 8.4 27.1 5.1 16.5 8.7 28.1

1-2 16.1 4.9 30.4 5.1 31.7 <5.0 -- 6.1 37.9

2-3 5.2 <4.0 -- <4.0 -- <5.0 -- 5.2 100.0

3-4 18.4 5.2 28.3 5.0 27.2 <5.0 -- 8.2 44.6

4-5 5.5 <4.0 -- <4.0 -- <5.0 -- 5.5 100.0

5-6 5.4 <4.0 -- <4.0 -- <5.0 -- 5.4 100.0

6-7 6.5 <4.0 -- <4.0 -- <5.0 -- 6.5 100.0

8-9 8.3 <4.0 -- <4.0 -- <5.0 -- 8.3 100.0

10-11 27.6 <4.0 -- <4.0 -- <5.0 -- 27.6 100.0

12-13 31.6 <4.0 -- <4.0 -- <5.0 -- 31.6 100.0

14-15 53.1 <4.0 -- <4.0 -- <5.0 -- 53.1 100.0

Depth 

(inches)

Total SE 

Pb (ppm)

Extract A 

Pb (ppm)

% of 

Total in 

Extract A

Extract B 

Pb (ppm)

% of 

Total in 

Extract B

Extract C 

Pb (ppm)

% of 

Total in 

Extract C

Extract D 

Pb (ppm)

% of 

Total in 

Extract D

Oh 4260 138 3.2 3451 81.0 569 13.4 102 2.4

0-1 3123.7 389 12.5 2476 79.3 224 7.2 34.7 1.1

1-2 585 184 31.5 362 61.9 39.0 6.7 <5.0 --

2-4 71.1 13.3 18.7 50.5 71.0 7.3 10.3 <5.0 --

4-5 21.8 5.4 24.8 16.4 75.2 <5.0 -- <5.0 --

5-6 50.5 14.8 29.3 28.0 55.4 7.7 15.2 <5.0 --

6-7 28.8 6.4 22.2 16.2 56.3 6.5 22.6 <5.0 --

8-9 74.7 18.4 24.6 45.0 60.2 11.3 15.1 <5.0 --

10-11 4.9 <4.0 -- <40 -- 4.9 100.0 <5.0 --

12-13 7.5 <4.0 -- 7.5 100.0 <5.0 -- <5.0 --

14-15 -- <4.0 -- <4.0 -- <5.0 -- <5.0 --
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Table C-13. Breakdown of zinc distribution between extracts in core 4. 

 

 

 

 

Table C-14. Breakdown of copper distribution between extracts in core 4. 

 
 

 

 

 

Depth 

(inches)

Total SE 

Zn (ppm)

Extract A 

Zn (ppm)

% of 

Total in 

Extract A

Extract B 

Zn (ppm)

% of 

Total in 

Extract B

Extract C 

Zn (ppm)

% of 

Total in 

Extract C

Extract D 

Zn (ppm)

% of 

Total in 

Extract D

Oh 275.7 43.6 15.8 51.3 18.6 100.3 36.4 80.5 29.2

0-1 193.1 40.7 21.1 20.9 10.8 51.8 26.8 79.7 41.3

1-2 88.3 12.7 14.4 6.7 7.6 39.5 44.7 29.4 33.3

2-4 78.1 6.2 7.9 4.0 5.1 29.1 37.3 38.8 49.7

4-5 67.6 4.1 6.1 <4.0 -- 28.4 42.0 35.1 51.9

5-6 57.4 5.5 9.6 <4.0 -- 28.7 50.0 23.2 40.4

6-7 65.2 5.7 8.7 <4.0 -- 33.7 51.7 25.8 39.6

8-9 71 7.1 10.0 <4.0 -- 32.7 46.1 31.2 43.9

10-11 73.3 5.5 7.5 <40 -- 31.0 42.3 36.8 50.2

12-13 54 <4.0 -- <4.0 -- 31.0 57.4 23.0 42.6

14-15 41.4 <4.0 -- <4.0 -- 26.6 64.3 14.8 35.7

Depth 

(inches)

Total SE 

Cu 

(ppm)

Extract A 

Cu (ppm)

% of 

Total in 

Extract A

Extract B 

Cu (ppm)

% of 

Total in 

Extract B

Extract C 

Cu (ppm)

% of 

Total in 

Extract C

Extract D 

Cu (ppm)

% of 

Total in 

Extract D

Oh 92.3 <4.0 -- 6.1 6.6 63.1 68.4 23.1 25.0

0-1 56 <4.0 -- 12.8 22.9 18.3 32.7 24.9 44.5

1-2 19.1 4.4 23.0 7.5 39.3 <5.0 -- 7.2 37.7

2-4 -- <4.0 -- <4.0 -- <5.0 -- <5.0 --

4-5 -- <4.0 -- <4.0 -- <5.0 -- <5.0 --

5-6 5.1 <4.0 -- <4.0 -- <5.0 -- 5.1 100.0

6-7 6.3 <4.0 -- <4.0 -- <5.0 -- 6.3 100.0

8-9 8 <4.0 -- <4.0 -- <5.0 -- 8.0 100.0

10-11 9.2 <4.0 -- <40 -- <5.0 -- 9.2 100.0

12-13 6.5 <4.0 -- <4.0 -- <5.0 -- 6.5 100.0

14-15 5.1 <4.0 -- <4.0 -- <5.0 -- 5.1 100.0
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APPENDIX D. 

 

TOTAL DIGESTION DATASETS 
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Table D-1. Soil weight and dilution corrected dataset for Core 2 Total Digestions (in 

ppm). Red values indicate values that can reflect error due to manganese quality control 

results. 

 

 

 

 

 

Table D-2. Soil weight and dilution corrected dataset for Core 4 Total Digestions (in 

ppm). Red values indicate values that can reflect error due to manganese quality control 

results. 

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 184 5939 <10 13.0 103 <10 <10 4743 42.0 186 95.3

0-1 43.2 6121 <10 <10 29.6 <10 <10 971 19.2 96.0 61.8

1-2 27.7 6319 <10 <10 17.4 <10 13.2 473 19.4 80.3 48.8

2-3 26.0 7368 <10 <10 10.5 <10 <10 212 <10 89.2 70.2

3-4 45.2 7295 <10 <10 19.5 <10 <10 673 <10 110 128

4-5 29.7 8227 <10 <10 <10 <10 <10 40.3 <10 90.3 73.6

5-6 19.6 9536 <10 <10 <10 <10 <10 13.3 <10 79.7 39.5

6-7 16.8 10,247 <10 <10 <10 <10 <10 35.4 <10 93.6 47.5

7-8 17.4 12,488 <10 <10 10.1 <10 <10 20.3 <10 95.7 47.0

8-9 19.4 13,182 <10 <10 10.8 <10 <10 40.9 <10 94.9 70.1

9-10 20.2 17,176 <10 11.8 15.7 <10 <10 26.8 <10 105 65.1

10-11 28.7 31,836 <10 25.0 31.8 <10 <10 17.2 <10 126 115

11-12 24.4 25,769 <10 19.6 25.4 <10 <10 <10 <10 116 95.0

12-13 26.8 35,679 <10 31.2 36.2 <10 <10 <10 <10 123 124

13-14 24.5 40,487 <10 30.5 40.1 <10 <10 <10 <10 113 157

14-15 22.9 61,951 <10 41.8 58.9 <10 <10 <10 <10 121 255

15-16 12.3 48,951 <10 24.7 42.5 <10 <10 <10 <10 94.2 68.7

Depth (in.) Zn Fe Co Ni Cu Cd Sb Pb As P Mn

Oh 239 7159 <20 16.2 93.3 11.5 16.1 4303 36.1 410 N/A

0-1 145 8037 <10 11.3 62.7 <10 <10 3235 31.5 310 457

1-2 51.1 7700 <10 <10 22.8 <10 <10 577 10.4 145 360

2-4 34.6 8475 <10 <10 <10 <10 <10 74.0 18.5 116 360

4-5 24.4 8815 <10 <10 <10 <10 <10 25.5 <10 104 191

5-6 28.4 11,482 <10 <10 <10 <10 <10 49.9 <10 113 111

6-7 32.6 14,891 <10 <10 <10 <10 <10 22.1 <10 126 85.0

7-8 37.6 19,096 <10 <10 13.0 <10 <10 44.8 <10 159 114

8-9 36.2 17,946 <10 <10 13.0 <10 <10 64.6 <10 163 184

9-10 37.1 21,800 <10 <10 13.4 <10 <10 32.9 <10 178 149

10-11 37.1 23,914 <10 13.4 13.5 <10 <10 <10 <10 170 108

11-12 35.7 22,714 <10 <10 12.5 <10 <10 <10 <10 161 101

12-13 23.3 16,976 <10 <10 <10 <10 <10 <10 <10 119 75.3

13-14 12.5 13,208 <10 <10 <10 <10 <10 <10 <10 59.4 53.6

14-15 15.2 14,955 <10 <10 <10 <10 <10 <10 <10 59.5 73.7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX E. 

 

X-RAY DIFFRACTION (XRD) RESULTS 
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XRD Quantification Equations (Laboratory Procedure) 
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APPENDIX F. 

 

pH DATASET AND QUALITY CONTROL 
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Table F-1. Table of pH values. 

 

 

 

Table F-2. Quality Control for pH testing. 

         AVG 

pH Standard 

Average (4)* 
3.98 4.00 3.98 3.98 3.98 4.01 4.00 4.00 3.99 

pH Standard 

Average (7)* 
6.94 6.99 6.96 6.95 6.95 7.00 6.99 6.99 6.97 

* Standards were run before and after the soil samples. These values reflect the average of the two. 

 

Standard Deviation of 

pH Standards (Days 1-8) 

4.00 ± 0.01 

7.00 ± 0.02 

    Standard Deviation of 

pH Standards (1 Day) 

4.00 ± 0.00 

7.00 ± 0.01 

 

 

 

Sample ID Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

Average 

pH of 

Days 6-8

Core 2, Oh-1" 4.98 5.20 5.12 5.09 5.15 5.20 5.18 5.23 5.20

Core 2, 3-5" 4.47 4.43 4.50 4.42 4.32 4.29 4.29 4.36 4.31

Core 2, 7-9" 4.21 3.98 3.96 3.92 3.82 3.82 3.78 3.85 3.82

Core 2, 11-13" 4.29 4.17 4.11 3.99 3.84 3.80 3.77 3.83 3.80

Core 2, 14-16" 3.85 4.01 3.96 3.95 3.89 3.87 3.91 3.90 3.89

Core 4, 0-2" 4.80 4.94 4.93 5.21 5.45 5.93 5.89 6.02 5.95

Core 4, 4-6" 4.22 4.16 3.94 3.92 3.93 3.88 3.94 3.96 3.93

Core 4, 7-9" 3.97 4.04 3.90 3.87 3.91 3.86 3.91 3.91 3.89

Core 4, 10-12" 4.34 4.29 3.85 3.81 3.80 3.82 3.80 3.86 3.83

Core 4, 13-15" 3.95 4.06 3.91 3.88 3.83 3.89 3.86 3.93 3.89

DIW Blank 6.77 5.30 5.58 5.32 5.48 6.34 6.64 7.03 6.67

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

pH Before (4) 4.01 4.01 4.00 3.99 3.98 4.00 4.00 4.02

pH After (4) 3.95 3.99 3.96 3.97 3.98 4.01 3.99 3.98

pH Before (7) 6.97 7.00 6.98 6.97 6.96 7.00 7.00 6.97

pH After (7) 6.90 6.98 6.94 6.92 6.93 7.00 6.97 7.01
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