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ABSTRACT 

As the complexity of multi-component products increases the quality of these 

products becomes increasingly difficult to control. The first step to manufacturing a 

quality product is making sure that the components of the product meet specifications. 

Product quality can be controlled through sampling inspection of the components. Two 

models were developed in this research to determine the optimal sampling levels for 

incoming lots containing parts for production and assembly of multi-component systems. 

The main objective of the first model is to minimize the expected cost that is associated 

with a nonconforming item reaching assembly. In this model the time available for 

inspection is limited. The main objective in the second model is to minimize total cost, 

which includes the appraisal cost (inspection cost) and the cost associated with 

nonconformance reaching assembly. In this model the time available is not a constraint. 

The distribution of defects is assumed to follow the binomial distribution, and the 

distribution of accepting the lot with defects follows the hypergeometric distribution. In 

addition, the inspection is considered to be accurate and, if a nonconforming item is 

found in the inspected sample, the entire lot is rejected. An example is given with real 

world data and the results are discussed. 
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NOMENCLATURE 

Symbol  Description 

I = {i| i= 1, 2, …, M}  index set of parts considered by inspections 

ti   units of time needed to inspect a single item of part i 

Ni   total number of items in the lot for part i (lot size) 

di   probability of a defective item in the lot for part i (defect rate) 

Di   total number of defective items in the lot i 

Ci   cost of a nonconforming item reaching assembly for part i 

CL   cost of labor per unit of time 

T   total time available for inspection 

P(Di) probability of having Di number of defect following binomial 

distribution 

P(Ni,Di,ni) probability of accepting the lot with Di number of defects after 

inspecting ni number of items following hypergeometric 

distribution 

ni   the number of items to be inspected for part i 

 

 



 

 

1.  INTRODUCTION 

 Multi-component systems have become an everyday life occurrence and many 

depend on them for the simplest things in their lives. Therefore, the quality of these 

systems is very important to the customer and to the manufacturer. One of the ways that 

the companies can control the quality of their product is to perform sampling inspection 

on incoming lots on the parts that make the multi-component system. 

 In order to learn what has already been researched in the field of sampling 

inspection Paper I covers the current literature review in sampling inspection. It looks 

into allocation of inspection stations in multi-stage manufacturing process, which 

provides certain quality control, as well as sampling inspection of multi-component 

systems. It also gives several different approaches of solving the problem with various 

different assumptions. 

 This research focuses on sampling inspection of incoming lots. Some companies 

do not have the resources to perform inspection that would guarantee that the 

nonconforming items are reaching assembly; therefore, they must balance inspection with 

the provided resources. Paper II covers the model that assumes that the time to inspect the 

incoming lots is limited. Meaning that the company has to determine the optimal 

sampling strategy within the time frame (available resources) they have designated for 

inspection. The model developed in this paper is set to minimize the total expected cost 

associated with a nonconforming item reaching assembly by creating an optimal 

sampling level. 

 However, some companies are able to expand their resources, for instance hiring 

more people or outside services to inspect the incoming lots. Paper III visits this 

assumption and the model developed in this paper minimizes the total cost of quality 

control. In this model, the cost of inspection is included and the cost associated with a 

nonconforming item reaching assembly. In order to achieve this, the model suggests the 

optimal sampling levels. 
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PAPER 

 

I. A REVIEW OF THE CURRENT LITERATURE IN INSPECTION 

SAMPLING OPTIMIZATION 

Zlatan Hamzic, Elizabeth A. Cudney, and Ruwen Qin 

Missouri University of Science and Technology 

Rolla, MO 

 

Abstract 

This paper reviews the literature on the optimization of inspection sampling. 

Inspection sampling is critical to the prevention of nonconformance from reaching 

production. Optimization can be used to determine a sampling strategy yielding the best 

tradeoff between the risks of nonconformance and the sampling costs for avoiding the 

risks. This paper performs a literature review on the research that contributes to this 

problem and, accordingly, recommends a few research directions to the solution. Areas of 

research reviewed in this paper include economics of quality inspection, probabilistic risk 

models, inspection sampling, statistical models of inspection sampling, cost optimization, 

and inspection versus reliability. 

 

Keywords 

Sampling inspection, inspection optimization, quality engineering, cost optimization, 

quality control 
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1. INTRODUCTION 

The products that are manufactured today have become more complex than those 

in the past. In industries, such as aerospace, electronic, automotive, heavy equipment 

industry, and off highway vehicle the number of parts that are included in the final 

product has increased and the number of process steps has also increased dramatically. 

Therefore, the quality in modern industry has become increasingly difficult to control.  

The quality of a product corresponds to the durability and reliability of it, and 

impacts the safety of the customers using the product. Therefore, quality is a very 

important aspect in today’s manufacturing. Competition is a reason for maintaining the 

high quality of the product. If the customer cannot choose a different product, the 

manufacturer can easily disregard the quality control of the product. Therefore, the 

manufacturer can save on quality control [1]. In order to know how much the quality of 

the product plays a part in consumer interest, it is important to quantify how customers 

respond and value quality improvements. These measures can then help price the 

products [2]. 

If quality concerns the consumers, quality inspection needs to be performed. But 

how much inspection is needed? Too little inspection could result in a nonconformance 

reaching the customer. This might result in penalty costs such as shipping charges, loss of 

faith in the product, or even lawsuits. All of these costs will drive up the total cost of the 

product. If the company performs a 100% inspection, it would cause the product to, 

again, have a high total cost [3]. Therefore, an optimal inspection strategy is needed in 

order to minimize the total cost while being able to guarantee a certain level of quality. In 

order to minimize the total cost, an optimal trade-off between the appraisal cost, which is 

the cost that is generated from doing quality control, and the prevention cost, which is the 

cost that is generated from preventing the defects from reaching the consumer, must be 

established to lower the failure cost and, therefore, the total cost. One of the main issues 

is the attitude of management and what they perceive as cost of quality and if it is 

relevant at all [4]. Researchers then turned to determine the optimal tradeoff between 

inspection cost and penalty cost such that the total cost is minimized. 
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This paper aims at defining the current status of the optimization of inspection 

sampling through reviewing relevant literature. The paper will address the different 

production phases (from assembly to usage) and the methods researchers have used in 

order to optimize the costs associated with quality control. Based on the review, research 

directions to fill the gap between current research and emerging needs will be 

determined. The remainder of the paper is organized as follows. In Section 2, inspection 

sampling methods for multi-state manufacturing processes are described. In Section 3, 

sampling inspection and system maintenance techniques for multi-component systems 

are presented. In Section 4, the current work and propose possible directions for future 

research are summarized. 
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2. MULTI-STAGE MANUFACTURING PROCESS 

A multi-stage manufacturing process is a system of subsequent stations or stages 

that are necessary for the products in order for the product to be finalized. Most products 

today are processed through a multi-stage manufacturing process in order to meet the 

growing demand in the market. In order to guarantee that the product conforms to 

specifications and customer requirements, companies must inspect the product 

throughout the process (see Figure 1). These inspections then determine whether the 

product satisfies the quality requirements for that stage or if it needs to be reworked or 

scrapped.  
 

Figure 2.1. Multi-Stage Manufacturing Process with Inspection Stations 
 

The goal is to catch the defects when they happen, which would make it easier to 

determine what inspection is required such that the final product meets the quality 

requirements. If the defect were caught at a later stage in the production process, the 

detection and cost of the defect is more time consuming and more costly. On the other 

hand, if excessive inspection is performed during or after every stage of the multi-stage 

process it might result in a greater cost than if the nonconformance product was 

reworked. 

Therefore, extensive research exists on determining the optimal allocation of 

inspection stations in multistage manufacturing systems. Shetwan et al. [5] researched 

methods for determining the distribution of quality control stations in multistage 

processes. They provided historic input on how previous researchers used different ways 

to solve the problem. Dynamic programing and nonlinear programing were shown to be 

the most commonly used methods for a small number of workstations. Currently, the 

heuristic approach has been most widely used in finding the solution for the problem. 

Stage	  1	  	  
Possible	  
Inspec1on	  
Sta1on	  1	  

Stage	  2	  
Possible	  
Inspec1on	  
Sta1on	  2	  

.	  .	  .	   Stage	  N	  
Possible	  
Inspec1on	  
Sta1on	  	  N	  
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2.1. DYNAMIC PROGRAMMING 

Dynamic programming was developed by Richard Bellman and it was an 

improvement in decision making for multistage systems. Bellman [6] argued that 

previous methods of solving these problems, such as linear and non-linear programming, 

even in the simplest form were very time consuming and difficult to calculate and even 

became unsolvable. Dynamic programming was easier to compute and it gave a unique 

solution to the problem [6]. Dynamic programming breaks down a multistage problem 

into small problems that can be solved easily. The popularity of dynamic programming 

grew greatly. Bellman used dynamic programming to minimize the total cost of the 

system in some instances or maximize the total output of the system in others. Dynamic 

programming has a wide range of application, not just in allocation problems for 

multistage systems. Bellman was the first to make variations to the original theorem in 

order to fit new problems [7-9]. 

White [10] included limited inspection stations in the problem. These stations are 

only able to perform 100% or 0% inspection. When the defects are found they can be 

either reworked or scrapped. Using dynamic programming White solved the problem 

while considering cost of inspection, cost of repair, cost of disposing the nonconforming 

item, and cost of a nonconforming item going through the process. White also 

acknowledged that if the number of stages exceeds 20 the computation would be very 

time consuming. 

Knowing that perfect inspection in many cases is not possible; researchers 

included imperfect inspection while working on optimal allocation of inspection stations 

[11, 12]. This means that during inspection a conforming item might be rejected (type I 

error) or a nonconforming item might be accepted (type II error). Eppen and Hurst [12] 

made the assumption that nonconforming items stay nonconforming while a conforming 

item might become nonconforming during the multi-stage process. In their research they 

also included the cost of the nonconforming item reaching the customer, where the 

company is responsible for replacing the item and shipping costs.  

Dynamic programming was used to allocate the inspection station in a multistage 

system that would minimize the cost of inspection for a set quality level of the final 
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product [13]. Oppermann et al. [3] studied the optimal quality control in electronic 

production. The authors used dynamic programming in order to determine the most cost 

effective solution for the problem. The authors extended their work in 2003 by including 

the cost of quality [14, 15]. The problem considered was whether to perform 100% 

inspection, no inspection, or a statistically controlled inspection. The paper concluded 

that different approaches of inspection are more desirable than others for different defect 

rates. 

More recently, due to the increased complexity of the multistage systems, 

dynamic programming has been increasingly difficult to calculate. Optimizing the 

allocation of inspection stations of a multi-stage process where cost depends on the whole 

system and not just on the two consecutive stages has shown to be very hard or 

impossible to calculate with the increase in the stages of the system. Therefore, new 

methods of calculating solutions for such problems had to be found. Recent research 

indicates that heuristic methods may be the solution. 

 

2.2. HEURISTIC METHODS 

Heuristic methods have become increasingly popular in solving the problem of 

allocating inspection stages in multistage systems. The most commonly used heuristic 

methods are genetic algorithms and evolutionary algorithms. These methods have made it 

possible to calculate solutions within a fraction of the time of dynamic programming. The 

weakness of these methods is that they do not give the unique optimal solution, but rather 

an approximate of the optimal solution. Another drawback is that the more complex the 

system, the harder it is to know how far away the provided solution is from the optimal 

solution. 

Evolutionary algorithms are designed to use the Darwinian principle of evolution 

to find the solution to complex problems. The principle is to generate a solution by using 

previous parent solutions. These parent solutions are ranked by the effectiveness of their 

solutions. Then the children solutions are generated by mutation of the parent solutions in 

order to find a better solution. The process is repeated until there is a solution that fits the 

best [16]. Genetic algorithms, on the other hand, are developed to find the best parent 

solution in the population that is then “cross bred” with a random solution from another 
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population of solutions. From these solutions, a child solution is generated such that the 

child solution would have the best or dominant “genes” (parts of the algorithm that are 

generating a good solution) from both parents that would generate the better solution. In 

both cases the objective is to generate a solution by using the previous solutions. This 

sometimes means that the solution generated is not going to be optimal but just better 

than the previous solutions. 

Many researchers have considered using heuristic methods to find the solutions 

for problems in various fields. Taneja and Viswanadham [17] studied the problem of 

allocation of inspection stations in multistage manufacturing systems. They determined 

the number of inspection stations needed in order to prevent a nonconformance from 

reaching the customer while minimizing the cost of production. Taneja and 

Viswanadham developed a genetic algorithm that incorporated the probability of type I 

and type II errors, number of stages, and probability of conformance at the inspection 

stage. They showed three cases where different assumptions are made in order to find the 

minimum cost. These assumptions are whether repetitive inspections are allowed or not 

allowed and whether rejected items are reworked or scrapped. Their work also shows 

how the complexity of finding the solutions increases as the number of stages increases. 

The number of generations needed to find the solution increases with increased number 

of stages. The solution for the problem is presented as a series of 0’s and 1’s (termed a 

chromosome) where 0 represents no inspection station after that stage and 1 represents 

that there should be an inspection station after that stage. 

Van Volsem et al. [18] considered the same problem of inspection stations 

allocation. The work mainly focused on the trade-off between the cost of inspection and 

the penalty of a nonconformance reaching the customer. The solutions are, again, 

presented as a series of 0’s and 1’s. Van Volsem et al. [18] used the evolutionary 

algorithm to solve the problem. The algorithm considers a wide range of factors such as 

cost of inspection, upper and lower inspection limits for the item, batch size, and sample 

size. All of these are used in order to determine the minimum total cost of production. 

Van Volsem [19] later showed that the number of the inspection stations and the 

allocation of these stations changes as the factors in the problem changes. The paper 

showed that, with an increase of penalty and standard deviation of the nonconformance, 
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the number of inspection stations increases and the location varies for the better solution. 

Van Volsem also stated that the solution to the problem is reached much faster than with 

dynamic programming but there is the drawback of not having the optimal solution but 

rather a better solution to the problem [19]. 

These heuristic methods have found their way into different fields. Leung [20] 

studied the approximation for determining near optimal inspection of the intervals in 

deteriorating production systems. The problem focuses on the optimal interval of 

inspection for the system that is in use. The factors considered are the profitability of the 

system if it functions well and a reduced profitability of the system that has experienced a 

certain failure. The author modified an existing model and developed two heuristic 

models that would solve the same problem with a better approximation and would be 

easier to compute. Farmani et al. [21] investigated the trade-off between resilience and 

total cost of the water distribution system. Zhou and Zhao [22] focused on planning 

quality control. Their main idea was to match different values of the factors involved in 

the problem with best fitting values of other factors in order to find the optimal solution.  

Rajagopalan and Rajagopalan [23] described how another heuristic approach 

called neural networks can be trained in order to find solutions in manufacturing systems. 

Kakade et al. [24] used another heuristic method to find the best location of quality 

control inspection. They advocated the simulation approach to solve the problem. The 

simulated annealing approach was shown to be an efficient way of solving the problem 

on a small scale and was able to measure the variation to the optimal solution. However, 

on a large scale, the research concluded that there is no way of determining the optimal 

solution and that the simulated annealing method, while giving a solution, is not able to 

estimate how far away it is from the optimal solution. 
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3. MULTI-COMPONENT SYSTEMS 

Multi-component systems are systems that are built from components of different 

and same functions. The reliability and quality of the components in the system is 

correlated with the reliability of the system. These components may or may not have 

mutual dependency on each other; meaning if one component fails the dependent 

component fails. In these multi-component systems, failure of the component may cause 

the system to fail; therefore, inspection of these components is needed in order to 

guarantee the quality and reliability of the system. 

When solving optimization problems in multi-component systems, researchers 

usually turn to statistical and mathematical models and methods. Researchers are usually 

looking for the optimal solution and these methods are able to provide these solutions. 

Shi and Zhou [25] gave a brief survey of the various techniques for quality control 

improvement in multiple stage and component processes. Among the discussed methods 

are the physical method, data-driven model, and statistical process control. Physical 

methods require previous knowledge about the process. Data-driven models need 

sufficient knowledge in mathematics and statistics. It also requires a vast historical 

database in order to provide reasonable estimates. Data-driven models are appealing 

because they do not require the previous knowledge of the process in order to be applied. 

Statistical process control has a high “false alarm” probability and, according to Shi and 

Zhou “lacks the capability to discriminate among changes at different stages”. The 

research concluded that the most attractive methods for solving these problems would 

typically be data-driven models and other quantitative models because they can be 

applied to various systems in the market. In order to guarantee the quality of the final 

product, companies use sampling inspection plans for the system components. In 

addition, in order for these multi-component systems to stay operational, certain 

maintenance plans have to be developed. 

 

3.1. SAMPLING INSPECTION 

In order to have a high quality product the components in that product also have 

to meet their respective quality requirements. Therefore, the company should perform 
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inspection of the components based on a specified frequency prior to assembly in order to 

guarantee that conforming components are being used in the assembled product. If the 

nonconforming component reaches the final product that system might not function as 

intended. This would cause the company to either rework or scrap the product which 

would drive up the cost and cause customer dissatisfaction. In order to minimize this cost 

companies have sampling inspection plans that are aimed to prevent the nonconforming 

components from reaching the final product. 100% inspection is time-consuming and 

drives up the cost of the final product. 0% inspection does not guarantee the quality of the 

product. Therefore, researchers have studied methods for optimizing sampling inspection 

plans in order to minimize product cost.  

The quality of the final product starts with quality components. In other words, 

the product has a good chance of meeting the quality specification if the components in 

the product also meet specifications. However, every lot of components that are received 

in a factory has a probability that some items do not meet the requirements, which would 

diminish the quality of the final product or cause it to fail. Standards such as Military 

Standard MIL-STD-1916 are used in order to determine whether the batch should be 

accepted or rejected. The MIL-STD-1916 sampling plan works under “zero accept one 

reject” premises, meaning that if there is a nonconformance in the sample of the 

population then the whole population is rejected [26]. Li et al. acknowledge that just 

because there are no nonconformances in the sample it does not mean that the population 

meets conformance requirements. 

Hamaker [27] described three different approaches to sampling inspection: 

sampling tables, collecting data, and constructing inspection plans. He also modeled a 

plan of using economic theories where he concluded that it might be more economical 

not to inspect the lots with a small probability of nonconforming items. While all the 

methods have been implemented in the real world the author warned that the data 

collection and sampling tables might lead to over sampling while using economic 

theories might not always be possible because certain factors might not be obtainable. 

Hamaker then suggested that a sampling plan should be selected and monitored for its 

performance and then later if needed adjusted for the new data. Calvin [28] made similar 

remarks when considering the zero defect philosophy. He pointed out that many 
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managers are looking only for the ways to reach the zero defects but not to stay at the 

zero defect level. The author argued that there are different statistical methods such as 

control charts and acceptance sampling plans that managers can use in order for the 

product to stay at zero defects. The author suggested that the managers should consider 

how many good parts are in between two bad parts and in this way could control the zero 

defect level. If there are a smaller number of good parts between two bad parts then the 

lower limit suggests that the batch is rejected. Calvin also urged that the data collection 

has to be thorough because statistical importance may be lost in the process. The limits of 

keeping or discarding the batch should be challenged in a way that zero defects are still 

achieved for a lower cost. 

If the population is rejected then the production might slow down or stop because 

of the lack of components that are necessary to complete the final product. Therefore, 

Salameh and Jaber [29] focused on the optimal inventory of the items that might contain 

items of imperfect quality. They found that the quantity of the items per order increases 

as the probability of defective item increase. 

Maddah and Jabber [30], on the other hand, observed that the order of large 

quantity of imperfect quality items is not always very profitable; therefore, a proper 

trade-off between the shipping cost (of small order size) and inventory holding cost (of 

large order size) is needed in order to determine the most profitable solution. The 

findings by Maddah and Jabber show that “the optimal order quantity is increasing in the 

screening rate and in the variability of the fraction of imperfect items”. Also, it should be 

taken into consideration whether to discard the item of lower quality or sell in the market 

as a product of lower quality [31]. 

After the conforming product reaches the customer the components are still at risk 

of failing due to wear while the system is working. Therefore, a certain maintenance 

policy is needed in order for the product to remain in working condition. 

 

3.2. SYSTEM MAINTENANCE 

Optimal system maintenance has been researched in detail and the most common 

approach is optimal inspection intervals. Multi-component systems usually go through 
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two types of maintenance: corrective maintenance (when the component fails) and 

preventive maintenance (other components are inspected for possible future failure). 

Tian and Liao [32] devised a method of finding the optimal maintenance policy. 

They consider an optimal economic decision while performing maintenance on the 

system. The question is whether to replace the working parts on the multi-component 

system when one of the components already fails in order to prevent future failures. The 

replacement decision is made based on the age of the product’s component and its hazard 

value. If these values are greater than the risk thresholds, the component is replaced. This 

works only if the components have economic dependency. They concluded that it is cost 

effective to perform preventive replacement by keeping those components from failing if 

there is an economic dependency on the component. The reasoning is that the cost of 

maintaining the system in the long run should be minimized. 

Many researchers focused on finding the optimal inspection intervals in order to 

prevent the component failures that would cause the system failure [33-40]. Many of 

these made an assumption that the defects follow a Poisson distribution, which is a 

stochastic interval that these failures occur. 

Taghipour and Banjevic [33] and Taghipuor et al. [34] also considered an 

economic aspect of the problem. They devised two different types of failures in the 

system: the “hard” failures that would cause a system failure and the “soft” failures that 

would not cause system failure but would diminish the effectiveness of the system; 

therefore, this system will not run as efficiently as if there were no “soft” failures causing 

the cost of running the system to be greater. The issue with a “soft” failure is that it is a 

hidden failure and could only be fixed upon inspection. The system would be inspected 

for the “soft” failures when the “hard” failure occurs. This is what the authors call 

opportunistic inspection. However, the research was more concerned with the optimal 

inspection interval for the “soft” failures in order to minimize the cost of inspection. The 

problem requires solving for the failure probabilities and expected time of failure. They 

also concluded that the calculations are very intensive in order to reach an optimal 

solution. 

Zhao et al. [35] made the assumptions that the defects follow the non-

homogeneous Poisson distribution and that the inspection of the component is imperfect. 
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The main research goal was to find the expected number of failures under the inspection. 

Zhao et al. found that if the defect rate is increasing or decreasing then the optimal 

inspection interval is no longer optimal. Therefore, this factor has to be considered as 

well. The authors also mentioned that due to imperfect inspection, detection rate is a very 

important factor in determining the optimal inspection interval. 

Anisimov [36] assumed that the system has fast Markov switches. The focus of 

the research was to approximate the long run cost of maintaining the multicomponent 

system and the optimal interval of the inspection by minimizing the long run cost of 

maintenance. Anisimov argued that for a system with a great number of components the 

optimal interval of inspection is difficult to calculate. He also considered that the 

inspection is not optimal and that there is a possibility that a component that has suffered 

a failure can still be in the system unnoticed. The author later proved that there has to be 

an optimal interval of maintenance that minimizes the long-term cost. Anisimov and 

other researchers [33, 37-40] proved that the optimal interval for the inspection exists and 

that the problem occurs as the system becomes more complex. Table 3.1 provides a 

summary of the literature review. 

 

 

Table 3.1. Summary Table 

Paper Technique System 

Inspection/ 

Maintenance Error 

Bellman (1952) DP Multi-Stage 

  Bellman (1953) DP Multi-Stage 

  Bellman (1956) DP Multi-Stage 

  Hamaker (1958) SP Multi-Component 

  Lindsay & Bishop (1964) DP Multi-Stage 

  White (1969) DP Multi-Stage 

  Hurst (1973) DP Multi-Stage Imperfect Type I/Type II 

Eppen & Hurst (1974) DP Multi-Stage Imperfect Type I/Type II 

Calvin (1983) SP Multi-Component 

  Taneja & Viswanadham (1994) GA Multi-Stage 

 

Type I/Type II 

Rajagoplan & Rajagoplan (1996) NN Application 

  Jones (1998) GA/EA Application 
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Table 3.2. Summary Table (cont.) 

Paper Technique System 

Inspection/ 

Maintenance Error 

Salameh & Jaber (2000) EOQ Multi-Component Imperfect 

 Opperman et al. (2001) DP Multi-Stage 

  Zhou & Zhao (2002) GA Multi-Stage 

  Opperman et al. (2003) DP Multi-Stage 

  Wang & Christer (2003) NHPP Multi-Component Perfect 

 Kakade et al. (2004) GA Multi-Stage 

  Anisimov (2005) MP Multi-Component 

  Farmani et al. (2005) GA Multi-Stage 

  Zhao et al. (2005) NHPP Multi-Component Imperfect 

 Van Volsem et al. (2007) EA Multi-Stage Perfect 

 Maddah & Jabber (2008) EOQ Multi-Component Imperfect 

 Leung (2009) GA Multi-Component Imperfect 

 
Shi & Zhou (2009) 

DD/SPC/ 

PM 

Multi-Component/ 

Multi-Stage 

  Sung & Scharge (2009) MCS Multi-Component Perfect 

 Maddah et al. (2010) EOQ Multi-Component Imperfect 

 Taghipour et al. (2010) NHPP Multi-Component 

 

Type I/Type II 

Van Volsem (2010) EA Multi-Stage Perfect 

 Cheng et al. (2011) MP Multi-Component 

  Li et al. (2011) MIL Multi-Component 

  Taghipour & Banjevic (2011) NHPP Multi-Component Perfect 

 Tian & Liao (2011) CBM Multi-Component 

  Van der Weide & Pandey (2011) NHPP Multi-Component 

  Dynamic Programming (DP), Sampling Plan (SP), Genetic Algorithm (GA), Evolutionary Algorithm (EA), 

Neural Network (NN), Military Standard (MIL), Data Driven (DD), Statistical Process Control (SPC), 

Economic Order Quantity (EOQ), Condition Based Maintenance (CBM), Non-homogeneous Poisson 

Process (NHPP), Markov Process (MP), Monte Carlo Simulation (MCS) 
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4. CONCLUSIONS AND FUTURE WORK 

As products are becoming more and more complex, the quality of these products 

has shown to be increasingly difficult to control. However, there has been a great deal of 

research conducted in order to control the quality of the products. The main issues are 

how much does the quality cost, how much attention should managers give to quality 

inspection, and are the quality inspections profitable. As we can see, a certain trade-off 

between inspection cost and penalty cost needs to be established in order to lower the 

total cost while controlling the quality of the product. 

From the current literature we can see that numerous researchers have studied the 

existing problems in great detail and have included the factors that are found in real 

world problems. Researchers have also shown that they are able to adapt to the increasing 

difficulty of the problems. In the problem of allocating inspection stations in multi-stage 

manufacturing systems, the focus has changed from dynamic programming, which is an 

accurate optimal but a difficult method of solving the problem, to heuristic methods, 

which give a close to optimal solution but with a significantly smaller amount of time. 

Practically speaking in industry, this might be a better solution considering that the 

information for optimizing systems is needed quickly. 

Researchers that investigated multi-component systems approached the problem 

statistically while searching for the optimal solution. The possible drawback of this 

method is the intensity of statistical knowledge needed in order to find the optimal 

solution. 

Implementing these methods to the problems in industry might be difficult. While 

the researchers have considered certain factors, not all of the researchers included all of 

the factors. Assumptions such as perfect inspection and no error were made while 

devising the models in certain studies [17-19, 24, 33, 34, 38, 40]. These assumptions 

cannot be made in the real world; therefore, the calculations would not be optimal. 

In order to find the optimal solution in every aspect of manufacturing further 

research is needed. Applying different approaches that seem to dominate certain aspects 

of manufacturing and provide reasonable results should be applied to other aspects. One 

of the directions that should be considered would be to implement heuristic methods in 
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order to find the solution for sampling inspection and maintenance of multi-component 

systems. This method might prove useful when the solutions are needed in a short period 

of time and management does not want an optimal solution but rather a better one to what 

is implemented at the moment. Another would be to apply dynamic programming into 

sampling inspection and maintenance for the problems that would be solvable for this 

approach. Also, research should test whether the statistical approaches would be as 

efficient in finding the solutions in the multi-stage processes as they were in the multi-

component systems. It is also important to determine how well these models fit in the real 

world applications to see whether theory and practice meet. 
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Abstract 

As the complexity of the multi-component products increases the quality of these 

products becomes increasingly difficult to control. The first step to manufacturing a 

quality product is making sure that the components of the product meet specifications. 

Product quality can be controlled through sampling inspection of the components. The 

model presented in this paper was developed to determine the optimal sampling levels for 

incoming lots containing parts for production and assembly of multi-component systems. 

The main objective of the model is to minimize the expected cost that is associated with a 

nonconforming item reaching assembly. In this model the time available for inspection is 

limited, the distribution of defects is assumed to follow the binomial distribution, and the 

distribution of accepting the lot with defects follows the hypergeometric distribution. In 

addition, the inspection is considered to be accurate and, if a nonconforming item is 

found in the inspected sample, the entire lot is rejected. An example is given with real 

world data and the results are discussed. 
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Sampling inspection, inspection optimization, quality engineering, cost optimization, 
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1. INTRODUCTION 

The purpose of this research is to determine the optimal sampling inspection plan 

of incoming lots. These lots contain a specific number of individual items for 

manufacturing and assembly of multi-component systems. These systems are common in 

the automotive, aerospace, heavy equipment, off highway vehicle, and electronic 

industry. The complexity and demand for these products have increased dramatically. 

Therefore, the number of incoming lots and parts used in production has also increased 

dramatically. Since the quality of the product corresponds to the durability, reliability, 

and customer’s safety and satisfaction, quality controls are necessary to improve the 

quality of the final product. Competition in the market and quality appreciation by 

consumers has driven manufacturers to pay more attention to the quality of their products 

(Marttinen, 2002; Setijono and Dahlgaard, 2008). 

One method to improve the product quality is to perform sampling inspection on 

the incoming lots. In order to do this, it is then necessary to determine the appropriate 

level of inspection. If the company is not inspecting enough, there is a risk of a 

nonconforming item reaching the assembly line and possibly remaining in the system as a 

finished product. This would result in a final product that does not meet the customer’s 

specifications and possible penalty costs such as shipping charges, loss of faith in the 

product and manufacturer, or even lawsuits. Since these costs affect the company, they 

increase the cost of the final product and reduce the profit from the product. On the other 

hand, if the company performs 100% inspection, the risk of nonconforming items 

reaching assembly would be minimized. The cost associated with 100% inspection 

(manpower, equipment, etc.) would, again, drive up the production cost of the final 

product and even possibly delay production (Oppermann et al., 2001). Therefore, an 

optimal inspection strategy is needed in order to minimize the total cost while providing a 

certain level of quality. In order to minimize the total cost, an optimal trade-off between 

the appraisal cost, which is the cost that is generated from performing quality inspection, 

and the prevention cost, which is the cost that is generated from preventing the defects 

from reaching the consumer, must be established to lower the failure cost and, therefore, 

the total cost (Keogh et al., 2000). 
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Companies typically follow some type of sampling inspection procedure in their 

facilities. A common practice of companies is to follow the “trust the supplier” ideology 

where only a few items in the first lot are inspected. If these items meet the 

specifications, that lot and consecutive lots are sent to the assembly line without further 

inspection. It should be also noted that some companies do not have the ability to inspect 

certain features of the items in the lot, which forces them to trust the supplier. 

This research considers sampling inspection optimization and provides a model 

that determines the inspection levels. The research focuses on determining the inspection 

levels that would minimize the expected total cost of nonconforming items in the time 

available. The paper is organized as follows. Section 2 covers the literature review. 

Section 3 proposes and describes the model. Section 4 describes the solution approach. 

Section 5 covers the analysis and the results. Lastly, section 6 discusses future work and 

provides conclusions. 
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2. LITERATURE REVIEW 

2.1.  SAMPLING INSPECTION OF LOTS 

Research and publications on sampling inspection of lots increased during and 

after World War II. Demand for military products has increased greatly and tolerance for 

faulty equipment was low during this period. Since production increased dramatically, 

unit-by-unit, or 100%, inspection was not practical. Therefore, quality control has shifted 

from unit-to-unit inspection to statistically controlled sampling inspection. Various 

military standards schemes were created in order to control the quality of the incoming 

lots (Champernowne, 1953; Barnard, 1954). Military standards first inspect a large 

sample size to determine the distribution of defects. If the lots are found to meet the 

specifications, the inspection on the consecutive lots is then relaxed. 

Li et al. (2011) examined Military Standard MIL-STD-1916. This standard works 

under “zero accept one reject” premises; meaning that if there is a nonconformance in the 

sample of the population then the entire population is rejected. Lie et al. revised MIL-

STD-1916 by expanding the current standard from 11 to 18 groups of inspection in order 

to separate the sampling plans from 100% inspection. Li et al. acknowledge that just 

because there are no nonconforming items in the sample it does not mean that the 

population meets conformance requirements. Meaning that the lots can still carry a risk of 

a defect reaching the final product.  

The research of Champernowne (1953) focused on the economic success of the 

problem by using the sampling inspection as a tool in the process. For the purpose of the 

study Champernowne assumed that several variables in the problem are known: 

“(i) the average quality of the batches to be tested and the variation between 

batches of quality about that average, (ii) the cost of inspection and its 

dependence on the amount of inspection undertaken, and (iii) the cost involved by 

deciding wrongly to accept or wrongly to reject a batch, and the way this cost 

depends on the quality of the batch.” 

Using this information, Champernowne developed an economical boundaries model that 

uses sampling inspection results (number of effective and defective items) to determine 

whether the lot should be accepted or rejected. Champernowne mainly focused on 
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satisfying the economical aspect of the problem.  Meaning that as long as the result is 

within the economical boundaries the lot would be accepted even if the defects were 

found in the sample On the other hand, Barnard (1954) argued that the information, 

which Champernowne assumes are given, are not readily available in the real world. 

Barnard argues that assigning a distribution for defects is needed in order to solve the 

problem. Barnard also argues that a considerable amount of information of each lot is 

needed to make an optimal decision for the problem. 

Hamaker (1958) described three different approaches to sampling inspection: 

sampling tables, collecting data, and constructing inspection plans. Hamaker also 

modeled a plan of using economic theories where the research concluded that it might be 

more economical not to inspect the lots with a small probability of nonconforming items. 

While all the methods have been implemented in the real world, Hamaker warned that the 

data collection and sampling tables might lead to over sampling while using economic 

theories might not always be possible because certain factors might not be obtainable. 

Hamaker then suggested that a sampling plan should be selected and monitored for its 

performance and then later adjusted for the new data if needed.  

 

2.2. SAMPLING INSPECTION IN MULTI-STAGE PROCESS SYSTEMS 

Research performed in this field has mainly focused on the allocation of 

inspection stations within multi-stage process systems (MSPS). These inspection stations 

are supposed to catch the possible defects that might be experienced during production. 

The solutions have mainly been developed using dynamic programing or heuristic 

methods. The published research has commonly considered the economical aspect of the 

problem, trading off the risk and cost of inspection. 

Dynamic programming has widely been considered while searching for the 

problem solution. It managed to break down the multi-stage problem into smaller, more 

manageable problems, which are then easier to solve (Bellman, 1952; Bellman, 1953a 

Bellman, 1953b; Bellman, 1956). Other researchers have expanded the problem 

considering among others that only no inspection or 100% inspection is available (White, 

1968), imperfect inspection where inspection stations may label a nonconforming item 

conforming and vice versa (Hurst, 1973; Eppen, 1975), and statistically controlled 
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inspection (Oppermann et al., 2001; Oppermann et al., 2003). Dynamic programming 

was able to determine an optimal solution to the problem and it was very effective for 

MSPS with a small number of stations. An increase in the number of stations in the 

MSPS dynamic programming took longer than desired to find a solution. New methods, 

such as heuristic methods, have been found for calculating solutions for the problem. 

Heuristic methods such as evolutionary and genetic algorithms are the two most 

popular methods in finding the solution to the inspection stations allocation problem. 

Researchers have, again, considered imperfect inspection (Taneja and Viswanadham, 

1994), and economical trade-offs (Van Volsem et al., 2007; Van Volsem, 2010). While 

providing a fairly quick solution, heuristic methods are not guaranteeing optimal, but 

rather a close to optimal solution. 
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3. THE MODEL 

Consider an assembly line that has M different parts coming in. These parts have 

different lot size, defect rate, and repair cost if a defective item enters the assembly line. 

They also have a specific time interval needed to inspect a single item. An incoming 

inspection is performed on these parts in order to control the quality of the final product. 

The problem facing management is to determine the appropriate inspection sample size 

for each part considering the variability of risks associated with the M parts and the 

limited resource of labor hours the assembly line can spend on inspection. The problem 

can be modeled as a Nonlinear Integer Programming (NIP) problem as follows. 

 

Index sets: 

I = {i| i= 1, 2, …, M} = index set of parts considered by inspections 

 

Parameters: 

T = Total labor hours available 

ti = time needed to inspect a single item of part i 

Ni = total number of items in the lot for part i (lot size) 

di = probability of a defective item in the lot for part i (defect rate) 

Di = total number of defective items in the lot i 

Ci = cost of a nonconforming item reaching assembly for part i 

 

Decision variables: 

ni = the number of items to be inspected for part i 

 

Minimize: 

 𝑃(𝐷!)  𝐷!   𝐶!   𝑃(𝑁! ,𝐷! ,𝑛!)
!!
!!!!

!
!!!  (1) 

Subject to: 

 𝑃 𝐷! =    𝑁!𝐷!
𝑑!
!! 1− 𝑑! !!!!! (2) 
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 𝑃 𝑁! ,𝐷! ,𝑛! =
!!!!!
!!
!!
!!

 (3) 

 𝑡!𝑛! ≤ 𝑇!
!!!  (4) 

 0 ≤ 𝑛! ≤ 𝑁! ,       𝑛!   𝑎𝑟𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 (5) 

 

It is assumed that the parts that are in the lot can either pass (conforming items) or 

fail inspection (nonconforming items). Since there are only two possible outcomes (pass, 

fail), it is assumed that the probability of having Di number of defects of part i in the lot 

follows the binomial distribution. Therefore, calculating the probability of having an 

exact number of nonconforming items (P(Di)) in the lot is possible as long as the defect 

rate and the lot size for part i is available. The cost of the exact number of nonconforming 

items reaching assembly is calculated by multiplying the number of defects in the lot with 

the cost of a nonconforming item reaching assembly for part i (Ci). Using this cost and 

the probability of having a specific number of defects is multiplied to obtain an expected 

cost of nonconformance for the specific number of defects. In order to cover all the 

possible values of Di (0≤	  Di ≤Ni) and to calculate the total expected cost of 

nonconforming items in the lot for part i, all possible outcomes are summarized 

( 𝑃(𝐷!)  𝐷!   𝐶!   
!!
!!!! ). This also represents the total expected cost of nonconformance for 

part i if there is no inspection performed and the lot is sent directly to the assembly line. 

With the inspection of a certain number of items (ni), it is expected that the 

probability of a nonconforming item reaching assembly for that particular part number 

will be reduced. The number of defects found in the sample size that would be tolerated 

is zero, meaning that if a nonconformance is found in the sample size the entire lot is 

rejected. It is assumed that the inspection is performed without replacement. Since two 

mutually exclusive categories (pass/fail) are considered, it is assumed that the probability 

of accepting the lot with a defect follows the hypergeometric distribution shown in 

Equation 3. 

The sample size ni can be any number between zero and lot size Ni (Equation 5). 

Also, ni must be an integer (Equation 5). If the sample size is zero, then no inspection 

performed. This means that the risk of accepting the lot with Di defects is large. 

However, if the sample size is Ni, then 100% inspection is performed and the risk of 
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accepting the lot with Di defects is zero; however, the inspection cost would be high. The 

decision variable is, therefore, the sample size, ni. With the increase of the sample size, 

the probability of accepting the lot with Di defects decreases. Therefore, the bigger the 

sample size n, the smaller the expected cost of a nonconforming item reaching assembly 

for a specific number of defects Di: 

 

 𝑃(𝐷!)  𝐷!   𝐶!   𝑃(𝑁! ,𝐷! ,𝑛!) (6) 

 

In order to find the total expected cost for the specific part with all possible values 

of Di, the summation of these equations is needed: 

 

 𝑃(𝐷!)  𝐷!   𝐶!   𝑃(𝑁! ,𝐷! ,𝑛!)
!!
!!!!  (7) 

 

Finally, the research goal is to minimize the expected total cost of the 

nonconforming items for all the parts M in the system as shown in the Equation 1.  

Since the time for inspection (T) is limited and there is large number of different 

parts (M) with various lot sizes, 100% inspection is time consuming, expensive, and 

unpractical. Each part i has a specific time interval (ti) it takes the operator to inspect one 

item of part i. Therefore, the time it takes to inspect sample size ni, for all parts M, must 

be less than or equal to the total time available for the inspection, which is the constraint 

show in Equation 4. 

It is known from the problem statement and the objective that the purpose of the 

model is to find an optimal sampling inspection plan that would minimize the expected 

cost of a nonconforming item reaching the assembly line in the limited time available. If 

the sample size ni is equal to zero then the probability of a lot with defectives being 

accepted would be equal to one. This would then result in the maximum expected cost of 

the nonconforming item. However, if inspection is performed and the sample size 

increases then the probability of accepting the lot with Di defects decreases. The model, 

therefore, provides a sample size ni for all parts M in the system.  
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4. ANALYSIS AND RESULTS 

Since time to calculate these inspection plans is limited and the size of the 

problem is usually large, it was decided to use an evolutionary algorithm to solve the 

problem. Industry is typically interested in a better solution than the one they currently 

have and not the optimal solution, particularly if the solution is fast and easy to obtain. In 

the testing phase Excel was used to program the model. The model was built using the 

Solver program and its built in evolutionary algorithm. The advantage of this algorithm is 

that it gives a fast solution. However, the disadvantage of the algorithm is that the 

generated solution might not be the optimal solution, but rather a better solution than the 

previous one. Another disadvantage of the evolutionary algorithm is that it may show 

some inconsistencies in generating the solutions. 

The model was initially tested for two parts. The data used for the two-part 

problem was provided by the automotive industry. The two parts in question are a tube 

and a harness. The tube has a historic defect rate of 1.93%, lot size of 125, time needed to 

inspect is 30 minutes, and cost of nonconformance of $17. The harness has a historic 

defect rate of 3.13%, lot size of 300, time needed to inspect is 5 minutes, and cost of 

nonconformance of $235. The time available is one workday of 8 hours or 480 minutes 

and the wage for the inspectors was set to $40. 

The small problem analysis was set up for the user to input following data: lot 

size (Ni) for each part, defect rate (di) for each part, time needed to inspect (ti) for each 

part, cost of nonconformance reaching assembly (Ci) for each part, time available for 

inspection (T), and the employee’s salary (CS). All of the constraints were set up as the 

model suggests and the program was set to determine the solution using the evolutionary 

algorithm. While using evolutionary algorithm it is expected to see some inconsistencies 

in the results. 

The results that were found were promising for the real world application. In the 

two-part example, the expected cost of nonconformance was decreased by 83% and the 

total cost was decreased by 63% as shown in Table 4.1 In addition, the defect rate was 

reduced with inspection as shown in Figure 4.1 The expected cost of nonconformance 

also reduced with inspection as shown in Figure 4.2 The model comes back with a 
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sample size of 56 for the harness (44.8% of the lot size) and a sample size of 6 for the 

tube (2% of the lot size). After inspection performed the defect rate of the lot 0.29% for 

the harness and 1.68% for the tube. 

 

 

Table 4.1. Comparison of Costs With and Without Inspection for a Two-Part Problem 

 

No 

Inspection 

Optimized 

Inspection 

Change in 

Cost 

% Change in 

Cost 

Cost of Work Force $320.00 $320.00 $0.00 0% 

Expected Cost of N-C $1,019.03 $172.34 $846.69 83% 

Total Cost $1,339.03 $492.34 $846.69 63% 

 

 

 

 
Figure 4.1. Change in defect rate for the two-part problem 
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Figure 4.2. Change in expected cost for the two-part problem 

 

 

The model was then tested for a 20-part problem. The data was randomly 

generated where the defect rate had a range from 1% to 10%, lot size had a range from 10 

to 500, time needed to inspect certain item ranged from 1 to 30 minutes, and the cost of a 

nonconforming item ranged from $10 to $300 as shown in Table 4.2 In order to compare 

the 20-part problem to the 2-part problem the time to inspect remained the same at 480 

minutes. 

Table 4.3 shows the output provided by the program. It calculates the defect rate 

after inspection in order to see what type of risk the lot is still carrying as we expected 

cost of nonconformance without and with inspection. It also provides the sample size for 

inspection. 
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Table 4.2. Inputs for the 20-part problem 

INPUTS 

Total Time Available (min) 2400       

Hourly Wage = $40.00       

  Inspection Time 

per Piece i 

(min) 

Defect 

Cost per 

Piece i ($) 

Lot Size 

i 

Defect 

Rate for 

Part i (%) 

  

  

Part Number ti ci Ni di 

1 10 $86.00 450 8.00% 

2 5 $129.00 35 3.00% 

3 11 $121.00 165 7.00% 

4 3 $182.00 425 10.00% 

5 20 $60.00 100 8.00% 

6 10 $61.00 175 10.00% 

7 18 $40.00 350 2.00% 

8 3 $76.00 15 7.00% 

9 20 $111.00 60 1.00% 

10 16 $74.00 90 9.00% 

11 19 $182.00 120 4.00% 

12 23 $189.00 500 5.00% 

13 20 $28.00 100 7.00% 

14 3 $69.00 300 4.00% 

15 17 $67.00 465 5.00% 

16 8 $104.00 160 4.00% 

17 20 $45.00 120 6.00% 

18 3 $129.00 455 6.00% 

19 2 $82.00 255 10.00% 

20 17 $49.00 190 3.00% 
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Table 4.3. Outputs for a 20-part problem with available time of 2400 minutes. 

Defect 

Rate After 

Inspection 

(%) 

Change 

in 

Defect 

Rate 

(%) 

Expected Cost of 

Nonconformance 

Without 

Inspection ($) 

Expected Cost of 

Nonconformance 

With Inspection 

($) 

Change in 

Expected Cost of 

Nonconformance 

(%) 

Inspection 

Size 

          ni 

2.41% 5.59% $3,096.00 $933.48 70% 14 

2.83% 0.17% $135.45 $127.63 6% 1 

1.83% 5.17% $1,397.55 $365.05 74% 17 

0.21% 9.79% $7,735.00 $159.50 98% 36 

6.04% 1.96% $480.00 $362.56 24% 3 

2.35% 7.65% $1,067.50 $251.19 76% 13 

1.45% 0.55% $280.00 $202.58 28% 14 

6.08% 0.92% $79.80 $69.27 13% 1 

0.92% 0.08% $66.60 $61.39 8% 3 

5.90% 3.10% $599.40 $392.77 34% 4 

3.45% 0.55% $873.60 $753.58 14% 3 

2.25% 2.75% $4,725.00 $2,123.38 55% 15 

5.03% 1.97% $196.00 $140.75 28% 4 

2.46% 1.54% $828.00 $509.09 39% 11 

1.31% 3.69% $1,557.75 $408.87 74% 26 

2.27% 1.73% $665.60 $377.23 43% 12 

4.22% 1.78% $324.00 $227.88 30% 5 

2.45% 3.55% $3,521.70 $1,435.39 59% 14 

2.16% 7.84% $2,091.00 $452.09 78% 14 

2.51% 0.49% $279.30 $233.53 16% 5 

  
Expected Total 

Cost of No 

Inspection 

Expected Total 

Cost of a 

Nonconforming  

  

  

  

  

$29,999.25 $9,587.21 
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After running the program the model came to a solution where the expected cost 

of nonconformance decreased by 18% and the total cost (the expected cost of 

nonconformance and the cost of labor) decreased by 18% as shown in Table 4.4.  

 

 

Table 4.4. Comparison of costs with and without inspection for a 20-part problem with 
available time of 480 minutes. 

 

No 

Inspection 

Optimized 

Inspection 

Change in 

Cost 

% Change in 

Cost 

Cost of Work Force $320.00 $320.00 $0.00 0% 

Expected Cost of N-C $29,999.25 $24,490.07 $5,509.18 18% 

Total Cost $30,319.25 $24,810.07 $5,509.18 18% 

 

 

It can be seen from Table 4.4, the change in expected cost of nonconformance 

without and with inspection is significantly smaller than the cost of workforce; therefore, 

performing sampling inspection on all incoming lots would be recommended from an 

economical viewpoint. 

The problem was then run for 5 work days or 2400 minutes with the same data as 

the one-day 20-part problem. The model lowered the total expected cost of 

nonconformance by 68% and the total cost by 65% (Table 4.5). The changes in the defect 

rate and the expected cost of nonconformance without inspection and after suggested 

inspection are also shown in Figure 4.3 and Figure 4.4, respectively. 

 

Table 4.5. Comparison of costs with and without inspection for a 20-part problem with 
available time of 2400 minutes. 

 

No 

Inspection 

Optimized 

Inspection 

Change in 

Cost 

% Change in 

Cost 

Cost of Work Force $1,600.00 $1,600.00 $0.00 0% 

Expected Cost of N-C $29,999.25 $9,587.21 $20,412.04 68% 

Total Cost $31,599.25 $11,187.21 $20,412.04 65% 
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Figure 4.3. Change in defect rate for the 20-part problem with available time of 1600 

minutes 

 

 

 
Figure 4.4.  Change in expected cost of nonconformance for the 20-part with available 

time of 1600 minutes  
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5. CONCLUSIONS AND FUTURE WORK 

The proposed model has a potential of solving the problem if the necessary inputs 

are available. In this research, the results showed that even with limited time available for 

inspection, performing sampling inspection significantly reduced the expected cost of a 

nonconforming item reaching assembly. The model was able to provide a meaningful 

solution to the problem although not necessarily an optimal solution as expected from 

using the evolutionary algorithm given that the algorithm provides a better, but not an 

optimal solution. Programming the model in a different programming language might 

provide a more consistent and more accurate solutions. 

Future work includes developing a model that would not just look into the number 

of items that need to be inspected but also the specific characteristic of the item that is 

proven to have a possible issue. This would increase the efficiency of inspection, which 

means that operators could inspect more items if they know which particular 

characteristic needs more attention.  
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Abstract 

Multi-component products have become prevalent in manufacturing and 

consumer products. Therefore, the quality of these products is very important to the 

customers. In order to manufacture a quality product companies have to make certain 

high quality components are assembled for the product. To ensure that the components 

meet the specifications companies can perform sampling inspection on the incoming lots 

consistent of these components. The focus of this paper was to develop a model that 

would determine the optimal sampling levels for incoming lots containing parts for 

production and assembly of multi-component systems such that the total cost of quality 

control is minimized. This cost includes the inspection cost and the cost associated with a 

nonconforming item reaching assembly. Assumptions made in the study are that the 

inspection is accurate, if one item is found to be defective in the sample size the entire lot 

is rejected, distribution of defects follow binomial distribution, and the probability of 

accepting the lot with defects after inspection follows the hypergeometric distribution. An 

example is given with randomly generated data and the results are discussed. 

 

Keywords 

Sampling inspection, inspection optimization, quality engineering, cost optimization, 

quality control 
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1. INTRODUCTION 

Dependency on multi-component systems have found their way in everyday life 

due to an increase in product complexity. Since customers depend on these products they 

expect a certain level of quality from these multi-component systems. Because of the 

quality appreciation by customers and the competition in the market, manufacturers are 

paying increased attention to the quality of their products (Marttinen, 2002; Setijono and 

Dahlgaard, 2008). The cost of quality is not always easy to measure. However, being 

associated with reliability, durability, and customer’s safety and satisfaction, quality is a 

very important aspect of modern industry. 

In order to improve the quality of their products companies can perform sampling 

inspection on the incoming lots. Every incoming lot carries a risk that a certain amount of 

nonconforming items may be in the lot. However, the question that arises is how much 

inspection is necessary? If the company does not inspect at all, the risk of sending the lot 

with defects to assembly is maximized. These defective items can then be assembled in 

the final product. The problem occurs when the defective final product reaches the 

customer, which may lead to customer’s dissatisfaction and different types of costs 

(shipping, repair, loss of faith, lawsuits). This, ultimately, drives up the cost of 

production. If the company performs 100% inspection the risk of accepting the lot with 

defects would be minimized. However, 100% inspection might not be desirable since the 

cost of manpower and equipment usage can drive up the cost of production and, in some 

cases, slow down production (Oppermann et al., 2001). In some cases 100% inspection is 

not possible, either because of lack of manpower or the lack of equipment necessary for 

inspection where companies are forced to trust the supplier. Therefore, an optimal 

sampling strategy is needed that would minimize the total cost of quality control. In order 

to minimize the total cost of quality control there has to be an optimal tradeoff between 

inspection cost and penalty cost associated with a nonconforming item reaching assembly 

(Keogh et al., 2000). 

Figure 1.1 shows the tradeoff between the cost of inspection and the cost of 

nonconformance. Based on this tradeoff, it is possible to minimize the total cost of 

quality control. As the company increases inspection of the incoming lots the probability 
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of accepting the lot that contains defects exponentially decreases. Therefore, the cost of 

nonconformance reaching assembly decreases exponentially as well. The inspection cost, 

on the other hand, is an increasing linear function. Meaning that when the company 

increases inspection of incoming lots the cost of inspection increases in a linear trend. 

The point where these two lines intersect represents the optimal inspection that would 

minimize the total cost of quality control. 

The purpose of this research is to determine the optimal inspection plan that 

would minimize the total cost of quality control. This cost includes the inspection 

(appraisal) cost and the cost associated with a nonconforming item reaching assembly 

(failure cost). A tradeoff between these two costs needs to be found in order to minimize 

the total cost of the quality control. The paper is organized as follows. Section 2 covers 

the literature review. Section 3 presents and describes the model. Section 4 presents 

examples and discusses the results and major findings. Section 5 covers conclusion and 

future work. 

 

 

 
Figure 1.1. Tradeoff between cost of nonconformance and cost of inspection 
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2. LITERATURE REVIEW 

Research and publications on sampling inspection of lots increased during and 

after World War II. Demand for military products has increased greatly and tolerance for 

faulty equipment was low during this period. Since production increased dramatically, 

unit-by-unit, or 100%, inspection was not practical. Therefore, quality control has shifted 

from unit-to-unit inspection to statistically controlled sampling inspection. Various 

military standards schemes were created in order to control the quality of the incoming 

lots (Champernowne, 1953; Barnard, 1954). Military standards first inspect a large 

sample size to determine the distribution of defects. If the lots are found to meet the 

specifications, the inspection on the consecutive lots is then relaxed. 

Li et al. (2011) examined Military Standard MIL-STD-1916. This standard works 

under “zero accept one reject” premises; meaning that if there is a nonconformance in the 

sample of the population then the entire population is rejected. Lie et al. revised MIL-

STD-1916 by expanding the current standard from 11 to 18 groups of inspection in order 

to separate the sampling plans from 100% inspection. Li et al. acknowledge that just 

because there are no nonconforming items in the sample it does not mean that the 

population meets conformance requirements. Meaning that the lots can still carry a risk of 

a defect reaching the final product. Military standards also require a large workforce in 

order to inspect the proposed sample sizes which is not always available in the real world 

application. 

The research of Champernowne (1953) focused on the economic success of the 

problem by using the sampling inspection as a tool in the process. For the purpose of the 

study Champernowne assumed that several variables in the problem are known: 

“(i) the average quality of the batches to be tested and the variation between 

batches of quality about that average, (ii) the cost of inspection and its 

dependence on the amount of inspection undertaken, and (iii) the cost involved by 

deciding wrongly to accept or wrongly to reject a batch, and the way this cost 

depends on the quality of the batch.” 

Using this information, Champernowne developed an economical boundaries model that 

uses sampling inspection results (number of effective and defective items) to determine 
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whether the lot should be accepted or rejected. Champernowne mainly focused on 

satisfying the economical aspect of the problem.  Meaning that as long as the result is 

within the economical boundaries the lot would be accepted even if the defects were 

found in the sample On the other hand, Barnard (1954) argued that the information, 

which Champernowne assumes are given, are not readily available in the real world. 

Barnard argues that assigning a distribution for defects is needed in order to solve the 

problem. Barnard also argues that a considerable amount of information of each lot is 

needed to make an optimal decision for the problem. 

Hamaker (1958) described three different approaches to sampling inspection: 

sampling tables, collecting data, and constructing inspection plans. Hamaker also 

modeled a plan of using economic theories where the research concluded that it might be 

more economical not to inspect the lots with a small probability of nonconforming items. 

While all the methods have been implemented in the real world, Hamaker warned that the 

data collection and sampling tables might lead to over sampling while using economic 

theories might not always be possible because certain factors might not be obtainable. 

Hamaker then suggested that a sampling plan should be selected and monitored for its 

performance and then later adjusted for the new data if needed.  

Calvin (1983) made similar remarks when considering the zero defect philosophy. 

He pointed out that many managers are looking only for the ways to reach the zero 

defects but not to stay at the zero defect level. Calvin argued that there are different 

statistical methods such as control charts and acceptance sampling plans that managers 

can use in order for the product to stay at zero defects. The research suggested that the 

managers should consider how many good parts are in between two bad parts and in this 

way could control the zero defect level. If there are a smaller number of good parts 

between two bad parts then the lower limit suggests that the batch is rejected. Calvin also 

argued that the data collection has to be thorough because statistical importance may be 

lost in the process. The limits of keeping or discarding the batch should be challenged in 

a way that zero defects are still achieved for a lower cost. 

Shi and Zhou (2009) gave a brief survey of the various techniques for quality 

control improvement in multiple stage and component processes. Among the discussed 

methods are the physical method, data-driven model, and statistical process control. 
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Physical methods require previous knowledge about the process. Data-driven models 

need sufficient knowledge in mathematics and statistics. It also requires a vast historical 

database in order to provide reasonable estimates. Data-driven models are appealing 

because they do not require the previous knowledge of the process in order to be applied. 

Statistical process control has a high “false alarm” probability and, according to Shi and 

Zhou “lacks the capability to discriminate among changes at different stages”. The 

research concluded that the most attractive methods for solving these problems would 

typically be data-driven models and other quantitative models because they can be 

applied to various systems in the market. In order to guarantee the quality of the final 

product, companies use sampling inspection plans for the system components. In 

addition, in order for these multi-component systems to stay operational, certain 

maintenance plans have to be developed. 

One of the risks that researchers have noticed is that rejecting lots might slow 

down or even stop the production due to limited components needed for the assembly. 

Therefore, Salameh and Jaber (2000) focused on the optimal inventory of the items that 

might contain items of imperfect quality. They found that the quantity of the items per 

order increases as the probability of defective item increase. 
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3. MODEL 

Consider an assembly line that has M different parts coming in. These parts have 

different lot size, defect rate, and repair cost if a defective item enters the assembly line. 

They also have a specific time interval needed to inspect a single item. An incoming 

inspection is performed on these parts in order to control the quality of the final product. 

The problem facing the management is to determine the right inspection sample size for 

each part considering the variability of risks associated with the M parts and the cost of 

labor needed for inspection. The problem can be modeled as a Nonlinear Integer 

Programming (NIP) problem as follows. 

 

Index sets: 

I = {i| i= 1, 2, …, M} = index set of parts considered by inspections 

 

Parameters: 

ti = units of time needed to inspect a single item of part i 

Ni = total number of items in the lot for part i (lot size) 

di = probability of a defective item in the lot for part i (defect rate) 

Di = total number of defective items in the lot i 

Ci = cost of a nonconforming item reaching assembly for part i 

CL = cost of labor per unit of time 

 

Decision variables: 

ni = the number of items to be inspected for part i 

 

Minimize: 

 (𝐶!)(𝑡!) 𝑛! +!
!!! 𝑃(𝐷!)  𝐷!   𝐶!   𝑃(𝑁! ,𝐷! ,𝑛!)

!!
!!!!

!
!!!  (1) 

Subject to: 

 𝑃 𝐷! =    𝑁!𝐷!
𝑑!
!! 1− 𝑑! !!!!! (2) 
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 𝑃 𝑁! ,𝐷! ,𝑛! =
!!!!!
!!
!!
!!

 (3) 

 0 ≤ 𝑛! ≤ 𝑁! ,               𝑛!   𝑎𝑟𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 (4) 

 

The first part of Equation 1 represents the total cost of inspection. The number of 

items that are to be inspected for part i (ni) is multiplied by the units of time needed to 

inspect a single item of part i (ti). This provides the time needed to inspect the sample 

size for the part i. This value is then multiplied by the cost of labor per unit of time (CL) 

in order to find the cost of inspection for part i. This function is an increasing function, 

meaning that with an increase of sample size (ni) the cost of inspection will increase. This 

is then repeated for all M parts, which are then summed up in order to find the total cost 

of inspection for the system.  

The second part of Equation 1 represents the expected total cost of 

nonconformance reaching assembly. It is assumed that the parts that are in the lot can 

either pass (conforming items) or fail inspection (nonconforming items) and that the 

inspection is performed without error. Since there are only two possible outcomes (pass, 

fail) it is assumed that the probability of having Di number of defects of part i in the lot 

follows the binomial distribution (Equation 2). Therefore, calculating the probability of 

having an exact number of nonconforming items (P(Di)) in the lot is possible as long as 

the defect rate and the lot size for part i is available. The cost of the exact number of 

nonconforming items reaching assembly is calculated by multiplying the number of 

defects in the lot with the cost of a nonconforming item reaching assembly for part i (Ci). 

Using this cost and the probability of having a specific number of defects is multiplied to 

get an expected cost of nonconformance for the specific number of defects. In order to 

determine what is the total cost of nonconformance for part i, the expected costs of 

nonconformance are calculated for all possible values of Di (0≤	  Di ≤Ni). These values are 

then added together to find what is the total expected cost of nonconformance for part i. 

This also represents the total expected cost of nonconformance for part i if there is no 

inspection performed and the lot is sent directly to the assembly line. 

With the inspection of a certain number of items (ni), it is expected that the 

probability of a nonconforming item reaching assembly for that particular part number 
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will be reduced. The number of defects found in the sample size that would be tolerated 

is zero, meaning that if a nonconformance is found in the sample size the entire lot is 

rejected. It is assumed that the inspection is performed without replacement. Since two 

mutually exclusive categories (pass/fail) are considered, it is assumed that the probability 

of accepting the lot with a defect follows the hypergeometric distribution as shown in 

Equation 3. 

The sample size ni can be any number between zero and lot size Ni and ni must be 

an integer (Equation 4). If the sample size is zero, no inspection is performed. This means 

that the risk of accepting the lot with Di defects is large and the expected cost of defects 

reaching the customer is high. However, if sample size is Ni, 100% inspection is 

performed, the risk of accepting the lot with Di defects is zero, but the inspection cost 

would be high. This function is therefore decreasing where the decision variable is the 

sample size, ni. With the increase of the sample size, the probability of accepting the lot 

with Di defects decreases. Therefore, the bigger the sample size n the smaller the 

expected cost of a nonconforming item reaching the assembly for a specific number of 

defects Di: 

 

 𝑃(𝐷!)  𝐷!   𝐶!   𝑃(𝑁! ,𝐷! ,𝑛!) (5) 

 

And, in order to calculate the total expected cost for the specific part with all the 

possible values of Di, the summation of these equations is needed: 

 

 𝑃(𝐷!)  𝐷!   𝐶!   𝑃(𝑁! ,𝐷! ,𝑛!)
!!
!!!!  (6) 

 

Finally, in order to find the expected total cost of the nonconforming items for all 

the parts M in the system, the values are summed for all the parts M in the system. 

Since the cost of inspection is an increasing function and the expected total cost of 

nonconformance reaching assembly is a decreasing function with both functions having a 

sample size ni as a decision variable, it is possible to calculate the specific sample size for 

all the parts M in the system, which would minimize the total cost of quality control 

(Equation 1). The model works under the assumption that the time needed to inspect all 
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the sample sizes is flexible, meaning that it can be increased or decreased as long as the 

economical aspect of the model is satisfied and the total cost of quality control is 

minimized. 

In some cases the model is equivalent to a set of smaller, part by part, problems. It 

is therefore possible to solve the problem by breaking it down into independent problems 

and solving it for each part. However, this is not universally true. 

 

(min  [(𝐶!)(𝑡!) 𝑛! +!
!!! 𝑃(𝐷!)  𝐷!   𝐶!   𝑃(𝑁! ,𝐷! ,𝑛!)])

!!
!!!!  (7) 
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4. ANALYSIS AND RESULTS 

The model was programed in Excel where it was set to find the global minimum 

for each part in the system. These values are then added in order to calculate the 

minimum total cost of quality control for the entire system. The program was initially 

tested for three parts. The data was randomly generated and the inputs are show in Table 

4.1. 

 

Table 4.1. Inputs for the 3-part problem 

INPUTS 

Hourly Wage = $40.00 

   
 

Inspection Time 

per Piece i (min) 

Defect Cost 

per Piece i ($) 
Lot Size i 

Defect Rate 

for Part i (%)  
 Part Number ti ci Ni di 

1 20 $400.00 30 2.90% 

2 30 $17.20 20 1.93% 

3 5 $235.00 10 3.13% 

 

 

After running the 3-part program the results were obtained and the outputs are 

shown in Tables 4.2 and 4.3. It was found that there would be three different possibilities 

of inspection in the system. First, the function for part i is strictly increasing. This means 

that the cost of inspecting one item is higher than the expected cost of nonconformance if 

no inspection is performed; therefore, the model recommends no inspection. Second, the 

function for part i is strictly decreasing. This means that the cost of inspecting Ni items in 

the lot is lower than the expected cost of nonconformance if no inspection is performed 

and it is lower than the total cost if Ni -1 items are inspected; therefore, the model 

recommends 100% inspection. Lastly, the function for part i is convex. This means that 

there is a specific sample size that would lower the total cost of quality control and it has 
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a global minimum. In this third possibility, the model recommends a sampling inspection 

with a specific sample size as a solution. 

Table 4.3 shows the changes in costs if the inspection is performed or not. It can 

be seen that the model is able to lower the total cost of quality control by 19% while 

lowering the total expected cost of nonconformance by 61%. The calculations were also 

performed by hand in order to verify the performance of the program and the model. 

 

Table 4.2. Outputs for the 3-part problem 

OUTPUTS 

 
Expected Cost of 

Nonconformance 

Without 

Inspection 

Expected Cost of 

Nonconformance 

With Inspection 

Cost of 

Inspection 

per Part 

Cost of 

Quality 

Control 

per Part 

Sample 

Size 

Percent 

Inspection 
 

Part 

Number 

    

ni  

1 $348.00 $159.45 $146.67 $306.12 11 36.67% 

2 $6.56 $6.56 $0 $6.56 0 0% 

3 $73.56 $0.00 $33.33 $33.33 10 100% 

 

Total No 

Inspection 

Total With 

Inspection 

Total 

Inspectio

n Cost 

Total 

Cost of 

Quality 

Control 

  

 $428.12 $166.01 $180.00 $346.01   

 

 

Table 4.3. Change in costs if no inspection is performed and if inspection is performed 

	   No	  

Inspection	  

Optimized	  

Inspection	  

Change	  in	  

Cost	  
%	  Change	  in	  Cost	  

Cost	  of	  Work	  Force	   $0.00	   $180.00	   	   	  

Expected	  Cost	  of	  N-‐C	   $428.12	   $166.01	   $262.11	   61%	  

Total	  Cost	   $428.12	   $346.01	   $82.11	   19%	  

Time	  Needed	   0	   270	  min	   	   	  
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The problem was then expanded to a 20-part problem in order to bring the model 

closer to a real world application. The data was randomly generated for the problem 

where the time needed to inspect one item of part i was given an interval between 0 and 

30 minutes, cost of a nonconforming item reaching assembly for part i between $10 and 

$300, lot size between 10 and 500, defect rate between 1% and 10%, and the hourly wage 

was set for $25. 

After running the program it was successful in obtaining the optimal solution. All 

the results were checked and verified. Figure 4.1 shows the difference in the defect rate 

without inspection versus with inspection that is suggested by the model. Figure 4.2 

shows the difference in expected cost of nonconformance for each part without inspection 

performed versus with inspection suggested by the model.  

 

 

 
Figure 4.1. Difference in defect rate between no inspection versus with inspection for the 

20-part problem. 
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Figure 4.2. Difference in expected cost of nonconformance between no inspection versus 

with inspection for the twenty-part problem. 

  

 

 Figure 4.2 shows that the expected cost of nonconformance was significantly 

lowered for all parts. This leads to a considerably lower total expected cost of 

nonconformance as shown in Table 4.4. The results show that the total expected cost of 

nonconformance is reduced by 89% and that the total cost is reduced by 76%. 

 

 

Table 4.4. Change in costs if no inspection is performed and if inspection is performed 
for 20-part problem 

	   No	  

Inspection	  

Optimized	  

Inspection	  

Change	  in	  

Cost	  

%	  Change	  in	  

Cost	  

Cost	  of	  Work	  Force	   $0.00	   $3,218.33	   	   	  

Expected	  Cost	  of	  N-‐C	   $23,339.03	   $2,451.60	   $20,887.43	   89%	  

Total	  Cost	   $23,339.03	   $5,669.93	   $17,669.10	   76%	  

Time	  Needed	   0	  min	   7724	  min	   	   	  

$0.00	  

$500.00	  

$1,000.00	  

$1,500.00	  
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Item	  Number	  

Difference	  in	  Expected	  Cost	  of	  
Nonconformances	  between	  No	  Inspec1on	  

Vs.	  With	  Inspec1on	  

No	  Inspec7on	  

Op7mized	  Inspec7on	  
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After running the program with different inputs it was noticed that the model 

rarely suggests 100% inspection. This is especially the case with large lot sizes and it is 

to be expected given that the probability of accepting the lot with defects exponentially 

decreases and, therefore, further inspection is redundant. 

The advantage of this model is that it provides an optimal solution for the problem 

quickly. However, it operates under the assumption that the time available for inspection 

is flexible. This means that the management can hire more workers to perform the 

inspection, which is particularly applicable for companies that utilize outside inspection 

services. This may not be the case for some companies. Also, one of the disadvantages 

could be that the management is not able to acquire all the necessary data needed in order 

for model to work. However, if the assumption are satisfied this would be a useful tool to 

use to find the most economical inspection plan. 
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5. CONCLUSIONS AND FUTURE WORK 

This research was focused on determining the most economical solution for 

quality control by determining optimal sampling levels for the incoming lots. In order to 

achieve this goal the model had to find an optimal tradeoff between the cost of inspection 

and the expected cost of defect reaching assembly. The proposed model is able to solve 

and provide an optimal solution to the problem. Several assumptions were made for the 

model development. The first assumption is that the probability of having a specific 

number of defects in the lot follows the binomial distribution. The second assumption is 

that the probability of accepting the lot with a certain number of defect after inspecting a 

sample size of items for part i follows the hypergeometric distribution. Another 

assumption is that if one item in the sample size was found to be defective the entire lot is 

rejected. The final assumption is that the time needed for inspecting sample sizes 

provided by the model is available. If these assumptions are satisfied and management is 

able to provide the necessary information, then the model gives an optimal solution to the 

problem. Examples were provided in the paper as well as the results that show the 

optimal solution for minimizing the total cost of quality control. 

Future work would include developing a model that would not just look into the 

number of items that need to be inspected but also the specific characteristic of the item 

that is proven to have a possible issue. This would increase the efficiency of inspection, 

which means that operators could inspect more items if they know which particular 

characteristic needs more attention.  
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SECTION 
 

2. CONCLUSIONS 

 This research was able to provide solution to the problem that the modern 

industry facing. It looked into two aspects of the problem facing the management. First it 

looked into minimizing the total cost of nonconformance with in the limited time 

available for inspection. Many companies face this problem where the time and labor 

available for inspection is limited and cannot be easily expanded or expanded at all. 

Therefore, the management has to make due with the recourses it has provided. The 

model was able to solve the problem and provide a reasonable solution within a 

reasonable time. It should be noted that the evolutionary algorithm used to solve the 

problem does not give an optimal solution but rather a better one. 

 The second model was developed under the assumption that the time available for 

inspection is expandable. Here the management is able to hire more people to do the 

inspection. Model was then set to find the minimal total cost of inspection where the 

optimal tradeoff between cost of inspection and the expected cost associated with a 

nonconformance reaching assembly is minimized. If all the assumptions are satisfied then 

the model is able to provide an optimal solution to the problem.  
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