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AB:3THACr 

The Weiss molecular field theory has been applied 

to the lattice of the B-site spinel. 'rhe forms of the 

ordering temperatures and the asymptotic Curie tempera­

ture have been determined for a sixteen-sublattice model 

ii 

with collinear spins. The theory has been applied to the 

problem of determining the exchange integrals for systems 

of the form Aa1 _xAbxcr2x4 and Acr2xa4 (l-y)Xb4Y. The 

theoretical results have been compared to the experimental 

data for the systems Hg1 _xCdxcr2s4 , zn1 _xcdxcr2se4 , and 

CdCr2s 4 (l-y)se4 Y in an attempt to determine the exchange 

integrals. 
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I. INTRODUCTION 

Recent investigations into the magnetic properties 

of spinels have been directed toward the determination of 

the exchange integrals by finding values that agree with 

the experimental data for the ordering temperature and 

the asymptotic curie temperature. 

1 

One theory which gives the ordering temperature and 

the asymptotic Curie temperature in terms of the exchange 

integrals is the Weiss molecular field theory (MFr). The 

theory was first advanced in 1907 by Pierre Weiss. Weiss 

assumed that the microscopic effective field (molecular 

field) was proportional to the magnetization of the crys­

tal. With the advent of quantum mechanics it was seen that 

the effective field theory would result if the magnetic 

moment of the atom was assigned an operator w = gwBS and 

an "exchange integral" was assumed present between elec­

trons at different lattice sites. 



II. REVIEW OF ·rHE LI'rEHATURE 

Baltzer. Lehmann, and Robbins 1 have measured Q and Tc 

~or the spinels Cdcr2s 4 , cdcr2 se4 • and Hgcr2s4 • Baltzer. 

Wojtowicz, Robbins, and Lopatin2 have measured Q and Tc 

~or these spinels and have determined the value o~ the 

nearest-neighbor (NN) exchange J and also an "averagen 

next-nearest-neighbor (NNN) exchange K by a series 

expansion technique and a two-particle cluster approxi­

mation. By the same method Baltzer, Robbins, and 

Wojtowicz) have determined J and K for the systems 

Hg1_xcdxcr2s 4 and zn1 _xc~cr2se4 . Also by the same method 

Wojtowicz, Baltzer, and Robbins4 have determined J and K 

for the system Cdcr2s4 (l-y)se4Y. They have also measured 

Q and Tc ror this system. BrownS has determined J and K 

ror this system from a B-P-W calculation. 

Plumier6 has determined the spin ordering of Zncr2se4 
by neutron diffraction studies. Lotgering?,B has measured 

Q and TN for this spinel and has determined the value of 

the exchanges for the first-, second-, and third-nearest 

neighbors by a molecular field approach. Dwight and 

Menyuk9 have worked on a theory for spiral spin states and 

have applied it to the calculation of the exchange inte­

grals of zncr2se4 . Hastings and Corliss10 have determined 

the spin ordering for Hgcr2s4 by neutron diffraction. 

2 



III. WEISS l\10LECULAR FIELD THEORY 
FOR THE B-SITE SPINEL 

A. Definition of the B-site Spinel 

The general chemical formula of the spinel is AB2x4 . 

In the simple spinels the B ions are trivalent metal ions 

and the A ions are divalent metal ions. The X ions can be 

anions of the chalcogenide group. Solid solutions of the 

simple spinels also occur; we refer to these as systems. 

The anions, which are large compared to the cations, 

form essentially a face-centered cubic (fcc) lattice. The 

smallest cubic unit cell contains eight molecules, that is 

32 anions. The cations (A, B) occupy interstitial 

positions, of which there are two different types. In one 

the cation is surrou.nded by four oxygen ions located at 

the corners of a tetrahedron. Such an interstice is 

called a tetrahedral, or A, site. In the other the cation 

is surrounded by six anions placed at the vertices of an 

octahedron: this is called an octahedral, or B, site. 

Eight A sites and 16 B sites are filled per unit cell. 

If the 16 B sites are occupied by trivalent cations 

and the eight A sites are occupied by divalent cations, 

the structure is said to be normal. If, in addition, only 

the B ions have a permanent magnetic moment (the A ions 

can be diamagnetic), the spinel is said to be a B-site 

spinel. 

J 



B. Systems to be Considered 

In this paper we will consider B-site systems 

(Aa1 _xAbxcr2x4 , 0 ~ x s 1) in which the A-site cation is 

varied between one type o~ cation (Aa) and another (Ab) 

and systems (ACr2xa4 (1-y)xb4y, 0 S. y ~ 1) in which the 

anion is varied ~rom one type (Xa) to another (Xb). In 

both cases the B-site cation is the crJ+ ion with a spin 

eigenvalue J/2. 

C. NNN Interactions and Division of the Lattice 

The B-site lattice of the spinel consists of four fcc 

sublatt1ces, each d.isplaced a distance of one-~ourth of a 

* cube ~ace diagonal o~ the cubic unit cell. The primitive 

unit cell has a basis o~ ~our atoms, one ~rom each of the 

four fcc sublattices.~ The lattice structure is such that 

if only B-B NN superexchange interactions are considered, 

then there are no interactions between atoms on the same 

sublattice. However, as Anderson has pointed out, 11 a 

perfect short range order with only NN interactions does 

not necessarily lead to long range antiferromagnetic 

ord.er. Lotgering7 has found that antiferromagnetic inter-

actions of about five percent o~ the strength of the 

* The fcc sublattices have the following bases: 
1. 0 0 0; 1/2 1/2 0; 0 1/2 1/2; 1/2 0 1/2 
2. 1/4 0 J/4; J/4 1/2 J/4; 1/4 1/2 1/4: J/4 0 1/4 
J. 1/4 1/4 0; J/4 3/4 0; 1/4 3/4 1/2; J/4 1/4 1/2 
4. 0 1/4 J/4: 1/2 3/4 J/4; 0 3/4 1/4; 1/2 1/4 1/4 

TDue to symmetry there are several possible primitive 
unit cells. 

4 



ferromagnetic NN interactions suffice to prevent ferro­

magnetism. Dwight and Menyuk8 have found that an adequate 

characterization of the exchange energy requires the con­

sideration of five distinct NNN interactions. Hence, 

we must include NNN interactions also. The inclusion of 

NNN interactions necessitates, however, that we subdivide 

each sublattice since in order to apply the generalized 

Weiss molecular field theory we must divide each fcc sub-

lattice until there are no interactions between atoms on 

the same sublattice. 12 Hence, we divide each fcc sub-

lattice into four simple cubic sublattices; the B-site 

* lattice then consists of 16 simple cubic sublattices. 

D. Derivation of the Ordering Temperature and the 
Asymptot;ic Curie Temperature 

The molecular field for an atom of the ith sublattice 

may be written according to Weiss theory as 

5 

( 1 ) 

where M1 , . . . -+ 
, M16 are the magnetizations of the 

other sublattices and the aij are the molecular field 

coefficients linking the ith and jth sublattices. If an 

external field is also applied, the total field on an 

atom will be 

At thermal equilibrium the magnetization of the ith 

* We have numbered these according to their order as 
given in footnote (*) on page 4. 

(2) 



sublattice is given by 13 

where 

and where 

Bs(xi) 2S+1 coth 28+1 1 th ~ - 2s 2s x1 - 2S co zs 

Xi = Sgll:e H 
kT 1• 

Here N is the total number o~ atoms with a permanent 

dipole moment per unit volume, S is the spin eigenvalue, 

g is the gyromagnetic ratio (g = 2), k is Boltzmann's 

constant, T is the temperature, and ~B is the Bohr 

magneton. 

6 

( 3) 

(4) 

(5) 

Although there is no spontaneous ordering above the 

critical temperature. a small magnetization is induced by 

an applied field. For usual values of the applied field 

the Brillouin function can be replaced by the first term 

in the series expansion in x, i.e. B8 (x) = ((S + 1)/JS)x. 

'l'nen 

2 2 
M _ Ng 4~ S(S+l_l H 
i- kT i. 

Also, equation (2) reduces to 

Hi= H + ai1M1 + ai2M2 + ••· + ai,16M16 

since ff and Mi are parallel in the paramagnetic region. 

Substitution of equation (6) into equation {7) yields 

2 2 ) 
Mi = Ns 4wg_Ts<s+t <H + M M > 
n ~k ail 1 + • • • + ai, 16 16 

( 6) 

( 7) 

(ti) 



7 

or 

( 9) 

where 

( 10) 

By adding the magnetization equations (equations (9)) 

we 'find 

or 

(12) 

Th ~ 16 th f i e sum '-'i=l aij is e same or every j s nee every 

B-s1te atom has the same number and type o'f NN and NNN 

interactions. Hence, the sum (we will call 1t a0 ) can be 

factored from the summation, leaving 

M = rt¥ (16H + a0 L:3~1 Mj) 

= rt¥ (16H + a 0M). 

Solving 'for M, we find 

Hence, the susceptibility is 

(13) 

(14) 

By comparison With the Curie-Weiss law X = CM/(T - Q) we 

'find that 

(16) 



The magnetization equations are also valid in the 

vicinity of TN and Tc· With H = 0 these equations become 

8 

(17) 

or 

0 _ 16T M + ~16 M 
- - ~ i ~j=1 aij j• (18) 

For non-trivial solutions (i.e. non-zero magnetizations) 

the determinant or the coefficients must be zero. 

16T 
a12 a1.3 - --c:: 

M 
. . . 

16T 
a21 -- a2.3 eM 

= 0 
••• 

aJi a32 
16T 

- eM ••• 

. . . . . . . . . 

E. Exchange Interactions for the B-site Spinel 

Following Baltzer ~ ~. 2 we have considered five 

different types of interactions to be important. (See 

(19) 

figures 1 and 2.) These are the interactions between an 

atom and its first-, second-, third- (two types), and 

fourth-nearest neighbors. The hypothetical interaction 

paths are illustrated in figure 2. 

Assuming random distribution of the A-site cations, 

the probability that any particular one is of type Aa 

is 1-x, and the probability that it is of type Ab is x. 

Similarly, the probability that the anion is of type Xa 

or Xb is 1-y and y, respectively. From figure 2 the six 



~- / /~ ....... -­
/~/ --.,.._ \\\\)7 

---~ 

Figure 1. Portion of the spinel lattice showing nearest 
to fourth-nearest B-B neighbors. The large ions are the 
anions. The small lined ions are the A-site cations. The 
small cross-hatched ions are the B-site cations. 

9 
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Figure 2. Interaction paths ~or the B-s1te spinel. 
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NN interactions are seen to be independent of the A-site 

cation composition and quadratically dependent on the 

anion composition. The 12 B0-B2 and six B0-B4 inter­

actions are seen to depend quadratically on the A-site 

composition and quartically on the anion composition. 

The six B0-B3 interactions are seen to be independent of 

the A-site cation composition and to have a quartic 

dependence on the anion composition. The 12 B0-B
5 

inter­

actions are seen to be linearly dependent on the A-site 

cation composition and quadratically dependent on the 

anion composition. 

F. Molecular Field Coefficients 

11 

Each of the five interactions B0-B1 , B0 -B2 , B0-B
3

, 

B0-B4 , B0 -B5 can be represented by an interaction strength 

n1 , D2 , n3 , n4 , n5 such that the molecular field coef­

ficient between two sublattices is equal to the sum of the 

products of the interaction strength ana ,;he number of 

interactions of this type, i.e. aij = n 1n1 + ••• + n 5n5 , 

where the n
8 

represent the number of the ath type of 

interactions between an atom in the ith sublattice and 

those in the jth sublattice. 

The molecular field coefficients can be determined by 

inspection of the lattice. For example, we find 

~2 = 2(DJ + D4) 

~3 - 2(DJ + D4) 

a14 = 2(DJ + D4) 

~5 = Dl + 205 etc. 



This yields for the magnetization equations 

c M1 = yt¥ ( 2(DJ + D4 )(M2 + MJ + M4 ) 

+ ZD2(M6 + M7 + M11 + M12 + M14 + M16) 

+ (D1 + 2D5)(M5 + M~ + M9 + M10 + M1J + M15)) 

M2 = ~ ( 2(DJ + D4 )(M1 + MJ + M4 ) 

+ 2Dz(M5 + Me + M11 + M12 + M13 + M15) 

+ (D1 + 2D5)(M6 + M7 + M9 + M10 + M14 + M1b)) 

etc. 

Substituting these results into the determinant (equation 

( 19 ) ) , we find 

T' R R R : S u 
I 

R rrt R R I U 
I 

s 
I 

R R '.r' R 1 U s 
I 

R R R T •: S u 

u 

s 

s 

u 

8 IS 
I 
I 

U I S 
I 

u : u 
I 

S IU 
I 

s 

s 

u 

u 

u 

u 

s 

s 

I 
U IS 

I 

u:u 
I 

S I S 
I 

s : u 

u u 

s u s 

u s u 

s u s 
----------------------------------------------S U U S T' R R R: S U S U: S S U U 

I I u s s u R T' R R I u s u sIs s u u 
I I 

12 

U S S U R R T' R :s U S U: U U S S (20) 

I I 
S U U S R R R T' 1 U S U S 1 U U S S 

1 I I 

~-~-------------------------------------------s s u u s u s 

s s u u u s u 

u u s s s u s 

u u s s u s u 

U : T' R 
I 

R R I s 
I 
I 

s 1 a 
I 

T' R RIO 
I 

I 
U 1R 

I 
SIR 

I 

R 

R 

T' R 
I 
IU 

R 
I 

T t I co 
I ') 

u u 
s s u 

s s u 

u u s 
------~----------~-------~--------------------

u 
c• ,,., 

u 

u 

s 

u 

s 

s 
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s 

u 

I uls 
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SIS 
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u: u 
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s : u 
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= 0 



1.3 

The four independent solutions of this determinant are 

T' 1 - ~ (6D1 + 12D2 + 6D.3 + 6D4 + 1205 ), 1 root 

'r - 3 roots ~ (-201 - 4D2 + 6DJ + 604 4D5 ) 2 (21) 
~ T3 - (2D1 - 4D2 - 2D.3 - 2D4 + 4o5 ) ' 

6 roots 

T4 - ~ (-2D1 + 4D2 - 2DJ - 204 - 4n5 > 6 roots 

G. Ordering Temperature in Terms of Interaction Strengths 

According to the theory just developed, the ordering 

temperature must be the highest of the four in order to 

minimize energy. Hence, if the interaction strengths are 

known, we can determine which solution corresponds to the 

ordering temperature. The necessary conditions for each 

solution to represent the ordering temperature are given 

below. 

2D1 + D.3 + o4 > 0 

T 1 D1 + 4D2 + 2DJ + 2D4 + 2DS > 0 

D1 + o2 + DJ + n4 + 2DS > 0 

-01 - 202 - 205 > 0 

T2 -D1 + 20.3 + 204 - 2DS > 0 

-D1 + OJ + o4 > 0 

-01 - 4D2 - 2DJ - 204 - 2DS > 0 

D1 - 2DJ - 2D4 + 2DS > 0 

D1 - 202 + 205 > 0 

-D1 - Dz - DJ - o4 - 2DS > 0 

D2 - DJ - n4 > 0 

-D1 + 2D2 - 2DS > 0 

(22) 



Note that the D's are dependent on ion composition and 

that the ordering can change from one form to another 

with a change in the composition. The conditions above 

are represented in f1gure 3, which gives the form of the 

ordering temperature for every combination of interaction 

strengths. 

H. Comparison of 'rheoretical and Experimental Results 

14 

An n-sublattice decomposition leads to n roots for 

the determinant. One of these roots (here given by T1 ) is 

always proportional to the sum of all exchange integrals 
c for an atom Q = ~ L:ni J i/k. The MF'r also yields the 

result that the highest root is the ordering temperature 

because this minimizes the magnetic contribution to the 

free energy. Hence, Tc = Q for the simple ferromagnetic 

substance with large, positive NN exchange. However, this 

result does not agree with the experimental evidence. The 

Curie temperature is usually lower than the asymptotic 

curie temperature. With a four-sublattice decomposition 

two solutions to the determinant are found--a single, 

:ferromagnetic root •r1 and a triple, anti:ferromagnetic root 

T2 • With a 16-sublattice decomposition two additional 

roots T3 and T4 are :found; each has a multiplicity of six. 

An ordering that is not strictly ferromagnetic or 

antiferromagnetic (spins aligned antiparallel) cannot in 

general be d.escribed by a small number o:f sublattices. 

Hence, for the spinels considered--where a spiral configu­

ration is superimposed on an essentially ferromagnetic 



15 

·T: 
3 

-- ------+----- ---

Figure ). Regions where T1 , T2 , T3 , and T4 are the largest 
of the four. 
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ordering--the new roots arising from the increased decom­

position may possibly provide a good approximation to the 

ordering temperature. For these spinels the NN exchange 

J 0 is thought to be large and positive. Hence '1'
3 

is seen 

to be the most likely choice for TC since it would be 

lower than T1 = Q but still positive and since T2 and TJ 

would be negative if the NN interaction is the largest. 

In this light we will ignore a strict application of the 

molecular :field theory and make the ~ !!2.£ assumption that 

the ordering temperature of the systems considered can be 

I. Relationship of Molecular Field Coefficients and 
Exchange Integrals 

The molecular field coefficients can be directly 

related to the exchange integrals. Let us suppose that 

a magnetic ion on the ith sublattice interacts in the same 

manner with n neighboring ions on the jth sublattice. The 

total exchange energy will be14 

n (si • S j) 
Eij =- 23ij Lj=l ~2 (23) 

The dipole moment of the neighboring ions is just the sum 
-+ -+ 

of the individual dipole moments wj = gSjWB/~. i.e. just 

(24) 

By definition the intensity of the magnetization is given 

by 

(25) 
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where Nj is the number of magnetic ions per unit volume on 

the jth sublattice. Combining equations (23), (24), and 

(25), we find the result 

( 26) 

-+ 
The energy of a dipole wi in a hypothetical molecular 

-+ 
field Mj due to the magnetization of these same ions is 

{27) 

Comparison of these two equations yields 

a = 2nJ1j 
ij 2 2 

Njg WB 
(28) 

A similar calculation involving two different types of 

interactions with exchange integrals Jija and Jijb yields 

2 
2 2 {naJija + nbJijb) 

Njg WB 
( 29) 

This suggests that the interaction strengths can be written 

(where Ni = N/16) 

(30) 
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IV. INTERACTIONS FOR SYSTEMS WITH VARYING A-SITE CATIONS 

Let us consider a system (Aa1 _xAbxcr2x4 ) where only 

the A-site cation composition is varied. In this case the 

interaction strength n1 (for NN interactions) is inde­

pendent of the A-site cation composition since the inter­

action path does not include an A-site cation. Equation 

(30) will yield 

D 32 J 
1 = Ng2JJ 2 0 

B 

( 31) 

F'or exchange paths involving A-site cations, a slight 

modification is necessary. The exchange integral will 

vary with the type of cation involved. For example, the 

B0-B2 interaction involves two A-site cations and the 

exchange integral can be called J 1 if both are of type Ab, 

J
3 

if both are of type Aa, and J 2 if one is of type Aa and 

one is of type Ab. Considering the probabilities 1-x and 

x that the A-site cation will be of type Aa and Ab, 

respectively, n2 can be written 

n2 = ~2 2 (x2 J 1 + 2x(1-x)J2 + (1-x) 2J 3 ) (32) 
Ng JJB 

Similarly, the other interaction strengths can be written 

D = J2 J4 3 Ng2JJ 2 
B 

(33) 

l2 (x2J + 2x(l-x)J6 
2 

D4 = + ( 1-x) J 7 ) 
Ng2 JJB 2 5 

()4) 

D5 = J2 (xJ8 + (1-x)J9 ) 
Ng2JJ 2 

B 

(35) 
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Making use of these expressions and the definition of 

eM (equation (10)), the solutions of the determinant can 

be written 

T1 = ~ (x2 (12J1 - 24J2 + 12J3 + 6J5 - 12J6 + 6J7 ) 

+ x(24J2 - 24J3 + 12J6 - 12J7 + 12Jg - 12J9 ) 

+ (6J0 + 12J3 + 6J4 + 6J7 + 12J9 )) 

T2 = zi (x2(-4J1 + 8J2 4J3 + 6J5 12J6 + 6J7) 

+ x(-8J2 + 8J3 + 12J6 - 12J7 - 4Js + 4J9) 

+ (-2J0 - 4J3 + 6J4 + 6J7 - 4J9 >> 

T3 = ~ (x2(-4J1 + 8J2 - 4J3 - 2J5 + 4J6 - 2J7) 

+ x(-8J2 + 8J3 -·4J6 + 4J7 + 4Js- 4J9) 

+ (2J0 - 4J3 - 2J4 - 2J7 + 4J9 )) 

T4 = ~ (x2(4J1 - 8J2 + 4J3 - 2J5 + 4J6 - 2J7) 

+ x(8J2 - 8JJ - 4J6 + 4J7 - 4Js + 4J9) 

+ (-2Jo + 4J3- 2J4- 2J7- 4J9)) 

(36) 



v. 

The system Hg1_xcdxcr2s4 has been found to be ferro­

magnetic1•2•15 throughout the range of x except for the 

compound Hgcr2s4 , which is thought to have a spiral 

structure. 1 • 10 

The experimental curves for Q(x) and Tc(x) can be 

approximated by a quadratic polynomial in x, say 

Q(x) = ax2 + bx + c 

'rc(x) = dx2 +ex + f 

The coefficients for the experimental dataJ were calcu-

lated to be 

a = -46.6°K 

b = ,54.6°K 

c = 144.0°K 

d = -28.8°K 

e = 77.)°K 

f' = )6.0°K 

For the Q(x) curve, the coefficients can be set equal to 

those determined for T1 from equation ()6). This yields 

three equations in the ten unknown exchange integrals. 

'rhe proper form for Tc was assumed to be one of T2 , 

TJ, or 'r4 since the asymptotic Curie temperature 9 was 

given by T1 , and from the experimental data 9 # Tc· 

Since it was not known which was the proper choice, each 

was tried in turn. The coefficients d, e, and f were set 

equal to those for 'r2 , TJ, and T4 • Each case yielded 

three more equations in the ten unknowns, which with 

those for Q(x) gave a total of six equations in ten 

unknowns for each case. Clearly, the equations could not 

20 
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o .2 .4 .6 .B J.O o .es .so .75 1.0 1.0 .13 .6 .4 .2 o 
)( y X I 

Cc1Crz.S4 

I CdCra54\(l-)')5e4y 

Figure 4. Experimental data :for the systems Hg1 _xcdxcr2s~. 
CdCr2 shr 1 _ylsehy' zn1_xc~cr2seh. The circular data points 
are rrom rererences ) and 4. TBe square data points are 
~rom reference 15, and the triangular data points are from 
reference 1. 



0 
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Bo- &a. 

Ccl<>CJ CoiOHs H~oH'J 

Cd 
R 
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HCJ 
R. 
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Figure 5. Diagram of hypothetical interaction paths and 
corresponding exchange integral number for the system 
Hg1 xCdxcr2s4 • For the system zn1 _xCdxcr2se4 merely 
rep!ace Hg by Zn. 
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2) 

be solved for all the unknown J's. However, it was pos­

sible to solve for combinations of the exchange integrals. 

(In one of the cases (TC = T3 ) the two equations for the 

x
2 

term of Q and Tc were contradictory, so the experi-

mental data was matched by a linear curve.) 

TC = TJ 

J1-232+JJ = -0.4°K k J1-2J2+JJ = 0 

2(J2-J3)+(J6-J?) = -2.JoK k 

2J3+J4 +J7 = 0.8°K k 

2 (J2-J3>+<Ja-J9) = -o.6°K k 

J4+J5 = 6.8°K k 

J4+J6 - 6.6°K k Js-236+3 7 = 0 

3 4+3 7 = 4.2°K k J 8-J9 = 2.6°K k 

J 0 +2J9 +2J3 = 5.4°K k J 0 +2J9 = 9.2°K k 

Tc = T4 

J 1 = 6.8°K k 

J 2 = 6.6°K k 

JJ = 4.2°K k 

0 J 5-2J6+J7 = 1.3 K k 

(J6-J7)+(J8-J9) = -).OoK k 

Jo+2J9+J4+J7 = 1.2oK k 

Since the NN exchange is thought to be large and 

positive and those for the NNN interactions much smaller, 

the proper choice is still not well identified. 2 •3,5,l5 

A simplifying approximation was next tried. The NNN 

exchanges were approximated by a single "average" exchange 

integral K. The solutions to the determinant were then 
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Q = T1 = _..i (6J0 + J6K) 2k 

= T2 ~ (-2J0 + 4K) 
(37) 

~ TJ = (2J0 - 4K) 

T4 = ~ (-2Jo - 4K) 

!<,or the spinels HgCr2s4 and CdCr2s4 this yielded 

HgCr2s4 Cdcr2s4 

Jo/k K/k Jo/k K/k 

Tc = T2 -J.Ool\ 2.1 -10.0 ).4 

T c = T1 7.8 0.) 1.5.2 -0.8 

'rc = Th -1.5.6 4.2 -)0.6 6.7 

Since the value of J 0/k and K/k have already been calcu­

lated, the proper choice for TC can be determined. 

H. A. Brown.5 has found the values J 0 /k = 1).9°K and 

K/k = -0.7°K for CdCr2s 4 by the B-P-W method, while 

Baltzer~ ~. 2 using the series expansion technique 

and a two-particle cluster approximation, have found the 

values J 0 /k = 11.8°K and K/k = -0.)°K for cdcr2s4 and 

J 0 /k = 13°K and K/k = -o.6°K for Hgcr2 s4 • The case 

Tc = TJ can be seen to give the closest agreement to the 

previously determined values of J 0/k and K/k. Substituting 

the value of J 0/k determined by Brown into the equations 

above for the case Tc = T3 , we determined the exchange 

integrals to be 

J 0 = 1J.9°K k 

Jl-2J2+JJ = 0 



0 2(J2-J3 )+(J6-J?) = -2.4 K k 

2J3+J4+J7 = 0.8°K k 

Js- 2J6+J7 c: 0 

J 8 = o . 2°K k 

J 9 s -2 . 4°K k 

25 
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'rhe system Zn1_xcdxcr2se4 has been found to be :ferro­

magnetic :for the range x = 0.35 to 1 and ant1:ferromagnetic 

:for the range x = 0 to 0.35. 1 •3• 15 Neutron diffraction 

studies have shown the spinel Zncr2se4 to have a helical 

spin configuration below the Neel temperature. 6 

The curie temperature Tc is linear in the range 

x = 0.35 to 1. and the Neel temperature TN is approxi­

mately constant over the entire range x = 0 to 0.35. The 

asymptotic curie temperature Q is represented by the 

solution T1 , and since the experimental data shows Tc # Q 

and TN # g. we have assumed that one o:f the solutions T2 , 

T3, or T4 represents the curie temperature while another 

represents the Neel temperature. The possible cases are 

TN T c 

I T2 T3 

II T2 T4 

III T3 Tz 
IV TJ T4 

v T4 Tz 
VI T4 T3 

We then write 

Q(x) = rr - ax + b 1 

rrN - ex + d 

Tc = ex + :f 

where we have ignored the quadratic term because the 



experimental curves are linear.3 (This implies directly 

that J 2 = ~(J 1 + J 3 ) and J 6 = ~(J5 + J 7 ).) The experi­

mental parameters are 

a. = 89°K 

b = 115°K 

e = 152.5°K 

f = -230K. 

2? 

Equating coefficients with those in equations (36) we have 

six equations in ten unknowns for each case plus the con-

d1tions J 2 = t<J1 + J3 ) and J 6 = i(J
5 

+ J
7

). We cannot 

solve for all the J's; however, we can solve for the com-

binations given in the table below. 

I II III IV v VI 

Jl -5.3°Kk 9.9 -2.5 9.9 4.4 4.4 

J2 -1.8 5.3 -1.0 5-3 3.7 3-7 

J3 1.6 0.8 0.5 0.8 2.9 2.9 

34+3s 4.4 4.4 9.9 -15.0 9.9 t-15.0 

J4+J6 3.7 3.7 5.3 -7.) 5.) -7.) 

J4+J7 2.9 2.9 0.8 0.) 0.8 0.3 

Jg-Jq 9.1 -6.9 1.5 1.5 -).1 9.1 

3o+239 1.5 ).2 5.8 5.8 1.1 1.5 

Again the values of the J's determined do not provide a 

definite answer to the problem of determining the proper 

form of Tc and TN. Hence, we once again replace all the 

NNN exchanges by an "average" exchange K. F'or the spinel 
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cdcr2se4 

Jo/k K/k 

Tc - rr 
2 -16.1°-B 4.9 

·rc = ·r1 22.9 -1.5 

Te_ = ·r:_4 -45.8 9.9 

For CdCr2se4 Brown5 has found the values J 0/k = 17.0°K and 

K/k = -0.?°K, while Baltzer ~ al. 2 have found the values 

J 0 /k = 14.0°K and K/k = -0.1°K. In addition, we can calcu­

late J 0/k and K/k for others of the ferromagnetic spinels 

in the system zn1 _xcdxcr2 se4 • If we extrapolate these 

values into the antiferromagnetic region to x = 0, we find 

that the largest of T2 , T3 , and T4 is now given by 

'r2 = 20°K, which agrees closely with the experimental data. 

The transition between T3 and T2 occurs at about x = 0.2, 

which compares reasonably well with the experimental value 

of x = 0. 35. Hence, the best approximation to Tc and ·rN 

are T
3 

and T2 , respectively. The exchange integrals are 

given by case I. In addition, the value of J 0/k determined 

by Brown can be substituted into these combinations to 

yield also J 8 = 1.4°K k and J 9 = -7.7°K k. 



VII. INTERACTIONS FOR SYSTEMS WITH VARYING ANIONS 

We now consider systems (Acr2xa4 (l-y)xb4y) where the 

anion is varied. By procedures analogous to those of 

Section IV we can write the interaction strengths 

29 

Dl - Ng~~ 2 (y2J1 + 2y(1-y)J2 + (1-y)2JJ) (38) 
B 

D2 = Ng~~ 2 (y4J4 + 4y3(1-y)J5 + 2y2(1-y)2(J6+J7+Jg) 

B + 4y(1-y)3J9 + (1-y)4J10) (39) 

(y
4

J11 + 4Y3 (l-y)J12 + 2Y
2

(l-Y)
2 ( 31J+J14+J15) 

+ 4y(1-y)JJ16 + (1-y)4J17) (40) 

<Y4318 + 4y3 (l-y)J19 + 2Y2 (l-y) 2 (J20+J21+J22) 

+ 4y(1-y)3J2J + (1-y)4J24) (41) 

D5 z Ng~~B2 (y2J25 + 2y(l-y)J26 + (1-y)2J27) (42) 

Here D1 1s the NN interaction strength. J 1 is the only 

exchange integral when y = 1; hence, it corresponds to J 0 

for the systems Aa1_xAbxCr2xb4 . JJ 1s the only exchange 

integral when y = 0; it corresponds to J 0 for the systems 

Aa1 _xAbxcr2xa4 . 

By substituting these expressions for the interaction 

strengths, the solutions for the determinant can be written 

in terms of the exchange integrals. 



+ b(J11 - 4J12 + 2 {J1J+J14+J15) - 4J16 + J17) 

+ 6 <J1s- 4J19 + Z{J2o+J21+Jz2>- 4J23 + J24>> 

+x3(12(4J5 - 4(J6+J7+Ja) + 12J9 - 4J1o> 

+ 6 {4J12 - 4(J1J+J14+J15) + 12J16 - 4J17) 

+ 6 <4Jt9- 4 <Jzo+J21+J22> + 12J23- 4J24)) 

+x2( 6(J1 - 2J2 + JJ) 

+12(2(J6+J7+Ja> - 12J9 + 6Jto> 

+ 6 {2 (J1J+J14+J15) - 12J16 + 6J17) 

30 

+ 6 <Z<Jzo+Jzt+Jzz> - 12J23 + 6J24> 

+l 2 (J25- ZJ26 + J27)) (4)) 

+ x( 6{2J2 - 2J3) 

+12{4J9 - 4J10) 

+ 6 <4J16 - 4J17) 

+ 6{4J23 - 4J24) 

+12(2J26- 2J27)) 

+ ( 6(JJ) 

+12(J10) 

+ b(J17) 

+ b( J24) 

+12(J27))) 



+ b(J11 - 4J12 + Z(J13+J14+J15) - 4J16 + J17) 

+ 6(Jt8- 4J19 + Z(Jzo+Jz1+Jzz) - 4J23 + J24)) 

+x3(-4(4J5 - 4(J6+J7+Js) + 12J9 - 4J1o) 

+ 6 (4J12 - 4 (J13+J14+J15) + lZJ16 - 4J17) 

+ 6 <4Jt9- 4 <Jzo+Jzt+Jzz) + 12J23- 4J24)) 

+x2(-2(J1 - 2Jz + J3) 

- 4(2(J6+J7+Jg) - 12J9 + 6J10) 

+ 6 (2 (J13+J14+J15) - lZJ16 + bJ17) 

+ 6 <2 <3 zo+Jz1+J22> - 12J23 + 6Jz4) 

31 

- 4(J25- ZJ26 + J27)) (44) 

+ x(-2(2J2 - 2J3 ) 

- 4(4J9 - 4J10) 

+ 6(4J16 - 4J17) 

+ 6(4J23 - 4J24) 

- 4(2J26- ZJ27)) 

+ (-2(J3) 

- 4 (J10) 

+ b(J17) 

+ 6 (J24) 

- 4(J27))) 
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TJ = ~ (x4(-4(J4 - 4J5 + 2(J6+J7+Js) - 4J9 + Jlo) 

- 2 (311 - 4312 + 2 (313+J14+J15) - 4316 + 317) 

- 2<318- 4J19 + 2(3zo+3z1+3zz> - 4323 + 324)) 

+xJ(-4(4J5 - 4(J6+J7+Js) + 12J9 - 4Jlo) 

- 2<4312 - 4 <31J+J14+J15) + 12316 - 4J17) 

- 2 (4319- 4 (Jzo+3z1+3zz> + 12323- 4324)) 
2 +x ( 2(J1 - 2J2 + J 3 ) 

- 4(2(J6+J7+Ja> - 12J9 + 6Jlo) 

- 2 (2 (J13+J14+J15) - 12316 + 6317) 

- 2 (2 (3zo+321+322) - 12323 + 63z4> 

+ 4 <325 - 2326 + 327) <45) 

+ x{ 2(2J2 - 2J3 ) 

- 4{4J9 - 4J10) 

- 2(4J16 - 4J17) 

- 2(4J23 - 4J24) 

+ 4 <2326- 2327)) 

+ ( 2{J3) 

- 4 <310) 

- Z(J17) 

- 2 <324) 

+ 4 (327))) 
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- Z(Jll - 43t 2 + Z(J13+314+J15) - 4316 + 317) 

- 2 <318 - 4319 + 2 <3 zo+321+3z2> - 4323 + 324 > 

+x 3( 4 (4J5 - 4 (J6+J7+Ja) + 12J9 - 4Jto > 

- 2 <43t2 - 4 <3t 3+J14+315) + 12316 - 4317) 

- 2 <4319- 4 <3zo+3z1+322 > + 12323 - 4324 >> 

+x2 ( - 2(J1 - 2J2 + J3) 

+ 4(2(J6+J7+Ja) - t2J9 + 6Jto> 

- Z(Z(J13+J14+J15) - 12316 + 6317 ) 

- 2 <2 <3zo+3z1+322> - 12323 + 6324> 

- 4(J25 - 2326 + 327)) (46) 

+ x( - 2(2J2 - 2J3 ) 

+ 4(4J9 - 4Jto> 

- 2 ( 4 J1 6 - 4J17 ) 

- 2(4J23 - 4J24 ) 

- 4 <2326 - 2327)) 

+ ( - 2(J3) 

+ 4 <3 to> 

- Z(J17) 

- 2 ( 324) 

- 4 <327))) 
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VIII. EXCHANGE INTEGRALS FOR 'rHE SYS'TEM CdC S S r2 4(1-y) e4y 

Since the solution Tc = TJ has been found to be appli­

cable for the spinels CdCr2s4 and CdCr2se4 , we will apply 

this solution to the entire system Cdcr2s4 (l-y)se4Y. Sub­

stituting the interaction strengths from Section VII, we 

can find expressions for Tc(y) and Q(y) in terms of the 

exchange integrals. These expressions are quartic in the 

parameter y, and they can be compared with quartic poly­

nomials matched to the experimental data of Wojtowicz, 

Baltzer, and Robbins, 4 i.e. with 

where 

a 

d 

e 

Q(y) = ay4 + by3 + cy2 + dy + e 

Tc(y) = fy4 + gy3 + hy2 + Jy + k 

= b = c = 0 f = g = 0 

= 52°K h = 22.2°K 

- 152°K j = -4.2°K 

k = J).8°K 

By comparison of coefficients of powers of y, we can 

derive ten equations linear in the exchange integrals. 

These can be solved to yield 

J1+2325 = 16.1°K k 

J2+2326 = 1).9°K k 

JJ+2327 = 1).5°K k 

2J4+Jll+J18 •--6.2oK k 

2J5+J12+J19 - -4.1oK k 

2(J6+J7+3 e>+< 31J+314+31s>+<J2o+3 21+3 22> = 
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NN (B~~-B,) 
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NNN 

80-8~1 80-Bs,Bo-84 
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6 0 -B2. J"'+ :Ts J'6 -:;7 J"e J"g J.o 
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Figure 6. Diagram of hypothetical interaction paths and 
corresponding exchange integral number for the system 
CdCr2 s 4 (t-y)se4y. 



2J9+J16+J22 = -2.7oK k 

231o+317+3 24 = -J· 4 °K k 

Using the approximations 

3 tl = 3 18 

312 = 319 

36 = 37 = 3 a• 313 = 314 = 3 15 = 3 2o = 321 = 322 

316 = 3 2) 

317 = 3 24 
and the values 

Jl - 17.0°K k 

J2 = 15.;4°K k 

JJ = 1).9°K k 

determined by Brown,5 the exchange integrals for the 

system are determined to be 

325 
0 = -o .5 K k 

3 26 = -0.8°K k 

3 27 = -0. 2°K k 

J4+J11 = 0 -3.1 K k 

J5+J12 
0 k = -2.1 K 

J6+J1J = 0 -1.5 K k 

J9+J16 - -1.4oK k 
0 

J10+J17 = -1.7 K k 
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IX. CONCLUSION 

The Weiss molecular field theory was applied to the 

lattice of the B-site spinel. The forms of the ordering 

temperatures and the asymptotic curie temperature were 

found for a 16-sublattice model with collinear spins. The 

theory gave 16 roots, of which four were independent. The 

singly-occurring root T1 was seen to be equal to the 

asymptotic curie temperature. One of the others had a 

multiplicity of three, and the other two had a multiplicity 

of six. The theory was applied to the problem of deter­

mining the exchange integrals for systems of the type 

Aa1 _xAbxcr2x4 and ACr2xa4 (l-y)Xb4Y. An ad h2£ assumption 

was made that the ordering temperature was given by T2 , T3 , 

or T4 and not by T1 = Tc = Q, which was not justified 

experimentally for the systems considered. With this 

assumption a number of relationships were found between 

exchange integrals, and the NN exchange integral and an 

"average" NNN exchange integral were calculated for several 

of' the spinels. 

The theory was applied to the systems Hg1_xCdxcr2s4 , 

CdCr2 s 4 (l-y)se4Y, and zn1_xc~cr2se4 . There were too many 

exchange integrals for a formal evaluation, and the results 

by no means provide a def'initive test of the foregoing 

assumption. On the other hand, there were no contra-

dictions between theory and experiment. Even when the many 

NNN exchange integrals were replaced by a single "average" 

exchange K, the results were reasonable. The systems 



considered coincided at the spinels CdCr2se4 and Cdcr2s4 
(see figure 4). Additional data on related systems would 

be helpful in evaluating the exchange integrals. Since 

they would have to coincide where the systems met. addi­

tional conditions would be placed on them. Neutron 

diffraction evaluation of the antiferromagnetic samples 

would aid in determining if the lattice was sufficiently 

subdivided. 

)8 



X. APPENDIX: SOLUTION OF 'rHE DETERMINANT 

'rhe determinant can be solved by reducing it to a 

diagonal matrix. The reduction is accomplished by 

replacing two rows or columns of the matrix with the sum 

and difference of the two rows or columns. Following is 

one scheme for doing this; each indicated step should be 

performed first on rows (columns) and then on columns 

(rows). 

Step 1. 

replace 1 by 1+2 

2 2-1 

3 3+4 

4 4-3 

5 5+6 

6 6-5 

7 7+8 

8 8-7 

9 9+10 

10 10-9 

11 11+12 

12 12-11 

13 13+14 

14 14-13 

15 15+16 

16 16-15 

Step 2. 

1 by 1+3 

2 2+4 

3 3-1 

4 4-2 

5 5+7 

6 6+8 

7 7-5 

8 8-6 

9 9+11 

10 10+12 

11 11-9 

12 12-10 

13 13+15 

14 14+16 

15 15-13 

16 16-14 

Step 3. 

1 by 1+9+5+13 

2 2+14 

3 3+11 

4 4+8 

5 5+13-1-9 

6 6+10 

7 7+15 

8 8-4 

9 9-1 

10 10-6 

11 11-3 

12 12+16 

13 13-5 

14 14-2 

15 15-7 

16 16-12 
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