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ABSTRACT 
 
 

 Short and long range planning and execution for multi-seam coal formations 

(MSFs) are challenging with complex extraction mechanisms. Stripping equipment 

selection and scheduling are functions of the physical dynamics of the mine and the 

operational mechanisms of its components, thus its productivity is dependent on these 

parameters. Previous research studies did not incorporate quantitative relationships 

between equipment productivities and extraction dynamics in MSFs. The intrinsic 

variability of excavation and spoiling dynamics must also form part of existing models. 

This research formulates quantitative relationships of equipment productivities using 

Branch-and-Bound algorithms and Lagrange Parameterization approaches. The 

stochastic processes are resolved via Monte Carlo/Latin Hypercube simulation 

techniques within @RISK framework. 

 The model was presented with a bituminous coal mining case in the Appalachian 

field. The simulated results showed a 3.51% improvement in mining cost and 0.19% 

increment in net present value. A 76.95yd3 drop in productivity per unit change in cycle 

time was recorded for sub-optimal equipment schedules. The geologic variability and 

equipment operational parameters restricted any possible change in the cost function. A 

50.3% chance of the mining cost increasing above its current value was driven by the 

volume of material re-handled with 0.52 regression coefficient. The study advances the 

optimization process in mine planning and scheduling algorithms, to efficiently capture 

future uncertainties surrounding multivariate random functions. The main novelty includes 

the application of stochastic-optimization procedures to improve equipment productivity in MSFs. 
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NOMENCLATURE 

The following are symbols, variables, and abbreviations used in various sections 

of the thesis to achieve the set objectives. 

 

Symbol  Description 

Btu British thermal unit (One Btu is equal to the amount of heat required to 

raise the temperature of one pound of liquid water by 10 Fahrenheit at its 

maximum density, which occurs at a temperature of 39.10F) 

      Overall stripping ratio 

      Volume of the     waste material 

       Volume of the     coal seam 

       Tons of the     coal seam i.e.                           

     Dragline reach factor 

   Depth of overburden 

    Swell factor 

    Cut width 

   Height of spoil pile from the base of coal seam 

   Highwall angle 

   Spoil pile angle 



xvii 
 

   Waste block 

    Resource 

   Waste extraction scheduling period 

   Waste mining strip 

  
   

 A continuous variable representing the ratio of block   excavated by 

resource   in period   

  
   

 Discounted unit cost of mining all the material in block   as waste in 

period   by resource   

    Tonnage of waste in block   

  
   

 Cost in present value terms of resource   mining a ton of block   as 

waste in period    

  
  A binary integer decision variable equal to one if mining-strip   is 

scheduled to be excavated in period  , otherwise zero 

   Cost per energy consumed in period   ($/J) 

  
   

 Energy consumed by resource   in mining a unit ton of block   in period 

  

  
   

  Energy consumed in hauling a unit ton of block   excavated by resource 

  in period   

     Permissible total energy cost in period   ($/J) 



xviii 
 

       Lower mining capacity limit of resource   in period   

       Upper mining capacity limit of resource   in period   

      Internal dump available for resource   to spoil material excavated in  

period   

       External dump available for resource   to spoil material excavated in 

period   

    Specific gravity of the material 

   
   

   Total hours for a resource   to excavate a unit ton of block   in period   

       Mechanical available hours of resource   in block   per period   

      Minimum utilization requirements of resource   in block   per period   

    Minimum drop cut width 

    Clearance radius of the equipment revolving frame 

     Clearance radius of the boom point sheave  

     Length covered per unit excavation  

  
    Total length of block   in period    

      External space adjacent to block    

        Required minimum drop cut of resource   in period   

     Maximum haulage unit(s) capacity in period   

     Uniaxial compressive strength of block   



xix 
 

  
   

   Force required by resource   to excavate a unit ton of block   in period   

   
   

   Resource   labor requirement per ton production of block   in period    

        Available labor for resource   in period   

  
 
  The excavation depth at which the spoil pile will rise a height,    from 

the base of the coal seam given resource   

    Depth of the block    

    Tons of material in block    

    Length of block     

    Width of block   (cut width) 

   Coal seam-cuts 

   Coal product destination 

   Coal extraction scheduling period 

   Set of exposed coal seam-cuts 

  
   

  Continuous variable representing the portion of coal seam-cut   

extracted and transported to destination   in period  . 

  
   

  Discounted revenue obtained by selling the final product in coal seam-cut 

  to destination   in period   

    Tonnage of material in coal seam-cut    

    Thermal coal quantity in coal seam-cut    



xx 
 

   Proportion of thermal coal quantity recovered at treatment plant  

    Price of thermal coal in present value terms per unit of product  

     Selling cost of thermal coal in present value terms per unit of product  

  
   

  Cost in present value terms per unit of coal seam-cut   for mining and 

processing to destination   

      Upper bounds of the mining capacity in period   

      Lower bounds of the mining capacity in period   

      Upper bounds of the processing capacity in period   

      Lower bounds of the processing capacity in period   

      Upper bounds of the transportation capacity in period   

      Upper bounds of the stockpile capacity in period   

     Maximum coal market limit in period   

     Minimum coal market limit capacity in period   

  
    Labor requirement per unit excavation of coal seam-cut   in period    

     Available skilled labor in period   

     Pit-to-Plant maximum haulage unit(s) capacity in period   

   
    Hours to extract a unit quantity of coal seam-cut   in period   

      Excavation equipment available hours in period    



xxi 
 

      Utilization requirement of excavation equipment in period   

      Quality parameter   per unit quantity of coal seam-cut    

  
   

  Upper bound of quality parameter   at destination   in period    

   
   

  Lower bound of quality parameter   at destination   in period   

   Lagrange multiplier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1. INTRODUCTION 

The deployment of large mining equipment has resulted in low-cost, bulk 

production operations in surface mines. In strip coal mining operations, these economies 

of scale favor increasingly the use of draglines, shovels, dozers and other support 

equipment for overburden and coal extraction. However, the selection of a particular 

dragline model with fixed design geometry might be economically inept in varying 

geological and operating domains. A comprehensive introduction to the research study is 

presented in this section. The introduction include: (i) background of research problem, 

(ii) statement of the problem; (iii) objectives and scope of the study; (iv) research 

methodology; (v) scientific and industrial contributions; and (vi) structure of the thesis.  

 

1.1 BACKGROUND OF RESEARCH PROBLEM 

The world’s largest estimated recoverable coal reserves are located in the United 

States of America with the coal mines producing more than a billion tons coal per annum 

(EIA, 2012). With the primary energy consumption in the United States estimated to 

increase by 1.1 percent per annum from 2004 to 2030, coal production has seen a steady 

growth. This growth is estimated to continue through 2035 (See figure 1.1) with an 

average growth rate of 1.0 percent from 2015 (EIA, 2012). The current coal 

consumption rates, as illustrated in Figure 1.2, make coal production vital to the micro 

and macro-economic growth of the United States. Coal production in the United States 

totaled 1.08 billion tons, about 0.9 percent increment from the 2009 total of 1.07 billion 

tons (EIA, 2012).  
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Figure 1.1 Coal Productions by Regions (quadrillion Btu) (EIA, 2012) 

 

 

Figure 1.2 Coal Consumed and Generated in the Electric Power Sector (EIA, 2012) 

 

Approximately, two-thirds of the coal is produced from surface mining 

operations. The increase in surface coal production can be attributed to the advent of 

larger trucks, shovels and more sophisticated draglines resulting in higher production 

efficiencies (Gershon, 1983). The mining method adopted by most United States surface 

coal mines is strip mining. In this method, draglines have extensively been engaged for 
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overburden removal due to their economic advantages as compared to other extraction 

methods. In strip mining operations, the cost of waste material extraction is a significant 

portion of the overall mining cost. Similarly, in terms of equipment energy consumption, 

waste excavation and material spoiling are the most costly and energy-consuming sectors. 

The main factors that influence energy consumption in mining operations include: (i) 

equipment design and matching; (ii) explosives factor and degree of fragmentation; (iii) 

drilling patterns; (iv) working geometry and condition; and (v) loading/shift systems 

(Cooke and Randall, 1995). Figure 1.3 shows the distribution of excavation cost 

according to a survey by the mining association of Canada (2005). Based on Figure 1.3 

and the energy-consumption parameters, it is implied that efficient stripping is a 

significant component in surface coal mine operation. 

 

 

 

Figure 1.3 Strip Mining Cost Distributions (Mining Association of Canada, 2005) 

 

The primary overburden excavation equipment in most strip mines is the 

dragline. With a typical machine weight of 8,350 tons and a capital investment of about 

3% 

7% 

42% 

48% 

Cost of dewatering Cost of ancillary support

Cost of ore extraction Cost of waste rock removal
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$200 million, draglines are massive and expensive equipment. The average bucket 

capacity is approximately 105 cubic yards and the equipment is continuously operated 

unless for preventive maintenance schedules. In 1999, among the 56 largest United States 

coal mines that use draglines, their total coal production was approximately 400 million 

tons (Gilewicz, 2000).  

Due to the contribution of draglines to surface coal mining and the significant 

number of surface coal mines compared to underground coal mines, as illustrated by 

Figure 1.4, surface coal mining in the United States will continue to benefit from 

increased dragline productivity and optimal usage.   

 

 

 

Figure 1.4 Distributions of U.S. Surface and Underground Coal Mines (EIA, 2012) 

 

1.2 STATEMENT OF THE PROBLEM 

Most of the surface coal deposits in central Appalachian region of southern WV, 

eastern KY, southwestern VA and western United States occur in multiple seams (Mark 

et al., 2007). In multi-seam formations (MSFs), optimal units and excavation scheduling 
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of draglines are significant economic and sustainable mining requirement. Dragline 

applications in such environments tend to be challenging, and therefore need careful 

planning and scheduling. Since dragline operations are highly capital-intensive, 

investments in multiple units hugely impact the overall economic viability of projects. 

Although auxiliary equipment may be engaged to complement the dragline operations in 

these environments, sub-optimal dragline schedules, may result in huge economic losses. 

Sub-optimal dragline schedules are essential drawbacks in MSFs excavation, which must 

be resolved with applicable advanced research initiative.    

The selection of a particular dragline model may not be economically sustainable 

due to varying geological and operating parameters as mining advances. With increasing 

overburden depth, material rehandling may occur as a result of shorter dragline reach. 

Material rehandling increases production cost significantly due to draglines spending time 

to handle material already excavated, and thus, has less time in exposing coal. Duration 

of dragline walking and operating pad preparations in the event of material rehandling 

may also reduce its productivity. There may be occurrences of differed revenues as some 

lower seams would not be timely recovered. Hence the key to gaining higher economic 

benefit in dragline operation is to select dragline unit(s) with optimal geometry to 

minimize material rehandling and ensure optimal recovery of lower coal seams. The 

selection and scheduling of dragline unit(s) is a comprehensive problem that should be 

resolved through detailed optimization models and appropriate research initiatives. 

Ancillary operations in overburden removal, such as cast blasting and dozer-

ripping to complement the extraction operations of draglines are also worth 

investigating. As the geologic conditions become more complex, the dragline reach and 

geometry require sufficient technical improvement to increase productivity. Since the 

dragline geometry is fixed, expected productivity is reduced due to varying overburden, 
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coal seams and inter-burden depths. Even though there are several methods to increase 

the efficiency of stripping operations (improved design of dragline components), dragline 

productivity improvement by modification of the digging method is the most economic 

and efficient option (Demirel and Frimpong, 2009). Subsequently, optimal ancillary 

equipment selection and interaction with dragline digging dynamics could result in 

economic and efficient waste extraction sequence in MSFs. 

Mine plans may also specify material schedules and sequencing that might require 

frequent movement of large equipment. In the occurrence of such sub-optimal 

excavation schedules and sequencing, equipment utilization is greatly reduced due to the 

frequency and the length of long deadheading periods, when the unit is unproductive. 

On the average, draglines take a step of approximately 6.56 feet within a period of 0.75 – 

1 minute (Erdem and Düzgün, 2005).  

Another challenge is the spoiling dynamics. The dynamics of material dumping is 

conditioned by the available spoiling area, operational safety, environmental constraints 

and production requirements. Major economic problems (loosing coal seams) may occur 

if the stripping and dumping dynamics are not optimally sequenced. 

In MSF mining operations setups, optimal decisions regarding equipment 

selection and material schedules must be based on multivariable input constraints. These 

variable constraints are subject to future uncertainties, which might render an entire 

project uneconomic in the long term. Stochastic models are therefore required to 

completely define the underlying uncertainties associated with input parameters in these 

operations. 

To develop the proposed optimal economic models, comprehensive stochastic-

optimization formulations, provide a generic platform to simulate different scenarios. 
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Adequate knowledge of the challenging nature of MSFs provides understanding for 

improving the productivity of draglines while different scenario simulations offer a 

means to evaluate different operating conditions.  

 

1.3 OBJECTIVES AND SCOPE OF THE STUDY 

The primary objective is to maximize dragline and ancillary equipment 

productivity improvements and the associated economic benefits in MSF surface mining 

operations. The main components of the stochastic-optimization models include: (i) non-

linear programming models for equipment allocation and material scheduling; (ii) 

stochastic-optimization models for equipment allocation and material scheduling; (iii) 

simulation of these models to produce a series of optimal solutions for different 

scenarios; and (iv) comprehensive risk analysis of the optimal solutions. 

This work is limited to stochastic-optimization modeling of resource allocation 

and material excavation scheduling in MSFs using non-linear programming, Lagrange 

Parameterization, Monte Carlo and Latin Hypercube simulation techniques. 

The developed models are verified and validated using a case study of a typical 

thermal coal producing mine with two fairly horizontal coal seams. The stochastic 

analyses are limited to the coefficients in the objective function models. Model 

experimentation is limited to different equipment capacities and variable 

overburden/inter-burden thicknesses. The direction of mining advancement and 

stripping is also assumed to be predefined. All analyses and discussions are limited to 

thermal coal seams and the United States economy. 
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1.4 RESEARCH METHODOLOGY 

The research methodologies include in-depth analytical literature review, 

stochastic-optimization modeling, numerical modeling, computer simulation, risk 

profiling, and a comprehensive analysis of simulated results. The rationale for the 

research study is established from the detailed analytical literature review. 

The generalized optimization models comprise the objective function and 

constraint modules. The objective function consists of profit maximization platforms. 

The constraint modules are divided into three sections: (i) physical, (ii) chemical and (iii) 

economic. Generalized Lagrange multiplier methods in association with the generalized 

reduced gradient algorithm are used to solve the optimization models.  

Using the base case optimization models, stochastic models are developed, 

exploiting the intrinsic dynamics of the multivariate input parameters. Monte Carlo and 

Latin Hypercube simulation techniques in the SOLVER/@RISK software environments 

are used to simulate the stochastic models. The results obtained from the stochastic 

models are used to characterize the risk associated with the equipment productivity 

models. 

1.5 SCIENTIFIC AND INDUSTRIAL CONTRIBUTIONS 

This study contributes significantly to the existing body of knowledge and 

advances the frontiers in MSF excavation using stochastic-optimization modeling. The 

research work has formulated mathematical models of the excavation and spoiling 

dynamics, resource allocation, and material scheduling dynamics. Subsequently, the 

mathematical formulations are tailored towards improving the mechanics of dragline 

productivity in complex multi-seam coal formations. It also advances the body of 
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knowledge governing the efficient material extraction for meeting downstream customer 

specifications of coal products. 

Consequently, the optimal model also incorporates stochastic analyses to evaluate 

the risk associated with variable constraints. The optimal models result in significant 

benefits to multi-seam coal mining industry, such as minimizing rehandling, optimal coal 

extraction, desired coal quality attainment and optimal equipment sequencing and 

scheduling.  

The study also advances the stochastic-optimization process in mine planning 

and scheduling algorithms, to efficiently capture future uncertainties surrounding 

multivariate random functions. The developed models and the resulting analysis form the 

basis for developing comprehensive economic models for MSF excavation. The research 

findings can also be extended to commercial mine planning and scheduling software for 

maximizing the efficiency and economic benefits of dragline operations. 

 

1.6 STRUCTURE OF THE THESIS 

Section 1 has provided the introduction of the research study. Section 2 contains 

the literature review. This section also identifies the various complexities in MSF 

excavation. Section 3 comprises the optimization models. The stochastic formulations 

are presented in Section 4. Section 5 comprises the computer models and the 

experimentation setup for each of the optimization models. Various matrices and 

flowcharts of each of the numerical solution models are also presented in this section. 

Section 6 focuses on the results analysis and discussion. Section 7 discusses the main 

conclusions of the research study and recommendations for future work. Finally, the 

reference section contains the bibliographic list of the comprehensive literature review.  
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2. LITERATURE REVIEW 

The optimization algorithms investigated include: (i) linear programming, (ii) 

non-linear programming, (iii) mixed integer programming, and (iv) stochastic 

programming. The literature review also focus on application of these theories for 

optimizing material extraction in mining operations. This Section also contains the 

general description of multi-seam mine layouts, stripping methods and equipment 

allocation. Throughout the literature survey, the rationale and fundamental contributions 

of this MS research work has been completely established. All symbols, variables and 

abbreviations are explained in the nomenclature section.  

 

2.1 EXTRACTION GEOMETRIES AND STRIP MINE LAYOUT  

The geology of a mine layout is among the major determining factors in selecting 

appropriate stripping methods. The most common methods include: (i) simple side 

casting; (ii) chop cutting; (iii) extended benching; (iv) pull back mining; (v) terrace mining; 

and (vi) contour mining (Frimpong, 2011). Each of these methods can be modified for 

specific mining geometries.  

2.1.1 Stripping Methods.  The most common dragline method in singly-thin 

seam mining is the simple side cast. In this method, the dragline excavates from a bench 

immediately above the coal seam. Material is spoiled directly into the available space 

created by previous cuts. Material re-handling is often prevented by maintaining a cut 

width less than 40m (Satyanarayana, 2012). The advantages of simple side cast include: (i) 

simple system to adopt; (ii) swing angles can be kept to a minimum; and (iii) no re-

handling if the digging depth is greater or equal to the overburden thickness. However, 

productivity is limited by the dragline’s geometry and the overburden depth (Frimpong, 

2011).  
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Chop cutting, is the stripping method usually applied in weak formations. This 

method is also suitable when the overburden depth is greater than the dragline digging 

depth. Unlike the simple side cast method, chop cutting method results in increased 

dragline swing angles (≤1800). Increment in swing angles is estimated to result in 60% 

reduction in productivity (MA et al., 2006; Scott, 2010; and Frimpong, 2011).  

Extended bench method involves the extension of the dragline bench towards 

the spoil pile. This method often results in material re-handling, and the challenge lies in 

minimizing the re-handled volume. The major advantage of the extended benching is the 

ability of the dragline to excavate thick overburden depths and spoil material beyond its 

digging limits (MA et al., 2006; Scott, 2010; and Frimpong, 2011).  

An alternative to the extended benching method is the pull back method. This 

method allows the spoil to build up against coal seams and re-handle it later. However, 

the dragline swing angle increases to approximately 1800. The increment in swing angle 

and the considerable spoil re-handling result in low productivity.  

For deeper overburden depths, terrace mining is usually adopted. This method 

involves engagement of multiple draglines, hence, the economics is a limiting factor (MA 

et al., 2006; Scott, 2010; and Frimpong, 2011).  

Contour mining is usually adopted to recover coal seams along hillsides with 

increasing overburden depths. The major demerit of contour mining is difficulty in 

dragline positioning which results in low productivity and unsafe working conditions 

(MA et al., 2006; Scott, 2010; and Frimpong, 2011).  

2.1.2 Dumping Dynamics.  Typically, overburden and inter-burden materials 

are dumped internally or externally. Although external dumping is not environmentally 

friendly, it is a necessary step in creating the initial access point for internal dumping 
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(Vasilyev et al., 1999; and Zaitseva et al., 2007). As shown in Figure 2.1, external dumps 

are created at locations away from the excavation domain. Internal dumps are created by 

in-pit dumping. However, internal dumping activity must be concurrent with the 

dynamics of mining advancement. 

 

 

 

Figure 2.1 External and Internal Dumping Dynamics 

 

Generally, increment in dumping capacity slacks at the beginning of new mining-

cuts and also as a result of slower dumping advancement of preceding cuts. Internal 

dump capacity normally depends on the height of the dump layers, minimum permissible 

width of the operating floor of the dump, operational safety, dump slopes, economics 

and the excavation mechanisms. Dump failures possess environmental challenges and 

also affect coal recovery, mine safety and mining cost. Factors such as geometry and 

strength of the dump material, hydrogeological condition, load bearing capacity, and 

external load conditions affect dump stability (Kainthola et al., 2011). Draglines and 
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other ancillary equipment operating from spoil piles, subject these dumps to external 

loads. 

 2.1.3 Multi-Seam Strip Mine Layout.  A representative block model of MSF is 

obtained by precise modeling of the different structural characteristics. The material 

characteristics of these types of deposits include: topsoil, overburden, inter-burden and 

coal seams. A geologic block model of a typical MSF is illustrated in Figure 2.2. The 

complex structural geology of MSFs results in stripping ratio terms that must be 

accurately defined. This definition is often directed to meet specific needs of the 

excavation economics. The overall stripping ratio,     , is given by equation (2.1). 
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Figure 2.2 Block Model of an MSF 
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The determination of an economic stripping ratio (ESR) in MSFs comprises 

practices that minimize re-handling, optimize equipment interaction and maintain quality 

coal products. In this study, the ESR considers coal recovery and mining cost as dynamic 

variables determined by material characteristics; dragline reach and geometry; and the 

strip mine geometry. 

  

The main challenge in scheduling dragline operations in MSFs is the dragline 

reach geometry (refer to Figure 2.3). Assuming the toe of the spoil pile is allowed to rise 

up to a height,   from the base of the coal seam, as in Figure 2.4, the capacity of the spoil 

pile is increased and the reach factor (rf) is reduced by an amount equal to the increase in 

volume or the horizontal change (Equation 2.2)(Frimpong, 2011). 
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Figure 2.3 Dragline Reach Geometry 
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Figure 2.4 Dragline Material Re-handling Geometry 

 

 The overburden depth,   is the most sensitive parameter (Refer to Table 1.0 and 

Figure 1.0 in Appendix A). Hence, dragline operating dynamics in varying and large 

overburden must be optimally scheduled.  

2.1.4 Resource Allocation in MSFs.  Resource allocation problems in MSFs, 

like any other mining optimization problem, are governed by equipment selection and 

interaction, periodic productivity budgets, formation geometry, economics, and safety 

conditions. Material formation geometry presents structural uncertainties, which must be 

adequately defined by detail geological modeling. The geological models aid in 

determining accurate equipment-formation interactions and in effect, lead to proper 

equipment scheduling. In inclined MSFs, where material volume changes for every cut, 

equipment scheduling becomes more challenging, hence subjective decisions to this 

problem may be economically inefficient.  

Draglines are the cheapest cost predominant equipment used in overburden 

stripping when the draglines’ physical capabilities match the deposit’s characteristics. This 
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cost however increases significantly when the deposit’s physical capabilities alter from the 

physical limitations of the dragline (Scott et al., 2010). An integrated system of ancillary 

operations is usually employed when the physical limitations of the dragline is exceeded.  

Westcott et al. (2009) illustrate the following restrictions to achieving low-cost 

dragline excavation: (i) large deposits to ensure adequate strip length and sufficient 

reserves to justify the capital expenditure; (ii) gently dipping deposits, due to spoil 

instability on steep dips; and (iii) shallow deposits (draglines are restricted to 50 - 80 

meters of overburden due to reach and dump height limitations). 

Pre-stripping with alternative equipment is used to support dragline operations in 

thick overburden depths. Dozers, shovel and truck, and cast blasting are some of the 

alternatives. Shovel and trucks are flexible mining methods, suited for complex geological 

deposits, varying overburden depths and thickness, and smaller deposits (Westcott et al., 

2009). This method also hauls material outside the digging domain to prevent spoil re-

handling. Aiken and Gunnett (1990) stated that the shovel and truck system is used to 

excavate the upper and thinner overburdens within a deposit, while the dragline is 

engaged in deeper overburden.  

Cast blasting moves approximately 25% to 50% of material without the 

engagement of other stripping equipment. Dozer push operations can follow cast 

blasting to achieve efficient excavation. This combination can excavate approximately 

60% to 80% of overburden (MiningInfo, 2013). The cast blasting efficiency can be 

estimated using equation (2.3). 
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2.2 CHALLENGES OF MSF EXTRACTION 

Excavation in MSFs involves inter-relating variables, which influence economic 

decisions. The criteria for these economic decisions can be classified into three categories 

including: physical, economic and chemical (Falkie and Porter, 1973). The evaluation of 

these categories summarizes the extraction challenges.  

 

2.2.1 Physical Variables.  The physical challenges are divided into machine 

design, mine production and layout, external factors, and geological variables. The 

productivity of draglines is directly influenced by the mine layouts, pit geometries and the 

selected excavation method. Similarly, geologic characteristics define the stripping 

efficiency. As the geologic conditions become more complex, the dragline reach and 

geometry require sufficient technical improvement to increase productivity.  

Spoiling dynamics is another major challenge in MSF extraction. During internal 

dumping, the mining dynamics and economics affect the dump capacity; the variability of 

which is achieved by changing the width of the operating floor (Zaitseva et al., 2007). 

Major economic problems (loosing coal seams) may occur in excavation of MSFs if the 

stripping and dumping dynamics are not optimally sequenced.   

Material re-handling in strip mines could be controlled at the mine planning stage 

by selecting an appropriate excavation/spoiling dynamics which equipment selection and 

scheduling play an important role in. Wider pits are normally created in thick overburden 

formations to reduce re-handling and dragline walking time (Frimpong, 2011; 

Satyanarayana, 2012). In such situations, the main challenge is the increase in swing 

angles. Increasing swing angles result in reduced productivity, high maintenance cost and 

high clean-up time (Frimpong, 2011). 
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2.2.2 Economic Variables.  Geologic uncertainties of MSFs and the stochastic 

nature of economic variables, result in difficulties during excavation schedules. A stable 

economic model in this domain thus demands the characterization of geologic 

uncertainties and a detail analysis of dependent economic variables.  

The economic variables are classified as follows: (i) economics of mining lower 

seams; (ii) market demand and supply; (iii) economics of equipment selection and 

scheduling; (iv) cost of capital; (v) controllable operating costs; (vi) non-controllable 

operating costs; (vii) marketing and transportation costs; (viii) commodity price; (ix) 

production rate; and (x) capital expenditure (Falkie and Porter, 1973). 

The major challenge is the determination of quantitative relationships that 

incorporate the physical parameters of the deposit. Similarly, the economic model must 

also define the stochastic nature of these parameters. Hence, from the economic 

standpoint, the limiting factor is the ESR as discussed in Section 2.1.3. 

2.2.3 Chemical Variables.  The quality of final coal products is controlled by 

chemical variables. These variables may include: ash, moisture, sulfur, volatile, calorific 

value (BTU), and fixed carbon content. In MSFs, these variables can occur randomly 

over the coal domain due to alteration zones and general morphological characteristics of 

the deposit.  

Contrary to open pit mines, the large size and geometry of strip mine designs 

render selective mining unlikely. Thus, blending of different coal products to achieve 

desired quality is mostly conceivable at the processing stage.  

However, initial mine design and material scheduling models should incorporate 

the knowledge of the quality trend of the formation. Due to geologic uncertainties of 

MSFs, incorporating chemical and physical variables into the overall economic model 
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require a detailed model. Subjective approach obviously at this stage is very inefficient to 

meet these challenges.  

 

2.3 PREVIOUS RESEARCH INITIATIVES AND OPTIMIZATION 
ALGORITHMS 

2.3.1 Linear Programming (LP).  An LP algorithm is defined by linear 

functions of unknown variables subject to a set of constraints, which are also linear 

equalities or linear inequalities in the unknown variables (Hillier and Hillier, 2010; 

Winston, 1994). LP problems were first shown to be solvable in polynomial time by 

Khachiyan (1979), and the concept has been adopted as a considerable field of 

optimization for several reasons (Fagoyinbo et al., 2011). 

Erlandsson (1972) applied LP to investment analysis for an iron ore market. The 

objective was to obtain an optimal blend of ore product from different plants which met 

market specifications. This objective was achieved through: material balances, blending 

conditions, production capacities and market demands. Changes in total profit resulting 

from the different investment alternatives, together with investment and fixed costs, 

were used in a series of investment analyses. However, the analyses were based on single 

value inputs for stochastic input variables hence ignoring future uncertainties.  

Falkie and Porter (1973) tackled the dynamics of economic decision-making in 

MSFs. The research led to the development of an economic decision-making model to 

aid operators and pit geologists in areas where selective mining was specially required or 

preferred. However, this work did not incorporate the detailed quantitative relationships 

for the various decision-making variables. 

Bott and Badiozamani (1982) developed LP algorithms to optimize the mine 

planning, sequencing, and blending activities in MSFs. Due to the varying individual coal 
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seam qualities, the authors identified coal blending as the optimal decision in meeting 

specified quality standards. The LP formulations included: pit geometry, material 

extraction, coal blending, and maximum resource utilization. However, transportation 

constraint and equipment selection were not captured. The economic impact of 

equipment selection and scheduling is vital in assessing feasibility of projects. 

Olsson (1983) described the production operations in MSFs. The author 

identified major complexities in dragline operations as: careful planning, close dragline 

supervision and dragline movement. The material removal sequencing and equipment 

selection processes described by Olsson were based on heuristic algorithms and 

managerial inferences, which were complicated with numerous uncertainties. Stochastic 

simulation modeling is required to capture the uncertainties. 

Gershon (1983), defined a more comprehensive LP model to solve some 

limitations of mine scheduling models. Gershon identified that most of the mine 

scheduling algorithms were not generic and hence their applications were limited. Also, 

existing optimization models compromised on valuable sectors in optimizing specific 

aspects of the mining operations. The modified algorithms thus incorporated 

market/production interactions, life of mine, and overall economic plans. In applying 

Gershon’s generic LP models to MSFs however, specific equipment selection and 

sequencing must be thoroughly and independently addressed in the model formulations. 

Tanaino et al. (1986) investigated open pit mining of a series of slightly inclined 

coal seams with temporal internal dumps. The authors developed mathematical 

algorithms to analyze the economic feasibility of mining a series of slightly inclined coal 

seams. This work had led to a reliable foundation for choosing mining operation 

technologies on the basis of current expenses and equipment costs. However, the 
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excavation sequence must be carefully selected to minimize re-handling of material and 

losing of coal seams due to inaccessibility.  

Tan and Ramani (1992) compared the mathematical feasibility of LP and dynamic 

programming (DP) models for open pit mine scheduling. The main objective of the mine 

scheduling problem was to find an ore production curve below the upper bound 

function of ore production and a stripping ratio curve. The major constraint established 

by the authors was that the optimal curve had to be within the feasible regions of ore and 

waste production that maximized the profit of the entire project. The optimal solutions 

obtained indicated that the LP models were more flexible than the DP models and could 

easily be formulated to define any mining geometry.  

Ray et al. (1999) discussed the economic gains of cast blasting technique for 

overburden excavation, to using dragline or shovel/truck systems. The authors stated 

that cast blasting minimizes considerably the overburden handling cost. Hence an 

optimization model is necessary to investigate this statement and also determine optimal 

equipment schedules. 

Awuah-Offei et al. (2003) emphasized the importance of predicting equipment 

needs well in advance of mining activities. Mining data collected were used to construct a 

simulation model of the haulage system in SIMAN simulation environment. The study 

was limited because the authors considered only the technical evaluations of the project. 

Also, the work did not include improving the productivities of the equipment within the 

mining domain.  

Zaitseva et al. (2007) formulated LP models to analyze the effect of mining 

sequence on internal dump capacity. The pit development was modeled in spatial 

rectangular coordinates, and vertical planes were used to simplify the model. The dump 
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development was modeled by the working flanks, functional relationship between the 

stable slope angles, and the geometry of the lower beds. However, quantitative 

relationships between equipment operating geometries and excavation dynamics were 

not established. 

Zhou et al. (2007) studied the interaction between working bench advancement 

and stripping volume with variations in coal seam thickness. The model consisted of the 

annual mining advancement distance, annual stripping volume, maximum bulldozing 

depth, dragline bench height, and production reliability of the dragline mechanism. The 

authors concluded that dragline-bulldozer system offered greater flexibility in varying 

coal seam thicknesses than a pure dragline system. To expand this work, a generic 

optimization framework for optimal equipment selection is required.  

Zhenming et al. (2011) used Visual Basic. NET and MATLAB to model a 

production scheduling optimization system for a coal mine. LP models were developed 

to optimize production plans, mineral processing and transportation schemes of the 

mine. The authors, however, eliminated the stochastic nature of the variables that 

defined the mine production schedule and economic plans.  

Zhu et al. (2012) applied LP to optimize the mine plan of an iron ore mine. The 

LP algorithm was used to find optimal mine plan for a joint open pit and underground 

operation. The main objective was to increase the overall economic gain from the mining 

operation during the surface-underground transition period, by establishing mine plans 

with synthesized optimal results. The results showed optimal economic gains which was 

used to control the quality and quantity of the ore output. However, the uncertainties 

surrounding the input parameters were not defined which result in sub-optimal solutions 

with inherent risks of failure.  
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2.3.2 Non–Linear Programming (NLP).  LP and NLP problems have always 

been treated separately; however, their methodologies have gradually become similar. 

One of the techniques commonly used to formulate constrained NLP problems is the 

Lagrange Multiplier Method (LMM). Lagrange multipliers are presented in a framework 

of differentiable functions, and are used to yield constrained stationary points. Their 

validity or usefulness often appears to be connected with the differentiation of the 

functions to be optimized. The usefulness of LMM for optimization is not limited to 

differentiable functions. Arbitrary real valued objective function can also be optimized 

over any set of variables using LMM (Pop, 2002; Evtushenko, 1977; and Little, 2008). 

Everett III (1963) developed theorems to prove that the use of LMM constitutes 

a technique whose goal is maximization rather than location of stationary points of a 

function with constraints. He also illustrated that there were no continuity or 

differentiability restrictions on the functions to be maximized. The application of LMM 

could be extended to discrete, continuous, numerical or non-numerical functions. 

Albach (1967) developed NLP optimization model for multi-stage production 

plans. Geological information of the orebody was the major source of uncertainty 

identified. Incorrect boring results and geostatistical analyses between boring points were 

some of the sources of uncertainties identified by the author. A chance-constrained 

programming problem was formulated to define the interaction between the production 

and investment plans. The model maximized a linear function subject to linear and non-

linear constraints. However, this study did not consider the uncertainties with equipment 

scheduling.  

Thomas et al. (1972) applied a non-linear automatic history matching technique 

for reservoir simulation models. The technique was based on Gauss-Newton least-square 

algorithm. The authors used this technique to automatically vary the reservoir parameters 



24 
 

in other to obtain values representing the different field performance. The Gauss-

Newton algorithm was used to match both linear and non-linear problems in a 

reasonable number of reservoir simulations. The results were compared to existing 

history matching techniques. The authors concluded that Gauss-Newton technique 

provided equivalent properties in fewer simulations ran. However, optimal solutions 

provided by Gauss-Newton’s technique generally depends on the choice of initial values, 

hence the estimated uncertainty information is often inaccurate or insufficient (Chen et 

al., 2008). 

Dagdelen and Johnson (1986) used Lagrange theory and parameterization 

concept of mining operations to optimize production schedules in an open pit mine. The 

authors identified that with the application of the new optimization algorithm, different 

scheduling conditions converged faster. However, the problem could be handled by any 

ultimate pit limit (UPL) algorithm such as Lerchs-Grossman (1965) graph theory based 

algorithm (Sattarvand and Niemann-Delius, 2008; Caccetta et al., 1998). The 

uncertainties surrounding the stochastic parameters were also not considered. Caccetta et 

al. (1998) extended this further by using subgradient optimization method, subsequent to 

applying Lagrange Multipliers to eliminate mining and milling constraints.   

Gallagher et al. (1991) developed a new technique in locating an optimal model 

which was superior in performance to Monte Carlo techniques. The authors illustrated 

that, in providing a method for solving non-linear optimization problems, Monte Carlo 

techniques avoided the need for linearization. However, in practice, this technique is 

often prohibitive because of the large number of models that must be considered. A new 

class of methods, genetic algorithms (GA), has recently been devised in the field of 

artificial intelligence to curtail this problem. GAs’, like the Monte Carlo methods, are 

completely non-linear, use random processes and require no derivative information. 
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Even though GA yields more efficient results, Monte Carlo integration is still regarded as 

an effective method for subsequent model appraisal. A major limitation of genetic 

algorithm is premature convergence and identification of fitness functions (Baluja and 

Caruana, 1995). 

Zhao and Kim (1992) extended the work by Dagdelen and Johnson (1986) by 

demonstrating the absence of optimal production schedules using Lagrange 

parameterization. The authors illustrated this limitation under two conditions: (i) 

occurrence of duplicate optimal solutions for given scheduling periods, and (ii) stripping 

required beyond the minimum defined by the slope angles. Since the relaxed problem 

was solved by ULP algorithm, the convergence to optimal solutions under the two 

conditions was eliminated. The authors also showed that, the algorithm picks up all 

redundant optimal solutions simultaneously given a small Lagrange Multiplier and vice 

versa. The outcome of this study shows some limitations of the Lagrange 

parameterization technique. 

Pendharkar and Rodger (2000), developed a generalized NLP model to eliminate 

excessive scheduling and inventory problems in coal industries. The authors considered 

production cost as a non-linear function of production volume. This technique provided 

better profit margins when compared to LP models. The model was limited to very 

simple cases, fails to address the stochastic nature of the variable input parameters, and 

also neglected optimal equipment selection. 

2.3.3 Mixed Integer Programming (MILP).  Optimization models normally 

may have both fractional and integer variables. Such a model is referred to as MILP 

when the objective function and the constraints are linear in nature (Hillier and Hillier, 

2010; Winston, 1994). Though mixed integer non-linear programs (MINLP) also exist, 

these problems involve rigorous computational intelligence to reach optimality. As in the 
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case of other operations research approaches, MILP have been used to solve mine 

production and resource scheduling problems. MILP models can be used to model 

diverse mining constraints such as selective mining, multiple equipment tasking, multiple 

ore processors, multiple material stockpiles, and blending strategies (Schouwenaars et al., 

2001; Little et al., 2008; and Caccetta and Hill, 2003). 

Muckstadt and Wilson (1968) applied MILP duality to schedule thermal 

generating systems. The authors presented a decomposable mixed-integer programming 

model for simultaneous economic consideration of unit commitment and short-term 

dispatch of thermal power generating equipment. The optimization model was developed 

to define the demand forecast as a discretize function that allowed a probabilistic 

estimate to be incorporated in the scheduling model. This attempt characterized the 

uncertainties surrounding the variable demand parameter of the system. The algorithm 

was extended to multiple periods and included time dependent constraints, which 

resulted in more practical optimal solutions. Even though duality is an important concept 

in constrained optimization, conventional duality theory leads to gaps for non-convex 

optimization problems (Chen, 2007).  

Barbaro and Ramani (1983) used generalized multi-period MILP to model 

production schedules and processing facilities selection. The object function was to 

determine the best use of fixed resources in production schedules for multiple 

production units supplying different markets. The authors however, assumed linearity 

and certainty of all relationships. Further research is required to characterize the 

uncertainties with the multivariate random parameters. 

Winkler (1996) showed the huge economic impact for using fixed cost 

components in complex mine planning and scheduling. The author used MILP as an 

extension to the LP model. The new MILP formulations were used to model successfully 
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an underground hard rock coal mine. By these formulations, the variable and fixed cost 

components of the project were captured entirely. Thus, the economic impact was 

defined more efficiently. However, using MILP to model periodic fixed cost increases 

the computational complexity of the problem. The flexibility of the model to general 

optimization problems must also be ascertained.  

Liu and Sherali (2000) applied MILP to solve coal shipping and blending problem 

for an electric utility company. Even though the solution procedure used heuristic 

approach in conjunction with branch-and-bound methods, it failed to characterize future 

uncertainties surrounding the various input parameters. The economic decision was 

made with single values representing stochastic parameters, a methodology which is 

inappropriate and inefficient. 

Schouwenaars et al. (2001) proposed a new approach for planning optimal fuel 

paths of multiple vehicles using MILP. The new formulation incorporated directly, 

collision avoidance as mixed integer/linear constraints. The authors demonstrated that 

receding horizon strategies aimed at computing complete trajectories, can lead the system 

to unsafe conditions. The introduction of stochastic techniques to capture the 

uncertainties exhibited by the variable input parameters will make this new proposed 

algorithm more comprehensive and practically efficient. 

Rahal et al. (2003) investigated the use of MILP for long-term scheduling in 

block caving mines. The effect of interferences in the mining cycle due to equipment 

breakdown and poor draw management were minimized. The main objective was to 

achieve production target while the deviation from the ideal draw profile was minimized. 

Results showed optimal production schedules and material drawing mechanisms 

however, the variability of the geologic parameters of the orebody and the mine 

operation parameters was not accounted for. 
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Caccetta and Hill (2003) applied branch and cut algorithm to open pit mine 

scheduling. An optimal production schedule over the life of a complex deposit for an 

open pit mine was determined. The results would be more comprehensive if the risk 

associated with variable parameters in a typical complex mining environment was 

characterized and implemented in the optimization algorithm. 

Ramazan and Dimitrakopoulos (2003) developed an alternative MILP algorithm 

to tackle some of the limitations in traditional mixed integer programming (MIP) for 

scheduling excavation of multi-element deposits. Some of the limitations of the 

traditional MIP included: (i) infeasibility in generating optimal solutions with practical 

mining schedules; and (ii) inability to deal with in-situ variability of orebodies. 

Uncertainties surrounding the variability of orebodies were minimized by recourse 

parameters and probabilistic optimization. The incorporation of the dynamics of 

equipment selection and sequencing would make this algorithm more comprehensive for 

mine production scheduling. 

Ramazan (2007) identified that mine production scheduling problem was typically 

an MIP type problem. However, the large number of integer variables required in 

formulating the problem made it impossible to solve. To overcome this limitation, the 

author proposed a new algorithm termed “Fundamental Tree Algorithm (FTA)”. The 

new algorithm was based on LP to aggregate material blocks and decreased the number 

of integer variables as well as the number of constraints required within the MIP 

formulation. After generating the fundamental trees for a given mineral deposit, an MIP 

model modified from traditionally known MIP formulations, was used to generate annual 

production schedules. Further research is thus necessary to improve on this proposed 

algorithm to make it more generic and applicable to practical situations. 



29 
 

Little et al. (2008) developed a new MIP model for production scheduling 

optimization in mining sublevel stope. The new algorithm was developed to reduce the 

excessive solution times (exponential increment) of MIP. The authors reviewed existing 

optimization models regarding production scheduling and proposed a classical MIP 

model that generated optimal results with less computational times. The model however 

excluded stope grade variability and identification of other stochastic processes. 

Chicoisne et al. (2009) proposed a new decomposition method for the 

development of precedence constraint in large production scheduling. They extended the 

pioneering works of Dagdelen and Johnson (1986) by exploiting the structural properties 

of the optimal multipliers, and supplementing LP algorithms with heuristics to construct 

feasible solutions which approximate the bounds. However, the solutions obtain by the 

authors may not be ascertain since it is likely that the blocks scheduled to be mined in 

same time periods may be scattered throughout the geologic block model. 

Askari-Nasab et al. (2010) applied MILP to large-scale pit production scheduling. 

The authors applied clustering algorithm to address the problem of dealing with 

numerous blocks by aggregating blocks into larger units. However, it is imperative for 

future research to develop and test different clustering techniques as well as the 

extension of the MILP framework to highlight stochastic characteristics of the input 

variables. 

2.3.4 Stochastic-Optimization (SOP).  Variables, such as commodity price, 

mining costs, geological trends of coal seams, and equipment periodic efficiency 

parameters are subject to uncertainties over the life of the mining project. Since the 

inception of SOP in the 1950s, it has continuously gained more popularity. SOP 

minimizes future unexpected occurrences by taking into account all possible future 

outcomes. It assumes that the optimal solution obtained is valid for all situations with 
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evolving uncertainties. In the long run, this process achieves a better decision than 

considering only specific scenario(s) (Winston, 1994; Leite and Dimitrakopoulos, 2007; 

and Richmond, 2011).  

Several authors have applied the concepts of stochastic simulation and SOP to 

engineering problems. In stochastic simulation, experiments are driven by randomly-

generated input parameters defined by probability distributions. Output functions are 

then computed based on the selected inputs repetitively. The SOP technique couples the 

stochastic process with the optimizer such that optimal solutions are obtained for every 

multivariate random scenario. The variances of the expected values are minimized in 

these approaches.   

Shih and Frey (1995) used a multi-objective chance-constrained optimization 

model to determine optimal coal blends. The coal quality parameters were treated as 

normally distributed random variables. The limitation of the traditional LP approach was 

mitigated by defining the intrinsic variability of coal characteristics. To extend this work 

further, coal blending can be considered during excavation, and the geologic variability 

(formation thickness, faults, coal seam inclinations, etc.) should be included.  

Frimpong et al. (1998) applied geometrical, numerical and stochastic modeling 

techniques to model a mine production plan. The main objectives were to minimize total 

production cost and maximize operating profit for all active mining faces in the multi-

bench operation. The study led to the development of a multivariate optimized pit shells 

simulator (MULSOP). Latin hypercube simulation technique was used to simulate the 

geometric models of the pit shells under different economic conditions. Stochastic and 

numerical modeling techniques were used to capture the uncertainties surrounding the 

geometric models. Even though stochastic processes capture uncertainties of random 
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multivariate fields, as noted by the authors, the implementation of the model will require 

practical analyses of the field parameters. 

Frimpong et al. (2002) expanded initial work in optimizing mine production plans 

to develop an SOP annealing optimizer. The new algorithm defined the stochastic 

processes governing ore reserves, commodity prices and overall production plans. An 

intelligent pit optimizer (IPO) was developed by the authors and then used to solve a pit 

optimization problem. The standard Gauss-Wiener process was used to model the 

uncertainties associated with the commodity prices. The results, as a form of validation, 

were compared to the results of 2D Lerchs-Grossman’s algorithm applied to the same 

optimization problem. Neural networks were used for block pattern recognition; areas 

where the authors suggested further work. The future work will include training neural 

networks to recognize different geological structures such as faults that may affect 

optimal pit layouts. 

Ta et al. (2005) applied SOP to allocate mine trucks based on truck load and cycle 

time uncertainties. The results showed improvement in the truck dispatch system by 

allocating trucks in complex environment. However, the authors omitted the variable 

nature of the orebody in scheduling shovel allocation for adequate blending constraints. 

A complete model is thus required to articulate completely the uncertainties surrounding 

equipment selection and scheduling. 

Frimpong et al. (2007) used SOP to optimize a hedging scheme which mitigated 

risks while maximizing portfolio value. The authors used Weiner process to model the 

spot commodity price. The hedge position optimization program was however, found to 

be limited in the sense that the accuracy of the model was dependent on the accuracy of 

the spot and futures delivery price models. There was also no justification for selecting 

the Weiner process to model the spot commodity price against other price models.  
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Leite and Dimitrakopoulos (2007) used SOP and simulated annealing to model 

the open pit mine dynamics based on geologic uncertainty of a relatively low grade 

copper deposit. The stochastic results showed significant difference in the overall ore 

tonnage estimates and net present values compared to the conventional approach. The 

risk analysis results also showed relative low probability of deviation from the target for 

the stochastic models compared to conventional approach. However, the differences in 

the ore tonnages and the net present value can be attributed to differences in cut-off 

grades. This study showed the significance of stochastic process modeling in open pit 

mine modeling compared to conventional traditional approach. 

Boland et al. (2008) developed techniques to generate multiple stochastic 

geological estimates that described more accurately the uncertain geology. The authors 

used multi- stage SOP to capture geological uncertainties. The study showed that 

nonanticipativity can be modeled with linear constraints involving variables already 

present in the model. The new stochastic models were logically more valuable in cases 

where the optimal mining schedules for each scenario, considered independently, showed 

significant variances. The stochastic model also yielded a higher net present value. 

However, further research is needed for more comprehensive stochastic models through 

the use of cutting planes. 

Zheng (2010) applied stochastic integer programming to the natural gas industry. 

However, due to the difficulty in solving stochastic problems, the author proposed 

embedded Benders’ decomposition solution algorithm (BDSA). BDSA applied 

successively to multi-stage stochastic LP. However, the solution to a multi-stage 

stochastic problem is limited by the size of the problem.   

Richmond (2011) evaluated capital investment timing with stochastic modeling of 

time-dependent variables in open pit optimization. The author modeled the uncertainties 
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surrounding commodity prices and operating cost using stochastic techniques. In the 

study, a simple ore scheduler was embedded in a floating cone-biased heuristics 

algorithm. The results showed that open pit optimization by processing different series 

of nested pit shells with constant economic and geologic parameters fail to capture future 

uncertainties. Reducing the computational time is a further ground to investigate in case 

of a complex multivariate random field. 

Dimitrakopoulos (2011) developed and applied the concepts of stochastic 

simulation and SOP for modeling and integrating orebody uncertainty into mine design, 

production planning, and estimation of mining projects and procedures. The author 

identified that non-linear propagation of errors resulting from in-situ variability of 

orebody grades led to sub-optimal mine plans, bias production forecasts and inaccurate 

reserve estimates. Sequential simulation using high-order statistics was employed to 

simulate the deposit attributes because of the methods suitability to complex non-

Gaussian spatial and complex non-linear geologic domains. The Results showed 

significant improvement in production, pit limits and overall net present value of the 

project. The methodology suggested a potential key contribution to the sustainable 

utilization of natural resources, supported by stochastic analysis of excavation schedules 

especially in MSFs. 

Gupta et al. (2011) applied approximation procedures for SOP problems by 

means of a simple sampling base algorithm similar to the work of Agrawal et al (2008). 

The authors considered multi-stage versions of stochastic combinatorial optimization 

problems with recourse. The new algorithm sampled the probability distribution of the 

specific variables and constructs a partial solution as the resulting sample. However, the 

algorithms depended on the presence of cost–sharing functions with strictness properties 

and required a cross-monotonic cost-sharing scheme. It would therefore be worthwhile 
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to develop approximation algorithms with fewer requirements on the cost-sharing 

functions and also minimize the linear loss in the various optimization stages. Immorlica 

et al. (2005) discussed further the limitations of cross-monotonic cost-sharing schemes. 

Adeyefa and Luhandjula (2011) presented a review on multi-objective stochastic 

linear programming where they investigated previous and current algorithms governing 

optimization under uncertainties. The authors evaluated probability theories and 

multicriteria decision analyses in stochastic models. Complex state of combining 

randomness and multiplicity of objective functions were also investigated. The review 

also included the methodological approaches for solving multi-objective stochastic linear 

programs. The results of the investigation showed that SOP was more effective in 

finding realistic optimal solutions compared to the multi-objective approach. However, 

the applicability of multi-objective solution technique to linear problems is 

computationally more efficient. Thus, a hybrid approach which combines the 

computational merits of the two methods was suggested by the authors.   

 

2.4 SUMMARY 

 Dragline productivity research initiatives have been carried out since the mid-

1970s to optimize operating efficiency (Demirel, 2007). These have led to excavation and 

spoiling dynamic models developed for flat and inclined multi-seam coal strata. 

Economic models have also been developed over the years to identify multi-seam mining 

complexities and examine different excavation alternatives. Emphases in the current 

literature have been placed on subjective approach to investigating ancillary operations 

that complement dragline operations. 

 Despite these improvements, existing models lack SOP based algorithms for 

efficient decisions in multi-seam coal operations. These models fail to incorporate 
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quantitative relationships of variables in equipment productivity improvement. The 

intrinsic variability of excavation and spoiling dynamics in MSFs are also not established 

in existing models. Coal blending activities are currently based on single value inputs, 

ignoring geologic uncertainties of the deposit. 

 The research advances SOP methods for improving dragline and ancillary 

operations in MSFs. The optimization models are formulated based on NLP and SOP 

techniques. The proposed methods incorporate the challenges and geometries of 

excavation in MSFs and present a pioneering effort in using SOP techniques to optimize 

equipment selection and scheduling within the domain of these challenges.  

The research study contains original contributions to improving equipment 

productivity in complex operating conditions. The results obtained help in short-term 

mine planning and long-term risk characterization of future uncertainties. 
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3. OPTIMIZATION MODELING OF MATERIALS EXTRACTION 

This section contains the model formulations divided into waste excavation and 

coal seam extraction. The optimization models are formulated based on NLP techniques. 

The nonlinearity in the optimization model is presented by the coal quality parameters. 

Refer to the nomenclature for the definitions of the symbols, variables and abbreviations. 

The generalized NLP algorithm is shown in equations (3.1) and (3.2). 

 

                             (3.1) 

        

                           
                           

 
                           

 (3.2) 

 

In this formulation,               is the NLP’s objective function, and 

                                                           are the 

NLP’s constraints (Winston, 1994). 

 

3.1 GENERALIZED LAGRANGE MULTIPLIER TECHNIQUE  

Assuming an arbitrary set of possible strategies   and real valued payoff function 

 ,      is interpreted as the payoff which accumulates from employing the strategy 

   . Thus, given the objective and the constraint functions in equations (3.3) and (3.4) 

respectively, there are   real valued functions               defined on  , called the 

Resource functions. This implies that an amount       of the     resource is expended 

when strategy     is employed. 
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            (3.3) 

                          (3.4) 

 

3.1.1 LMM Theorem 1.  For any choice of non-negative value   , where 

         , if an unconstrained maximum of the Lagrangian function (equation 3.5) 

can be obtained, then the solution is a solution to that constrained maximization 

problem whose constraints are, in fact, the amount of each resource expended in 

achieving the unconstrained solution.  

 

      ∑  
 

   

      (3.5) 

 

Assuming    maximizes the function in equation (3.5), it implies that for all    , 

equation (3.6) is valid. 

 

            ∑  
 

   

                    (3.6) 

 

This theorem is used to investigate the entire spectrum of constraints produced in the 

course of the solution to the optimization problem (Everett, 1963).  

 3.1.2 LMM Theorem 2 (Lambda Theorem).  Given two optimum solutions 

produced by Lagrange multipliers for which only one resource expenditure differs, the 

ratio of change in the optimum payoff, to the change in that resource expenditure, is 

bounded between the two multipliers that correspond to the changed resource. Assuming 
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  and   

  are two sets of      that produce solutions   
  and   

  respectively, the Lambda 

theorem is represented mathematical as follows: 

 

   
 
 (

    
       

  
     

        
  ⁄ )    

 
 (3.7) 

 

Where 

      
        

        (3.8) 

      
        

   (3.9) 

 

Based on this theorem, the effect of constraint relaxation can be examined. The starting 

set of multipliers that produce Lagrange solutions can also be identified (Everett, 1963).  

 3.1.3 LMM Theorem 3 (Epsilon Theorem).  This theorem deals with the 

stability of the LMM. A solution that nearly maximizes the Lagrangian must be the 

solution that also nearly maximizes the payoff for the selected resource levels for stability. 

Hence, equation (3.10) is valid assuming  ̅ falls within ɛ of maximizing the Lagrangian. 

 

    ̅  ∑      ̅       ∑          (3.10) 

 

The theories discussed above are used to formulate the waste and coal seam extraction 

models. It should be noted that the LMM generates a mapping of the space lambda 

vector into the space of constraint vectors. This implies that there may be some 

inaccessible regions (caused by nonconcavity in the envelope of the set of achievable 

payoff points in the space of payoff versus constraint levels) consisting of vectors that are 
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not generated by any lambda vectors. Thus, optimum payoff for constraints within such 

inaccessible regions, can be undiscovered by straight-forward application of the LMM 

(Everett, 1963). 

The initial step in mine scheduling and optimization is the establishment of an 

accurate geologic block model of the deposit. Regular 3D models are used because of 

their efficiency with computerized optimization techniques. The block dimensions are 

determined by the physical characteristics of the coal seams and waste materials. Dip and 

azimuth, as well as the direction of maximum continuity of the coal seams, define its 

overall orientation. Numerical techniques such as geostatistics are used to assign the 

grade (quality) to each fixed-size block. 

The objective function is to maximize the profit generated from mining and 

processing each block. The block economic values are determined by financial and 

metallurgical parameters. From the block model and pre-defined mining directions, 

excavation constraints are defined to identify sets of overlying and underlying blocks in 

each major cut.  

The mining blocks are aggregated into larger units to reduce significantly the 

number of decision variables and constraint functions. The mining block aggregation is 

based on material type classification and relative spatial locations. It should be noted that, 

within a particular delineation zone, several strip-cuts can be defined based on the 

excavation and spoiling dynamics. 

 

3.2 OPTIMIZATION MODELING OF WASTE EXTRACTION 

The objective of the waste extraction NLP model is to minimize mining cost. 

This model includes resource (equipment) allocation for topsoil, overburden and inter-
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burden. The cost function incorporates the productivity of draglines and ancillary 

operations as well as the relative spatial locations of each mining strip.  

Typical resource allocation dynamics in two seam mining comprises: draglines 

(operating from high and low walls), dozers, and shovel and truck systems scheduled for 

waste excavation. The dozer pushes the overburden to expose the first coal seam for 

extraction. The first inter-burden is fragmented by blasting and a dragline excavates the 

material to expose the second seam. A second dragline excavates the second inter-burden 

from the low-wall side of the pit (refer to Figure 3.1).  

 

 

 

Figure 3.1 Resource Allocation Dynamics in Multi-Seam Formations 

 

3.2.1 Objective Function.  The indices in the objective function comprise 

mining block,           ; resource,           ; scheduling period,           ; 

and mining-strip,          . The formulation as shown in equation (3.11) is the 

discounted cost of mining all the material in block   as waste in period   by resource  .  
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                                (3.12) 

 

3.2.2 Constraint Functions.  The constraints include: (i) reserve; (ii) energy 

consumption; (iii) mining capacity; (iv) spoiling area availability and material rehandling; 

(v) equipment availability; (vi) equipment utilization; (vii) minimum mining width and 

resource interaction; (viii) haulage unit capacity and reach geometry; (ix) diggability; (x) 

labor; (xi) critical bench height; and (xii) non-negativity constraints. 

 3.2.2.1 Reserve.  The reserve constraints are shown in equations (3.13) and 

(3.14). Equation (3.13) limits the portion of the block excavated by each resource in each 

period whiles equation (3.14) ensures the full excavation of all scheduled blocks. 
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              (3.14) 

 

3.2.2.2 Energy consumption.  This constraint considers the electrical energy 

and fuel consumptions by the resources during excavation and material haulage, and the 

chemical energy expended during cast blasting. Equation (3.15) regulates the energy 

consumption based on a minimum permissible total energy cost. 
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3.2.2.3 Mining capacity.  This constraint restricts the percentage of waste 

material excavated to the resource capacities. The minimum and maximum bounds are 

used to control the overall mining requirements of each resource. The capacities of the 

various resources are calculated based on their productivities per period and defined in 

ton-mile to highlight the waste removal sequencing. Equations (3.16) and (3.17) limit the 

mining capacities within lower and upper bounds respectively. 

 

 ∑[      
   ]

   

                            (3.16) 
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                            (3.17) 

 

3.2.2.4 Spoiling area availability and material rehandling.  Strip mining 

activity is such that internal dumping must be concurrent with block excavation (refer to 

Section 2). Due to this mechanism, dump area availability limits the material excavated. 

This constraint (equation 3.18) is however, not binding in shovel and truck systems 

(SHT) since material could be spoiled further away from the pit outline. The fix geometry 

of draglines results in fix dumping mechanisms, thus spoiling area availability is binding. 

Material rehandling may occur in dragline operations as the spoiling area decreases.  

 

 ∑ 

   

      
   

 (   ⁄ )                                     (3.18) 

 

3.2.2.5 Equipment availability and utilization.  These constraints are 

formulated as functions of the total hours a resource is allocated to a particular block; the 

strip mine geometry; and the overall capability of the equipment. The mechanical 
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availability constraint is shown by equation (3.19) whiles equation (3.20) illustrates the 

equipment utilization constraint. 
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                           (3.20) 

 

3.2.2.6 Minimum mining width and resource interaction.  This constraint 

comprises the total length of the mining-strip, the external length of space outside the 

digging domain, and the minimum drop cut width (equation 3.21) for each resource 

(Hustrulid and Kuchta, 1998). The constraint function is illustrated by equation (3.22) for 

all blocks scheduled in all periods. 

 

 

Figure 3.2 Resource Interaction Framework 

 

         (3.21) 
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                                 (3.22) 

 

3.2.2.7 Haulage unit capacity and reach geometry.  This constraint is relaxed 

for resources such as dozers and cast blasting technique (CBT). The constraint captures 
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the truck capacities in the SHT system. The unit capacities are matched with the 

minimum and maximum production requirements of the shovel. Hence, given a 

maximum haulage capacity of resource   in period   as      , the constraint is shown in 

equation (3.23). 

 

 ∑ 

   

      
   

                              (3.23) 

 

3.2.2.8 Diggability.  The ease of excavation is determined by the material 

diggability and the break-out force exerted by the equipment. The constraint function 

defines equipment selection and scheduling based on the diggability index of the 

material. This ensures efficient equipment-formation interaction. The mathematical 

formulation is shown in equation (3.24). 
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                           (3.24) 

 

3.2.2.9 Labor.  This constraint defines the labor requirement for each resource. 

The available skilled labor is matched to each resource labor requirement for all 

scheduled periods. The labor requirements are stated in personnel-hours and thus, it 

incorporates all subsidiary operational functions. Equation (3.25) shows the labor 

constraint. 
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3.2.2.10 Critical bench height.  A critical digging depth constraint is defined 

beyond which dragline digging process is inefficient (the practical implications of the 

reach geometry parameters are explained in Section 2). The constraint function is relaxed 

for resources such as dozers, SHT system, and CBT. The mathematical formulations are 

shown as follows: 
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3.2.2.11 Non-negativity.  To ensure that none of the decision variables assumes 

negative values, a non-negativity constraint (equation 3.31) is formulated.  

 

   
   

   (3.31) 

 

3.2.3 Summary.  The NLP optimization model is formulated for waste (topsoil, 

overburden and inter-burden) excavation in MSFs. The objective function is to minimize 

the cost of mining and hence improve dragline and ancillary equipment productivity. The 

constraint functions incorporate the excavation geometry, as well as the operating 
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mechanisms of stripping equipment. Optimal solutions obtained are based on economic 

and technical considerations. 

 

3.3 OPTIMIZATION MODELING OF COAL EXTRACTION 

The objective function of the coal seam extraction model is to maximize the 

revenue generated from the mining activity. The model incorporates the variable geologic 

parameters of the coal seams, economic parameters, contractual specifications and 

extraction dynamics. MSFs are characterized by variable seam qualities in random fields. 

Since contractual agreements specify desired final coal qualities, blending is a necessary 

step to increase economic output where there is variability in coal quality variables. A 

summary of the entire optimization process is shown in Figure 3.2 where coal products 

with different qualities are transported to specific destinations. 

 

 

 

Figure 3.3 Summary of Coal Seam Extraction Process 

 

3.3.1 Objective Function.  The indices in the objective function include the 

seam-cut,          ; product destination,          ; scheduling period, 
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         ; and set of exposed seam-cuts,          . The objective function as 

shown in equation (3.32) is a function of the portion of seam-cut   extracted and 

transported to destination   in period  . The decision variable,   
   

 is a continuous 

variable representing the portion of seam-cut   extracted and transported to destination 

  in period  . 
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(3.33) 

 

 3.3.2 Constraint Functions.  The constraints include: (i) reserve; (ii) mining 

capacity; (iii) processing capacity; (iv) transportation and stockpile capacities; (v) market 

condition and contractual agreement; (vi) labor; (vii) haulage capacity; (viii) extraction 

equipment availability and utilization; (ix) coal quality (calorific value, sulfur content, 

fixed carbon content, ash content, moisture content and volatile matter); and (x) non-

negativity constraint. 

 3.3.2.1 Reserve.  The reserve constraints are shown in equations (3.34) and 

(3.35). The portion of the seam-cut extracted is limited by equation (3.34) whiles 

equation (3.35) ensures the extraction of all seam-cuts in all periods. 
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 3.3.2.2 Mining capacity.  Mining capacity is defined by production targets; 

based on which the extraction equipment is selected. The general geometric conditions 

of the excavation also define the mining capacity. Minimum and maximum limits are 

specified by equations (3.36) and (3.37) respectively. 
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 3.3.2.3 Processing capacity.  Coal processing capacity is represented by variable 

functions whose lower and upper bounds are dependent on the processing activity and 

the scheduling period. These bounds are functions of the mine life, stripping geometry, 

processing and stockpile facilities, economics, and mineable reserve. Equations (3.38) and 

(3.39) ensure that the total amount of the material mined in each scheduling period is 

within the upper and lower processing boundaries respectively. 
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3.3.2.4 Transportation and stockpile capacity.  Equation (3.40) restricts coal 

production within the capacities of the transportation and the storage facilities (this also 
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includes silo capacities). This constraint is a function of the economics of the project and 

market conditions. 
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 3.3.2.5 Market condition and contractual agreement.  The quantity of 

material produced is bounded within regions that satisfy market conditions. The 

maximum and minimum boundaries are illustrated respectively by equations (3.41) and 

(3.42). 
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3.3.2.6 Labor.  This constraint limits the amount of coal extracted per period. 

The formulation incorporates excavation and treatment plant labor requirement, as well 

as all ancillary labor required in producing a unit ton of coal. The labor requirements are 

stated in personnel-hours and shown in equation (3.43). 

 

 ∑   
  [   ∑(  

   )

 

   

]

   

                (3.43) 

 

3.3.2.7 Haulage capacity.  For all coal seams, the capacities of haulage units 

must be adequate for all periods. Equation (3.44) ensures that the amount of coal 
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scheduled to be extracted is limited to the maximum pit-to-plant and pit-to-stockpile(s) 

haulage capacities. 
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  3.3.2.8 Equipment availability and utilization.  The formulations include: the 

total hours to extract a unit quantity of seam-cut   in period  ; the strip mining 

geometry; and the overall capability of production equipment. The treatment plant 

availability and utilization is neglected in this study. Equations (3.45) and (3.46) maintain 

respectively the availability and utilization of the equipment within predetermined 

boundaries. 

 

 ∑ [   ∑(  
   )

 

   

    
 ]

   

                (3.45) 

 ∑ [   ∑(  
   )

 

   

    
 ]

   

                (3.46) 

 

Market conditions require coal quality to be within specific acceptable boundaries. 

Quality distributions in coal seams are controlled by physical and chemical parameters, 

hence desired products can be achieved by selective mining, and at the processing stage. 

However, in strip mine operations, selective mining is limited by the overall mining 

geometry. Desired coal quality is mostly achievable at the treatment plant.  
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The general quality constraint formulations are shown in equations (3.47) and 

(3.48). The upper bound is given by equation (3.47) while equation (3.48) is the lower 

bound. 
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The coal quality is defined by energy, sulfur, fixed carbon, volatile matter, ash, and 

moisture contents. Thermal coal deposits are characterized by their heating value or Btu 

content. Within MSFs, the range of heating values is limited due to regionally scaled 

parameters. Btu content, however, needs to be within acceptable limits for efficient 

combustion purposes. 

Similarly, the upper and lower limits of sulfur contents are restricted by market 

specifications, mining operations, and environmental constraints. The presence of sulfur 

in coal products may result in acid rain and contribute to other pollution-related health 

problems and as such, it is required to be within acceptable limits.  

Another important quality parameter is fixed carbon content. Fixed carbon is the 

carbon found in the coal material which is left after volatile materials are burnt off. Fixed 

carbon content is also used as an estimate of the amount of coke produced from a coal 

sample (Miura et al., 2004).  

Ash content is the non-combustible residue left after coal combustion. The 

geology of the formation, dilution and transportation operations contribute to ash 
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content. The ash content in most commercial coal products is between 3% and 9% 

(NSP, 2001).  

Occurrence of moisture in coal seams might be due to surface moisture, 

hydroscopic moisture, decomposition moisture and mineral moisture (Miura et al., 2004). 

Market conditions normally regulate the upper limits and mining conditions also specify 

lower limits to meet economic standards. The decision variables are therefore 

constrained within these limits to ensure an optimal blend.  

Volatile matter content refers to the components of coal, except for moisture, 

which are liberated at high temperatures in the absence of air. This is usually a mixture of 

short and long chain hydrocarbons, aromatic hydrocarbons and some sulfur. The volatile 

matter of coal is determined under rigidly controlled standards (NSP, 2001).  

3.3.2.9 Non-negativity.  To ensure that none of the decision variables assume 

negative values, non-negativity constraint, equation (3.49) is formulated. 

 

   
      (3.49) 

 

3.4 SUMMARY 

 The models are formulated based on the generalized NLP optimization 

techniques. The overall optimization model is divided into two sections: (i) waste 

extraction and (ii) coal seam extraction; for computational purposes. Geologic variables 

of MSFs, technical dynamics of stripping equipment and the downstream coal quality 

specifications are incorporated in the models. The solution parameters illustrate optimal 

resource allocation to reduce mining cost, and coal blending options that maximize 

revenue generated.  
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4. STOCHASTIC-OPTIMIZATION MODELING OF MATERIALS 
EXTRACTION 

 

This section presents the stochastic-optimization (SOP) and simulation 

frameworks. All analyses and discussions are built on the mathematical basis of @RISK 

and frontline SOLVER, the software packages selected for the stochastic modeling. 

Refer to the nomenclature for the definitions of the symbols, variables and abbreviations. 

 

4.1 STOCHASTIC-MODEL FORMULATION 

 The generalized multi-objective SOP problem is given by equations (4.1) and 

(4.2). In these formulations;               are n-dimensional random vectors on a 

probability space (Adeyefa and Luhandjula, 2011). The stochastic process is limited to 

the coefficients in the objective function.  

 

    
   

                   (4.1) 

                    (4.2) 

 

Equation (4.1) is transformed to its deterministic counterpart using the expectations and 

variances in the random multivariate fields (Equations (4.3) and (4.4)). It is assumed that 

the random data have probability distributions with finite expected values and variances.  

 

    
   

                                   (4.3) 

    
   

                                   (4.4) 

                    (4.5) 
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In equations (4.3) and (4.4),   and   are the expected value and the variance 

respectively. Assuming    is an optimal solution for equation (4.3), ((4.4)) then    is the 

expected value optimal solution (EVOS) (a variance optimal solution (VOS)) for equation (4.1) 

subject to equation (4.2). The functions                              are the 

respective deterministic counterparts of                     obtained from 

stochastic simulation techniques (Adeyefa and Luhandjula, 2011). Thus, a solution to the 

optimization problem is generated for each simulation run of the random functions. The 

mean value of these solutions represents the EVOS. This approach describes the 

stochastic process of the random functions, and the optimal results incorporate the input 

function variabilities. 

 

4.2 EXPECTATIONS AND VARIANCES IN RANDOM MULTIVARIATE 
FIELDS 

 

 If              represents a set of random and continuous data;    is a 

function of many variables; and      is the probability density function of the set of    

variables; then equations (4.7) and (4.8) represent respectively, the expected value and the 

variance of the function    (Narsing, 1997). 

 

                  (4.6) 

       ∫ ∫  
 

  

∫                                
 

  

 

  

 (4.7) 

 

        ∫ ∫  ∫                      
 

 

  

 

  

 

  

                   

(4.8) 
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Given that            are drawn from            sample spaces respectively, the 

expected value is illustrated as in equation (4.9). 

 

       ∬ ∫              

  

                    
  

 
   

 
  

  ∬ ∫              

  

                    
  

 
   

 
  

  ∬ ∫              

  

                    
  

 
   

 
 (4.9) 

 

From equation (4.9), the probability that the sample point              is within 

             is given by             . The stochastic process is also used to 

determine the probabilities of the mining cost and the revenues exceeding specific figures 

(see equation (4.11)). The expected values and the various event occurrences are achieved 

by Monte Carlo and Latin Hypercube simulation models. 

 

 ∑            

 

   

     (4.10) 

                          (4.11) 

 

4.3 GENERATION OF RANDOM VARIATES 

 Inverse probability integral transformation (IPT) is used to generate random 

samples for the stochastic simulation. Other methods to generate random variates 

include: composition and accept-reject methods (Narsing, 1997). The IPT procedure 
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involves formulating the quantile function of the distribution and then inverting the 

function (Devroye, 1986).  

The formulations for the IPT are illustrated by equations (4.12) to (4.15). 

 

                             (4.12) 

                       (4.13) 

                              (4.14) 

               (4.15) 

 

Subsequently, if the function    is non-decreasing, it implies that 

 

                (    ) (4.16) 

 

Therefore, given the properties   (    )         (     )     and   non-

decreasing by definition, equations (4.17) and (4.18) are obtained (Whiteley, 2008; 

Devroye, 1986). 

 

          (     )       (4.17) 

                (4.18) 

 

The summary of the IPT algorithm procedure is as follows: 

(i) Given a probability density function (PDF) which integrates into a 

cumulative density function (CDF) 
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(ii) Generate a uniformly distributed random number sequence          . 

(iii) Compute the random variable with      given as          (refer to 

Figures 4.1 and 4.2). 

 

 

 

Figure 4.1 Cumulative Density Function       Figure 4.2 CDF of the Uniform PDF 

 

If a random variable   follows a uniform distribution in the interval [0,1], the 

IPT algorithm states that the random variable          has a continuous CDF,      

(Narsing, 1997). 

 

4.4 MONTE CARLO SIMULATION MODELING 

 This sampling technique relies on repeated random sampling to compute its 

results. The value of a complex function of multiple integrals is estimated by simulating a 

large number from the CDF of the random variables. However, the efficiency and 

convergence characteristics of a Monte Carlo simulation (MCS) is controlled by the 
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selected random variate generation method, the variance reduction technique (VRT), and 

the number of samples drawn (Hammersley and Handscomb, 1964; Billinton and Li, 

1994).  

 4.4.1 Variance Reduction Techniques.  The VRT in @RISK is the crude and 

stratified sampling methods (Palisade, 2012). Other VRTs used to sample random 

variates include: importance, control variates, antithetic and orthogonal sampling 

(Hammersley and Handscomb, 1964; Billinton and Li, 1994).  

Equation (4.19) shows the formulation for the crude Monte Carlo (CMC) 

sampling. In this equation,       is the sample function computed using the random 

sample    generated from the PDF,     .   is the number of samples (           

and   is the estimate through simulation. Equation (4.20) is the variance of the estimate 

(Kleijnen et al., 2010). 

 

  ̂  
 

 
∑     

 

   

 (4.19) 

    ( ̂ )  
 

 
∫                (4.20) 

 

Given the CMC estimation problem (equation (4.21)) and some finite random variable   

obtained from   , such that the probabilities            are known, the stratified 

sampling estimator of   is formulated as shown in equation (4.23). The variance of the 

unbiased estimator is given in equation (4.24). 

 

    (    ) (4.21) 
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    ( (    ))  ∑  

 

   

             (4.22) 

  ̂ 
  ∑  

 

   

 

  
∑      

  

   

 (4.23) 

    ( ̂ 
 )  ∑

  
   

 

  

 

   

 (4.24) 

 

 While the stratified sampling technique is more efficient than the CMC, both methods 

increase the precision of the estimates obtained from given number of iterations 

(Hammersley and Handscomb, 1964; Billinton and Li, 1994; and Kleijnen et al., 2010).   

 4.4.2 Convergence Rate of MCS Technique.  The rate of convergence of 

MCS is dependent on the chosen number of simulations   to achieve the desired 

accuracy and the confidence interval on the accuracy (Lapeyre, 2007). The error in Monte 

Carlo estimate is inversely proportional to the number of samples.  

 Using the Central Limit Theorem, assuming          is a sequence of 

independent identically distributed random variables such that     
       if the 

variance of    is given by equation (4.25), then equation (4.27) shows the convergence 

for a Gaussian random variable with variance 1 and mean 0.  

 

        
                       

   (4.25) 

 (
√ 

 
  ) (4.26) 

         
 

 
          (4.27) 
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The efficiency of the MCS depends on the variance of the estimate and the computer 

run-time. Even though large sample sizes reduce the error estimates, optimal numbers 

must be used to reduce run-times (Hammersley and Handscomb, 1964; Lapeyre, 2007). 

 

4.5 LATIN HYPERCUBE SIMULATION MODELING 

 This technique is applied in uncertainty analysis to generate sample values from a 

multi-dimensional distribution. The process comprises the division of the probability 

ranges of PDFs for basic input random variables into   equivalent intervals (non-

overlapping intervals of equal probabilities). The random selection of the intervals 

maintains the independence between the variables. Latin Hypercube simulation (LHS) 

utilizes the stratification of the theoretical PDFs of input random variables (Novak, et al., 

1997). In the @RISK environment, the values from within the selected stratifications are 

chosen randomly. The number of stratifications of the CDF is equivalent to the number 

of iterations (Palisade, 2012). 

 Considering each sample      , the sample values of X and Y (two independent, 

uniform distributed variables) are given respectively by equations (4.28) and (4.29). 

 

     
            ⁄                     (4.28) 

     
            ⁄                     (4.29) 

 

In equations (4.28) and (4.29),           are the CDFs of   and   respectively,    and 

   are random numbers, and   is the sample size (Cheng, 2000). 

 The simulation process involves the utilization of the centroids of the intervals 

shown in equations (4.28) and (4.29) through an IPT (refer to Section 4.3) of the PDFs.  
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Every interval of each variable is however, implemented only once and covers the multi-

dimensional space of the random variates. This sampling technique is useful in the 

analysis of situations where low probability outcomes are represented in input PDFs, for 

high sampling efficiency. 

 

4.6 RANDOM FUNCTIONS IN STOCHASTIC MODELING 

 The following are the PDFs used in this research study: lognormal, Gaussian, and 

uniform. The stochastic simulation process require the generation of random variates 

from the PDFs. BestFit (Palisade, 2012) is used to model the probability distributions of 

the input variables based on which the appropriate distributions are selected. This section 

illustrates the algorithmic derivation of the random variates from the probability 

distributions. 

 4.6.1 Lognormally Distributed Random Variates.  Equations (4.30) and (4.31) 

illustrate the PDF and CDF respectively (Weisstein, 2003).  

 

      
 

 √   
          (   )⁄  (4.30) 

      
 

 
[     (

     

 √ 
)] (4.31) 

 

The mean and the variance are given by equations (4.32) and (4.33) respectively. 

         ⁄  (4.32) 

          (   
  ) (4.33) 
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Using the Box-Muller algorithm, assuming    and    are two independent and standard 

uniform Variates, then a pair of statistically independent standard normal Variates is 

given by equations (4.34) and (4.35) (Narsing, 1997). 

 

    √                  (4.34) 

    √                  (4.35) 

 

 The joint probability is given by equation (4.36) where      and         

 

                     
 

  
 [ 

 
 
(  

    
 )]                 (4.36) 

 

Based on the formulations above, equations (4.37) and (4.38) represent the frameworks 

from which a pair of independent random variates may be generated. 

 

       √                  (4.37) 

       √                  (4.38) 

 

 4.6.2 Normally Distributed Random Variates.  The PDF and the CDF are 

shown in equations (4.39) and (4.40) respectively (Weisstein, 2003). 

           
 

√    
             ⁄                   (4.39) 

           
 

 
[      (

   

 √ 
)] (4.40) 
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Using the Box-Muller algorithm, and given    and    as two independent and standard 

uniform variates, then a pair of statistically independent standard normal variates is given 

by equations (4.41) and (4.42) (Narsing, 1997). 

 

    √                   (4.41) 

    √                   (4.42) 

 

The joint probability is given by equation (4.43) where      and          

 

                     
 

  
 [ 

 
 
(  

    
 )]                 (4.43) 

 

Equations (4.44) and (4.45) are derived from the formulations above, and represent the 

frameworks from which a pair of independent random variates may be generated. 

 

       √                  (4.44) 

       √                  (4.45) 

 

4.6.3 Uniformly Distributed Random Variates.  Given minimum and 

maximum values   and  , the PDF and CDF for this distribution are illustrated in 

equations (4.46) and (4.47) respectively (Park and Bera, 2009). 

 

      {

 

   
                         

                         

 (4.46) 
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{
 
 

 
 

                  

     

     
             

                 

 (4.47) 

 

The random variates are generated as explained in Section 4.3. In the simulation process, 

the uniform distribution is used to generate other PDFs. Figures (5.3) and (5.4) show the 

PDF and the CDF plots of the uniform distribution. 

 

 

Figure 4.3 Uniform Probability Distribution Function 

 

 

Figure 4.4 Uniform Cumulative Distribution Function 
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4.7 SUMMARY 

The stochastic variables associated with excavation in MSFs are identified and 

modeled using PDFs. The variables identified include: mining cost, processing cost, 

commodity price, selling price, tonnage of material, plant recovery, and thermal coal 

quantity. The stochastic model is limited to the coefficient variables in the objective 

functions. Simulation of the variable parameters is limited to MCS and LHT while the 

random variates are generated by IPT functions. For the SOP, the expected value of the 

objective function is minimized. The mean value of the optimal solutions from each 

simulation run represents the expected value optimal solution. The results lead to real-

time risk analysis for a comprehensive economic model.  

 

 

 

 

 

 

 

 

 

 

 



66 
 

5. COMPUTER MODELING AND EXPERIMENTAL ANALYSIS 

The computer modeling framework and experimentation setups are presented in 

this section. The numerical solution algorithms and environment for solving the 

optimization models are also discussed. Two sections of the computer models are 

established and run as an independent functionality. The first section is based on non-

linear programming (NLP). The solution algorithm for the first section is the 

Generalized Reduced Gradient (GRG). The second section is on stochastic-optimization 

(SOP) model. A bituminous coal mining case is used to validate the SOP model.   

 

5.1 NUMERICAL MODELING 

 Numerical modeling techniques are used to create a set of equations and 

inequalities to solve the optimization models. The optimizer is initiated by evaluation of 

the Jacobian (JC) matrix of partial derivatives (PD) of the problem functions with respect 

to the decision variables. Finite difference method (FDM) is used to approximate the JC 

matrix as shown in equation (5.1). 

 

 
  (     )       

 
 (5.1) 

      |    |     (5.2) 

 

In equations (6.1) and (6.2), the         element of the JC matrix is approximated, where 

  is the JC parameter set;    is the     unit vector; and     is a perturbation factor 

approximately equal to the square root of the machine precision (Fylstra, 1998). 

Mining patterns and equipment schedules that satisfy the objective functions and 

the constraint models are investigated by the optimizer. Due to the magnitude of the 
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models, dynamic Markowitz refactorization is used to improve stability. This approach, 

coupled with the sparse representation of the matrix, results in better memory usage 

(Fylstra, 1998).  

5.1.1 NLP Solution Algorithm.  The NLP model is formulated based on 

Lagrange multiplier method (LMM). This technique forces the constraint functions into 

the objective formulations as explained in section 3. The solution algorithm to the NLP 

model is the GRG algorithm implemented in SOLVER. GRG algorithm is guaranteed to 

find a local optimum only on problems with continuously differentiable functions, and 

also in the absence of numerical difficulties (Fylstra, 1998). The NLP models reach 

optimality when SOLVER finds a local optimum (where the Karush-Kuhn-Tucker 

(KKT) conditions are satisfied within the specified convergence tolerance).  

Figure 5.1 shows the flowchart for the LMM technique. In this flowchart, 

constraint functions are identified and then multiplied by the Lagrange multipliers. The 

products are subtracted from the objective function as a means of forcing the constraint 

functions into the objective equation. The Lagrangian function is then maximized given 

the variables selected to obtain the optimal solution, and the procedure terminates. If the 

Lagrangian function is not maximized, new non-negative real numbers are generated by 

increasing the exponential value,   by unity. The new non-negative real values are then 

multiplied with the constraint functions and introduced into the objective function. The 

entire procedure is repeated until an optimal solution is obtained.   
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Figure 5.1 Generalized Lagrange Multiplier Method 

 

 5.1.2 Model Fitting.  The stochastic parameters identified for each of the SOP 

models are used in the BestFit (Palisade, 2012) framework. This program attempts to 

model each of the random stochastic variables with probability density functions (PDFs). 

Maximum likelihood estimators and Levenberg-Marquardt methods are implemented in 

BestFit to define the PDFs for input data. The maximum likelihood estimation is 

illustrated as follows: assuming the probability of observing data vector   given the 

parameter   is       , if individual observations,   s’ are statistically independent of one 

another, then the PDF for the data             is given by equation (5.3) (Myung, 



69 
 

2003). The maximum likelihood estimate of   is that value of   that maximizes the 

function in equation (5.4). 

 

                                               (5.3) 

      ∑         

 

   

     (5.4) 

 

The Levenberg-Marquardt method is used to find the minimum of a function given in 

equation (5.5) which is a sum of squares of nonlinear functions. Assuming       is the JC 

of      ,    are nonnegative scalars, and   is the identity matrix, then the Levenberg-

Marquardt method searches in the direction given by the solution   to equation (5.6) 

(Weisstein, 2013). 

 

      
 

 
∑       

 

 

   

 (5.5) 

    
              

    (5.6) 

 

Three data types are allowed in BestFit: (i) density; (ii) cumulative; and (iii) sample. A 

summary of the PDF creation process for each data type are as follows (Palisade, 2012): 

(i) Density data: the input data is sorted in ascending order, descriptive statistics are 

generated, data is normalized, and PDFs are created from the normalized data. 

(ii) Cumulative data: the process is similar to the density data; however, cumulative 

distribution functions (CDFs) are created as the final step.    
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(iii) Sample data: the input data are sorted in ascending order, descriptive statistics are 

generated, data are converted to histograms, and PDFs are created from the histogram 

plots. 

 5.1.3 Stochastic Modeling.  @RISK (Palisade, 2012) forms the platform of the 

stochastic modeling where quantitative risk analysis is performed. Numerical values are 

assigned to risk profiles using empirical data and qualitative assessments. Unlike 

deterministic analysis, stochastic risk analysis considers the interdependence of uncertain 

input parameters and also determines the impact of different inputs relative to the overall 

outcome.  

Figure 5.2 illustrates the flowchart for the risk simulation. If LHT is selected, the 

PDF input data are stratified to obtain equal intervals on the probability curve. A sample 

is then drawn from each stratification. The MCS technique begins with the construction 

of a cumulative PDF and a cumulative normal PDF. The risk simulation model is divided 

into three sections: (i) sampling; (ii) standard recalculation; and (iii) output specifications. 

The sampling stage encompasses the construction of CDF and a cumulative uniform 

normal probability distribution function. Random variates are then generated using IPT.   

The random variates are used in the simulation to produce series of optimal 

solutions for specific scenarios. The output file comprises frequency and cumulative 

plots of the objective function, tornado graphs for sensitivity analysis, target probability 

plots, and a general description of the stochastic process. 
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Figure 5.2 Stochastic Modeling and Simulation Flowchart 

 

5.1.4 Optimal Number of Iteration.   As a requirement, the optimal number of 

iterations for the stochastic optimization runs must be determined. This process 

determines the number of iterations required for a chosen level of precision in the 

results. Similarly, the optimal time, precision, tolerance and convergence values required 

by SOLVER for each of the models must be determined. Even though precision is based 

on the number of iterations of the simulation run, the relationship between iterations and 

precision depends on the relationship between the variables in the precision (Banks et al., 

2000).  
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Experimental designs are created for this purpose, where the parameters are 

varied gradually to obtain distributions for the mean values and the variances of each run. 

A graph representing the mean and variance against the number of iterations is plotted to 

determine zones of parametric stability. Similarly, the underlying parameters (time, 

precision, tolerance and convergence) in SOLVER are varied gradually to determine 

stable zones. These parameters can also be obtained from the procedure outlined below 

(Banks et al., 2000): 

(i) run simulation for a sample of    iterations 

(ii) calculate the sample variance    and the sample standard deviation   from 

the simulation output 

(iii) find the z-value of [  (
 

 
)  percentile of the standard normal distribution , 

where       is the confidence level 

(iv) Based on equations (5.7) and specified error  , set the initial estimate of the 

number of iterations required as the smallest integer    that satisfies equation 

(5.8). In equation (5.7),  ̂ and   are respectively the estimate of the mean and 

the actual mean. 

 

      ̂             (5.7) 

    (
  
 
  

 
)

 

 (5.8) 

 

The results from these experimentations are case-specific and represent the optimal run 

parameters of the respective cases. 
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5.2 DATA GATHERING AND EXPERIMENTATION SETUP 

 5.2.1 Verification and Validation.  The generated model has been verified by 

means of evaluating the solution outputs with the introduction of each constraint 

function. The verification process involves the identification and correction of errors in 

the mathematical formulations to achieve a reliable analysis of different 

experimentations. The objective functions are tested with varying input parameters and 

their outputs are checked with known results. The constraint functions are introduced 

systematically into the modeling framework to obtain their ranges of influence on the 

feasible solution sets.  

During the verification process, it is realized that the coal qualities and the critical 

digging depth formulations introduces some degree of discontinuity in the model. Once 

the model is verified, relevant data from published literature, company websites and 

international energy outlook websites are used for the validation process.  

The resources involved in the validation process include draglines (P&H 9010C); 

dozers (CAT D11); shovels (CAT 7495HD); trucks (CAT 793F); and cast blasting 

technique. The various experimentations include varying the operating cost parameters, 

coal seam properties, digging geometries, dumping dynamics, and different excavation 

scenarios.  

No quantitative error check analyses is necessary for the validation process, 

however, the different optimal solutions obtained are evaluated with practical scenarios. 

For example, with similar constraints for all resources, the optimal solution depends on 

variations in the operating cost parameters. Also, infeasible solutions are obtained when 

resources are forced into digging domains which violate their corresponding critical 
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digging depth parameters. Detailed results of the verification and the validation process 

are illustrated in Appendices A. 

5.2.2. Extraction Strategies for Simulation.  The strategies include: (i) 

conventional MSF mining; (ii) combined MSF-equipment-processes extraction method; 

and (iii) modified MSF-equipment-processes extraction method. 

5.2.2.1 Conventional MSF mining.  This simulation strategy comprises dozer 

pushing topsoil to expose upper coal seams and draglines excavating overburden and 

inter-burden material to expose lower coal seams. The evaluation also considers pre-

stripping of portions of the topsoil with the shovel and truck system. This strategy is 

selected to mimic a typical subjective-decision in MSF extraction. The excavation and 

dumping dynamics in this method are subject to physical and economic conditions as 

mining progresses. Equipment productivities and efficiencies are directly affected by 

these parameters; hence the economic gains are subject to the sustainability of initial 

decisions.  

Material volume re-handling, deadheading of draglines, losing lower seams and 

frequent movement of large excavation unit(s) have substantial economic impacts which 

could be overlooked by subjective analyses. Even though past economic trends and 

mining activities are applied in this method, future uncertainties in economic values and 

geologic depositions could render the final decisions sub-optimal. Detailed comparison 

of the simulated results to the optimal solutions is provided in the case study model. 

5.2.2.2 Combined MSF-equipment-processes extraction method.  This 

simulation strategy examines the optimal engagement of different equipment units with 

unique mechanical geometries. The option captures the flexibility and adaptability of 

equipment units with specific operational functionalities to optimize material extraction. 
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This strategy aims at increasing equipment productivities, minimizing material re-

handling, and increasing stripping efficiency, thus reducing mining cost. The simulation is 

based on the following equipment units and their excavation geometries: (i) draglines; (ii) 

dozers; (iii) shovel and truck; and (iv) cast blasting technique. The simulation set up as 

explained in the case study model investigates the engagement and interaction of these 

units and their tons-excavated; subject to varying geologic and operational conditions.  

5.2.2.3 Modified MSF-equipment-processes extraction method.  This 

strategy includes modification of the dragline mining method and the engagement of a 

secondary dragline on the spoil pile. The secondary dragline re-handles material to create 

sufficient internal dumping space and also prevents loosing of lower seams. Secondary 

draglines also prevent deadheading of primary units. Modification of stripping methods 

may be necessary in complex operating environment to increase equipment efficiency 

and overall improvement in economic output. However, the capital expenditure could 

diminish the economic gains in sub-optimal modifications.  

  

5.3 CASE STUDY MODELING 

 A bituminous mining case has been carried out to verify and validate the SOP 

models. This includes the formulation of flowcharts on the excavation and spoiling 

dynamics, geologic block modeling, and the implementation of the optimization 

algorithms. All symbols, abbreviations and variables are defined in the nomenclature. 

 5.3.1 General Geology.  Coal occurs in three areas in Virginia: the Richmond 

and Farmville basins, the Valley Coal fields, and the Southwest Virginia coal field. The 

coal-bearing strata in these fields are generally gently dipping and fairly horizontal. The 

material types include: (i) sandstone; (ii) silt-stone; (iii) shale; and (iv) occasional thin 

clastic and calcareous zones of marine origin. The general geology is the Pottsville 
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formation along the east side of the Appalachian coal field. This formation consists of a 

gray conglomerate, fine to coarse grained sandstone, and is known to contain limestone, 

siltstone and shale.   

 The formation also contains anthracite and bituminous coal seams (USGS, 2011). 

The major formations within the Pottsville age are Pocahontas, Lee, Norton, and Wise 

(Henderson, 1979). The Wise formation is part of the upper Pottsville age while the Lee 

and Pocahontas are part of the lower Pottsville age. The Norton formation belongs to 

the middle Pottsville age and contains overlying Gladeville sandstone (Butts, 1914). This 

case study considers mining in the Wise formation.  

5.3.2 The Wise Formation.  This is the youngest coal-bearing formation in the 

Southwest Virginia field. This field is bituminous and altered to coke by igneous 

intrusions in some areas. The formation comprises a 2,070 foot-thick mass of shale and 

at least nineteen coal seams lying between the Gladeville and Harlan sandstone 

(Henderson, 1979). The Wise formation constitutes the surface rock in most of the 

quadrangle lying south of Pound River.  

Glamorgan coal seam is the first seam and lies immediately above the Gladeville 

sandstone with thickness greater than 2 feet. Forty feet above the Glamorgan is the Blair 

coal seam, which is persistent in the southeastern part of the quadrangle and ranges 

between 2 and 5 feet in thickness. The Clintwood coal seam lies about 200 feet above the 

Gladeville sandstone and has thicknesses between 6 and 12 feet (Henderson, 1979).  

Clintwood coal seam is overlain by 20 to 40-foot thick sandstone. About 250 feet 

above the Clintwood seam is the Bolling coal seam (divided into two by 20 to 40 feet of 

shale). The lower Bolling coal seam varies between 18 inches to 4 feet while the upper is 
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18 inches to 5 feet thick. The upper Bolling coal seam is overlain by 50 to 80 feet thick 

micaceous sandstone.  

Approximately 360 feet above the upper Bolling coal seam are the Standiford 

seams divided into two seams by a 20-foot inter-burden. The thickness of the lower seam 

is about 2.5 feet while the upper seam is approximately 3 feet thick. The Standiford coal 

seam is overlain successively by the Taggart, Low Splint, Phillips, Pardee and the High 

Splint coal seam. The High Splint coal seam underlies a small portion of Black Mountain 

and about 400 feet above the Pardee seam (Henderson, 1979).   

Mining in two of the major seams (thereinafter referred to as seam #1 and seam 

#2) with dimensions shown in Table 5.1 is considered. The basin has variable coal 

properties shown in Table 5.2 and the mining area dimension are given as 4 km by 2 km. 

Figure 5.3 shows the geologic block model of the formation. 

 

 

Table 5.1. Multi-Seam Formation Extent and Parameters 

Description Value 

Topsoil thickness (ft) 3 - 10 

Overburden thickness (ft) 80 - 120 

Inter-burden thickness (ft) 40 - 50 

Seam #1 thickness (ft) 20 

Seam #2 thickness (ft) 40 

Coal partings thickness in seam #2 (ft) 4 
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Table 5.2. Coal Quality Parameters (Henderson, 1979) 

Description Value 

  Seam #1 Seam #2 

Moisture (%) 2.1 - 3.7 1.5 - 4.3 

Volatile matter (%) 34.5 - 37.5 32.8 - 38.4 

Fixed carbon (%) 51.3 - 54.7 55.4 - 61.6 

Ash (%) 5.6 - 10.5 1.7 - 4.6 

Sulfur (%) 0.7 - 1.1 0.4 - 0.8 

BTU 12,790 - 13,910 13,720 - 14,810 

 

 

 

Figure 5.3 Block Model of the Formation 

 

 5.3.3 Flowcharts of the Extraction Process.  The flowchart spans from 

preliminary geologic and technical operation analyses to life of mine plans. There are, 

however, separate categories of the mine planning process with unique details. Figure 5.4 

illustrates the MSF operations. The flowchart begins with a detailed description of the 



79 
 

geologic domain (number of coal seams, structural geology of the formation, etc.), 

production parameters and economic variables. Managerial and technical requirements 

and the extraction mechanisms are then used for production analyses, mine scheduling, 

material flow allocation, financial analyses and risk evaluation. Life of mine plans are 

developed based on these analyses and compared with external factors (environmental 

and safety compliance, investment returns, and managerial specifications). These 

processes are repeated to obtain optimal equipment selection plans, extraction sequences 

and sustainable economic strategies. 

 

 

Figure 5.4 Flowchart of Multi-Seam Mining 
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5.3.4 Diggability Index and Equipment Options.  Diggability index rating 

method and classification charts determine the ease of excavation based on which 

suitable equipment options are established. The index rating method is dependent on the 

following rock mass parameters: (i) uniaxial compressive strength (UCS); (ii) joint 

spacing; (iii) weathering; and (iv) bedding spacing. The ease of excavation of the coal 

seams, overburden and inter-burden as well as the rock parameters are illustrated in 

Table 1.0 in Appendix B. Based on these parameters and the general depositional 

characteristics of the formation, the following equipment and excavation options are 

investigated as possible extraction decisions: (i) dragline; (ii) ripper-dozer; (iii) cast 

blasting technique (CBT); and (iv) shovel and truck (SHT) system.  

 5.3.5 Capital (CAPEX) and Operating (OPEX) Cost Estimates.  The 

CAPEX and OPEX estimates of each resource are shown as follows (  represents the 

maximum volume excavated per hour): 

 5.3.5.1 Dragline.  P&H 9010C dragline model with bucket capacity of 75yd3 is 

considered in this study. The CAPEX is estimated at $80 million per unit. The operating 

dimensions and model specifications are provided in Table 2.0 in Appendix B. The 

OPEX estimates are divided into equipment and labor operating cost. The equipment 

operating costs consist of 67% parts and 33% fuel and lubrication while the labor 

operating costs consist of 78% operator labor and 22% repair labor. Equation (5.9) gives 

the OPEX estimates ($/yd3) (Bradley, 2002).  

 

                                                         (5.9) 

 

5.3.5.2 Dozer.  CAT D11 of blade capacity 57yd3 is considered for the case 

study. The CAPEX is estimated at $2 million per unit. Table 3.0 in Appendix B illustrates 
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the model specifications of the Dozer. The OPEX estimates are based on excavation and 

material relocation. The equipment operating costs average 47% parts and 53% fuel and 

lubrication. The labor operating costs average 86% operator labor and 14% repair labor. 

Equation (5.10) gives the OPEX estimates ($/yd3) (Bradley, 2002).  

 

 
                                           

                                    

(5.10) 

 

 5.3.5.3 Cast blasting technique (CBT).  CBT is efficient in minimizing labor 

and equipment costs, and offsets the cost of mechanical excavation of overburden. This 

method reduces the time required by dragline to swing and cast material by 25 to 30% 

(Ray et al., 1999). It was therefore estimated that the overall stripping cost is 

approximately 12.1% less the stripping cost of draglines. The CAPEX is also estimated at 

$2 million. 

5.3.5.4 Shovel and truck system (SHT).  CAT 7495HD cable shovel is 

selected for this analysis with 40-80yd3 bucket capacity. The CAPEX is estimated at $25 

million per unit. The model specifications are shown in Table 4.0 in Appendix B. A CAT 

793F truck with nominal payload capacity of 249.45 tons is selected with an estimated 

CAPEX of $3 million per unit.  The shovel and truck system is treated as one entity. 

Thus, the OPEX ($/yd3) for this system is given by equation (5.11) (Bradley, 2002).  

 

 
                                         

                                 
(5.11) 
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5.3.6 Market Contractual Agreement. Bituminous coal is supplied to four 

destinations with unique quantity and quality specifications. Refer to Tables 5.0 and 6.0 

in Appendix B for the minimum and maximum capacities as well as the coal quality 

specifications (based on operating paradigm of the power plants and environmental 

conditions) of each destination. Overseas export is neglected in this study, therefore, 

market conditions are specified with no external macro-economic influence. On-site 

stockpiles (STK) are defined in the optimization model to account for material mined 

and processed beyond the demand limits. Transportation cost and contractual agreement 

are factored into the comprehensive cost model for each destination. Table 7.0 (in 

Appendix B) shows the mining and transportation costs per destination.  

5.3.7 Economic and Miscellaneous Parameters.  A 10% discount rate for all 

prices and costs is selected based on commodity price and overall coal market analysis. 

$41.01 per ton coal price is considered and a constant $5.42 per ton selling price is 

assumed for all destinations. The maximum processing capacity is calculated as 880t/hr 

(minimum capacity is given as 32% of maximum capacity). The following are some 

assumptions: a period is a calendar year; 90% plant recovery of seam #2; 100% plant 

recovery of seam#1; coal extraction equipment capacity of 4808.48yd3/hr; 100% thermal 

coal quantity; 0.2 hr/t of labor required in all periods; 90% extraction equipment 

availability; each strip is mined completely in a period; similar schedules exist for all 

periods; and the specific gravity of coal is 0.04t/ft3. The stripping ratio is calculated as 

4.89:1 (t:t). The economic analysis and parameters are limited within the United States 

economy. All other input data for the model are provided in Appendix B. 

5.3.8 Waste Extraction Model.  Considering the extraction sequence shown in 

Figure 5.5, the overburden and inter-burden are divided into four strips. Each strip is 

scheduled to be mined completely per period  . Due to the general geometry of strip 
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mines, all the blocks within a particular mining strip are assumed to be aggregated into a 

single unit with dimensions equal to the strip dimensions. This allows for continuous 

extraction of a particular strip without frequent equipment movement. The following 

indices for the objective function are valid for all periods: 

(i) mining blocks;           

(ii) resource;           where    (dragline);    (dozer);    (shovel & 

truck); and    (cast blasting) 

(iii) scheduling period;           

(iv) mining strip           

The objective function is given in equation (5.12). 
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Figure 5.5 Waste Extraction Sequence 

 

Equation (5.12) is subject to the following constraints: (i) reserve; (ii) energy 

consumption; (iii) mining capacity; (iv) spoiling area availability and material rehandling; 

(v) equipment availability; (vi) equipment utilization; (vii) minimum mining width and 

resource interaction; (viii) haulage unit capacity and reach geometry; (ix) diggability; (x) 

labor; (xi) critical bench height; and (xii) non-negativity constraints. 

The reserve constraints are given in equations (5.13) and (5.14). 
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Based on the given energy consumption rates (refer to Table 8.0 in Appendix B) and cost 

per energy of $0.05, equations (5.15) to (5.18) are derived. The total permissible energy 

cost for all periods are given respectively as $ 0.90 million, $ 9.50 million, $ 10.00 million, 

and $ 11.00 million. 
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The capacities of the various resources are calculated based on their productivities per 

period. Equations (5.19) to (5.21) represent the productivity formulations for draglines, 

dozers and shovels respectively (Frimpong, 2011; Assakkaf, 2003).  
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From equations (5.19) to (5.21), the productivities are calculated as: 4617 yd3/hr, 190 

yd3/hr, 4808.48 yd3/hr and 13,851yd3/hr for the dragline, dozer, SHT, and CBT 

respectively. Equations (5.22) and (5.23) are the maximum and minimum capacities 

respectively. Short-term periodic variations in productivity are not captured in this study. 

Refer to Table 9.0 in Appendix B for the input parameters. 
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Mechanical availability plays a major role in the overall efficiency of excavation. The 

mechanical available hours per period   for all resources are given in Table 10.0 in 

Appendix B. The total hours required by each resource to excavate a unit ton of block   

are also given in Table 11.0 in Appendix B. Mechanical availability constraint is relaxed 
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for CBT. Equations (5.24) and (5.25) are the mechanical availability and utilization 

constraints. These constraints are extensions of the mining capacity constraints. 

 

 

[
 
 
 
              

       

              
       

   
   

   
     

                          ]
 
 
 

 (5.24) 

 

[
 
 
 
              

               

              
              

         
   

   
     

                 ]
 
 
 

 (5.25) 

 

The next constraint is the minimum mining width/resource interaction constraint as 

explained in Section 3. Assuming the dragline and the SHT system covered 0.05ft per 

unit ton of topsoil excavated, 0.0014ft per unit ton of overburden and inter-burden 

excavated,  external length of space outside the digging domain is 1    , and a 

minimum working space requirement calculated by equation (5.26),  the minimum 

mining width constraint is shown in equation (5.27). Equation (5.26) is estimated using 

the parameters provided in Tables 2 and 4 in Appendix B. 
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The haulage unit capacity is matched with the maximum and minimum mining capacities 

of the shovel. Thus, given a constant maximum haulage capacity for each of the periods 
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as 12.37*106tons, the constraint is shown in equation (5.28). The minimum haulage limit 

is not specified for this mining case. 
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 (5.28) 

 

The labor requirements are defined in personnel-hours assuming all available labor is 

skilled in all operations. Given personnel-hours per ton excavated by the dragline, dozer, 

SHT, and CBT respectively as 0.05, 0.05, 0.1 and 0.05, equation (5.29) restricts the 

amount of material excavated by each resource. The available hours for each period are 

calculated as 0.5*106. Refer to Table 11.0 in Appendix B for the required hours per ton 

of material excavated. 
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 (5.29) 

 

A critical digging depth for draglines is given as 12ft, hence, equation (5.30) is derived to 

ensure digging efficiency.  
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The dump volumes available for all periods are stated in Table 12.0 in Appendix B. 

These volumes are assumed to be decreased by the volume of the previous cuts. Based 

on these parameters and the digging geometry, equation (5.31) is formulated. 
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The non-negativity constraint is shown in equation (5.32). 
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 (5.32) 

 

5.3.9 Coal Seam Extraction Model.  As shown in Figure 5.6, extraction of 

seam #1 starts in period  , assuming   corresponds to the completion period of block 

   . This assumption ensures that significant portions of the coal seam are exposed for 

blending. The assumption also allows for efficient equipment interaction (waste 

excavation equipment and coal seam extraction processes). Similarly, given comparable 

waste excavation and coal seam extraction rates, the extraction of seam #2 will 

commence in period    , assuming     corresponds to the starting period of block 

    (refer to Figure 5.7). 
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Figure 5.6 Excavation sequence of coal seam #1 

 

 

Figure 5.7 Excavation sequence of seam #2 

The following are the indices for the objective function as defined in equation 

(5.33): 

(i) Seam cut;           

(ii) Product destination;           

(iii) Scheduling period;          ; each seam is exposed fully per scheduling 

period 
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(iv) Set of exposed seam cuts ;           
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Given the objective function in equation (5.33), the decision variables   
   

 are 

constrained by the following: (i) reserve; (ii) mining capacity; (iii) processing capacity; (iv) 

transportation and stockpile capacities; (v) market condition and contractual agreement; 

(vi) labor; (vii) haulage capacity; (viii) extraction equipment availability and utilization; (ix) 

coal quality (calorific value, sulfur content, fixed carbon content, ash content, moisture 

content and volatile matter); and (x) non-negativity constraint. 

Equations (5.34) and (5.35) are the reserve constraints. 
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 (5.35) 

 

The mining capacity constraints are shown in equations (5.36) and (5.37) where the 

upper limits are calculated as 31.16 x 106 tons for all periods. The lower limits are also 

calculated as 1.72 x106 tons and 3.44 x106 tons respectively for the first and second 

periods. 
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The next constraint controls the processing capabilities of the treatment plant. A 

minimum bound (equation (5.38)) is set to maintain a constant rate of operation while a 

maximum bound (equation (5.39)) controls the upper limit of material treated in all 

periods. The maximum and minimum limits are given respectively as         tons and 

        tons. 
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Coal products are transported by rails to thermal plants. The capacities of the 

transportation facilities and on-site capacities must be adequate to meet the total coal 

extracted and treated. Transportation capacities must also meet contractual agreements. 

Equation (5.40) is formulated given maximum rail capacity and on-site stockpile 

capacities     as 4.38 x 106tons. 
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The market coal quantity requirements are provided in Table 5.0 in Appendix B. Based 

on these parameters, equations (5.41) and (5.42) are derived illustrating the upper limits 

and lower limits respectively for all periods. 
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Similar to the waste excavation model, equation (5.43) limits the quantity of coal 

produced to the labor available and required per unit production. It is assumed that all 
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labor is equally skilled in all operations and the required hours per unit production is 

given as 0.2. The available labor hour is 0.7 x 106 per year and constant for all periods. 
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 (5.43) 

 

Equations (5.44), (5.45) and (5.46) are the haulage, equipment availability and utilization 

constraints respectively. The maximum haulage capacity is calculated as 12.37 x 106tons, 

the extraction equipment available hours is given as 5400 hours, and the minimum 

utilization hours to meet production targets is calculated as 1500 hours for all periods. 

The hours required to produce a unit ton of coal is fairly equivalent to the SHT system in 

the waste extraction model (SHT system is used for the coal seam extraction). 
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The next constraints control the quality of coal products transported to the five 

destinations. Contractual agreement and power requirements demand coal products at 

specified qualities (refer to Table 6.0 in Appendix B). The variability of the coal 

properties in each cut are captured to determine the critical blends in meeting these 

specifications. Blending is however limited to the coal cuts exposed per given period  .  

The fifth destination, on-site stockpile, has no other quality limitations aside the 

coal parameters. This ensures that all coal products which do not meet specifications of 

the four destinations are stockpiled.  

The recovery of seam #2 might be lowered due to the presence of coal partings 

(refer to Figure 5.3). This occurrence is modeled by the recovery parameter,   in the 

objective function. The variable coal quality parameters are given in Table 5.2. The coal 

quality formulations are shown in Section 3. 

Equation (5.47) is the non-negativity constraint to ensure all positive decision 

variables. 
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5.3.10 Risk Simulation Modeling and SOLVER Parameters. The objective is 

to determine the effect of multiple uncertainties on the stochastic input parameters 

(geologic variability, economic uncertainties and excavation/spoiling dynamics). The 

optimal simulation parameters are obtained from experimental designs, where parameters 

are varied gradually to obtain distributions for the mean values and variances of reach 

run. 1000 to 15,000 iterations in intervals of 1000 are run for each of the models (cost 

and revenue functions).  

The results are graphed to determine zones of parametric stability.  Figures (5.8) 

to (5.10) show the results for the mean values and the standard deviations against the 

number of iterations for each function. Parametric stabilities are observed after 8000 

iterations for mining cost, 10000 iterations for revenue and 3000 iterations for net 

present value.  

 

 

 

Figure 5.8 Mean Mining Cost vs. Number of Iterations 
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Figure 5.9 Mean Revenue vs. Number of Iterations 

 

 

Figure 5.10 Mean NPV vs. Number of Iterations 
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BestFit (Palisade, 2012) is used to fit probability distributions to the available 

data. Normal PDFs are applied to mining, processing, and capital costs with 20% 

(values determined from qualitative and quantitative data analysis). Lognormal PDF is 

applied to commodity price with the same truncations as discussed above. Uniform 

PDFs are used to model the processing recoveries, thermal coal quantities, selling price, 

and the total tons of material.  

The required number of iterations, maximum time, precision, degree of tolerance 

and convergence parameters is defined in SOLVER. The primary and dual tolerance are 

maintained at 0.0000001; precision and convergence of 0.6; 150 number of iterations; 

and the maximum time is set to 15seconds.  

 

5.4 SUMMARY 

  Numerical modeling frameworks, solution algorithms, and flowcharts are defined 

for the experimental analysis of the developed models. The generalized reduced gradient; 

the solution algorithms to the NLP models, are discussed. Procedures to determine 

optimal simulation parameters, model fitting algorithms, and optimal SOLVER 

parameters are also discussed. The application of the SOP model is presented with an 

MSF bituminous coal mining case located in Southern Virginia. The results produce 

optimal resource allocations, improve equipment productivity and ensure quality coal 

products. All input data are provided in the Appendices A and B. 
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6. DISCUSSION OF RESULTS 

This section focuses on a detailed discussion of the results of the MSF mining 

case presented in Section 5. The discussion includes: waste extraction sequencing, 

equipment allocation and productivities, coal blending and transportation schedules, and 

economic evaluations of excavation alternatives. The details of the model outputs and 

definitions of symbols are provided, respectively, in Appendix C and the nomenclature. 

 

6.1 ANALYSIS OF WASTE EXTRACTION MODEL 

 The optimized mining cost is $ 1.14 million for the 4 strips (see Figure 5.5) and 

approximately $149.34 million for the entire deposit. These figures show -3.51% change 

compared to the conventional traditional methods (dozer pushes topsoil and dragline 

excavates overburden/inter-burden). Figure 6.1 depicts the equipment allocations and 

the percentage of material excavated. The optimized results allocate 96.92% of the 

topsoil (strip-1) to the dozer in the first period. This allocation is influenced by the 

material properties and the dumping mechanisms.  

 

 

Figure 6.1 Waste Excavation Equipment Schedule 
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Due to the technical limitations on the dozer, 3.08% of the remaining topsoil 

material is allocated to the SHT system. The selection of SHT is influenced by the energy 

consumption specifications, the critical digging depth and OPEX figures. Experimental 

analysis of 100% dozer application in topsoil shows a +2.05% cost difference compared 

to the optimal results.  

The dragline is allocated to 95.21% of overburden (strip-2) in period 2, 87.94% 

of overburden (strip-3) in period 3, and 44.08% of inter-burden (strip-4) in period 4. This 

schedule is influenced by the OPEX figures, specified energy costs, internal dumping 

concurrency with mining advancement, critical digging depth, material re-handling 

mechanisms, and the haulage requirement.  

As mining progresses, the dragline spoiling distance reduces due to its fixed 

digging geometry, hence the percentage allocation reduces. Wider pits are normally 

created in thick overburdens to reduce material re-handling and dragline walking times 

(Frimpong, 2011; Satyanarayana, 2012). In such situations, the main challenge is the 

increment in swing angles. Increased swing angles result in reduced productivity, high 

maintenance cost and high clean-up times (MA et al., 2006; Scott, 2010; and Frimpong, 

2011). Due to these factors, experimental analyses show +1.02% increments in mining 

cost for a 100% dragline allocation in the overburden. Engagement of a secondary 

dragline with an approximate cost of $100 million increases this cost difference. 

Subsequently, a 77yd3 drop in productivity per unit change in cycle time is also recorded 

for the sub-optimal solution. The drop in productivity analyses exclude deadheading 

periods during material re-handling; an area which increases mining cost and reduces 

productivity. The mining cost distributions per equipment engagement in the overburden 

are shown in Figure 6.2. 
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Figure 6.2 Mining Cost Distributions per Equipment Allocation 

 

The CBT technique is allocated to 5% of overburden (strip-2) in period 2, 12% 

of overburden (strip-3) in period 3, and 56% of inter-burden (strip-4) in period 4 (as a 

result of the digging constraint on the dragline). Figure 6.3 shows the CBT allocations in 

the various mining strips with a moving average trend line. 

 

 

Figure 6.3 CBT Waste Extraction Schedule per Mining Strip 
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CBT reduces the time required by dragline to swing and cast material by 25 to 

30% (Ray et al., 1999). With a calculated OPEX of $0.035/ton (13.77% less than the 

dragline OPEX), the allocation is restricted by energy specifications, internal dumping 

dynamics, haulage capacity constraints, and the geologic variability of the deposit. The 

trend line, as shown in Figure 6.3, illustrates an increment in percentage allocation as 

mining progresses. This is due to the material re-handling and spoiling geometry 

constraints on the dragline. The mining cost for 100% allocation of CBT in overburden 

and inter-burden is approximately 14% less than 100% dragline allocation in the same 

material. These figures exclude the possible high cost of material relocation, internal 

dumping technical difficulties, environmental considerations, and operational safety 

parameters. 

 Figure 6.4 shows the waste excavation cost distributions. In this schedule, the 

binding constraints include: dragline dump area availability, energy consumption rates, 

mining capacities of all resources, reserve constraints, and utilization rates. These 

parameters illustrate the geologic variability and equipment dynamic operational 

parameters in MSFs, and restrict any possible change in the cost function. 

 

 

Figure 6.4 Waste Extraction Cost Distribution 
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6.2 ANALYSIS OF COAL SEAM EXTRACTION MODEL 

The optimal revenue is $ 61.56 million for the first two coal-strips. The schedule 

includes: (i) 23.78% and 18.30% respectively of seam #1 and #2 to destination 1; (ii) 

23.99% and 14.78% respectively of seam #1 and #2 to destination 2; (iii) 18.49% and 

14.23% respectively of seam #1 and #2 to destination 3; and (iv) 33.74% and 16.87% 

respectively of seam #1 and #2 to destination 4.  

Approximately, 36% of seam #2 is also stockpiled due to the maximum capacity 

limits on the destinations. Seam #1 is, however, fully mined and transported to all 

destinations (see Figures 6.5 and 6.6).  

Stockpiling could be advantageous in situations where future increment in market 

prices is expected, and also in situations where good hedging conditions are defined. 

 

 

 

Figure 6.5 Seam #1 and #2 Extraction Schedule 
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Figure 6.6 Revenue Distributions per Destinations 
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Figure 6.7 Influences of Cost Parameters on Coal Transportation Cost 
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6.3 STOCHASTIC SIMULATION AND OPTIMIZATION RESULTS 

Monte Carlo and Latin Hypercube techniques are used to simulate the stochastic 

models. This is done in @RISK (Palisade, 2012) with 10,000 iterations in a single 

simulation run. The optimal simulation parameters are obtained from experimental 

designs as illustrated in Section 5.  

BestFit is used to fit probability distributions to the available data using 

maximum-likelihood estimators. For density and cumulative data, BestFit uses the 

method of least squares to minimize the distance between the input curve points and the 

theoretical function (refer to Section 5). The fit statistics and the graphical results are 

shown in Figures 1 to 8 in Appendix C.  

6.3.1 The Stochastic Model Input Data. Normal probability distribution 

functions (PDFs) are applied to mining, processing, and capital costs with 20% 

truncations (values determined from qualitative and quantitative data analysis). Tables 1.0 

to 3.0 in Appendix C contain the stochastic input parameters for mining, processing, and 

capital cost.  

Lognormal PDF is applied to commodity price with the same truncations as 

stated above. Uniform PDFs are used to model the processing recoveries, thermal coal 

quantities, total tons of material, and selling price. Table 4.0 in Appendix C contains the 

stochastic input parameters for commodity price, processing recoveries, thermal coal 

quantities and material reserves. The various defined PDFs are the inputs to the 

stochastic simulation model. 

6.3.2 Stochastic-Optimization Results.  The stochastic-optimization (SOP) is 

based on the process discussed in section 4.1 in section 4. Tables 5.0 to 24.0, and 26.0 to 

44.0 in Appendix C show respectively the waste and coal extraction SOP results for each 
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simulation run. As depicted in Appendix C, each simulation run generates a solution to 

the optimization problem posed by the particular coefficients generated in that run. 

Figures 9.0 to 17.0 in Appendix C show the SOP results of each resource. The SOP 

results summary for coal seam extraction are shown in Figures 18.0 to 27.0 in Appendix 

C. A mean of the solutions is calculated to obtain an expected value optimal solution 

(EVOS). Figures 6.8 and 6.9 illustrate the EVOS for the waste and coal seam extraction 

models respectively. 

 

 

Figure 6.8 Equivalent Value Optimal Solution – Waste Extraction 

 

 

Figure 6.9 Equivalent Value Optimal Solution – Coal Seam Extraction 
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The SOP results compared to the optimal results in sections 6.1 show greater 

variations in the overburden and inter-burden resource allocations (see Figure 6.10). This 

phenomenon and the related binding parameters are explained by the stochastic 

simulations results (refer to Section 6.3.3). The coal seam extraction variations however, 

remain fairly constant due to fewer variations in the coefficient parameters. 

 

 

 

Figure 6.10 SOP Results Comparison – Waste Extraction 

 

 

Figure 6.11 SOP Results Comparison – Coal Seam Extraction 
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6.3.3 Stochastic Simulation Results.  The results, as shown in Figure 6.12, 

indicate a 50.3% chance of the waste mining cost increasing above its current value. The 

mean mining cost is $/t 0.04; minimum and maximum values are $/t 0.03 and $/t 0.06 

respectively. These variations are driven by the tons of material allocated to the dragline. 

The failure-probability zone increases further with material re-handling. Minimal 

variations are, however, identified in the mining cost due to fairly close truncations and 

the approximation of tons-excavated by uniform PDFs. The 5th and the 95th percentile 

values are $/t 0.04 and $/t 0.05 respectively. 

 

 

 

Figure 6.12 PDF Overlay with Cumulative Probability Curve (Mining Cost) 

 

Figure 6.13 shows the tornado graph illustrating the impact of the various input 

parameters on the mining cost. In this figure, the overall mining cost varies between $/t 

0.0410 and $/t 0.0455; $/t 0.0421 and $/t 0.0444; and $/t 0.0425 to $/t 0.0444 due to 

the tons excavated by draglines in period #2; CBT in period #4; and dozer in period #1 

1.140 

49.7% 50.3% 

0.0% 

0.0%

16.7%

33.3%

50.0%

66.7%

83.3%

100.0%

0

1

2

3

4

5

6

0
.8

0

0
.9

0

1
.0

0

1
.1

0

1
.2

0

1
.3

0

1
.4

0

1
.5

0

($ M) 

Mining Cost 



110 
 

respectively. The tons excavated by the dragline in period #2 have the highest regression 

coefficient   ̂  of 0.52.  

 

 

 

Figure 6.13 Tornado-Change in Output Mean Graph 

 

 

Figure 6.14 Tornado-Regression Coefficients (Mining Cost) 
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Even though the CBT is allocated to about 55.92% of inter-burden in period #4, 

its  ̂ is 33.3% more compared to the dragline’s in the same strip. These closely matched 

figures are due to the similar OPEX parameters used in the model. The dozer, with 

about 97% allocation in period #1, has a  ̂ of 0.19 on the output mean. Figure 6.14 

shows the tornado-regression coefficient. 

From these analyses, a 31.3% reduction in dragline OPEX will result in 25% 

overall decrease in mining cost. This reduction can be achieved by optimal allocations 

and good engineering practices. Sensitivity plots also aid in understanding the operational 

dynamics. This analysis is done in TopRank (Palisade, 2012) and the results, as illustrated 

in Figure 6.15, show input percentiles varied between 0% and 100% in steps of 10%.  

 

 

 

Figure 6.15 Sensitivity Analyses (Mining Cost) 
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significant variations are observed between the 35 and 95 percentile ranges. These 

changes are due to the digging geometry constraint placed on the dragline as mining 

progresses.  

The dragline’s input effect is steady for the range of variations and similar gradual 

trends are observed for all other scheduled resources. The overall output mean variations 

are attributed to the operating cost figures, equipment availability, digging geometry 

constraints and the resource operating mechanisms. The available dump capacity 

constrained by the digging mechanism also impacts the equipment selection and the cost 

function.  

The risk modeling includes Chi-Squared (Chi-sq), Anderson-Darling (A-D) and 

Kolmogorov-Smirnov (K-S) statistical tests applied in @RISK platform. Equal 

probability bin arrangement is chosen for the Chi-Squared binning. Parametric Bootstrap 

is run with 1000 number of re-samples at 95% parameter confidence level. 

Computational time increases with the number of re-samples selected, and thus, a 

sufficient number to reach desired results is critical.  

The Weibull distribution is the appropriate fit for the mining cost risk profile 

with the following results for the statistical tests: (i) Chi-sq: 83.71; (ii) K-S: 0.0089; and 

(iii) A-D: 1.8453. A measure of the uncertainty in the random variable is also obtained 

through Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC).  

The PDF and CDF for Weibull distribution are shown in equations (6.1) and 

(6.2) where   is a random variable,   is a shape parameter, and   is a scale parameter 

(Weisstein, 2003). The mining cost risk-profile is shown in Figure 6.16. 
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Figure 6.16 Mining Cost Risk Profile (Weibull Distribution) 
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values are $/t 0.20 and $/t 0.25 respectively. The vast differences are due to the different 

contractual market agreements and variable coal properties. 

 

 

 

Figure 6.17 PDF Overlay with Cumulative Probability Curve (Revenue) 
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Figure 6.18 Tornado – Regression Mapped Values (Revenue) 
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Figure 6.19 Tornado - Tornado-Regression Coefficients (Revenue) 
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6.20. In this Figure, input percentiles are varied from 0% to 100% in steps of 10% to 

observe different variations in the output mean.  

The cost to mine and transport coal to the stockpile has a negative gradient, thus 

having an inverse effect on the revenue function. The recovery of the coal product to 

destination #1 has similar sensitivity trends as the stockpiling parameters.  

From this analyses, the major concerns are material stockpiling, geologic 

conditions and the commodity price. The contractual agreements for most of the 

destinations are met, hence their variability and influence is not observed.  

 

 

 

Figure 6.20 Sensitivity Analyses (Revenue) 
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(6.3) and (6.4) where   is the random variable,   is the mean and    is the variance 

(Weisstein, 2003). 
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Figure 6.21 Revenue Risk Profile (Normal Distribution) 
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The results show a mean NPV of $31.19 million, minimum value of $16.87 

million and a maximum value of $48.80 million. The 5th and the 95th percentile values are 

$25.06 million and $38.83 million respectively. Figure 6.22 shows the regression-mapped 

value plot of changes in output values to a +1 standard deviation change in all input 

parameters. The high risk in year 4 is attributed to the amount of material stockpiled, 

market prices and the waste extraction schedule.  

 

Figure 6.22 PDF Overlay with Cumulative Probability Curve of Revenue 

 

 

Figure 6.23 Tornado – Regression Mapped Values (NPV) 
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Sensitivity plots are also generated to analyze the effect of percentage changes in 

input parameters on the mean NPV (refer to Figure 6.23). The capital investment in the 

first year of the project is the most sensitive with a negative gradient.  

All the revenue parameters are observed to have similar trends due to a fairly 

constant extraction rates for all periods. The change in the NPV mean across the range 

of input values is also observed to be gradual with no sharp gradients.  

The NPV risk-profile is shown in Figure 6.24 with similar setup parameters to 

the waste extraction and revenue models. The normal distribution is the appropriate fit 

for the NPV function with the following results for the statistical tests: (i) Chi-sq: 75.04; 

(ii) K-S: 0.004; and (iii) A-D: 0.2552. The PDF and CDF for Normal distribution are 

shown in equations (6.3) and (6.4) respectively. 

 

 

 

Figure 6.24 Sensitivity Analyses of Input Parameters on Mean NPV 
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Figure 6.25 NPV Risk Profile (Normal Distribution) 
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its current estimate ($/t 11.91), and a 52.3% probability of the NPV increasing above its 

current value ($ 31.69 million). The tons of material excavated by the dragline in strip #2 

have the highest regression coefficient   ̂  of 0.52 in the waste extraction model. The 

recovery of the material stockpiled has the highest impact on the revenue with a 

regression-mapped value of $ 4.57 million. The revenue in year 4 has the highest impact 

on the NPV with a regression-mapped value of $ 2.29 million (The high risk in year 4 is 

attributed to the amount of material stockpiled, market prices and the waste extraction 

schedule). The mining cost risk-profile is modeled with the Weibull distribution whiles 

the revenue and NPV risk-profiles are modeled with the Normal distribution.  
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7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

This section summarizes the research study presented throughout this thesis and 

provides conclusions and appropriate recommendations for future research directions in 

multi-seam formation (MSF) extraction.  

 

7.1 SUMMARY 

The upsurge in surface coal production can be attributed to the advent of larger 

trucks, shovels and draglines. This growth has resulted in higher production efficiencies 

(Demirel and Frimpong, 2009). Increasing the productivities and efficiencies of these 

equipment units is a key to improving economic values. The general excavation 

geometries and the complexities of extraction in MSFs render this activity a sensitive 

portion of the mine planning process. Sub-optimal resource allocation and coal seam 

extraction schedules could result in revenue losses, high production costs resulting in 

operating profit losses. 

Dragline research initiatives have resulted in the development of excavation and 

spoiling dynamic models (Tanaino, 1986; Vasilyev et al., 1999; Zaitseva et al., 2007). 

Economic models have also been developed to identify mining complexities and examine 

different excavation alternatives (Falkie and Porter, 1973; Ray et al., 1999). Zhou et al. 

(2007) and Ray et al. (1999) studied dragline-bulldozer and cast blasting (CBT) 

techniques, respectively. The authors concluded that working bench advancement and 

the economic gains of ancillary operations require optimal schedules. 

The use of mathematical programming to solve mine planning and scheduling 

problems has been shown to be very robust. Over the years, researchers have relied on 

algorithms such as linear programming (LP), non-linear programming (NLP), mixed 
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integer programming (MIP) and goal programming (GP) to optimize long term 

production plans in mines. Stochastic-optimization (SOP) models have also been applied 

to minimize future unexpected occurrences by taking into account all possible outcomes. 

Despite these improvements, quantitative dragline and ancillary equipment production 

must be incorporated in optimization models. The intrinsic variability of excavation and 

spoiling dynamics in MSFs must also form part of existing models.  

To develop the proposed economic models, comprehensive SOP formulations 

provided a generic platform to simulate different scenarios. Adequate knowledge of the 

challenges of MSFs provided understanding into improving equipment productivity 

while different scenario simulations offered a means to evaluate different operating 

conditions. 

NLP mathematical models were developed for waste and coal seam extraction 

schedules in MSF. The general Lagrange Multiplier method (LMM) was used to develop 

the NLP mathematical models. The main objective was to maximize the net present 

value (NPV), thus minimize mining cost and maximize revenue from coal seam 

extraction. The mathematical expressions provided quantitative relationships between 

stripping equipment productivities, excavation and spoiling mechanisms, coal blending 

options and economic outputs.  

The models were solved using the Generalized Reduced Gradient (GRG) 

Algorithm. The optimizer was initiated by evaluation of the Jacobian (JC) matrix of 

partial derivatives (PD) of the problem functions with respect to the decision variables. 

Finite difference method (FDM) was used to approximate the JC matrix. Due to the 

magnitude of the models, dynamic Markowitz refactorization was used to improve 

stability. This approach, coupled with the sparse representation of the matrix, results in 
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better memory usage (Fylstra, 1998). The numerical solution algorithms were 

implemented in SOLVER (Frontline, 2012).  

Stochastic variables associated with MSFs were identified and modeled using 

probability distribution functions (PDFs). The respective PDFs were obtained from 

detailed data analysis and model fitting. The SOP process minimized the expected value 

of the objective functions where expected value optimal solutions (EVOS) were 

obtained. Stochastic simulation was carried out using Monte Carlo and Latin Hypercube 

techniques. The simulation parameters were acquired from experimental designs, where 

parameters were varied gradually to obtain distributions for the mean values of each run. 

The results led to real-time risk analysis for the economic model. 

A bituminous MSF mining case was used to validate the SOP models. The waste 

extraction dynamics, as well as coal seam extraction and transportation schemes were 

defined by mathematical functions. A comprehensive risk model was also developed for 

the optimal solutions based on which technical decisions were established. The optimal 

results include: (i) stripping equipment allocation to improve productivity; (ii) coal seam 

extraction options; and (iii) the characterization of future uncertainties. 

 

7.2 CONCLUSIONS 

This study comprises the use of an analytical literature review, mathematical 

modeling, stochastic process definitions, numerical modeling, computer simulation and 

risk characterization to achieve its objectives. Mathematical techniques were used to 

model excavation and spoiling dynamics in MSF extraction. These techniques provided 

detailed quantitative information on stripping equipment productivities and excavation 

complexities. The formulations resulted in equality and inequalities equations, which 
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were solved using numerical solution techniques. Characterization of future uncertainties 

associated with the optimal solutions was achieved thorough SOP and risk analysis. 

The primary objective was to maximize dragline and ancillary equipment 

productivity improvements and the associated economic benefits in MSF mining 

operations. The main components of the stochastic-optimization models included:  

1. NLP models for equipment allocation and material removal scheduling in 

a typical multi-seam formation. 

2. SOP models for equipment allocation and material removal scheduling in 

a multi-seam environment. 

3. Simulation of these models to produce a series of optimal solutions for 

different scenarios. 

4. Comprehensive risk analysis of the optimal solutions for the multi-seam 

operation. 

Given the MSF case study, the following conclusions have been drawn from 

detailed simulation experimentation and result analyses of the waste extraction model: 

1. The overall mining cost was $149.34 million for the entire deposit; a 

3.51% decrease compared to the conventional traditional methods (dozer 

pushes topsoil and dragline excavates overburden/inter-burden). 

2. The dozer was scheduled to excavate 93.77% of topsoil in period 1; 

influenced by the material properties and specified material relocation 

mechanisms (SOP results).  
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3. A 6.23% of topsoil was allocated to stripping by the shovel and truck 

(SHT) system due to critical digging depth limitation specified for the 

dragline (SOP results). 

4. The overburden stripping schedule included: 36.93% by dragline, 1.30% 

by dozer, 55.03% by shovel and truck (SHT), and 6.72% by cast blasting 

technique (CBT) (SOP results). 

5. The inter-burden extraction schedule included: 7.38% by dragline, 

65.44% by SHT, and 27.19% by CBT (SOP results). 

6. A 100% dozer application in topsoil showed a +2.05% cost difference 

compared to the optimal results. 

7. The dragline spoiling distance reduced as mining progressed, hence the 

percentage allocation reduced.  

8. A 100% dragline application in overburden resulted in +1.02% cost 

difference compared to the optimal results. 

9. A 77yd3 drop in productivity per unit change in cycle time was recorded 

for sub-optimal dragline schedules. 

10. A 13.77% decrease in mining cost was recorded for 100% allocation of 

CBT in overburden and inter-burden, compared to the dragline. 

11. The geologic variability and equipment dynamic operational parameters 

restricted any possible change in the cost function. 

From the detailed simulation experimentation and result analyses of the coal 

seam extraction models, the following conclusions have been drawn: 



128 
 

1. Optimal revenue was $ 61.56 million for the first two coal-strips. 

2. Seam #1 extraction schedule included: 28.25% to destination #1; 23.15% 

to destination #2; 21.90% to destination #3; 25.22% to destination #4, 

and 1.49% stockpiled. 

3. Seam #2 extraction schedule included: 17.94% to destination #1; 14.33% 

to destination #2; 14.81% to destination #3; 16.55% to destination #4; 

and 36.37% stockpiled. 

4. The sensitive model parameters included the amount of reserve available 

and market contractual agreements. 

5. Stockpiling could be advantageous in situations where future increment in 

market prices is expected. 

6. Accurate numerical modeling and analyses of the formation geology, and 

the defined economic limiting factors were vital for an efficient blending 

scheme.     

7. Highly disseminated (in terms of quality parameters) depositions could 

result in complicated blending decisions. 

From the stochastic simulation and risk analysis, the following conclusions have 

been drawn: 

1. A 50.3% chance of the waste mining cost increasing above its current 

value.  
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2. Mining cost variations were driven by the tons of material allocated to the 

dragline (regression coefficient of 0.52) and the failure-probability zone 

increased further with material re-handling. 

3. A 31.3% reduction in dragline OPEX resulted in 25% overall decrease in 

mining cost. This reduction can be achieved by optimal allocations. 

4. The overall output mean variations were attributed to the operating cost 

figures, equipment availability, digging geometry constraints and the 

resource operating mechanisms. 

5. The Weibull distribution was the appropriate fit for the mining cost risk-

profile with the following statistical test results: (i) Chi-sq: 83.71; (ii) K-S: 

0.0089; and (iii) A-D: 1.8453. 

6. The triangular PDF and the BetaGeneral distribution was the appropriate 

fit for the dragline and dozer, and the CBT operating cost risk-profiles 

respectively. 

7. The revenue risk analyses indicated a 53.7% probability of the revenue 

falling below the current estimates. 

8. The high probability of failure from the revenue model was attributed to 

the amount of coal product stockpiled, the price of coal and the thermal 

quantities present in the coal product. 

9. A 32.25% and 33.31% reductions respectively in recovery and thermal 

coal quantities at the stockpile resulted in 25% reduction in the overall 

revenue. 
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10. Uncertainties surrounding future coal prices resulted in major setbacks in 

economic modeling. The maximum regression coefficient and regression 

mapped values for the coal price were 0.31 and $ 4.0 million respectively, 

11. The normal distribution was the appropriate fit for the revenue output 

with the following statistical test results: (i) Chi-sq: 129.99; (ii) K-S: 

0.0201; and (iii) A-D: 5.6974. 

12. At a 10% discount rate, the NPV was $ 31.69 million with 47.8% 

probability of failure.  

13. The normal distribution was the appropriate fit for the NPV function 

with the following statistical test results: (i) Chi-sq: 75.04; (ii) K-S: 0.004; 

and (iii) A-D: 0.2552. 

The SOP models improved the overall NPV and mining cost, respectively, by 

+0.19% and -3.51% compared to the conventional traditional schedule (dozer pushes 

topsoil and dragline excavates overburden/inter-burden). The geology of the formation, 

digging geometries of stripping equipment, material re-handling, coal seam quality 

variations, and contractual agreements were the sensitive parameters associated with the 

economic models. The concept involved is generally applicable and should not be limited 

to this case only. 

 

7.3 RECOMMENDATIONS 

 Despite the significant contributions of the research study to equipment 

productivity improvement in MSFs, several areas require improvement through future 

research investigations. The following areas are suggested: 
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1. Some functions in the optimization model exhibit discontinuity; an area 

which should be investigated in future research for a more robust SOP 

model. 

2. The research finding in (1) should be used in conjunction with the thesis 

results to provide resource allocation economic models to complex 

operating environments. 

3. Due to the limited data available, there were no absolute justifications for 

the selected input PDFs during the stochastic simulation. Thus, the 

BestFit results cannot be generalized for the input parameters. 

4. During the quantitative equipment productivity formulations, material 

extraction schedules were pre-defined. Future research initiatives should 

incorporate equipment productivity formulations with material extraction 

sequencing. 

5. Although a diggability index was established for all equipment 

investigated, the dynamics of equipment-formation interaction should be 

investigated prior to allocation. 

6. The research findings showed the in-depth application of stochastic 

processes in mine planning procedure. These concepts should be 

incorporated in commercial software packages for comprehensive 

decision models. 

7. Other optimization algorithms, which curtail some limitations of the NLP 

algorithms, are worth investigating. 
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PLOTS ON CD-ROM 
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1. INTRODUCTION 

Included with this thesis is a CD-ROM, which contains the reach factor 

sensitivity analysis and model verification. All documents have been prepared as 

Microsoft Word 2010 document files (Windows 2010).  
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1. INTRODUCTION 

Included with this thesis is a CD-ROM, which contains the case study input 

parameters. All documents have been prepared as Microsoft Word 2010 document files 

(Windows 2010).  
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1. INTRODUCTION 

Included with this thesis is a CD-ROM, which contains the stochastic-

optimization modeling results. All documents have been prepared as Microsoft Word 

2010 document files (Windows 2010).  
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