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ABSTRACT 

Draglines are dominant machines and the most significant electricity consumers 

in surface coal mines. With the growing price of energy, environmental concerns, and the 

high sensitivity of mine profitability to dragline productivity, any improvement in 

efficiency of dragline will be beneficial for mines. Research has shown that operator 

practices have a significant impact on energy efficiency of mining loading tools. 

However, not enough work has been done to provide guidance on how to quantitatively 

assess the effect of operator practices on dragline energy efficiency. 

The objectives ofthis work were to: (i) test the hypothesis that dragline operator's 

practices and skills significantly affect dragline energy efficiency; and ( ii) develop a 

methodology to identify the critical parameters that explain the differences in operator 

energy efficiency. Statistical tests are suggested to study the effect of operator practice 

and skills on dragline energy efficiency to achieve the first research objective. The 

second objective was achieved with a novel methodology based on sound statistical 

principles. Both approaches were illustrated with a real-life dragline operation. The 

suggested methodology was used on the data collected from an 85yd3 BE-1570w dragline 

to compare the energy efficiency of five operators during a one month period. 

Valid methods have been formulated for testing operator effects on dragline 

energy efficiency and for identifying critical parameters that explain such differences. 

Using the developed approaches, the case study shows that operator practices can affect 

dragline energy efficiency. The tests show that there is a high probability that differences 

in energy efficiency are due to dumping height, vertical and horizontal drag distances, 

and spotting and dumping time among the surveyed operators. 
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1. INTRODUCTION 

1.1. BACKGROUND 

Coal has been known as an important energy source for years. Today, coal is 

mostly used as a fuel for electric power generation, although, its significant historical role 

in industrial, transportation, and domestic heating cannot be denied. The United States 

(U. S.), Russia and China have the largest known coal reserves. 237 billion tonnes of 

proven recoverable coal reserves (27.6% ofthe global total) is located in U.S. The total 

coal consumption in the U.S. during 2011 was 909.9 million tonnes (U.S. Energy 

Information Administration (EIA), 2011a) and the total production was 992.8. In 2010, 

U.S. share oftotal global coal production was 13.5% (British Petroleum (BP), 2012). 

Table 1-1 shows the coal reserves, production and consumption oftop five countries in 

the world. 

Table 1-1 Coal reserves, production and consumption by countries (2011) (British 
Petroleum (BP), 2012),(U.S. Energy Information Administration (EIA), 2011a) 

Proven Reserves Coal Production Coal Consumption 

Country (Million tonnes) (Million tonnes) (Million tonnes) 

u.s. 237,295 992.8 909.9 

Russia 57,010 333.5 237.7 

China 114,500 3520 3,676.8 

Australia 76,400 415.5 129.3 

India 60,600 588.5 714.9 

Total World 860,938 7,695.4 7,252.9 
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Coal end uses in the U.S. can be classified into three groups; steam coal, 

metallurgical coal (coke), and industrial coal. Steam coal is used to produce heat or steam 

for industrial processes in power plants and counts for about 90% of total coal 

consumption. This share varies depending on natural gas price, which is a substitute fuel 

for coal in power plants. Metallurgical coal or coke is used in blast furnaces in standard 

iron smelting to produce steel. Industrial coal provides the heat for industrial processes in 

manufacturing plants, papers mills, food processors, and cement and limestone plants 

(World Energy Council, 2010). The recorded coal consumption in each group is 

displayed in Table 1-2. 

Table 1-2 U.S. coal consumption by end use sector (2011 and 2010) (U.S. Energy 
Information Administration (EIA), 2011b) 

Metallurgical Industrial 

End use sector Electric Power Coal (coke) Coal 

Coal consumption (thousand 932,484 21,434 49,031 

short tons)- 2011 

Coal consumption (thousand 975,052 21,092 52,370 

short tons)- 20 10 

The coal mining method is chosen based on the depth, thickness and dip of coal 

seams, economic studies, and environmental concerns. Coal mining methods generally 

fall into two groups: surface and underground mining. In 1973, surface and underground 

coal mines both had equal share in total U.S. coal production. Large scale mining 

technology enabled coal mines to increase their production, especially in surface coal 
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mines. In 2011, 68% oftota1 coal was extracted using surface coal mines (U.S. Energy 

Information Administration {EIA), 2011b). Increasing mine productivity helps the mining 

industry to satisfy the growing demand for coal. Larger surface coal mines, utilizing 

larger and more efficient equipment with advanced control systems are known factors 

that improve mine productivity (Bonskowski, Watson, & Freme, 2006). The efficiency 

and environmental impacts of surface coal mining is, therefore, very important for the 

continued significance of coal. 

1.2. STATEMENT OF PROBLEM 

In 2007, the energy consumed in the U.S. mining industry is estimated to be 365 

billion kWh (U.S. Department ofEnergy(DOE), 2007). Table 1-3 shows the estimated 

annual energy consumption by commodity group. Energy consumption in coal mines is 

estimated as 142 billion kWh per year. Electric equipment used for materials handling in 

coal mines consumes 13.3 billion kWh, annually (U.S. Department ofEnergy(DOE), 

2007). Considering the average price of electricity for industry ( 6.65 cents/kwh in 2011 

(U.S. Energy Infromation Administration, 2012)), the cost of electricity for materials 

handling in coal mines is $884 million each year. This accounts for 28% oftotal annual 

energy cost in the U.S. mining industry. 

Draglines are dominant machines and the most critical units in mines, with capital 

cost of$50-100 million (Demirel & Frimpong, 2009; Kizil, 2010). The advantages of 

dragline mining systems include low mining cost, high production rate, and compatibility 

with wide range of overburden depth and material characteristics (Humphrey, 1990). 

Draglines are the most significant electricity consumers in surface coal mines. With the 
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high capital investment, growing price of energy, and the high sensitivity ofmine 

profitability to dragline productivity any improvement in efficiency and productivity of 

draglines will be beneficial for mines. In the Australian coal mining industry, one percent 

increase in dragline productivity is valued at $50,000 to $2,300,000, annually (G. 

Lumley, 2005). 

Table 1-3 Annual energy consumption by commodity type (U.S. Department of 
Energy(DOE), 2007) 

Energy consumption Energy consumption 

Commodity Type (Trillion Btulyr) (Million kWh/yr) 

Coal 485.3 142.2 

Metals 553.1 162.1 

Minerals 208.9 61.2 

Total 1246.3 365.2 

U.S. Department ofEnergy (DOE) carried out studies to show the total energy 

saving opportunities in energy-intensive industries, which can be achieved by improving 

current processes by implementing energy efficient practices. Their studies show that 70 

billion kWh (49% oftotal energy consumption in coal mining) or $3.7 billion can be 

saved annually in the U.S. coal mining industry by improving energy efficiency and 

implementing best practices (Bonskowski et al., 2006; Humphrey, 1990). Due to the 

increasing cost of energy and growing concerns about energy availability and supply, 

managing energy efficiency has become a serious issue in surface coal mines (K. Awuah-
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Offei, Osei, & Askari-Nasab, 2011). Bogenovic (2008) indicated that reduction in energy 

consumption and energy cost can be achieved by effective energy management systems 

in the way of measuring that measure energy consumption to identify energy saving 

opportunities and high-energy consumption units, and determining the relation between 

production and energy consumption (Bogunovic, 2008). 

Generally, energy efficiency is described as the ratio ofuseful work done (energy 

output) to the input energy (Zhu & Yin, 2008). In cases where either energy output or 

input cannot be measured easily, proxy parameters are used in their place. Dragline 

energy efficiency is defined as the ratio oftotal weight of removed material (payload) to 

total energy consumed to remove this amount of material. Dragline energy efficiency 

depends on the equipment, operating conditions, and the operator (Figure 1-1). 

For a given mine with a selected dragline, optimizing the dragline drive 

mechanism for energy efficiency can be very expensive. Mine planning can be used to 

reduce the effect of operating conditions on energy efficiency. However, due to the effect 

of geology, which cannot be changed for a mine, operating conditions can only yield so 

much energy efficiency. Research has shown that operator practices have a significant 

impact on energy efficiency of mining loading tools (Bogunovic, Kecojevic, Lund, 

Heger, & Mongeon, 2009; G. Lumley, 2005; Patnayak, Tannant, Parsons, Del Valle, & 

Wong, 2007). For instance, Bogunovic (2008) and Komljenovic et al. (2010) showed 

that dragline productivity can be significantly different for different operators under the 

same operation conditions (Bogunovic, 2008; Komljenovic, Bogunovic, & Kecojevic, 

201 0). Hence, a better understanding of the relationship between operator practices and 

energy efficiency can easily yield significant improvements in energy efficiency and 



costs. However, not enough work has been done to quantitatively assess the effect of 

operator practices on dragline energy efficiency and the reasons for such variations. 

Previous work has demonstrated the significant effect of operator's skills and practice on 

dragline productivity. In this study the relation between operators' practice and dragline 

energy efficiency is investigated using statistical tools. The goal is to develop a 

methodology to evaluate the effect of operator practice on dragline energy efficiency. 

Operator 

Experiment 

Preferences 

Interaction with 
other equipment 

Operating 
condition 

Mine 
conditions 

Age 

Energy 
consumption 

Technology 

411 Energy source 

Equipment 

Figure 1-1 Factors affecting energy efficiency (adapted from (K. Awuah-Offei et al., 
2011)) 

1.3. OBJECTIVES AND SCOPE OF THIS RESEARCH 

The primary objective of this study was to describe the impact of operator 

practices on dragline energy efficiency. The specific objectives of this project were to: 

6 
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1. Test the hypothesis that dragline operator's practices and skills significantly affect 

dragline energy efficiency; and 

2. Develop a methodology to identify the critical parameters that explain the 

differences in operator energy efficiency. 

All the tests and studies in this work were carried out on a dataset obtained from a 

specific dragline. The monitoring system ofthe dragline was limited in the number of 

recording parameters. For this reason the results of the second objective is limited to the 

recorded parameters in dragline's database. 

1.4. RESEARCH METHODOLOGY 

Figure 1-2 presents the research framework adopted in this work. Statistical tests 

are suggested as a tool to study the effect of operator practice and skills on drag line 

energy efficiency to achieve the first research objective. The second objective was 

achieved with a novel methodology based on sound statistical principles. Both 

approaches were illustrated with a real-life dragline operation. The data used as a case 

study was collected from a Bucyrus-Erie 1570w (85 yd3 bucket) dragline operating in a 

coal mine in Wyoming during one month. The suggested methodology was used on this 

data to compare the energy efficiency of five operators during the one month period of 

data collection. SAS® (SAS Institute inc., 2011) and MATLAB (The Math Works Inc., 

2011) were used to apply the methodology on the given data. 

The methods proposed to evaluate operator effects on dragline energy efficiency 

(objective one) make use of parametric and non-parametric statistical test for comparing 

means of groups of data. The challenges for using such tests on field obtained dragline 



energy efficiency data include data preparation, normality of data, and equality of 

variances. The approach suggested in this work systematically checks all these 

assumptions and minimizes their effect on the inferences drawn. 

Study the effects of 
operator practice on 

energy efficiency 

Method to identify 
critical parameters 

explaining the 
differences in 

operator energy 
efficiency 

Field study 

Figure 1-2 Activities/task in this research 

8 
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The methods proposed to identify key parameters that lead to differences in 

operator performance make use of regression analysis of difference data to predict causes 

of under- or over-performance. The main challenge in using this approach for field 

obtained dragline energy efficiency data is the prevalence of missing data (Schafer & 

Graham, 2002) when preparing the difference data. Theoretically sound techniques are 

used to hypothesize the pattern or distribution of missingness, which is validated with the 

case study data. Random sampling techniques are used to generate equal number of 

samples for each pair of operators to generate the difference data for investigation. The 

proposed methods are illustrated with the case study data. 

1.5. STRUCTURE OF THE THESIS 

This thesis contains seven sections. Section 2, literature review, covers a review 

of relevant previous work. Information about the mine, the dragline and the dragline 

monitoring system used for the case studies in this work is provided in Section 3. In 

Section 4 the preliminary statistical analysis ofthe data used in the case studies, such as 

analyzing the structure of the dataset, and detecting and removing outliers, is presented. 

Section 5 discusses the effects of operator's skills on dragline energy efficiency 

(objective one). The section presents a methodology and a case study to illustrate it. 

Section 6 presents a methodology (and a case study) for examining which of the recorded 

parameters is responsible for observed differences in operator energy efficiencies 

(objective two). Section 7 provides the conclusions ofthis study and recommendations 

for future work. 
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2. LITERATURE REVIEW 

2.1. DRAGLINE OPERATION 

Draglines are the most dominant and critical machines in strip mines, commonly 

used for clearing the overburden to expose coal seams for extraction. Some properties of 

dragline operation include simple and low cost operation, high production rate, simple 

mine planning, and high capital and maintenance cost. Figure 2-1 shows a schematic 

view of a dragline. The drag and hoist machinery enable the bucket to move horizontally 

and vertically using electrical motors, gear reductions, wire ropes, and wire rope drums. 

Swing units (each consists of vertically mounted DC motors, gear reductions, and a main 

swing shaft) in swing machinery are mounted to a rotating frame. These units assist in 

swinging the dragline in order to position the bucket properly for loading or dumping 

(Humphrey, 1990). 

Hoist rope 
\ 

' Drag rope 

1 Hoist chain 
I 

1 - Dump rope 

-- Dragline bucket 

- Drag chain 

Figure 2-1 Schematic view of dragline 
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Dragline operation, not including the walking process, is a cyclic process. A cycle 

of a drag line operation consist of filling the empty bucket by draggmg it on the (blasted) 

material, hoisting the bucket, swinging out to the dumping pile, dumping, returning 

(swinging in) to the digging spot, positioning the bucket to start the next cycle 

(Figure 2-2). Bucket size ofwalking dragline varies from 10 to 220 yd3 (7 to 168m3) 

with boom lengths of 120 to 420ft. (37 to 128m) (Humphrey, 1990). The size ofthis 

machine, and its high production rate, makes it the main energy consumer in mines. 

Fill t:~..---~ Hoist 
Bucket Bucket 

II \ 
Spot 

Bucket 
Swing 

out 

ll 
Swing in Dump 
(Return) ~ material 

Figure 2-2 Dragline cycle 

Simple side casting method is a common basic dragline mining method. In this 

method the drag1ine removes the overburden above the coal seam and dumps it into the 

space created by previous cuts (Figure 2-3). 
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'--r ... ---
1 ' 
I ' 
I 
~ ... _ .... _-

~~,- -- .~~~~-----
1 ... "' ' ...... - - 'II! ~ . , .......... ~ 

-~ ~~.-"':::--~-------

~~-

Figure 2-3 Simple side casting method 

Some ofthe other common stripping mining methods are; extended bench 

method; split bench method; bench on spoil side method; and multi-pass methods (Baafi, 

Mirabediny, & Whitchurch, 1995). 



13 

2.2. SIGNIFICANCE OF ENERGY EFFICIENCY 

It is anticipated that from 2010 to 2040 the world population will rise by more 

than 25% and the global economy will grow at an annual average rate of2.8% (Exxon 

Mobil, 2013). If no change occurs in current practice, the world energy demand in 2020 

will be 50-80% higher than the 1990 level (Orner, 2008). Given that the effects of 

improving energy efficiency should take into consideration to reduce the rise of energy 

demand. The share of the total energy production during 2011 provided by fossil fuels 

was 77.60% (Figure 2-4) (U.S. Energy Information Administration (EIA), 2011c). 

Combustion of fossil fuels emits greenhouse gases and also produces air pollutants such 

as nitrogen oxides, sulfur dioxide, volatile organic compounds and heavy metals. Growth 

in energy demand can potentially damage the environment and global health through 

emission of pollutants such as CO, C02, S02, and NOx as well as contribute towards 

global warming (Exxon Mobil, 2013; Orner, 2008). 

Nuclear 
Electric 
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Energy, '\ 
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Figure 2-4 Energy Consumption 2011(Quadrillion Btu) (U.S. Energy Information 
Administration (EIA), 2011c) 
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Improving energy efficiency is a recognized and cost-effective approach to cut 

carbon dioxide emission and reduce environmental impacts of energy generation while 

keeping up with the world's growing energy demand. Major energy consuming countries 

such as China, U.S., European Union (EU), and Japan have new policies for reducing 

their energy consumption by improving energy efficiency(Intemational Energy Agency 

(lEA), 2012; Orner, 2008). Improving energy efficiency will decrease the amount of 

energy used to produce a unit ofGDP (Gross Domestic Product) output so the global 

energy demand will not rise as dramatically as economic growth. Improving energy 

efficiency with the existing technology can save 20% of the global energy demand (Ristic 

& Jefteni, 2012). Figure 2-5 demonstrates the effects of energy efficiency on global 

energy demand. 

Coal mining industry plays an important role in the U.S. economy. In 2010, coal 

mining accounted for 40% of the total value of U.S. mining output and contributed $90 

billion to GDP (National Mining Association (NMA), 2012). In 2007, the U.S. mining 

industry consumed about 365 billion kWh (1,246 trillion Btu) and coal mining accounted 

for about 39% ofthis. 

Generally, mining processes can be divided into three main stages; extraction, 

material transportation and handling, and beneficiation and processing. Figure 2-6 shows 

the share of energy requirement for each of these stages in coal mining, estimated by the 

U.S. Department ofEnergy (DOE). Annual energy consumption of digging equipment 

including hydraulic shovels, cable shovels, continuous mining machines, long-wall 

mining machines, and draglines in coal mining industry is estimated as 7.7 billion kWh. 

However, based on the DOE study, practical minimum energy required for digging 



15 

equipment in coal mines is 5.16 billion kWh. The DOE bandwidth analysis shows that 

there is a potential of reducing the annual energy consumption to 169 billion kWh (579 

Trillion Btu) which is about 46% of current annul energy consumption (U.S . Department 

ofEnergy(DOE), 2007). The high potential for energy savings in mining has motivated 

mining companies to identify opportunities for improving energy efficiency. 
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Figure 2-5 World energy demand, adapted from (Exxon Mobil, 2013) 



16 

Energy costs account for 20 to 40 percent of typical mining operational costs 

(Mielli & Wallace, 2012). Energy consumption is a key contributor to a business' 

greenhouse gas emissions profile, which is currently voluntarily reported in the US (U.S. 

Energy Information Administration (EIA), 2013), but may become compulsory in the 

future. Improving energy efficiency in mining operations can reduce costs for energy, 

increase profits and reduce emissions to meet government reporting requirements. 

Efficient operations consume fewer resources for the same services or products (Dincer 

& Rosen, 1999; Mielli, 2011; Steele & Sterling, 2011; World Energy Council, 2010). 

An effective energy management system, that measures energy consumption to 

identify energy saving opportunities and determines the relation between production and 

energy consumption, is an important step to increase energy efficiency. Accurate 

measurement of energy consumption is an important requirement for a successful energy 

efficiency program. Limited information on energy consumption in mining operations is 

one of the major challenges in identifying the best strategies to improve energy efficiency 

(Bogunovic, 2008; Bush, Killingsworth, & Ruffel, 2002; Dessureault, 2007; Harney, 

2007; Mielli, 2011). 
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Figure 2-6 Energy requirement for coal mining (TBtu/ton of coal) (U.S. Department of 
Energy(DOE), 2007) 

2.3. DRAGLINE ENERGY EFFICIENCY 

Draglines, as one of the main energy consumers in surface coal mines, consume 

about 15-30% oftotal mine energy (Orica Mining Services, 2010). Because ofthe high 

rate of energy consumption and production, energy efficiency of draglines can 

significantly affect the profitability of mines (Williams, 2005). So it is essential to 

investigate dragline energy efficiency to identify approaches to reduce energy 

consumption while increasing production. Thanks to dragline monitoring systems, energy 

consumption and production of this machine can be monitored in real time. This 

information is essential in building energy efficiency strategies in mining operations. 

Drag, hoist, and swing motors in the dragline provide the desired force to dig the 

material and move it to the dump position in each cycle. By investigating the duty cycle 

of the dragline the useful work (output energy) of each set of motors can be estimated 
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from engineering principles. Drag and hoist motors are mainly engaged in the digging 

phase and elevating the material (Morley, Trutt, & Buchan, 1982). Eq. 2-1 describes the 

work done by drag motors in each cycle. 

Eout_drag = W drag_ bucket + W drag_ material + Wresistance + W friction 2-1 

Where Eout_drag is the output energy of drag motors; W drag_ bucket is the work done to 

drag the bucket; W drag_ material is the work done to drag the material; Wresistance is the work 

done to overcome the resistance ofthe material to the cutting action; and Wrriction is the 

work done to overcome the friction between material and the bucket. 

The main duty ofhoist motors is to raise the material to the desired dumping 

height. The useful work done by these motors can be written as in Eq. 2-2. 

Eout_hoist = Whoist_material + Whoist_bucket + Whoist_chains 2-2 

Where Eout_hoist is the output energy of hoist motors; Whoist_material is the work done 

to overcome the weight ofthe material; Whoist_bucket is the work done to overcome the 

weight of the bucket; and Whoist chains is the work done to overcome the weight ofthe 

chains 

Swing motors provide rotation of the machine from the digging to the dumping 

position and return. The output energy of the swing motors can be calculated using 

Eq. 2-3. 
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Eout_swing = Tswing X 8swing 2-3 

Where Eout_swing is the output energy of swing motors; Tswing is swing torque; and 

8swing is the angular displacement of the machine during the swing out and swing in. 

Generally, energy efficiency is defined as the ratio ofuseful work done (energy 

output) to the input energy (Zhu & Yin, 2008). In cases where either energy output or 

input cannot be measured easily, proxy parameters are used in their place. Several 

examples ofthis approach exist in the literature (Acaroglu, Ozdemir, & Asbury, 2008; K. 

Awuah-Offei, Frimpong, & Askari-Nasab, 2005; K. Awuah-Offei et al., 2011; Cooley, 

1955; Dupriest & Koederitz, 2005; Iai & Gertsch, 2013; Karpuz, C., Ceylanoglu & 

Pa~amehmetoglu, 1992; Matuszak, 1982; Muro, Tsuchiya, & Kohno, 2002; Teale, 1965; 

Torrance & Baldwin, 1990; Vynne, 2008). Vasilescu et al. (201 0) used work done in 

carrying the payload from depth, d, for time, t, as a proxy for useful work done in their 

work to design and control algorithms of an autonomous underwater vehicle capable of 

missions of marine survey and monitoring (Vasilescu et al., 2010). Specific energy 

(energy required to produce unit volume/mass of rock/soil) is widely used in excavation, 

tunnel boring and soil cutting to measure efficiency ofthe excavation, boring, or cutting 

process (Acaroglu et al., 2008; Muro et al., 2002). For instance, Muro et al. (2002) in 

designing an experiment to estimate the steady state cutting performance, for varying 

cutting depth for a disc cutter bit, used specific energy as the measure of performance 

(Muro et al., 2002). Acaroglu et al. (2008) also used specific energy of a disc cutter for 

predicting the performance ofTBM (Acaroglu et al., 2008). Specific energy has also been 

used in drilling (Dupriest & Koederitz, 2005; Teale, 1965), shovel excavation (K. 
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Awuah-Offei et al., 2005; Karpuz, C., Ceylanoglu & Pa~amehmetoglu, 1992), and 

ripping (lai & Gertsch, 2013). Specific energy is the inverse of energy efficiency, where 

material produced (payload) is used as a proxy for energy output. Hence, higher specific 

energy (or lower energy efficiency) is undesirable. 

To fmd energy efficiency for loading and hauling operations, the amount of 

material handled and fuel consumption are used as proxies for energy output and energy 

input, respectively (Kwame Awuah-Offei, Osei, & Askari-Nasab, 2012). Dragline energy 

efficiency can be defmed as the ratio oftotal weight of removed material to total energy 

consumed to remove this amount of material (Eq.2-4). 

. P tonnnes 
Energy Efficzency = 17 =-( ) 

E, kWh 

2-4 

Where Pis the payload and E1 is the energy consumption 

2.4. DRAGLINE ENERGY MONITORING 

A real-time monitoring system is an essential tool to reduce dragline energy 

consumption. These monitoring systems can improve dragline performance and 

productivity by displaying key performance indicators (KPis) such as payload, swing 

angle, drag energy, cycle time, and its components. They also notify the operator when 

the dragline is overloaded (payload exceeds recommended weight) or when certain alarm 

conditions occur to reduce the maintenance cost. Providing operators with real-time 

information helps them improve their performance and operate more efficiently (Vynne, 

2008). 



Prior to the 1980s, the mining industry was not motivated to conduct accurate 

monitoring of dragline productivity because of the relatively smaller dragline sizes. At 

that time, swing charts were used for collecting data manually. Tons of ore or coal or 

overburden moved was used to describe dragline performance. However, these 

parameters included the productivity of trucks, shovels and other material handling 

systems as well as blasting performance into dragline performance (Cooley, 1955; 

Matuszak, 1982). 
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In the 1980s, several different data loggers were developed; but it took time for 

mining companies to realize the significant role these monitoring systems could play in 

dragline monitoring. Data loggers are capable of reporting; total operating time, 

productive operating time, machine motion performance, average swing angle, vertical 

hoist to dump, average and maximum drag force, average bucket load, average maximum 

lowering and payout speeds, etc. (Matuszak, 1982). 

Tritronics 9000 Monitor is one ofthe oldest and most popular monitoring systems 

and was first developed in 1983. Several technical challenges, such as proper detection of 

all the different facets of dragline operation, strong computational power to convert all 

the measured values to meaningful metrics and the ability to be left unattended while 

collecting and storing data for later analysis, were solved to build this monitoring system. 

It had an onboard computer for monitoring dragline operation and radio telemetry to 

transfer the data to an offboard computer for storing and analyzing. The onboard 

computer logs armature voltage and current of drag, hoist, and swing motors; swing 

angle; hoist and drag rope length; position of drag and hoist master switches; indication 

of propel mode; and number of steps in the walking process. This data is necessary for 
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quantitative measurements of production in each cycles and real-time analysis ofbucket 

position. Operators logged in the digging modes and delay codes into system manually. 

Parameters such as total number of swings since the shift began and the running total of 

material moved were displayed for the operator via a digital readout. These inputs were 

then converted into a record for each cycle, stored, and transferred into to the mine office 

computer (Hawkes, Spathis, & Sengstock, 1995; Torrance & Baldwin, 1990). 

These days several manufacturers produce different real-time monitoring 

systems. Each uses a different method to evaluate the key parameters and operator 

performance. AccuWiegh™ by Drives & Controls Services (DCS) and Virtual 

Information Management System (VIMS) by Caterpillar® are other monitoring systems 

that use raw data from the dragline and convert it into meaningful information with 

supplied software. The data is then stored in different databases, using software such as; 

MS Access, MS SQL, MySQL, and Oracle, for further analysis (Bogunovic et al., 2009; 

Drives & Controls Services, 2003; Komljenovic et al., 2010). 

A dragline monitoring system collects and stores different sets of parameters in 

each cycle depending on the system set up and metrics. Monitoring dragline operation for 

even a short period will result in a big data set. This data can be a great source for 

assessing useful metrics such as productivity, dragline performance for different 

operating conditions or tasks, and operator performance, as well as help identify the best 

strategies to improve energy efficiency. However, only a small portion of the collected 

information contributes to useful results, because of data overload and absence of post 

processing software (Morrison & Scott, 2002). Despite the high potential of monitoring 

systems to contribute in these analyses, not enough attention has been paid to analyzing 



the data collected and post processing analyses by dragline monitoring systems 

(Hettinger & Lumley, 1999; Morrison & Scott, 2002). 

2.5. FACTORS AFFECTING DRAGLINE ENERGY EFFICIENCY 

Eq. 2-4 implies payload or productivity and energy consumption are key 

parameters that control dragline energy efficiency. In order to manage dragline energy 

efficiency, it is essential to identify factors that affect dragline productivity and energy 

consumption. This section provides a summary of previous work done to recognize 

factors that affect energy consumption and productivity. 

Payload, cycle time, digging time and energy, fill factor, engagement and 

disengagement position are important KPis, which are closely linked to dragline 

productivity and energy consumption (Figure 2-7). These parameters are controlled by 

four main governing factors; operating condition, mine design and planning, equipment 

characteristics, and operator's practice (K. Awuah-Offei et al., 2011; Bogunovic & 

Kecojevic, 2011; Hettinger & Lumley, 1999; Kizil, 2010; G. Lumley, 2005). 
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2.5.1. Important KPis. Important KPis significantly affect dragline productivity, 

energy consumption, and, consequently, dragline energy efficiency. These parameters 

have been used in previous studies to assess dragline performance metrics such as 

productivity and operators' performance. 

2.5.1.1 Payload. The results ofthe correlation analysis between dragline KPis 

and productivity shows that payload has a strong relation with dragline productivity. 

Factors such as bucket design, material properties or geology, operators' skill, motor 
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characteristics, blast performance affect the payload in each cycle (G. Lumley, 2005; 

Williams, 2005). 

2.5.1.2 Cycle time. Cycle time is a critical parameter that is closely related to 

production. Studies show that a small reduction in cycle time can result in a significant 

increase in productivity (Bogunovic, 2008; Erdem & Diizgiin, 2005). The components of 

dragline cycle can be found in Figure 2-2.With the considerable difference between 

dragline tasks in a cycle of operation, it is reasonable to analyze cycle time components, 

separately. 
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Figure 2-7 Factors affecting dragline productivity and energy consumption 
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2.5.1.3 Digging time and digging energy. Many authors have found the digging 

phase the most critical component in dragline cycle with the highest impact on energy 

consumption and production rate. Different digging conditions such as digging near cut 

walls, cut bottom or key cutting can significantly increase dig time. Dig time can be 

reduced by proper bench blasting and proper angle of attack between the bucket teeth and 

the ground, which is controlled by operator (Bogunovic & Kecojevic, 2011; Erdem & 

Diizgiin, 2005; Rai, Ratnesh, & Nath, 2000; Rai, 2004; Torrance & Baldwin, 1990; 

Williams, 2005). Bogunovic (2008) used the energy consumption of just digging phase to 

evaluate operator performance (Bogunovic, 2008). Bogunovic (2011) concluded that dig 

time is the only cycle time component that is influenced by operator performance 

(Bogunovic & Kecojevic, 2011). The weakness ofthese assumptions and conclusions is 

that they are made without considering other phases in the dragline operation cycle. 

2.5.1.4 Fill factor. Bucket fill factor is found as a parameter that influences 

production rate and energy consumption. Eq. 2-5 shows the defmition of bucket fill factor 

FF= PxSF 
BVxMD 

2-5 

Where; FF is fill factor, W is payload, SF is swell factor, BV is volume of bucket, 

and MD is material density. 

The best fill factor for a given dragline should maximize payload and minimize 

dig energy consumption. This factor is controlled by operator skill and performance. 

Blast performance and material properties can also affect the dig energy consumption. A 
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study done on a Marion 8200 dragline, with the bucket capacity of82 yd3, indicated that 

the optimal bucket fill factor (78%) reduces electricity used in digging phase by 36% and 

improve production rate by 1.4% (Bogunovic & Kecojevic, 2011; Bogunovic, 2008). 

2.5.1.5 Engagement/disengagement position. Specific functional analysis done 

by Hettinger and Lumley (1999) shows that bucket engagement position, which is 

influenced by mine plan and operator habit, affects dragline productivity. For each bucket 

and rigging system there is a particular disengagement position at which payload is 

maximized. Disengage positions away from this optimum point result in payload spillage, 

increased cycle time and loss ofproductivity (Hettinger & Lumley, 1999). 

2.5.2. Governing Parameters. Governing parameters are parameters that control 

important KPis and consequently dragline production, energy consumption and energy 

efficiency. 

2.5.2.1 Operating conditions. Operating conditions, such as geology, material 

properties, groundwater level, and weather condition, are known to be controlling 

parameters. Each mine has its own operating condition, which makes the size ofthe 

mine, mine plans and equipment selection unique for that specific mine. Based on the 

operating conditions of a mine, dragline performance can vary, significantly (Bogunovic 

& Kecojevic, 2011), (Rai et al., 2000), (Bogunovic, 2008). Operating conditions are not 

changeable so mine designs should be compatible with these conditions to get the 

maximum efficiency. 
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2.5.2.2 Mine design and planning. Digging method, mine strips and dumping 

position affect swing angle, swing time, and, consequently, cycle time. An optimum mine 

design should assign tasks to the dragline in proper timing to maximize mine productivity 

and keep energy consumption, maintenance cost, and wasted time minimum. Assigning 

inappropriate tasks, such as deep cuts, to dragline can increase energy consumption and 

make the operation inefficient (Erdem & Diizgiin, 2005; Rai et al., 2000). For example, 

Pippenger (1995) showed that changing dragline shift from seven-day, three-shift, eight

hour to two 12-hour shifts per day reduces lost operational times and increases 

productivity (Pippenger, 1995). 

2.5.2.3 Equipment characteristics. An appropriate bucket size, sufficient motor 

power, and proper gear ratios can increase dragline productivity and reduce energy 

consumption (Pippenger, 1995), (Rowlands & Just, 1992). 

In cases where a mine purchases used draglines, the bucket size and drive system 

may not be completely compatible with the operating condition. Thus, some 

modifications may need to be done on draglines. However, modifying dragline drive 

system or bucket is costly. In Australia, during 2003 and 2004, about $30 million was 

spent on UDD (Universal-Dig-Dump) conservation: more than $20 million on new 

buckets, boom upgrades, and electrical upgrades, etc. (G. Lumley, 2005). 

2.5.2.4 Operators practice. Operators' skills and habits have been observed to be 

important factors affecting dragline KPis, productivity, and energy consumption. An 

operator's practice and skills are mostly measured by his/her performance and 
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productivity. Due to the important role of drag lines in mine profitability, assessing 

operator performance is an important issue. Australian coal mines became more 

profitable and efficient after the structural changes in their hiring policy in 1997. As a 

major part of this, mines now have the ability to select operators and employees based on 

their performance rather than seniority. Lumley (2004) detected the average difference of 

35% between productivity of the best and the worst operator in GBI database (G. I. 

Lumley, 2004; G. Lumley, 2005). Dragline productivity varies greatly between operators, 

even in the same operating condition (K. Awuah-Offei et al., 2011; Bogunovic et al., 

2009; Bogunovic, 2008; Komljenovic et al., 2010; Norman, 2011; Patnayak et al., 2007). 

Dragline production has always overshadowed dragline energy efficiency. The objective 

function of most ofthe studies described in this section is to maximize dragline 

productivity. However, with the growing concerns about reducing energy consumption 

and improving energy efficiency more investigations need to be carried out on dragline 

energy consumption and efficiency to help mining companies increase their productivity 

whilst keeping their energy consumption and energy cost reasonable. 

Of all the factors that affect dragline productivity and energy efficiency, operator 

skill and performance is, probably, the most inexpensive factor to change. Operating 

condition, mine design and planning, equipment characteristics and operators' skill are 

factors that control dragline productivity, energy consumption and efficiency. In a given 

mine, maximizing energy efficiency by changing operating condition is not possible. 

Also optimizing dragline drive mechanism can be costly. Mine design should not assign 

tasks to dragline in which its efficiency is low. But some ofthese circumstances are 

unavoidable, for instance digging near cut walls, cut bottom or a key cutting. Operators 
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can be trained to improve their performance and increase productivity. Training operators 

is a relatively cheap improvement and valid approach in comparison to other 

modifications. To train operators, it is critical to understand the effect of operators 

practice on dragline productivity, energy consumption and energy efficiency and quantify 

this relationship. 

2.6. ASSESSING THE EFFECT OF OPERA TOR'S PRACTICE 

The importance of operator performance for profitability highlights the 

significance of an operator performance assessment system. Multiple criteria have been 

used to assess operator performance for different equipment in different industries. 

Parameters such as course, altitude, speed, timing, and handling are used to assess the 

performance of pilots in a flight simulator test in each flight task. These single dimension 

values are then combined for evaluating the fmal score of each pilot (Johannes et al., 

2007). For haul trucks, operator training and performance evaluation focuses on 

improving productivity, reducing maintenance cost, and improving safety (Vista, 2013). 

Patnayak (2007) suggested using hoist energy consumption per tonne of material 

excavated and number of required cycles to load a truck to assess operator performance 

and productivity. He also used the one-way analysis of variance (ANOVA) to test the 

hypothesis that the mean of hoist and crowd power between operators are equal in 

electric shovels. The results ofthese tests indicated that hoist power is significantly 

different between operators at a significance level ofO.Ol (Patnayak et al., 2007). 

Although, the ANOV A test is a common and valid approach to compare the mean 

between more than two groups, comparing the hoist power alone without considering the 
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productivity, is limited as a measurement of performance of different operators. In cases 

where crowd and swing energy are significantly different, the inferences may be 

misleading. 

Bogunovic (2008) introduced a dragline operator performance indicator (PI) using 

electricity consumption and productivity. PI is calculated by first normalizing production 

and energy consumption of an operator in a given time period and then finding the 

difference between normalized values of production and energy consumption (Eq. 2-6). 

Bogunovic (2008) used only digging energy as energy consumption and assumed that 

energy consumption of other cycle components are constant for all operators. A positive 

value of PI represents an efficient operation and the performance of operators with 

positive PI was evaluated further in the study. Unit production, unit energy, loading time, 

cycle time, angle, and working hours were used to evaluate dragline operators' 

performance score (Bogunovic, 2008). Since Bogunovic's PI assume constant energy 

consumption for other cycle components, where there are significant differences in 

energy consumption of the other cycle components, this metric will result in inaccurate 

conclusions. 

PI(i)= P(i) 
nop 

:LP(i) 

2-6 
nop 

:LEJi) 
i=l i=l 

Where PI(i) is Performance Indicator of operator i, P(i) is production of operator i 

over a given time, E(i) is energy consumption of operator i over a given time, and nap is 

the number of operators. 
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Komljenovic et al. (2010) presented an operator performance indicator (OPI) that 

specifically evaluates dragline productivity and energy consumption. OPI was defmed as 

the dragline production over the dragline energy consumption in a given period of time 

(Eq. 2-7). Different confidence intervals were used to create a classification system to 

evaluate operators' performance based on OPI. Assuming that OPI follows t-distribution 

(when number of operators are less than 30), Eq. 2-8 was used to defme the boundaries of 

the classification system (Komljenovic et al., 2010). 

OPI(i)= P(i) 
E(i) 

Where OPI(i) is the Operator Performance Indicator of operator i 

s 
OP/upper;lower =OP/s±ta. C 

2,nop-l vnop 

2-7 

2-8 

Where OPI upper;Iower is OPI boundaries, OPis is sample mean, Ss sample standard 

deviation, tu~2;nop-J is the 1 OOa./2 percentage point of the Student distribution with (nop-1 ). 

Bogunovic (2008) and Komljenovic et al. (2010) used single performance criteria 

over a period. This prevents analysts from tracking the effect ofvariations in control 

variables over the period of evaluation. In cases where such control variables vary 

significantly over the evaluation period and between operators, wrong conclusions can be 

made about operator performance. It is important to monitor variables that significantly 

affect operator practice during performance assessment. Knowing which of these 
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variables are significantly different between operators with different performance 

metrics, can help us to improve training systems. Intuitively, this approach is the basis for 

crew coaching in many mines. For example at the Coal Creek Mine, a leader operator 

(expert operator) spends time watching and evaluating oiler/groundman (operator with 

less experience) and provides him/her with feedback to increase his/her performance, 

based on observed sub-optimal practices (Norman, 2011). 

2.7. SUMMARY 

Improving energy efficiency is a cost-effective approach to meet the increasing 

demand of energy whilst reducing environmental impacts of energy consumption. 

Productivity and energy efficiency of the dragline, as a dominant machine in surface 

mines, have a great impact on mine profitability. The real-time monitoring systems on 

draglines provide us essential information to build energy efficiency strategies in mining 

operations. Energy efficiency of dragline can be defmed by using payload and total 

energy consumption as proxy parameters for useful work and input energy, respectively. 

Identifying factors that affect dragline productivity and energy consumption is 

essential to manage dragline energy efficiency. Key performance indicators, which are 

closely linked to dragline productivity and energy consumption, include payload, cycle 

time, digging time and energy, fill factor, engagement and disengagement position. Four 

governing factors; operator practice, operating conditions, mine design and planning, and 

equipment characteristics control these KPis. Among these governing factors operator 

performance is the most inexpensive factor to modify in order to maximize energy 

efficiency. In a given mine changing operating condition is not always possible, 
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optimizing dragline drive mechanism can be costly, and sometimes it is unavoidable to 

assign inefficient tasks to dragline. Training operators to improve their performance can 

be a relatively cheap improvement and a valid approach to improve energy efficiency. 

It is critical to understand the effect of operator practice on dragline energy 

efficiency and quantify this relationship. Identifying variables that are significantly 

different between operators with different performance can help us to improve training 

systems. 
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3. FIELD DATA ACQUISITION FOR CASE STUDIES 

3.1. STUDY SITE 

The methods presented in this work are illustrated with data from a real mine. The 

data was collected from a mine 1 located in the Powder River Basin (PRB) in Wyoming. 

PRB covers 20,000 mile square in north-central Wyoming and south-east Montana. It is 

recognized as a valuable source of coal bed methane, coal, petroleum, conventional 

natural gas and uranium oxide (United States Environmental Protection Agency (EPA), 

2004). 

3.1.1. Geology. PRB is a thick sequence of sedimentary rock ranged from 

Paleozoic through Mesozoic and Tertiary. Paleocene Fort Union and Eocene Wasatch are 

two formations in PRB containing coal beds (Wyoming State Geological Survey, 2010). 

Wasatch formation covers 1/3 ofPRB and contains mostly continuous and thin (6 

feet or less) coal beds with high heat values and agglomeration characteristics (United 

States Environmental Protection Agency (EPA), 2004; Wyoming State Geological 

Survey, 2010). Coal deposits in Fort Union formation are identified as the thickest and 

most extensive deposits of low-sulfur subbituminous coal in the world and are mostly 

formed in the upper Tongue River Member (United States Environmental Protection 

Agency (EPA), 2004). They range from subbituminous C to A in apparent rank, in the 

shallow part ofthe basin (surface to 1,000 ft. of depth) low rank coal (subbituminous C) 

can be found. Middle rank coal (subbituminous B) and high rank coal (subbituminous A) 

1 To protect the mine's identity no name will be used in this thesis. 



are placed in intermediate depth (1,000 to 1,400 ft.) and deeper part ofthe basin (more 

than 1,400 ft.), relatively (Stricker et al., 2007). 
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The average energy content in the PRB coal is 8,500 Btu/lb with low sulfur 

content. Considering that the average energy content of coal produced in the U.S. in 2011 

was nearly 9,800 Btu/lb., PRB coal has a low energy content (U.S. Energy Information 

Administration (EIA), 2012). However, the low sulfur content enables power plants to 

burn the PRB coal with no need for expensive emissions control equipment, which makes 

PRB coal economic to extract ("PRB Coal Properties," 2013). The share ofthe coal 

production from PRB was 37% of total coal production in the U.S. in 2011 (United States 

Environmental Protection Agency (EPA), 2004). 

US Geological Survey (USGS) (2008) divided PRB into three regional areas. 

Gillette coalfield is the most significant area (covers about 2,000 mile squared); known as 

the most prolific coalfield in the U.S. In 2006, nine out often largest coal mines were in 

this coalfield. Tongue River member supply the 13 active mines operating in Gillette 

coalfield, including the understudied mine (USGS, 2008). Figure 3-1 displays the 

stratigraphy of coal in this coalfield. The Ronald coal bed, with the average thickness of 

lOft, is the boundary between Wasatch and Fort Union formation. The maximum 

thickness ofthis coal bed and maximum overburden are 52 ft. and 1,175 ft, respectively. 

The mine extracts coal from this coal bed. The two main seams in this mine are Roland 1 

and Ronald 3 with the average energy content of8,226 Btu and 5.67% of ash (USGS, 

2008). 
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3.1.2. Mine Operations. Construction in the mine started in spring 1979 and the 

first coal was shipped in May 1982. As at December 2011, the recoverable reserve is 

estimated at 175.4 million tons (Arch Coal Inc., 2012). 

Formation Bed name Average thickness 

Wasatch 

Figure 3-1 Coal stratigraphy in the Gillette coalfield (adapted from (USGS, 2008)) 

The total coal production of the mine in 2011 was about 11.4 million tons. 

Average thickness of coal seams Roland 1 and 3 are 26 feet and 13 feet. The two seams 

are separated by a thin interburden. Mining is done by strip mining with truck and shovel 

pre-stripping. The average thickness of overburden is 90 feet. In places where the 
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thickness of overburden exceeds 1 00 feet shovels and trucks are used to clear the 

overburden until an overburden thickness of 1 00 feet. The remaining 1 00-foot 

overburden is removed with a Bucyrus-Erie 1570W dragline with a bucket capacity of 85 

yd3. 

The drag line is equipped with Accuweigh ™ monitoring system (by Drives & 

Control Services 2) that collects raw machine signals, converts them to meaningful 

parameters in each cycle and stores them in a database (Drives & Controls Services, 

2003). The relevant parameters in the database were retrieved from the database for this 

study. Table 3-1 shows the operating specifications ofthe dragline. Figure 3-2 displays a 

typical mining sequence at the mine. Figure 3-3 shows the configuration of the dragline 

drive mechanism and the list ofthe dragline's electrical drive components (motors and 

generators) is displayed in Table 3-2. 

3.2. FIELD EXPERIMENT 

The field experiment involved a site visit, monitoring the dragline for one month 

during which different operators run the machine under similar conditions, and data 

retrieval for research. The mine visit (which was on June 19th and 201\ 20 12) involved 

visiting the mine site, and surrounding area, and observing the dragline operation under 

study and two other draglines in another mine in the area. The author observed working 

draglines with different operators, operator habits, different operating conditions, and 

dragline drive components, which helped to better understand the collected data. 

2 http://www.drivesandcontrols.com/ 
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Table 3-1 Operating specifications of a Bucyrus-Erie 1570W drag1ine 

Parameter Value 

Clearance radius (Rear end) 21.4 m 

Operating radius 87.5m 

Boom length 99.1 m 

Boom angle 38° 

Clearance height (under frame) 2.4m 

Tub Diameter 20.1 m 

Dumping Clearance 45.7m 

Boom point height 65.2m 

Maximum digging depth 53.3 m 

Width (shoe-shoe) 28.0m 

Rated suspended load 176 tonnes 

Step length (approx.) 2.6m 

Table 3-2 Electrical configuration of dragline motors/generators 

Motors/ Generators 

2000 HP- 4 unit MG sets (Motor generator sets) 

3000 HP- 5 unit MG sets (Motor generator sets) 

1300 HP hoist motors 

1300 HP drag motors 

I 045 HP swing motors 

500 HP propel motors 

38 
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Figure 3-2 Mining sequence in the mine 
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The data used in this work was collected during one month (June 18th to July 18th, 

2013). Accuweigh™ monitoring system was used as a remote observation tool. Such 

micro-processor based data acquisition is cheaper (no labor costs), comprehensive (data 

capture is continuous throughout the experimental period), and more accurate as human 

errors are removed or minimized in the data collection. Accuweigh™ monitoring system 

provides the operator with information such as position of the bucket on a map on the 

digital screen, payload, swing angle, etc. in a real time. The monitoring system also keeps 

track of over loading the machine and warns the operator. Not all the recorded parameters 

are displayed to the operators, but they are all stored in the main data base. In order to 

fully capture energy efficiency, there is a need to monitor the components of energy 

consumption during a dragline cycle- drag, hoist, and drag energy. Since Accuweigh ™ 

does not store this data in the database, this work involved modifying the program to 

store this data in the extra database fields of the database. The main data base also 

contains information from shovels, trucks, draglines, etc. in separated tables. Information 

such as operator's JD number, dragline activity code, operating shift and pit are recorded 

in separate tables. By matching records in this table with records in the dragline table, the 

author was able to verify that during the period of data collection the drag line worked in 

the West Pit with thirteen different operators. The dragline activity during this time 

included digging below grade (84.7 %), rehandling (15%), and other activities (0.3%). 

The average recorded temperature during this time was 74°F. 
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3.3. SUMMARY 

Data collected from a real mine was used in this work to illustrate the presented 

methods. Data was collected from BE-1570w dragline with bucket capacity of85 yd3 

equipped with Accuweigh™ monitoring system during one month. Some modification to 

the program was necessary to store drag, hoist and swing energy in the database. The 

main duty of the dragline in this mine is to remove the overburden (with average 

thickness of90 ft.) from the coal seams. It is assumed that during the data collection the 

material type remained constant as the dragline was operating in one pit. During this time 

dragline spent 84.7% of its time for digging below grade, 15% rehandeling, and 0.3% for 

other activities. 
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4. PRELIMINARY DATA ANALYSIS OF FIELD DATA 

This section contains preliminary data analysis of the field data, which is used to 

illustrate the methods formulated in this research. The preliminary data analysis is helpful 

for studying the structure and behavior of the field data prior to analysis. In this section 

the data collected from a Bucyrus-Erie 1570w (85 yd3 bucket) using Accuweigh™ 

monitoring system is studied graphically and quantitatively using SQL server 

management studio (Microsoft, 2008), MATLAB, and SAS. 

4.1. STRUCTURE OF DATASET 

The dataset used in this study was retrieved from the main dragline monitoring 

database of the mine. In one month 34,326 cycles were recorded. Each cycle contains 44 

parameters regarding the working positions, time spent on the cycles and portions of 

cycles, swinging angles, dumping heights, and energy consumed by drag, hoist and swing 

motors (a list of all44 parameters and their defmitions are included in APPENDIX A). 

The Accuweight TM monitoring system is designed to collect the total time spent on each 

cycle and the tasks carried out in each cycle, separately. A cycle is defmed to start when 

the last load was dumped and end when the current load is dumped. Components of a 

cycle are swinging out, dumping, swinging in, spotting and loading (Figure 4-1 ). 

Swinging out time is measured as the time elapsed from the moment the bucket is 

detected to be full to the time it is detected to be empty. Dumping time is the time 

between when the bucket is in the dump zone to when the bucket is detected as empty. 

Swinging in time is the time between when the bucket is dumped and when a dig detect is 

triggered. Spotting time is measured from the moment the swing velocity is less than a 



given value to the moment when the dig detect is activated. The time between when the 

bucket fill is detected and full hoist is detected is defmed as loading time. 

Fill t:. .... --:> Hoist 
Bucket Bucket 

II \ 
Spot 

Bucket 
Swing 

out 

/) 
Swing in Dump 
(Return) ~ material 

Figure 4-1 Dragline cycle components 

Not all the 44 parameters recorded in the dataset were relevant to this work. 

Fourteen parameters adjudged to be useful for studying dragline energy efficiency were 

retrieved from the main database for further analysis. Table 4-1 shows a brief summary 

ofthese parameters. 
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Swing out 

Parameters time 

Units Milliseconds 

Minimum 1500 

Maximum 2500 

Mean 2.05e+4 

Variance 5.17e+6 

Parameters 
Angle swing 

out 

Units Degree 

Minimum 1 

Maximum 384 

Mean 61.73 

Variance 838.83 

Table 4-1 Relevant Parameters 

Load bucket 

Swing in time time Dump time Cycle time 

Milliseconds Milliseconds Milliseconds Milliseconds 

13000 6000 6000 41000 

34000 16000 13000 70000 

2.15e+4 1.08e+4 9.1le+3 5.40e+4 

1.97e+7 6.16e+6 1.74e+6 4.29e+7 

Drag Drag 

distance distance Dump height Drag energy 

(horizontal) (vertical) 

Inch Inch Inch Kw-s 

0 -466 235 -7491 

837 980 2299 20971 

138.94 138.43 1.02e+3 3.25e+3 

12267.66 18372.49 1.54e+5 3.44e+7 

Spot time 

Milliseconds 

1000 

16000 

8.28e+3 

6.98e+6 

Hoist energy 

Kw-s 

14299 

54859 

3.23e+4 

8.63e+7 

Payload 

Pounds 

337833 

501283 

4.29e+5 

1.12e+9 

Swing 

energy 

Kw-s 

1570 

21065 

6.6e+3 

7.43e+6 

.j::.. 
VI 
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The data was first classified based on the number of attempts operators made to 

fill the bucket. In the majority (about 98%) of cycles, the operator successfully filled the 

bucket on the first attempt {Table 4-2). All the cycles which took more than one attempt 

were ignored in this study (some of these could be highwall chopping operations) 

because they did not represent "normal" loading operations. APPENDIX B contains raw 

data used in this work. 

Table 4-2 Classification ofthe data based on number ofbucket reloads 

Bucket Reload Count Proportion (%) 

0 33,492 97.56 

1 738 2.15 

2 53 0.15 

3 or more 43 0.13 

4.2. DETECTING AND REMOVING OUTLIERS 

Outliers must be removed prior to any analysis in order to prevent inaccurate 

inferences. In this research, outliers arise from errors (values recorded during periods 

when the dragline is not operating etc.) and anomalous operating cycles. The fourteen 

parameters were examined for outliers. A common approach to detect outliers is to 

determine the first (Q1) and third quartiles (Q3) and calculate the interquartile range using 

Eq.4-1. 

4-1 
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The points that are outside the quartiles by one and a half IQR (lower and upper 

Whisker) are labeled as mild outliers. Boxplots are commonly used to display the outliers 

graphically. In Figure 4-2 red crosses represent the outliers. 

25% 

25% 

25% 

25% 

+ 

+ --------· Outlier 
+ 
+ 

+ 

Upper whisker 

Quartile group 4 

------- Upperquartile 

Quartile group 3 

------- Median 

Quartile group 2 

_____ .Lower quartile 

Quartile group 1 
_ _ _ _ _ _ _ Lower whisker 

Figure 4-2 Boxplot definition in this work 

MATLAB was used to plot the boxplots of the fourteen parameters in the 

database (Figure 4-3). Figure 4-4 shows the boxplots after removing mild outliers. Note 

that new "outliers" are identified because the statistics (Q,, Qz, and IQR) have changed 

with the new data set (i.e. data without the original outliers). 
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4.3. DRAGLINE OPERATORS 

During the one month of data collection, thirteen different operators operated the 

dragline. Table 4-3 shows the operating time and number of cycles for each operator. It is 

essential to have equal support from all operators in the analysis to make reasonable 

inferences. Not all operators worked sufficient amount of hours to be considered in the 

statistical analysis. 

Table 4-3 Operator activity 

Operator #of cycles Total operating time (hr) 

3,897 56.91 

B 3,611 54.62 

c 3,350 49.60 

D 3,058 45.64 

E 2,211 32.77 

F 1,529 23.55 

G 1,023 15.70 

H 761 12.39 

I 271 4.36 

J 129 2.04 

K 88 1.09 

L 29 0.49 

M 24 0.35 
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The mean standard error of energy efficiency of each operator was calculated 

using Eq. 4-2 (Biau, 2011). The gradient of the standard error increased after operator H 

(Figure 4-5). Operators with mean standard error greater than 0.06 were removed from 

the database. Figure 4-6 displays the mean standard error and the number of cycles of 

eight operators. The increase in gradient of the standard error after operator D shows a 

change in the mean standard error. Because ofthe sudden change the mean standard error 

of operator D can be used as a cut-off value. Operator E was also included in the analysis, 

based on the author's engineering judgment, to increase the number of operators in the 

analysis while maintaining reasonable confidence in estimates ofthe mean energy 

efficiency. Thus, 0.04 was chosen as the cut-off value to fmd the minimum required 

number of cycles. 

-+-Standard error ..... Cycles 

0.35 .,....-------------------, 4,500 

+IL:----------------J'-\------1 4,000 0.3 

A B C D E F G H 

Operator 

K L M 

3,500 Ill 

Cll 

3,000 ~ 
u 

2,500 '0 
2,000 ] 

1,500 § 
1,000 z 
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Figure 4-5 Mean standard error and number of cycles of all operators 
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Figure 4-6 Mean standard error and number of cycles of eight operators 
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It can be concluded from Table 4-4 that operators with number of cycles less than 

2000 have the relatively high standard error (greater than 0.04). Operators A, B, C, D, 

and E with standard error less than 0.04 were included in the analysis. 

SE = _!!j_ 
' nOc; 

4-2 

Where SEi is the mean standard error of operator i energy efficiency; cri is 

standard deviation of operator i energy efficiency; nOci is number of cycles of operator i. 

4.4. SUMMARY 

Preliminary data analysis in this work included; investigating the structure of the 

data; removing the outliers; and identifying operators with sufficient working hours to be 
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considered in further analysis. Cycles in which the bucket was not filled successfully in 

the first attempt were removed from the data since they did not represent normal loading 

operation. Mild outliers were removed to reduce the chance of drawing wrong inferences. 

Five operators with standard error of mean of energy efficiency less than 0.04 were used 

for further analysis. 

Table 4-4 Standard error 

Mean Standard 

Time energy deviation energy Standard 

Operator #of cycles (hours) efficiency efficiency error 

A 3,897 56.91 5.31 1.680 0.027 

B 3,611 54.62 6.06 1.712 0.028 

c 3,350 49.60 6.26 1.707 0.029 

D 3,058 45.64 6.34 1.680 0.030 

E 2,211 32.77 6.41 1.686 0.035 

F 1,529 23.55 6.47 1.700 0.043 

G 1,023 15.70 6.49 1.707 0.053 

H 761 12.39 6.55 1.712 0.062 

I 271 4.36 6.82 1.712 0.104 

J 129 2.04 6.88 1.755 0.154 

K 88 1.09 7.19 1.733 0.184 

L 29 0.49 7.24 1.756 0.326 

M 24 0.35 7.29 0.671 0.137 



5. EFFECTS OF OPEARTOR PRACTICE ON DRAGLINE ENERGY 

EFFICIENCY 

5.1. DRAGLINE ENERGY EFFICIENCY 
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For mines to reduce their energy consumption while increasing their productivity 

at the same time, they need to assess dragline operator performance measures that 

consider both energy consumption and productivity. For example, the operator 

performance indicator (OPI) presented by Komljenovic (2010) that specifically evaluates 

both dragline productivity and energy consumption is a good metric. This OPI was 

defmed as the dragline production over dragline energy consumption in a given period of 

time (Eq. 5-1). The limitations of such a metric have been discussed in Section 2 ofthis 

thesis. 

OPI(i)= P(i) 
E(i) 

In this study, dragline energy efficiency is introduced as an indicator of an 

5-1 

operator's performance. Energy efficiency is the inverse ofOPI; but is defined for each 

cycle (5-2). 

5-2 
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For the data used in this study payload, energy consumption of swing, drag, and 

hoist motors were recorded by dragline monitoring system. The energy efficiency of the 

five operators under review was calculated for each cycle using Eq. 5-3. Table 5-1 shows 

the summary of operator performance during the data collection period. 

5-3 

Where 11(i) is energy efficiency in cycle i; P(i) is payload in cycle i; Es(i) is swing 

energy in cycle i; Ed(i) is drag energy in cycle i; Eh(i) is hoist energy in cycle i. 

Table 5-l Summary of operators performance 

Material Energy Energy 

No. of Time weight consumption Production Efficiency 

Opr cycles (h) (tonnes) (kw-h) (tonnes/h) (tonnes/ KWh) 

A 3,897 56.91 496,177 44,850 8,719 11.063 

B 3,611 54.62 450,217 43,894 8,243 10.257 

c 3,350 49.60 427,226 39,827 8,613 10.727 

D 3,058 45.64 383,552 36,879 8,404 10.400 

E 2,211 32.77 277,554 23,395 8,469 11.864 

To achieve the first objective ofthis research (to test the hypothesis that dragline 

operator's practices significantly affect dragline energy efficiency), statistical tests were 

used to compare the energy efficiency of different operators. In the following sections the 
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methodology and the results of the approach when applied to the case study are 

described. 

5.2. EVALUATING THE EFFECT OF OPERATOR PRACTICE ON DRAGLINE 
ENERGY EFFICIENCY 

Any approach to study the effect of operator practice on dragline energy 

efficiency should be able to handle the high variability in the measured data on the 

performance metric (as can be seen from the preliminary data analysis of the case study 

data- Table 4-1). For example, a simple comparison of the means of the metric is invalid 

because it does not address whether the difference in the means of the metric for the 

operators is by chance (due to the sample) or is significant. To study the effect of 

operator practice on drag line energy efficiency, in this work, hypothesis tests were 

performed to test whether energy efficiency of different operators are significantly 

different. Analysis ofVariance (ANOVA) and t-tests are commonly used to compare the 

means of different groups. It is important to choose a statistical test which is compatible 

with the nature ofthe data set. Each statistical test has specific assumptions and violating 

these assumptions can lead into misapplication of the test (Herberich, Sikorski, & 

Hathorn, 2010). Figure 5-1 shows the approach developed in this research. 

Preliminary data analysis can help to better understand the data and check for the 

assumptions of the tests. In the case of comparing the means between groups, preliminary 

data analysis includes estimating summary statistics, testing for normality, and testing for 

equality ofvariances. The best statistical test is chosen based on the result ofthe 



preliminary data analysis. Rejecting the null hypothesis ofthe best test at a given 

significant level (a) shows that the means are not equal at significant level of a. 

Preliminary data analysis 

• Estimate summary statistics 
• Test for normality 
• Test for equality of variance 

Hypothesis testing (H0: sample 
means are equal) 

• Choose the best statistical test 
• Test hypothesis using selected 

test 

Figure 5-1 Process for evaluating operator effects on dragline energy efficiency 

5.2.1. Preliminary Data Analysis. Both Analysis ofVariance (ANOVA) and t-

test require three assumptions. First, the observations should be independent. This 

assumption seems reasonable as we assume energy efficiency of one operator does not 

affect the energy efficiency of other operators. 
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Second, the observations should follow a normal distribution. Graphical methods 

and numerical methods can be used to test the normality of the data. In graphical methods 

plots, such as histograms, Q-Q plots, etc., can be used to compare an empirical 
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distribution and a theoretical normal distribution. Numerical methods look at skewness 

and kurtosis of data and also the result of statistical tests ofnormality (such as goodness

of-fit tests) to check the normality of the data (Park, 2008). In this work both numerical 

methods and graphical methods were used to check the normality of energy efficiency of 

each operator. 

Shapiro-Wilk (W) test (S. S. Shapiro & Wilk, 1965), Kolmogorov-Smirnov (KS) 

test, Anderson-Darling (AD) test (Anderson & Darling, 1952), and Cramer-vol Mises 

(CM) test (Anderson, 1961 ), are some of the common tests that are used to test the 

normality of a data. Shapiro-Wilk (W) test is the most powerful test; however, it is 

limited in the sample size. The sample size should be greater than or equal to 7 and less 

than or equal to 2,000 (S S Shapiro, Wilk, & Chen, 1968; Stephens, 1974) . In this case, 

even for short periods of observation, the sample sizes are likely to exceed the range of 

support ofthe Shapiro-Wilk test. KS, AD, and CM tests are recommended for the large 

data. These tests are based on the empirical cumulative distribution (Park, 2008; 

Schlotzhauer, 2009). When the KS test is rejected it can be concluded that the data does 

not follow normal distribution with the sample mean and sample variance; however it can 

be normal at other values ofthe mean and variance. AD and CM tests also share this 

weakness (Drezner, Turel, & Zerom, 2010; Stephens, 1974). Given the weakness ofthese 

statistical tests, it is helpful to consider the results of the both numerical methods and 

graphical methods when testing for the normality. 

Third, the variances of the samples should be equal. Several statistical tests, 

including F-test, Bartlett's test and Levene's test, examine the differences in variation 

among two or more samples. The F-test and the related Bartlett's test are too sensitive to 
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normality of data (Schultz, 1983). Levene's test, introduced by Levene ( 1960), was 

modified by Van Valen (1978) and suggested as an alternative to the F -test. This test is 

robust even when the data is not normally distributed (Levene, 1960; Van Val en, 1978). 

Hence, Levene's test was used to test for equality of variances in this research. 

Figure 5-2 describes the suggested algorithm of choosing the statistical test 

compatible with the data set, when there are more than two operators to compare. In 

cases when there is just one pair of operators to compare, the different tests are 

recommended as in Figure 5-3. 

5.2.2. Test for Equality of Means. Analysis of variance (AN OVA) and t-test are 

the two most common tests for comparing the means of different samples. ANOV A is a 

parametric analysis which tests the hypothesis of equality of means between two or more 

groups. 

The null hypothesis is that the mean values ofthe groups are the same. The 

alternative hypothesis is that at least two groups have different means. T -test is used to 

compare the means of two groups. This test is easy to conduct but can cause a type 1 

error3 (Zhou, Gao, & Hui, 1997). Since the t-test is for pairwise comparison, when there 

are more than two operators in the data set multiple pairwise tests are necessary. At each 

run of the t-test, there is 5% chance oftype 1 error. For nOp operators, the probability of 

Type 1 error is given by Eq. 5-4, where a is the significant level of the t-test. ANOV A 

test can replace t-test in cases when there are more than two operators to reduce the 

chance oftype 1 error. 

3 Type 1 error is when a true null hypothesis is rejected (Sheskin, 2004) 
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(nOpJ 
Chance ofType I error =1-(1-a) 2 

5-4 

It is probable for the energy efficiency data to violate the assumption of normality 

and equality of variances. One approach to handle the violation of the normality 

assumption is to transform the data (typically using a natural log transformation). 

Performing tests for comparing the means of different groups on log-transformed data 

can cause its own problems. 

The null hypothesis based on the log-transformed outcomes is not equivalent to 

the null hypothesis based on the original outcomes, especially when the variances are not 

equal. Zhou et al. (1997) showed that if the variances of two groups are not equal the null 

hypothesis oft-test (equality ofmeans) performed on log-transformed data is not 

equivalent to the original null hypothesis. Hence, it is possible to reject the equality of 

means in the original data even after not rejecting the null hypothesis of log-transformed 

data(Zhou et al., 1997). Therefore, data transformation should be used carefully, when 

the normality assumption cannot be justified for the dragline energy efficiency data. 

Welch ANOVA and Welch t-test, in which the third assumption (equality of 

variances) is relaxed (Welch, 1947), can be used to address the problem caused by 

violating the third assumption. Welch's test is a practical, simple and accurate test. It is 

based on Student's distribution with degree of freedom depending on both sample size 

and sample variance. In some cases, Welch's test is recommended as a replacement oft-

test even when the variances are equal (Krishnamoorthy, Lu, & Mathew, 2007; Rodgers 

& Nicewander, 1988). 



ANOVA 

Transformation 

Kruskai-Wallis 
(Non-para metric) 

Figure 5-2 Algorithm of choosing an appropriate test of comparing the means 
(more than two groups) 

To reduce the chance of misusing statistical tests, non-parametric tests can be 

used alongside of parametric tests. Non-parametric tests have fewer assumptions in 

comparison to parametric tests; however they are less powerful in detecting differences 

(Schlotzhauer, 2009). The Kruskal-Wallis test, which is a non-parametric equivalent test 

for ANOVA (Wilcoxon-Mann-Whitney a replacement fort-test), can be used instead of 
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ANOV A (t-test) (Cody, 2011). The null hypothesis ofthis test is that all groups (more 

than two groups) have identical cumulative distribution function and the alternative 

hypothesis is that at least two of the groups differ only with respect to location (median). 

In this test the assumption of normality is relaxed. When performed on log-transformed 

data the results may be invalid when the data is extremely skewed (McElduff, Cortina

Borja, Chan, & Wade, 2010). 

To sum up, it is critical to check the assumptions of statistical tests prior to using 

them. T-test and ANOVA are two common tests for comparing the means between two 

or more than two groups, respectively. Data should follow a normal distribution for valid 

results of ANOV A and t-test. Numerical and graphical methods can test the normality of 

data. Non-parametric tests such as Kruskal-Wallis and Wilcoxon-Mann-Whitney can 

replace ANOVA and t-test when the data is not normal. Equal variance between groups is 

another assumption of ANOVA and t-test. Welch ANOVA and Welch t-tests are not 

sensitive to equality of variances and can be used as replacement for ANOVA and t-test 

when the assumption of homogeneity (equality of variances) is violated. The result of 

valid statistical tests can be used to investigate the effect of operator practice on dragline 

energy efficiency. 



Welch t-test T-test 

Transformation 

Wilcoxon-Ma n n-Whitney 
(Non-para metric) 

Figure 5-3 Algorithm of choosing an appropriate test of comparing the means 
(two groups) 
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5.3. CASE STUDY 

5.3.1. Preliminary Data Analysis. Summarizing data from five operators can 

provide a better understanding of the data and help to choose an appropriate test to 

compare energy efficiency of operators. Descriptive statistics for energy efficiency of 

each operator can be found in Table 5-2. 

Table 5-2 Descriptive statistics of energy efficiency of operators 

Statistical 

measures OprA OprB OprC OprD OprE 

N 3985 4550 4253 3427 2649 

Mean 11.23 10.37 11.14 10.60 11.91 

Median 10.78 9.96 10.64 10.17 11.60 

Standard 
2.80 2.62 2.74 2.71 2.98 

deviation 

Skewness 0.49 0.72 0.69 0.98 0.33 

Variation 7.84 6.83 7.55 7.32 8.90 

Kurtosis -0.46 0.37 0.13 1.21 -0.37 

Coefficient of 
24.9% 25.2% 24.7% 25.5% 25.0% 

correlation 
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SAS® 9.3 was used to perform these tests on the data and the results can be found 

in Table 5-3 .The results of the tests show that the null hypothesis in all tests (data 

follows normal distribution) is rejected and energy efficiency of none of the operators 

follows normal distribution (all p-values are less than 0.005). Given the weakness of 
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these statistical tests it is important to also use graphical methods to gain a better 

understanding of the nature of the data. Histogram plots in Error! Reference source not 

found. show right skewness in the data. The positive values of skewness in Table 5-2 

also confirm this conclusion. 
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Figure 5-4 Histograms of energy efficiency of different operators 
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Log-transformation is commonly used to reduce the skewness of the data (Zhou et 

al., 1997) . Statistical test were performed on the log transformed data and the Table 5-3 

shows the results ofthese tests. Again the results show that the log-transformed data is 

not following the normal distribution. Because of the deficiencies of statistical tests 

graphical methods were also used to study the effects of log-transformation. Figure 5-5 

shows the histograms of log-transformed data and it can be concluded from the 

histograms that the data is closer to normal distribution after log-transformation. 
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Figure 5-5 Histograms oflog-transformed energy efficiency of different operators 



Table 5-3 Results of the statistical tests on original data and log-transfomed data 

Energy efficiency Opr A OprB OprC OprD 

Statistic P-value Statistic P-value Statistic P-value Statistic P-value 

Kolmogorov-Smirnov (D) 0.07166 <0.010 0.06621 <0.010 0.07527 <0.010 0.07718 <0.010 

Cramer-von Mises (W2) 6.02058 <0.005 6.34709 <0.005 7.68707 <0.005 7.18008 <0.005 

Anderson-Darling (A2) 35.9658 <0.005 37.9851 <0.005 45.2889 <0.005 45.5553 <0.005 

Log-energy efficiency OprA OprB OprC OprD 

Statistic P-value Statistic P-value Statistic P-value Statistic P-value 

Kolmogorov-Smirnov (D) 0.04082 <0.010 0.02514 <0.010 0.03724 <0.010 0.02766 <0.010 

Cramer-von Mises (W2) 1.97118 <0.005 0.75778 <0.005 1.56015 <0.005 0.79087 <0.005 

Anderson-Darling (A2) 11.7729 <0.005 4.53897 <0.005 9.07657 <0.005 5.66382 <0.005 

OprE 

Statistic 

0.0426 

1.2886 

7.7490 

OprE 

Statistic 

0.03113 

0.66522 

5.03061 

P-value 

<0.010 

<0.005 

<0.005 

P-value 

<0.010 

<0.005 

<0.005 

0'1 
-....) 
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Quantile-quantile plots (Q-Q) were also used to study the effect of log

transformation ofthe data. These plots compare ordered value of a variable with quantiles 

of a normal distribution. The closer the data is to the normal distribution, the closer the 

points will be to the linear pattern passing through the origin with the unit origin 

(Johnson & Wichern, 2007). Figure 5-6 displays these Q-Q plots ofthe original data. Q

Q plots ofthe log-transformed data can be found in Figure 5-7 . The Comparison between 

the Q-Q plots and also histograms indicates that log-transformation helped the data to get 

closer to normal distribution. 

The results ofthe statistical tests show that neither the original data nor the log

transformed data follows normal distribution. These statistical tests cannot always be 

trusted. Graphical methods were utilized to confirm the results ofthe statistical tests. 

Histograms and Q-Q plots indicate that the assumption of log-transformed data following 

normal distribution may be valid. 

SAS® 9.3 was used to perform Levene's test to examine the equality of variances 

between log-transformed data from different operators. The p-value of0.0008 was 

calculated. It can be concluded that at significance level of0.05 the null hypothesis of 

equal variances was rejected. The result ofthe Levene's test showed that the third 

assumption will be violated with the given data set. Performing the Levene's test on the 

original data also indicated that the variances between energy efficiency of operators are 

significantly different (p-value was less than 0.0001). 
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Figure 5-6 Q-Q plot of energy efficiency 

5.3.1. Test for Equality of Means. The results ofthe Welch ANOVA test at 

significance level of0.05 showed that energy efficiency is significantly different between 

operators (p-values <0.0001). Kruskal-Wallis also confirmed the results ofWelch 

ANOV A test and indicated that energy efficiency of operators is significantly different 

between operators (Table 5-4). 
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Figure 5-7 Q-Q plot oflog-transformed data 

Table 5-4 Result ofthe statistical test 

Test Degree of freedom Statistics 

F value 
Welch-ANOVA 4 

Kruskal-Wallis test 4 

154.63 

Chi-square 

614.38 
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P-value 

<0.0001 

<0.0001 
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In this study there were five operators for comparison. Considering that t-test can 

handle a pair-wise comparison at each run, I 0 runs were needed to compare all the 

operators. Therefore the chance of committing type 1 error was 40%. It was concluded 

that the results of the t-test cannot be trusted because of the high risk of committing type 

1 error and also the fact that the assumption ofhomogeneity (equality of variances) 

between energy efficiency of operators (original and log-transformed data) was violated. 

The fmal conclusion was drawn based on the result ofthe Welch ANOVA and Kruskal

Wallis test which indicates that the energy efficiency is significantly different between 

different operators (at significance level of0.05) (Table 5-4). 

5.4. SUMMARY 

This research proposes a two stage process to evaluate the effect of operators on 

dragline energy efficiency, given a dataset. The first stage involves evaluating the validity 

of three basic assumptions- independence, normality, and equality of variances. It is 

assumed that energy efficiency data for dragline cycles are independent since the energy 

efficiency of cycles by one operator does not depend on another operator. Graphical and 

numerical tests are suggested for testing whether the energy efficiency data, for each 

operator, is normal or not. Levene's test is suggested for testing for equality of variances 

due to low sensitivity to the normality ofthe data set. The second stage of the suggested 

process involves tests for equality of means. Depending on the number of pairs of 

operators to be compared, this work recommends two different processes for determining 

the appropriate tests. Both parametric and non-parametric tests are considered, based on 

the stage one analysis (test for independence, normality, and equality of variances). The 

goal is to draw the right inference about the effect of operators on energy efficiency, 
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given the data properties and to reduce type 1 errors. The process is illustrated with a case 

study using the field data in this research. 

Five operators operated with sufficient working hours during the data collection 

exercise. Due to the high chance oftype 1 error, t-test was not used. The results of the 

numerical and graphical analysis showed that the assumption of log-transformed data 

following normal distribution was valid. Levene's test rejected the hypothesis of equality 

of variances. Therefore, Welch ANOV A was used to compare the means of energy 

efficiency between five operators. The null hypothesis of Welch's test was rejected at 

significant level of0.05. The result ofKruskal-Wallis test confirmed the result of the 

Welch's test (Table 5-4). It can be concluded form the results of the statistical tests that 

energy efficiency is significantly (significant level of0.05) different between the five 

operators. 
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6. IDENTIFYING PARAMETERS THAT CAUSE DIFFERENCES BETWEEN 

ENERGY EFFICIENCY OF OPERA TORS 

6.1. INTRODUCTION 

The results of Section 5 indicate that operator practices significantly affect 

dragline energy efficiency. This section addresses the second objective of this study by 

proposing a method to identify key parameters that lead to differences in operator energy 

efficiency (responsible parameters). In this method, first, correlation analysis is used to 

detect the parameters in the dataset that are correlated with energy efficiency. It is 

assumed that this relationship is linear and Pearson correlation analysis is suggested as a 

tool to measure the linear dependence between parameters and energy efficiency. 

Difference matrices are then built for each pair of operators. Linear regression is then 

used to determine the responsible parameters. This method is then illustrated with the 

case study data. Figure 6-1 shows the flow chart of the proposed method. 

6.2. CORRELATION ANALYSIS 

Correlation analysis can be used to detect the parameters that affect dragline 

energy efficiency. Correlation is a statistical tool to measure the dependence and 

relationship between two random variables. Pearson correlation analysis is the most 

popular method of measuring the linear relation between two variables (Rodgers & 

Nicewander, 1988). Pearson correlation can be defmed as Eq. 6-1. 



Correlation 
analysis 

Create (n~p) pairs 

of operators 

Use linear regression of 
differences to find 

responsible parameters 

Use the results to 
determine responsible 
parameters across all 

G) pairs 

Figure 6-1 Flow chart ofthe main algorithm 
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Px,r 
cov(X,Y) 6-1 

The Pearson correlation coefficient can take a value between -1 and I. Value of 1 

indicates a perfect positive linear relationship and value of -1 indicates a perfect 

decreasing linear relationship. When the variables are independent then p = 0 . The 

parameters that are correlated with energy efficiency can be identified (correlated 

parameters) based on the value of p and the desired confidence level. The p-value of the 

null hypothesis (Ho: p = 0) can be estimated using the Student's t-distribution (Gibbons 

& Chakraborti, 201 0). This allows one to make the inference, at a particular confidence 

level, whether to accept or reject the null hypothesis of no correlation between the two 

random variables under consideration. 

6.3. IDENTIFYING RESPONSIBLE PARAMETERS 

The proposed method is based on pair-wise comparison of operators. Assuming 

nOp operators, there are (n~p) pairs of operators. The data from these pairs are then used 

to create the difference matrix. Equal number of cycles for two operators is required in 

order to build the difference matrix for operator i and operator}. In reality, because of 

high variability in cycle time, the chance of getting equal number of cycles for two 

operators even in equal working hours is very low. This results in a situation where there 

is "missing data", an issue common in many scientific and engineering research (Schafer 

& Graham, 2002). Assuming that the number of cycles for operator i is greater than 



number cycles for operator j (ci > cj) the pattern ofthe data set and the missingness can 

be displayed as Table 6-1. 

Table 6-1 Pattern ofthe data set 

Cycle I 
Cycle2 

Cycle cj 

Opr i Opr j 

Cycle k xik 

Cycle ci Xi ci 

When the response mechanism is missing at random (MAR) then the probability 

ofXik missing for cycle k (probability ofmissingness) may depend on the observed data 

but not on the missing data. A special case ofMAR is missing completely at random 

(MCAR), which describes a data set where the probability of missingness does not 

depend on the observed data either (Schafer & Graham, 2002). There are different 

approaches to handle missing data such as complete case analysis (CCA), multiple 

imputation (MI), and maximum likelihood (ML). MI and ML are modem missing data 

analysis methods. These methods estimate the value of missing data based on the values 

of available data. For large data sets, such as the ones in this research, these methods are 

computationally expensive and become ineffective (Graham, 2009). 
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In CCA, a case (in this work, cycle with all the recorded parameters) will be 

deleted if any ofthe parameters in that case are missing. CCA assumes that the 

missingness in the data is completely at random. Violating this assumption can result in 

incorrect inferences. CCA is a robust method and the parameters estimated are unbiased 

when the data is MCAR (Schafer & Graham, 2002; Truxillo, 2002). Little (1992) proved 

that estimates are still unbiased in this method if observations are MAR (Little, 1992). 

One disadvantage ofCCA is the inefficiency ofthis approach due to the loss of 

information. Considering the large number of dragline cycles (samples) even for a short 

period of operation this flaw ofCCA seems irrelevant to this work. 

Considering the nature of the data (the missing cycles and the probability that 

those cycles are not captured do not depend on the observed or unobserved cycles), it is 

assumed that response mechanism is missing at random (MAR) and CCA is suggested to 

handle the incompleteness of data. To have equal number of cycles for operator i and 

operator}, ci- cj cycles need to be removed from operator i's data. With the assumption 

of MAR, ci- cj cycles are selected at random for deletion. The difference matrix can then 

be created using the treated data. Table 6-2 shows the difference matrix of operator i and 

operator j. This matrix is calculated by finding differences between energy efficiency 

(~11) and correlated parameters in each cycle. 

Linear regression analysis is used to fit a linear model to the difference matrix 

where ~11 is the dependent variable vector and ~par matrix contains the independent 

variable (predictor variable) matrix. The significance of coefficient test with desired 

confidence level identifies parameters with the significant values of coefficients. These 
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parameters are designated as parameters that are responsible for the differences in energy 

efficiency of operator i and operator j (responsible parameters). 

Table 6-2 Difference matrix of operator i and j 
~11 ~par 

cycle 1 llil -l]ji pari II - parj 11 paril2 - parj 12 parilv- parjlv 

cycle 2 pari21 - parj2I pari22- parj22 pari2v - parj2v 

cycle c llic -l]jc parici - parjci paric2 - parjc2 

The output of the coefficient test is saved as a binary variable; the output is I if 

the coefficient is significant (the parameter is a responsible) and 0 ifthe coefficient is not 

significant (the parameter is not responsible). Table 6-3 shows the output of a coefficient 

test for one pair of operators. 

Table 6-3 Output of coefficient test for one pair 

Par 1 c 011 

Par 2 

0/1 

Parv 

0/1 ~ 

To draw a correct conclusion it is critical to consider the effect of randomly 

selecting equal number of cycles from operators when building difference matrix. To 
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reduce the effect of random sampling error, the process of selecting (ci-cj) cycles from 

operator i for deletion and regression analysis is repeated k times. A parameter is a 

responsible parameter, if in (1-a)% (at confidence level of a) ofruns it is recognized as a 

responsible parameter (Table 6-4). 

The algorithm of using linear regression of differences to fmd responsible 

parameters can be found in Figure 6-2. In the main algorithm, the process of determining 

responsible parameters using linear regression is repeated for each pair of operators 

(Figure 6-1). From the result ofthe G) pair-wise comparisons the probability for a 

parameter to be a responsible parameter (at confidence level of a) can be determined. The 

case study is used to illustrate the suggested approach in the next section. 

Table 6-4 Output of coefficient test and fmal conclusion of k runs (one pair) 

Run 1 
Run2 

Runk 

Final 
conclusion 

Par 1 

0/1 
0/1 

0/1 

0/1 
at 

confidence 
level of a 

Par 2 
0/1 
0/1 

0/1 

0/1 
at 

confidence 
level of a 

Parv 
0/1 
0/1 

0/1 

0/1 
at 

confidence 
level of a 
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An example can help one to better understand the process of selecting equal 

number of cycles and testing for being a responsible parameter. Let us say the purpose of 

an experiment is to test whether the duration of warm up for a baseball player (a 

parameter) is a contributor to differences in their batting average (energy efficiency). In 

order to detect this relationship, k games of two players can be selected at random for 

observation and to test the relationship. If in more than (1-a)% (at confidence level of a) 

times the duration of warm up was a contributor to differences in the batting average 

then it can be concluded that duration of warm up is a contributor, otherwise it is not a 

contributor. The probability for duration of warm up to be a contributor can be calculated 

by repeating this process for other pairs of players and counting the number of pairs in 

which duration ofwarm up is recognized as a contributor. The case study is used to 

illustrate the suggested approach in the next section. 

6.4. CASE STUDY 

To illustrate the suggested method the given data was used. The Accuweigh TM 

monitoring system recorded 44 parameters for each cycle during the one month period of 

data collection. Fourteen parameters were extracted from the data base as relevant 

parameters for this work (see Section 4). MATLAB was used to perform Pearson 

correlation analysis to detect the parameters correlated with dragline energy efficiency. 



Select equal 
number of cycles 

{at random) 

Find the 
differences 

Fit a linear 
regression model 

Use the result of 
the significance 

test of coefficients 
to determine 

significant 
variables across 30 

runs 

Figure 6-2 Algorithm of using linear regression of differences to fmd significant 
parameters 
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Table 6-5 shows the result of the Pearson correlation. The p-value indicates the 

result oftesting the hypothesis of no correlation against the alternative hypothesis that 

there exists a non-zero correlation. At the significance level of0.05 all tests were rejected 

except for swing out time. It can be concluded that all the parameters except swing out 

time are correlated with energy efficiency. 

Table 6-5 Pearson correlation result 
# Parameter rho P-value 

1 Dump height -0.6560 <0.001 

2 Hoist energy -0.5857 <0.001 

3 Drag distance (vertical) -0.5089 <0.001 

4 Drag energy -0.4569 <0.001 

5 Drag distance (horizontal) -0.4807 <0.001 

6 Load bucket time -0.4548 <0.001 

7 Dump time -0.3050 <0.001 

8 Cycle time -0.3755 <0.001 

9 Swing energy -0.2724 <0.001 

10 Swing in time -0.3362 <0.001 

11 Spot time -0.1725 <0.001 

12 Angle swing out -0.1556 <0.001 

13 Swing out time 0.0123 0.0913 

14 Payload 0.2429 <0.001 

Based on the result of the Pearson correlation, the linear model of energy 

efficiency difference (~11) can be written as Eq.6-2. This model is a model ofthe relative 
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performance of the two operators. Drag, hoist, and swing energy consumption were not 

included in the regression analysis, as energy efficiency is a representation of total energy 

consumption and it is not necessary to include these parameters in the model. 

~TJ=k0 +k1 x!VJh +k2 x!!JJDv +k3 x~Dh +k4 xl:!lb, + 

k 5 x !!JJ, + k6 x ~c, + k7 x Mi, + k8 x M, + k9 x ~B" + k10 x M 
6-2 

Where Dh is dump height; DDv is drag distance (vertical); DDh is drag distance 

(horizontal); lbt is load bucket time; Dt is dump time; C1 is cycle time; Si1 is swing in 

time; St is Spot time; 9o is angle swing out; and P is payload. 

Equal numbers of samples were selected at random for each pair of operators to 

build the difference matrices (30 matrices per pair) ofthe pair. Linear regression was 

used to fit Eq. 6-2 to the difference matrix data. The dependent variable is the difference 

between energy efficiency and the differences between correlated parameters ( 1 0 

parameters) were the independent variables. Testing for significance of coefficient was 

carried out at 95% confidence level. 

The process of linear regression analysis is repeated 30 times for each pair to 

reduce the effect of random sampling. The result ofthe 30 runs for each pair can be found 

in Table 6-6. Numbers in this table show the number of times in 30 runs that a parameter 

in a pair-wise comparison is recognized as a parameter with significant coefficient or a 

responsible parameter (i.e. the coefficient was non-zero at 95% confidence). 
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Table 6-6 Results ofthe 30 times run of regression analysis. Numbers indicate the 
number of times that a parameter is recognized as a parameter with significant 

coefficient (responsible parameter) 

Correlated parameters D,B D,E D,A D,C B,E 

Dump height 30 30 30 30 30 

Drag distance (vertical) 30 30 30 30 30 

Drag distance (horizontal) 30 30 30 30 30 

Load bucket time 4 30 26 30 0 

Dump time 30 30 8 30 30 

Cycle time 3 16 6 2 2 

Swing in time 3 16 28 10 16 

Spot time 30 30 30 30 30 

Angle swing out 14 30 4 8 18 

Payload 14 3 15 12 2 

B,A B,C E,A E,C A,C 

Dump height 30 30 30 30 30 

Drag distance (vertical) 30 30 30 30 30 

Drag distance (horizontal) 30 30 30 30 30 

Load bucket time 8 20 5 22 30 

Dump time 8 30 30 30 30 

Cycle time 26 0 10 5 27 

Swing in time 29 30 3 6 7 

Spot time 30 30 21 30 30 

Angle swing out 30 30 22 30 2 

Payload 13 1 6 8 30 
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A parameter is recognized as a responsible parameter in each pair-wise 

comparison if the number of having significant coefficient in 30 runs is more than 28 

(confidence level of95%). Table 6-7 and Figure 6-3 show the results using the cut-off 

value of28. The value of 1 is assigned to responsible parameters in each pair. The 

probability column in Table 6-7and Figure 6-3 shows the estimated probability that a 

parameter is a responsible parameter. Dump height, drag distance (vertical), and drag 

distance (horizontal) have a 100% probability. It can be concluded that there is more than 

95% chance of these parameters being responsible for differences in energy efficiency for 

all 10 pairs of operators in the given dataset. 
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ro 

.0 
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Correlated Parameters 

Figure 6-3 Estimated probability for correlated parameters to be responsible parameter 
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It can be concluded from Figure 6-3 and Table 6-7 that there is a high chance for 

dump height, drag distance (v), drag distance (h), spot time, and dump time to be a 

responsible parameter. On the other hand, for parameters such as cycle time, payload and, 

swing in time the probability ofbeing a responsible parameter is relatively low. 

Previous studies (Bogunovic & Kecojevic, 2011; Bogunovic, 2008; Erdem & 

Diizgiin, 2005; Hettinger & Lumley, 1999; G. Lumley, 2005; Rai et al., 2000; Rai, 2004; 

Torrance & Baldwin, 1990; Williams, 2005) have shown that payload, cycle time, 

digging time and digging energy, fill factor, engagement and disengaeegement position 

affect dragline productivity and energy consumption and, consequently, energy 

efficiency. Also, Bogunovic and colleagues (Bogunovic & Kecojevic, 2011; Bogunovic, 

2008) show that digging time (or loading bucket time in this work) was introduced as the 

most important component of dragline cycle. The case study confirms these parameters 

as important explanatory variables of drag line energy efficiency (Table 6-5). Dumping 

height is shown to be highly correlated to energy efficiency (p = -0.6560, p < 0.001). This 

has never been shown with experimental data, to the best of this author's knowledge. It 

must be noted, however, that the fact that these parameters are correlated to energy 

efficiency does not necessarily mean they are responsible for differences in operator 

performance. Any of the parameters, that energy efficiency is sensitive to, can cause 

differences in energy efficiency, if it varies significantly between operators. 



D,B D,E 

Dump height 1 1 

Drag distance (vertical) 1 1 

Drag distance (horizontal) I 1 

Spot time I 1 
Dump time I 1 
Load bucket time 0 1 
Angle swing out 0 1 

Swing in time 0 0 
Payload 0 0 
Cycle time 0 0 

Table 6-7 Final result based on assigning 0 and 1 

D,A D,C B,E B,A B,C E,A E,C 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

I 1 1 1 1 1 1 

I I 1 1 I 0 1 
0 1 I 0 1 1 1 
1 1 0 0 0 0 0 
0 0 0 I I 0 1 

1 0 0 0 I 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

A,C total 

I 10 

1 10 

1 10 

1 9 
1 8 
1 4 
0 4 

0 2 
1 I 

0 0 

probability 

100% 

100% 

100% 

90% 
80% 
40% 
40% 

20% 
10% 
0% 

00 
-.l 
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In this case study, dumping height, vertical and horizontal drag distance, and 

spotting and dump time are shown to be the primary parameters driving differences in 

energy efficiency. Surprisingly, digging time, which has been identified by many 

researchers as a key discriminator between operators (Bogunovic & Kecojevic, 2011; 

Erdem & Diizgiin, 2005; Rai et al., 2000; Torrance & Baldwin, 1990; Williams, 2005), 

was not found to be a significant factor between the five operators included in this study. 

The result of this work shows that there is only a 40% probability that energy efficiency 

of cycles from these operators is significantly different because of differences in digging 

time. This probability is less than other cycle time components such as spotting and 

dumping time. This shows that operator performance evaluation, which is based solely 

on digging time or other parameters ofthe digging cycle (e.g. digging energy) 

(Bogunovic, 2008; Komljenovic et al., 2010) can be misleading. On the other hand, drag 

distance (vertical and horizontal) has a high chance ofbeing a responsible parameter. 

This confirms the point that engagement and disengagement parameters are important 

parameters and affect dragline performance (Hettinger & Lumley, 1999). 

Payload and cycle time have been shown to affect productivity (Bogunovic, 2008; 

Erdem & Diizgiin, 2005; G. Lumley, 2005; Williams, 2005). In the case study data set, 

the correlation coefficients between energy efficiency and payload and cycle time are low 

(0.2429 and -0.3755, respectively). However the results in Table 6-7 show that among the 

five operators payload and cycle time have a low chance ofbeing a responsible parameter 

and are not likely to cause differences in energy efficiency. It can be concluded that, 

given a particular group of operators, not all parameters that are correlated with energy 

efficiency are necessarily correlated to the difference of energy efficiency between 
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operators. That is, not all correlated parameters are the source of differences between 

energy efficiency of operators. Hence, the methods proposed in this work are necessary 

to fmd out which parameters are actually responsible for the differences in performance, 

so that operator training can focus on these responsible parameters. 

As discussed in Section 2, it is important to consider both productivity and energy 

consumption in assessing dragline performance. Displaying energy efficiency, which 

captures both production and energy consumption, in real-time on the screens in the cabin 

can help operators to improve their performance. Identifying the parameters that affect 

energy efficiency can be used as a guideline to improve the performance through operator 

training and peer coaching. 

6.5. SUMMARY 

IdentifYing parameters that are responsible for the differences between energy 

efficiency of operators can be used in operator training programs along with the crew 

coaching method. The methodology proposed in this section is robust and can be used to 

:fmd the probability for a parameter to be a responsible parameter. Correlation analysis 

between parameters and energy efficiency can identify the correlated parameters. The 

response mechanism, with respect to the missing data, is assumed to be missing at 

random, in the worst case, and missing completely at random, in the best case. Hence, 

complete case analysis can be used to handle the missing data issues associated with the 

fact that pairs of operators will not, most likely, have equal number of cycles during the 

observation period. Difference matrix of a pair of operators is built by subtracting 

correlated parameters and energy efficiency of two operators in each cycle. Equal number 



of cycles is selected at random, since having equal number of cycles in each pair is 

required in order to create the difference matrix. Fitting linear model to the difference 

matrix and testing the significance of coefficient can be used to identifY responsible 

parameters (those parameters responsible for differences in energy efficiency). 
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The results achieved by applying the proposed method to the case study partially 

confirm established results discussed in the literature review. Spotting and dumping time 

were found to be more likely to be a responsible parameter than digging time (load 

bucket time), contrary to some previous work. Engagement and disengagement position 

of the bucket, as components of digging phase which have been found to be parameters 

that affect productivity, were found to be very likely to cause differences in operator 

energy efficiencies. No prior work (to the best of the author's knowledge) has discussed 

the effect of dumping height on productivity or energy consumption. This work has 

shown that dumping height is highly correlated to energy efficiency (p = -0.6560, p < 

0.001) and also likely to be a responsible parameter (i.e. the source of differences in 

operator energy efficiency). 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. SUMMARY 

Draglines are dominant machines and the most significant electricity consumers 

in surface coal mines. With the growing price of energy and environmental concerns and 

the high sensitivity of mines' profitability to dragline production, any improvement in 

efficiency of dragline operations will be beneficial for mines. Training operators to 

improve their performance can be a relatively cheap improvement and valid approach to 

improve energy efficiency. The goals of this work were to: (i) test the hypothesis that 

dragline operator's practices and skills significantly affect dragline energy efficiency; (ii) 

develop a methodology to identify the critical parameters that explain the differences in 

operator energy efficiency (responsible parameters). 

To achieve the first objective of this work a two stage process was proposed. The 

process is based on statistical tests to compare the mean of energy efficiency between 

operators. The first stage involves evaluating the validity of assumptions underlying the 

relevant statistical tests. This to ensure the analyst draws the right inferences about the 

effect of operators on dragline energy efficiency given the data properties and to reduce 

type I error. The second stage of the suggested process involved testing the equality of 

means between energy efficiency of operators. Depending on the number ofthe operators 

(two or more than two) two different processes for determining the appropriate test were 

recommended. 

A methodology was proposed to achieve the second goal of this work and to 

identifY key parameters that lead to differences in operator energy efficiency (responsible 

parameters). In this method, first, correlation analysis is used to detect the parameters in 
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the dataset that are correlated with energy efficiency. Difference matrices are then built 

for each pair of operators. Linear regression is then used to determine the responsible 

parameters. Data collected from a real mine was used to illustrate the presented methods 

and tests. The data was recorded from a BE-1570w dragline with bucket capacity of85 

yd3 during one month. 

7.2. CONCLUSIONS 

From the work it can be concluded that: 

• Mean standard error of energy efficiency can be used to find the minimum 

working hours required for an operator to be considered in the analysis in 

order to have the same support from all operators. This approach is superior to 

the previous approach suggested by Komlejenovi et al. (20 I 0) because it truly 

goes to the heart ofthe problem (equal support for the different data sets). 

Also, the approach suggested by Komlejenovi et al. (20I 0) fails (the lower 

limit becomes negative) with highly variable working hours of operators 

(Komljenovic et al., 20 I 0) 

• Due to the high variability of dragline energy efficiency data (coefficient of 

variation more than 25% in the case study) testing for normality can be 

challenging. Considering the result ofboth numerical and graphical methods 

can help to test the normality of the data or transformed data more precisely. 
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• Using t-test to compare the equality of means between more than two 

operators can increase the chance of getting type 1 error. Therefore, pair-wise 

t-tests are proposed in previous work increases the likelihood of type I error 

as the number of operators in the study increases. However, AN OVA can 

handle multiple (more than two) operators without increasing chance of 

getting type 1 error. 

• A valid method is proposed in this work facilitate accurate inferences on the 

effect of operators on dragline energy efficiency in the presence of high 

variability and data skewness. This method recommends the right statistical 

test to draw the desired inferences based on observed data properties and 

addresses the short comings, related to type 1 errors, of some of the previous 

work. This novel method is illustrated successfully with real-life data. 

• A novel and valid method is proposed in this work to evaluate the causes of 

differences in energy efficiency, once operator effects on energy efficiency 

have been established. The method is based on a linear model of the 

differences in energy performance. The difference matrix (a matrix of the 

differences in energy efficiency and explanatory variables) is calculated using 

sound missing data theory to overcome the challenges of using real field data 

in such analysis. This work is a novel attempt to combine statistical random 

sampling, complete case analysis (missing data theory), and linear models of 



relative energy efficiencies to establish causes of operator effects on energy 

efficiency. 

• The methods developed in this research were illustrated with a case study. 

Several conclusions can be drawn based on this study of a single drag line. 

Although these conclusions cannot be said to be widely applicable, they are 

worth mentioning here: 
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o It was concluded from the result ofthe statistical tests, histograms, and Q

Q plots that energy efficiency of operators is not normality distributed and 

the data has a right skewness. Log-transformation of data reduced the 

skewness and it was concluded that log transformed data follows normal 

distribution. 

o The Levene's test with the null hypothesis of equality of variances on the 

data was rejected. This result shows that using the ANOVA test could 

result in wrong inferences since a key underlying assumption of ANOV A 

tests is the equality of variances. This shows that in some cases the 

previous approaches presented in the literature (Patnayak et al., 2007) can 

lead to wrong inferences ifno systematic approach, like the methodology 

developed in this research, is used to choose the right statistical test. 



o The result ofthe Welch-ANOVA and Kruskal-Wallis tests on the data 

proved that dragline energy efficiency is different between operators at 

significant level of0.05. 
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o The parameters that are correlated with energy efficiency may not 

necessarily be responsible for the differences between energy efficiency of 

operators. Cycle time and payload were found to be correlated (p < 0.001) 

with energy efficiency but not responsible for differences in operator 

energy efficiencies. 

o The results ofthe proposed method shows that there is a high chance for 

dumping height, vertical and horizontal drag distances, spotting time, and 

dumping time to be a responsible parameter. On the other hand, cycle 

time, payload and, swing in time the probability of being a responsible 

parameter is relatively low. 

o For the first time (to the best of this author's knowledge) the effect of 

dumping height on energy efficiency has been examined with field data 

and found to be significant. The case study shows that it is highly 

correlated to energy efficiency (p = -0.6560, p < 0.001) and also likely to 

be a responsible parameter (100% ofthe time among the five operators 

used in the case study). 
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o The case study shows that operator performance evaluation, based solely 

on digging time or other parameters of the digging cycle alone (e.g. 

digging energy) (Komljenovic et al., 201 0) can be misleading. Digging 

time was not found to be a significant factor between the five operators 

included in this study (only a 40% probability that energy efficiency of 

cycles from the five operators are significantly different because of 

differences in digging time). This probability is less than other cycle time 

components such as spotting (90%) and dumping (80%) time. 

7.3. RECOMMENDATIONS FOR FUTURE WORK 

The following recommendations are made for future work: 

• This work is limited because a linear model is used for the relative 

energy efficiency of operators. In the future, the non-linear model 

should be investigated to examine the effect of such a model on the 

inferences. The proposed methodology will still be valid with a non

linear model, so long as a test for the significance of the coefficients of 

the non-linear model can be formulated. 

• A model for dragline energy efficiency can be built using additional 

information on the characteristics of dragline motors such as gear 

ratio, torque and etc. and more data on current and voltage signals. 

This model can help to predict dragline energy efficiency in different 



operating conditions. The model can be used to simulate different 

operator practices and their effect on energy efficiency. 
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• Although care was taken during the field experiment to ensure similar 

working conditions, parameters ofthe working conditions were not 

recorded due to budget constraints that forced remote data collection. 

Future experiments should endeavor to record working condition 

parameters such as material properties, bench height, and weather 

conditions to ensure operators are compared while working in the 

same conditions. 

• The proposed methods should be tested with data from other 

draglines in other operations. This could include data collected from 

other draglines with different bucket sizes, boom lengths, and drive 

characteristics to observe the effect of data nuances that may not have 

been observed in the test data. 



APPENDIX A 

LIST OF 44 PARAMETERS IN THE DATABASE 
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1. INTRODUCTION 

APPENDIX A contains the list of 44 parameters in the database. The document 

has been prepared as Microsoft Word 2010. 



APPENDIXB 

EXPERIMANTAL FIELD DATA 
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1. INTRODUCTION 

APPENDIX B contains the experimental field data, collected from BE-1570w 

dragline. The documents have been prepared as a Microsoft Excel2010. 
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