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ABSTRACT 

This research program has been undertaken to study the influence 

of load increment ratio, temperature, and sample thickness on c~ 

ii 

(rate of secondary consolidation) for a high organic content and low 

organic content soil. Consolidation equipment was designed to produce 

constant temperatures both above and below ambient, and to accommodate 

both 3/4 and 1~ inch thick samples. Samples were molded into oedometer 

rings at the liquid limit. 

It was found that Ca was independent of the sample thickness and 

load increment ratio for both the high organic and low organic soils. 

The influence of temperature on Ca was found to be dependent upon 

the effective stress level. Temperature had a major effect on the 

magnitude of ~ at low effective loads but had little influence at 

higher effective stress levels. 
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CHAPTER I 

INTRODUCTION 

A subject that arouses much controversy in soil mechanics is 

secondary consolidation. While for some soils oedometer tests have 

shown that there exists a secondary compression strain that folloY7S 

approximately a linear relationship when plotted against the logarithm 

of time, some writers have found that it continually decreases and 

others have found almost no secondary compression at all. 
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This variation is primarily due to the type of soil. It has been 

found that the secondary compression of sand is small while that for 

organa-mineral soils is very great. But there are other factors which 

may affect secondary consolidation. Lo (1961) stated that secondary 

consolidation is extremely susceptable to environmental changes, 

particularly temperature. But Plum and Esrig (1969) noted that tem­

perature changes had very little effect on secondary consolidation. 

Mitchell (1969) stated "evidence on the influence of temperature 

variations on secondary compression rates is conflicting, with some 

investigators indicating secondary compression rates increase signifi­

cantly with increasing temperature". He further stated that because of 

its great importance and ·controversial nature it should be given further 

study. Barden (1968) commented that there is much dispute as to the 

effect (on secondary compression) of total load, load increment ratio 

and the thickness of sample used in oedometer tests. 

Research in the past has generally been of such a nature that two 

or three of the variables mentioned have been studied while holding 

the other variables constant. In order to eliminate the confusion that 

now exists concerning the effect of various factors that have been 



reported to influence secondary consolidation, a study is necessary 

which will include as many of the variables as possible. 

2 

It was realized that this could be a monumental task and that 

certain simplifications would be necessary. Because of the great 

effect organic matter in soil has on the soil's secondary consolidation 

behavior it was necessary to use in the study an organic soil, and the 

same soil with a substantial quantity of the organics removed. Other 

variables included in the study were sample thicknesses, load increment 

ratios and the testing temperature. 

Secondary compression was measured in terms of C«, the change 

in void ratio per logarithm of time on a plot of void ratio versus the 

logarithm of time. 

It was hoped that in the limited time available using this system 

of variables, valuable insight into the related nature of their in­

fluence on secondary consolidation could be obtained. 



A. Soil Description 

CHAPTER It 

PROCEDURES 

The soil chosen for the investigation was Bryce clay loam to clay 

(Wascher, Smith and Odell 1951). It is third in predominance in 

Iroquoi.s County, Illinois, occupying an area of 125 square miles or 

approx~tely lot of the county area. The sample used in the analysis 

was taken from the NW 1/4 of SW 1/4 of Sec. 19, T.24, R.l3 w of 

Iroquois County, Illinois ~ascher, Alexander, Ray, Beavers, and Odell 

1960). 

Bryce clay is a dark humtc•gley soil that is found on nearly level 

to gently sloping areas ~ascher et al 1951). The parent material to 

a depth of at least 18 inches is mostly water deposited lakebed 

sediments of the Wlsconsin glacial period. The "A" horizon ranges 

from a black clay loam to a very dark brawn silty clay loam. It is 8 

to 12 inches thick. The '*A" horizon gradually grades into the ''B" 

horizon. The 1'B11 horizon is not distinctly defined until a depth of 

12 to 16 inches is reached. '!be "B" horizon is a plastic clay mottled 

with pale yellow and dull rusty brown, and grades into glacial till at 

25 to 30 inches. Bryce clay was chosen for the investigation because 

it was a high clay content soil and because it has a relatively high 

organic carbon content. Prom laboratory tests the so i 1 in the 

"A" horizon just below the sodded layer from 0 to 2 inches in depth 
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had an average carbon content of S.M.. From 2 to 4 inches the carbon 

content dropped to 4.81, from 4 to 6 inches to 4.6%. The entire testing 

program vas conducted using soil from the 2 to 6 inch depth. In its 

natural state the average organic carbon content was found to be 4. 7'%.. 
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A listing of other pertinent physical properties of Bryce clay used in 

this investigation is sunnnarized in Table 1. 

B. Soil Preparation 

The soil was stripped from the natural ground in 2 inch lifts. It 

was bagged and marked according to the depth from which it was taken. 

The soil was initially air dried and the clods were broken down in a 

Lancaster PC Mixer until nearly all would pass a #40 sieve. Of the 

150 lbs. of natural soil, approximately 98% passed the #40 sieve with 

limited grinding. The remaining 2% was discarded. The soil passing 

the #40 sieve was then split into two equal portions. One portion was 

ready for testing. (From this point it shall be referred to as the 

carbon soil.) The remaining portion was treated to remove most of the 

organic matter. 

In order to test the same soil with and without the organic matter, 

it was necessary to use a technique whereby substantial organics could 

be removed without significantly affecting the mineral fraction of the 

soil. To do this a standard method of isolating organic matter using 

hydrogen peroxide was utilized (Baver 1930). Hydrogen peroxide is an 

ideal oxident for organic matter since it decomposes into water and 

free oxygen. Schmidt, in his work with organic soils (Schmidt 1965), 

experimented with various treatments utilizing different concentrations 

of hydrogen peroxide and tfme of reaction. He also varied the rate of 

the reaction through the use of a water bath at different temperatures. 

0 Schmidt suggested that a 50 C water bath using a relatively short 

reaction time would be most efficient. 

After some experimentation the procedure finally adapted was as 

follows: 100 grams of soil was added to 100 ml of hydrogen peroxide 



TABLE l 

Physical Properties of Bryce Clay Loam 

and H2o2 Treated Bryce Clay 

Particle Size Distribution (%) Atterburg Limits Organic Specific 
Sand silt Clay 

LL PL PI Carbon Gravity 
>,OSmm 50-2l1 <2l1 ___{12 

Bryce Clay 11 47 36 60.3 40.0 20.3 4.7 2.57 

Treated Bryce Clay 14 38 48 45.1 25.0 20.1 1.1 2,66 

01 
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over a 1 hour period utilizing a 2000 ml flat bottom flask in a 50°C 

water bath. The 1 hour period was needed to assure that the reaction 

would be slow enough that the soil-hydrogen peroxide mixture would not 

froth over into the water bath. After 2 to 4 hours another 50 ml of 

hydrogen peroxide was mixed with the thick suspension to insure suf­

ficient organic removal had been accomplished. If little reaction occurred, 

an additional 100 ml of hydrogen peroxide and 100 grams of soil was 

added over a 1 hour period. After the reaction had slowed to an 

insignificant rate 150 ml of hydrogen peroxide was added and the flask 

allowed to remain for 8 hours in the 50°C bath. The •thick mixture was 

then poured into evaporating dishes and allowed to dry. The soil, air 

dried, was reground to pass a ffo40 sieve and the complete treatment 

process was repeated. The first treatment accomplished an average 

removal of 3.4% organic carbon, the second treatment an additional 0.2%. 

This method of treatment was found to be the most efficient in 

terms of time and equipment because it was possible using this method 

to process 200 grams of carbon soil per 2000 ml flask every two days. 

Through the use of this ~reatment, organic soil was reduced from a 

carbon content of 4.7% to a carbon content of 1.1%. Hereafter the 

treated soil will be referred to as the noncarbon soil although strictly 

speaking, it contained 1.1% organic carbon. A listing of other pertinent 

physical properties is given in Table 1. 

C. Equipment Design and Utilization 

While developing a treatment procedure for the removal of organic 

matter from the natural soil, it was first necessary to determine the 

effectiveness of one treatment versus another and secondly to know the 

carbon contents of the treated and untreated soils used in the investi6ation. 



Organic carbon content was determined using Allison's Method (1960). 

This method is a gravimetric determination of carbon dioxide generated 

when organic matter is treated with strong oxidants. The apparatus, as 

constructed, is shown in Fig. 1. 
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The procedure for the determination of organic carbon using Allison's 

Method is as follows. A known weight of an oven dried carbon soil is 

placed in a flask. To this flask is added potassium dichromate and a 

mixture of sulfuric and phosphoric acid. These reagents combine to form 

chromic acid, a very strong oxidant. The carbon in the soil is oxidized 

and in a gaseous phase carried by a carbon dioxide free air stream 

through a system of vials and "U" tubes (see Fig. 1). Carbon dioxide 

and water vapor are removed from the air stream by passing free air 

through a tower containing mica and soda-lime, on which the gassed are 

sorbed. Any gases other than carbon dioxide that might be sorbed in 

the Nesbitt bulb are removed by the reagents in the system of vials and 

"U" tubes. The only reactions in the Nesbitt bulb are those of carbon 

dioxide with potassium hydroxide on mica and water sorbed by magnesium 

percholorate. The remaining gasses of the air stream pass through the 

Nesbitt bulb freely. 

Quantitatively the weight gain in the Nesbitt bulb is due solely 

to the complete reaction of carbon dioxide with materials in the Nesbitt 

bulb. Therefore, kno"iving the weight of the original sample and the 

weight gain of the Nesbitt bulb due to the sorption of carbon dioxide, 

a direct measure can be made of the organic carbon content of the soil. 

In order to control the temperature of the soil in the consolidometer 

ring it 'vas necessary to add certain equipment. For one frame to make 

possible a temperature range both above and below ambient temperature 



Separating 
runnel 

Potasstum Iodtde £/tal 
S1lver Sulfate VJa/ 

_ , -J.:onc~ Su/f'vnc Rc1d lila/ 

React10n Flask 

·Anhydrous 
11agnes1um. 
Perchlorate 

Fig. ~. Apparatus for A~~ison's carbon determination. 

'esbltt Bulb 

Drutnq Rgent 
{Opttonal} 

(X) 



Porous Stone 
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Fig. 2. Bishap Consolidation Cell with temperature control. 

(.() 
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copper coils lined the inside circumference of the Bishop type 

consolidometer cells. These coils were connected to a circulating 

water pump in a controlled temperature water bath (see Fig. 2). A 

continuous flow of water from the temperature bath to the cells and 

back to the bath maintained the desired temperature of the soil sample. 

Small individual baths for above ambient temperature were made for 

the two positions of the second frame. A small heater coil connected to 

a thermostat regulated the bath temperature. A cell rested in this bath 

and an electrical stirrer helped maintain a constant temperature (see 

Fig. 3). 

The Bishop type cells with extended base posts and both 3/4 and 

1~ inch thick rings to fit these cells were made in the school machine 

shop. For both the 3/4 and 1~ inch thick samples the soil preparation 

for consolidation testing was the same. Distilled water was added to 

the soil until a water content approximately equal to the liquid limit 

was reached. The mixture was allowed to age for 24 hours at a constant 

moisture content. The soil was then brought to the liquid limit and 

molded into the oedometer rings. The ends were trimmed both top and 

bottom and oedometer ring and soil were weighed immediately and placed 

in the cells. 

D. Testing Program 

A controlled schedule of consolidation tests with several variables 

was planned. These variables included soil type, test temperature, ring 

thickness, and load increment ratio (Table 2). Basically two sets of 

identical tests were performed, one on high carbon soil, the other on 

the same soil with substantial quantities of the carbon removed. The 

0 0 0 0 test temperatures used were 5 , 25 , 35 , and 50 C. The samples were 



Sample Thickness 

3/4 

3/4 

3/4 

1 1/2 

TABLE 2 

Testing Pt;~ogt'am 

H - 4.7% Ol:lganic Cal:lbon Soil 
L - 1.1% Ot;~ganic Cat;~bon Soil 

Tem12ex-ature 
Load Inc. Ratio 5°C 25°C 35°C - -

1.00 H, L 4H, L H, L 

1. 83 H, L H, L 

0.415 H, L H, L 

1.00 H, L H, L H, L 

50°C 

H, L 

1-' 
...:> 
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either 3/4 inch or 1~ inches thick and all samples were 2.5 inches in 

diameter. The loading ratios utilized were aP/P equal .415, 1.0, and 

1.83. The ~P/P ratio was not constant throughout the test but varied 

between 0.125 to 1.0 tsf and from 2.0 to 16.0 tsf (Fig. 4). 

l 
I 
! 

I ~ 
• 
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Schedule Schedule Schedule 

Unit I II III 

Load t.P/P = 1.0 t.P/P = 0.415 t.P /P = 1. 83 

l/8 

1.0 1.0 
1. 83 

l/4 

.354 1.0 1.0 

l/2 
0.415 1.83 

• 705 1.0 
0.415 

l 

1.0 1.0 1.0 

2 

1.0 1.0 
1.83 

4 
0.415 

5.67 1.0 
0.415 

8 
1.83 

1.0 1.0 

16 

Fig. 4. Loading methods. 



A. Introduction 

CHAPTER III 

LITERATURE REVIEW 

Consolidation is the gradual reduction in volume of a soil mass 

resulting from an increase in compressive stress (ASTM). Skempton and 

Bjerrum (1957) suggest that consolidation can be divided into three 

phases. Initial consolidation is a comparatively sudden reduction in 

volume due principally to the expulsion and compression of gas in the 

soil voids. Primary consolidation is the reduction in volume due to 

the squeezing out of water from the void spaces of the soil mass and 

15 

is accompanied by a transfer of the load from the soil water to the soil 

solids. Secondary consolidation is the reduction in volume due to the 

adjustment of the internal structure of the soil mass after most of the 

load has been transferred from the soil water to the soil solids 

(ASTM D 653-67). 

Although the mechanisms of initial and primary consolidation are 

generally understood and accepted (Yang and Warkentin 1966), secondary 

consolidation has been explained in several ways and the American Society 

for Testing and Materials definition given above does not explain why 

an adjustment of the internal structure occurs. Barden (1969) suggested 

that the mechanism responsible for secondary consolidation could be 

explained in three different ways. It could be a viscous structural 

reorientation of interparticle contacts through the layers of absorbed 

water (Terzaghi 1941). It could also be explained as the jumping of 

electrostatic bonds of a card-house structure (Tan 1957). Finally, 

secondary consolidation could be explained as a two level structure 

with primary consolidation being the drainage of a macropore structure 



and the secondary consolidation the drainage of a micropore structure 

(DeJong 1965). 
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Because of the importance of secondary consolidation and because 

there are contradicting theories as to its true mechanism, much research 

has been done in an attempt to gain insight into the true nature of its 

behavior. 

B. The Shape of Secondary Consolidation on the Void Ratio Logarithm of 

Time Plot 

Buisman (1936) was perhaps the first to document secondary consoli­

dation. He reported that secondary consolidation was approximately 

linear on a void ratio versus logarithm of time plot. Since that time 

many others have reported the linearity of secondary consolidation on 

a logarithm of time plot [Leonards and Altschaeffl (1964), Barden (1969), 

Mitchell (1968)]. Others have reported that the plot may not be linear 

[Lo (1961), Wahls (1962)]. Lo (1961) stated that secondary consolidation 

could not plot linearly indefinitely, because a time would be reached 

at which there would be zero voids. Lo in fact found for all soils 

tested both organic and inorganic that ultimate settlement was reached 

within 3 weeks. 

Lo stated that secondary compression curves could be characterized 

by one of three shapes. These shapes were classified as type I, II, 

and III curves. Type I curves showed a gradual decrease of the rate of 

secondary consolidation until the soil finally reaches ultimate settlement. 

Type II curves were characterized by the proportionality of secondary 

compression with the logarithm of time for an appreciable range of 

time before the final settlement was reached. The change in void ratio 

of the straight line portion of secondary consolidation is known as Ca • 
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Type III curves show an acceleration of the rate of secondary to a sharp 

equilibrium void ratio. Leonards and Giraults' (1961) curves agree 

basically with Lo's work. Wahls (1962) preferred a separation into two 

basic types. The first type were those in which primary consolidation 

dominated, the second type were those in which secondary consolidation 

dominated. 

C. Factors Affecting Secondary Consolidation 

It would appear that because there have been several characteristic 

shapes cited that there must be factors which affect secondary consolidation 

or the shape of the void ratio logarithm of time plot. Within the liter­

ature there are several factors which have been reported to influence 

secondary consolidation. 

There are conflicting views as to how secondary consolidation is 

related to the effective unit load. Newland and Allely (1960) found 

that Ca was almost independent of the effective stress except near the 

preconsolidation pressure where values of Ca were slightly higher. 

Wahls (1962) found for both undisturbed and remoldea organic silt that 

as the effective stress increased Ca increased rapidly to a maximum 

and then decreased slowly with further increase in stress. Jonas (1964) 

agreed that Ca increased with increasing effective unit load up to the 

preconsolidation pressure but was constant thereafter. Goldberg (1965) 

suggested that after the preconsolidation pressure was reached OJ 

increased almost linearly with increasing effective pressure. Olson 

(1965), for a sensitive soil, found a sharp increase to the preconsolidation 

pressure and thereafter a sharp decrease in Ca. Barden (1969) found Ca 

almost independent of the effective stress. 

There is also controversy as to whether Ca is a .function of the load 
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increment ratio, often referred to as the ~F/P ratio (ratio of the 

effective load applied during the latest increment to the total previous 

effective load applied). Several authors have reported that Ol is 

independent of the nP/P ratio Newland and Allely (1960), Leonards and 

Girault (1961), Wahls (1965) . But Leonards and Altshaeffl (1964) 

found that en decreases for extremely small load increment ratios. 

Barden attempted to explain this behavior using a viscosity parameter, 

b. He suggests b is responsible for different amounts of secondary 

consolidation, because of b 's thixotr"opic nature. b is dependent upon 

the viscosity of the pore fluid which may increase because with time 

diapolar water will orientate itself with the clay platelets. If the 

load increment is small, secondary effects may be extremely sensitive 

to the load increment ratio because viscous effects rather than pore 

pressures dominate. 

Temperature is another factor which may affect secondary consolidation. 

Gray (1936) found that secondary consolidation was greater at higher 

temperatures. Hanrahan (1954) reached the same conclusion with the peat 

he studied. 0 
Lo (1961) found that a decrease of 3 C completely altered 

Ca. Schiffman, Ladd, and Chan (1966) reinforced earlier works by finding 

a large change in Ca due to a small change in temperature. 

Unlike earlier work Paaswell (1968) studied the temperature affects 

from a different viewpoint. He induced a temperature gradient across 

the sample and found there was an increase in strain. His argument was 

that this increase in strain was due to the movement of bulk water, not 

a rearrangement of the internal structure; thus the movement was primary, 

not secondary consolidation. Campanella and Mitchell (1968) found that 

an increase in temperature increased the pore water pressures and upset 

the balance between structure and temperature at a particular stress 
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level. The change, they stated, was due to additional primary consolidation 

and did not significantly affect Ca. Plum and Esrig (1969) found Ca 

changed only slightly .due to a change in temperature. 

Ca may also be dependent upon the thickness of the consolidation 

sample. Newland and Allely (1960) found that the secondary consolidation 

was independent of the sample thickness. Barden (1969) concurred with 

result of Newland and Allely but stated that further research was needed 

to confirm their result. 

The quantity of organic matter within the soil has a definite effect 

on secondary consolidation as pointed out by Gray (1936). He found that 

secondary consolidation was greater for organic soils. These findings 

have been substantiated by many writers [Hanrahan (1954), Barden (1968) 

Schmidt (196~)]in a comparison study of the physical properties of an 

organic soil versus the same soil treated with hydrogen peroxide to 

remove a majority of the organics, ·found C« varied approximately linearly 

with the organic content. 

Lo (1961) found that a sudden vibration of the soil displaced the 

consolidation curve down~ard but Ol remained essentially constant. 

Recently work has begun on the effects of dynamic vibratory loads on 

consolidation behavior. Hardin and Black (1968) and Humphries and Wahls 

(1968) found that a small amplitude and repeated loading and unloading 

of cohesive soil increased secondary consolidation. 

The amount of disturbance also has an effect on the secondary 

compression. Both Gray (1936) and Taylor (1942) observed that remolded 

soils exhibit less secondary compression effects than undi.sturbed soils. 

Other writers have substantiated their conclusion [Lo (1961), Barden 

(1965) J. 



D. Effects of the Hydrogen Peroxide Treatment 

Schmidt (1965) found that the removal of organic matter using 

hydrogen peroxide had little effect on the clay minerals but there was 

a great influence on the physical properties of an organic soil due 

20 

to the decrease in organic matter. He found that although there was a 

decrease in the liquid and plastic limit due to the treatment, there was 

no significant change in the plasticity index. ·The clay mineralogy of 

both the treated and untreated soils were essentially the same. The 

moisture density relations varied someWhat. He found that the higher 

the carbon content the lower the maximum dry density and the higher the 

optimum moisture content. In consolidation tests, the higher the carbon 

content the higher the void ratio at a given stress level. Neither 

the coefficient of permeability nor coefficient of consolidation were 

significantly different. 
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C~PnmiV 

STATISTICAL EVALUATION OF REPRODUCIBILITY 

Four tests were performed at each oedometer position, in which the 

temperatur~ load increment ratio (the ratio hereafter referred to as 

~P/P ratio), sample thickness, and organic carbon content of soil were 

kept constant in an attempt to obtain duplicate results from each 

oedometer position. This was done to assure that a test could be 

preformed at any oedometer position ~ithout a significant variation in 

test results. The tabulated values of Ca obtained for the four tests 

are given in table 3. 

An analysis of variance was used to split the variation into variance 

between samples (due to the load increment) and variance within samples 

(which represents the inherent variation, or the experimental error). 

Each variance was calculated as the sum of the squares of deviation 

divided by the number of degrees of freedom and the variances were 

compared by the F test. From a·standard table ofF values (Neville & 

Kennedy 1966) at the 5 percent level of significance F = 2.57. If the 

computed F value is less than 2.57, the variation between effective 

stress levels is insignificant with respect to the variation between 

loading positions. If the computed F value is greater than 2.57, 

the variation between positions or for this analysis the inherent 

experimental error is comparatively insignificant. From the calculations, 

F = 32.17. Therefore the variation from one loading position to the next 

or the inherent experimental error is insignificant, at the 5 percent 

level of significance. Fig. 5 shows the variation of Ch versus the 

logarithm of the total effective stress for the four tests. 

A load cell was used to assure that calculated applied loads were 



TABLE 3 

Analysis of Variance 

Effective 
16 8.0 Stress (tsf) 4.0 2.0 1.0 

Position 1 47 48 54 60 65 

2 45 46 50 58 65 

3 49 53 56 64 74 

4 45 49 56 60 69 

tx 186 196 216 242 273 

-
X 46.5 49.0 54.0 60.5 68.25 

tx2 8660 9630 11688 14660 18687 

Sum of 
Squares of 
Deviation = 11 26 24 19 55 

2 LX - (Ex) 2 

n 

Source of Variation Sum of 
Squares 

Within Samples (Systems) 157 

Between Samples (Systems) 1444 

Total 1601 

F = Mean Square Between Samples = 
Mean Square Within Samples 

. 50 All . 250 
Systems 

61 57 392 

61 57 382 

66 57 419 

65 56 400 

253 227 1593 

63.25 56.75 56.89 

16023 12883 92231 

21 1 1601 

Degree of Mean 
Freedom Square 

21 7.48 

6 240.67 

27 59.29 

240.67 
7.48 

= 32.17 > 2.57 
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the actual loads taken by the ring samples. The loading weights used 

to apply pressure to the ring samples were applied to the load cell and 

the weights recorded on the load cell were noted. It was found for one 

frame, the applied loads were within 2 percent of the theoretical values. 

For the other frame, the applied loads were within 0.1 percent of the 

values calculated. The conclusion of this analysis was that a test could 

be performed at any load position without a significant degree of 

variance as long as all samples were molded into the oedometer rings at 

the liquid limit. The initial moisture contents were within 1 percent 

of the value determined as the liquid limit. 



CHAPTER V 

DISCUSSION OF THE RESULTS 

A. Test Results and Analysis 
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To study secondary consolidation in terms of Ca implies that the 

slope of the void ratio versus logarithm of time plot, in the secondary 

region, is a straight line. Lo (1961) found that for all soils he 

tested the secondary consolidation slope for a single load approached 

a constant void ratio within three weeks. 

For both the carbon and noncarbon soils, Ca (change in void ratio 

per logarithm of time) was found to be nearly constant for 10,000 

minutes or approximately 7 days. One sample was allowed to consolidate 

under a single load for 10 days and no change in the slope from the 

straight line portion of secondary consolidation was noted. In the pro-

.. gram all samples were allowed to consolidate to a point where the straight 

line portion of secondary consolidation had developed sufficiently to 

define C a. 

In the study of the influence of the load increment ratio on Ox 

a constant ~P/P ratio throughout a loading cycle for a single test was 

not used as has been done in previous investigations, [LO (1961), 

Wahls (1962), Leonards and Girault (1961)]. ~P/P ratios of 0.415, 1.0, 

and 1.83 were used between 0.125 and 1.0 tsf and between 2.0 and 16.0 

tsf (see fig. 4). All samples were consolidated under load increments 

of 0.125, 1.0, 2.0, and 16.0 tsf. 

In the past Ca has been found to be independent of the load increment 

ratio, [Wahls (1965)]. If this is the case then regardless of what loading 

sequence is adopted, at any given total effective unit load and equilibrium 

void ratio, C a should be a constant. The plot of C a versus logarithm of 
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time should be the same for a variable ~P/P from 0.125 to 1.0 tsf and 

from 2.0 to 16.0 tsf, as that for a constant ~P/P = 1.0 throughout the 

test. 

0 In fig. 6 for 5 C is shown a plot of Ca versus the logarithm of 

pressure for tests utilizing ~P/P ratios of 0.415, 1.0 and 1.83, on 

both carbon and noncarbon soils. Although there is some scatter of the 

data, it can be seen that in general, varying the ~P/P ratio within the 

test does not significantly influence Ca. In fig. 7 is shown the same 

0 plot for 35 C. Again there is no significant departure of the test 

curves where aP/P = 0.415 and 1.83 from that where ~P/P = 1.0. These 

data tend to substantiate the findings of Wahls and other writers, and 

with the added dimension, temperature, has verified their conclusions 

both above and below ambient temperatures. 

From fig. 6, 7, 8, can be seen the influence of the effective unit 

load on Ca. It is apparent that Ca for these tests is not independent 

of the effective unit load as reported by Newland and Allely (1960) and 

Barden (1968). Ca consistently increased to a maximum at 1.0 or 2.0 tsf 

and again decreased, regardless of the sample thickness. The change in 

Ca was the most markedly defined for the double thickness carbon samples, 

(fig. 9). There is only a slight increase inCa with increasing effective 

stress for the double thickness noncarbon soils. Wahls (1962) found the 

same increase in Ca to a maximum value but he stated the decrease in 

Ca above the maximum value was more gradual with increasing load. Fig. 

8 illustrates that Ca decreased at approximately the same time rate that 

it increased and approached a constant value at the highest unit loads 

of 8.0 to 16.0 tsf. 

Fig. 8 and 9 show the influence of temperature on Ca versus the 
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logarithm of pressure, for both carbon and noncarbon soils. In general 

the higher the temperature the greater the magnitude of secondary 

consolidation. For the samples (fig. 8) in the lower load range, the 

influence of temperature on secondary consolidation appears to be 

substantially greater than it is for the higher loads. In fig. 9, for 

the double thickness carbon soils this was not as noticeable and, in 

fact, it is apparent that the temperature has the greatest influence on 

secondary consolidation at the maximum value of Ol • After the peak 

Ca for both carbon and noncarbon soils at 1.0 or 2.0 tsf the curves 

tend to converge indicating decreasing influence of temperature on 

secondary consolidation at higher loads. These findings support the 

earlier works of Schiffman, Ladd, and Chan (1966) and Hanrahan (1954). 

The temperature control was discontinued on two cells during 

secondary consolidation. 0 One sample test was performed at 35 C and 

was permitted to decrease to room temperature or 24°C in about two hours. 

Very little change was noted in Ch • (See fig. 10) But the other sample 

i d · f 5°" 24°C. ncrease ~n temperature rom ~ to For this sample the void 

ratio versus logarithm oi time curve changed drastically showing a 

vertical displacement of the secondary consolidation portion of the 

curve. Lo found that a 3° increase in temperature completely altered the 

void ratio versus logarithm of time curve. Mitchell (1968) explained 

this variation as an increase in pore water pressure due to the decrease 

in viscosity. This increase in pore pressure induced further primary 

consolidation. The sudden increase in deflection was a renewal of 

primary consolida·tion and should not be confused with secondary consolida-

tion. 



33 

Murayama and Shibata (1961) suggested a mechanism for secondary 

consolidation based on structural viscosity. They suggested in equation 

form that the change in secondary consolidation strain with respect to 

the logarithm of time was proportional to the absolute temperature. 

They found experimentally that the plot of the change in strain with 

respect to the logarithm of time versus temperature was a linear function 

0 passing through 0 C at zero strain. 

Fig. 11 indicates that for both carbon and noncarbon soils, the 

change in strain per logarithm of time for low stress levels is approximately 

a linear function of temperature, but at higher stress levels Fig. 12 

is almost independent of the temperature. In short whereas Murayama 

and Shibata found c~ to be a constant function of the temperature, the 

findings presented herein indicate that the influence of temperature on 

C a is dependent upon the stress level. 

This disagreement in findings could be explained as a difference in 

testing procedure. Murayama and Shibata eliminated the side friction 

encountered in oedometer tests by performing their tests using a com-

pression plastometer. This instrument applied a constant effective load 

to a soil sample in a triaxial cell and measured the resulting deformation. 

The apparent decrease in influence of temperature on secondary consolidation 

with higher effective stress levels, found in the results presented, could 

not be due to the increase in friction of soil against oedometer ring at 

greater stresses, because C~ for the double thickness samples is approxi-

mately twice that for the single thickness samples. 

Barden (1968) considered a mechanism involving shear failure and 

jumping of bonds in a highly redundant soil skeleton followed by a 

gradual relaxation to a new equilibrium, the rate of relaxation being 

governed by the viscosity of the adsorbed water layers. 
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It is suggested that because of the high liquid limit and percent 

Illite content the remolded organic soil had a more dispersed s"tructural 

arrangement (Heagler 1969). Barden suggested the dispersed state implied 

a more parallel orientation of platelets with few contacts and load being 

transferred by double layer stresses. The charged surface of the clay 

platelets are surrounded by adsorbed water. The degree of orientation 

of the molecular structure of this adsorbed water is greatest at the clay 

surface and gradually decreases with distance from the clay until it merges 

into free pore water. The effective viscosity of the adsorbed water 

decreases with distance from the clay surface. 

At the lighter loads the movement of pore fluid that occurs during 

secondary compression could be that of free water, the rate of flow being 

highly dependent upon the viscosity of the pore fluid. This viscosity 

would probably be highly dependent upon temperature. At light loads a 

change in temperature might induce a considerable change in the viscosity 

of the pore water and a resultant large change in the rate of flow. 

But at higher consolidation pressures the clay platelets are much 

closer together and the predominate pore fluid is probably.adsorbed 

water. This adsorbed water, because it is more highly bound to the clay 

platelet is less influenced by a change in temperature and the change 

in the rate of flow is smaller. The change in void ratio that occurs 

with increase in effective pressure can be seen in fig. 13. The void 

ratio versus logarithm of pressure curves for the two soils indicate 

that there is a considerable change in void ratio from 0.125 tsf to 16.0 

tsf effective pressure. For the organic soil the change in void ratio 

is 0.77. 

One explanation then, for the greater influence of temperature on 
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Ca at lighter effective loads than at higher effective loads, .. is that 

Ca is highly dependent upon the dominating pore fluids. At light loads 

there is a large change in Ca due to a temperature change because free 

water dominates. At high consolidation pressures adsorbed water dominates 

and a change in temperature results in a very small change in Ca. 

This explanation is only of merit if there truly is a large change 

in viscosity due to a temperature change, and if the variation in Ca 

with temperature for light effective total loads is comparable with the 

change in viscosity of free water with temperature. The change in 

viscosity of water at 50°C to 5°C is almost a straight line function. 

It can be seen from fig. 9 that the increase in Ca with temperature was 

almost linear. So it would appear that Ca could be a direct function 

of the viscosity at low effective total loads. 

Mitchell, Campanella.and Singh (1968) found a plot of the logarithm 

of the strain rate versus the logarithm of time was a straight line 

function with a negative slope for undrained creep of triaxially normally 

consolidated clays. From these results they further found that a plot 

of the logarithm of the strain rate divided by the temperature versus the 

reciprocal of the absolute temperature was linear. 

An attempt was made to duplicate the plots of Mitchell et al.but it 

was found that the oedometer creep rate was a horizontal straight line 

when plotted versus the logarithm of time. This could be due to friction 

of the soil against the ring in the consolidation test. Because of this 

finding no attempt was made to further compare or expand on their work. 

Fig. 8 and 9 indicate the influence of sample thickness on secondary 

consolidation. For both the carbon and noncarbon soils, Ca was found to 

be approximately the same for both single and double thickness samples. 
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These findings subs~antiate the findings of both Newland and Allely (1960) 

and Barden (1969) who agreed that Ca was independent of the sample 

thickness. 

lhe influence of the organic content in soils on secondary consoli­

dation can also be seen from Fig. 8 and 9. It is apparent for both 

single and double thickness samples that the rate of secondary consoli­

dation is approximately twice as great for the soil with an organic 

content of 4.7 percent as for the noncarbon soil with an organic content 

of 1.1 percent. This is in agreement with the findings of Barden (1968) 

and Schmidt (1965). Schmidt used the same process for the removal of 

organic matter from an organic soil and concluded that Ca varied ap­

proximately linearly with the organic content. 

B. The Mechanism of Secondary Consolidation 

The finding that Ca is dependent upon the stress level tends to 

substantiate the mechanism based on structural viscosity (Terzaghi 1941). 

Barden (1968) stated that the law governing the nonlinear dashpot, repre­

senting the viscosity of the pour fluid, could not be deduced precisely 

but was certainly depen~ent upon the predominating.pore fluid, be it 

free water or adsorbed water. The creep rate was related to the 

temperature of this pore fluid. 

Murayama and Shibata (1961) and Hitchell' s (1964) mechanism based 

on jumping of bonds in the form of a rate process theory can neither be 

substantiated nor disproven because the test data presented herein was 

limited by the instrument capability and the type of test performed .. 

It would appear that these findings disprove a mechanism based on 

micropores (DeJong 1968) because the mechanism suggested that the 

influence of temperature on Ca is independent of the stress level because 



all flow of pore fluid in the micropores is free water. It is 

believed that the viscosity of free water is independent of the 

stress level. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 
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The purpose of this program of research was to study the influence 

of sample thickness, temperature, load increment ratio, and organic 

content, on secondary consolidation and if possible eliminate the con­

fusion that now exists concerning the influence of these factors on 

secondary compression. 

Baths for temperatures above and below ambient were constructed 

to regulate the sample temperature. Weights were designed for load 

increment ratios of 0.415, 1.0, and 1.83. Oedometer cells and rings 

were constructed to accomodate both 3/4 and 1~ inch thick samples. Two 

soils were used; one, an organic soil with an organic content of 4.7 

percent, the other soil was the same soil with a substantial amount of 

the organic matter removed. The removal was accomplished by t~eating 

the organic soils with hydrogen peroxide. The treated soil had an 

organic content of 1.1 percent. The method and apparatus suggested by 

Allison (1959) was constructed and utilized to measure the organic 

content of the soils used in the research program. 

A program of consolidation tests was performed on both soils in 

which the temperature, load increment ratio,and sample thickness were 

varied in an attempt to determine the relative influence of each on the 

secondary consolidation characteristics of a soil with a high organic 

content and a soil with a low organic content. Secondary compression 

was measured in terms of Ca. (void ratio change per logarithm cycle on 

a plot of void ratio versus the logarithm of time). All load increments 

were allowed to remain until the secondary consolidation parameter Ca 

was clearly defined. Comparisons were presented in the form of plots 
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of Ca versus the logarithm of pressure. 

In conclusion it was found Ol was dependent upon the effective unit 

load. It increased to a maximum at a pressure of 1.0 or 2.0 tsf and 

then decreased at approximately the same rate. Varying the load increment 

ratio within a single test had no noticeable influence on secondary con­

solidation. The plot of ca versus the logarithm of the effective total 

pressure for bP/P = 0.415 and 1.83 was approximately the same for the 

double thickness samples as for the 3/4 inch thick samples. Probably most 

significant, it was found that the influence of temperature on C<:t. was 

stress dependent, the greatest effect experienced for lower effective 

unit loads. Secondary compression for the organic soils was consistantly 

greater than that for the low organic soils. 



CHAPTER VII 

RECOMMENDATIONS FOR FUTURE RESEARCH 

It was the findings of this paper that the effect of temperature 

43 

on the rate of Secondary Compression was stress dependent. It was 

suggested that the reason for this dependency was due to the related 

influence of free and adsorbed water during secondary compression. It 

was suggested for the soils involved secondary compression was primarily 

dependent upon a viscous flow phenomenon as compared to a structural 

reorientation. Although many models have been proposed using various 

combinations of springs and dashpots to account for the related influence 

of viscous flow and structural collapse, a more quantitative study is 

needed to evaluate their relative effect on Ol or the rate of secondary 

compression. 

What is proposed is that a more quantitative study be made in which 

the structure is varied by some mechanical means to form flocculated 

and dispersed structures. To this study could be incorporated a variation 

in the distribution of grain sizes studied by using silt-clay mixt11res. 

Ca would be analyzed in.terms of these variables. Through a research 

program such as this a better understanding of the effect of temperature 

on Ca in terms of flocculated and dispersed structures for different 

grain size distributions, could be obtained. Likewise a relationship 

between free and adsorbed water for increasing effective unit stress 

might be found. 

It has been suggested in the past (ASTM D2216-66) that when determining 

moisture contents that high organic soils be oven dried at 60°C instead 

of 110°C. The argument being that organic carbons are lost in a 110°C 

oven. During the research it was suspected that a majority of the weight 
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0 0 lost between 60 C and 110 C was that of water, not organic carbon. It 

is proposed that a study of the relative loss of organic carbon and 

water at different temperatures be studied to check the reasonableness 

of standard practice. 

A better, more accurate method of measuring displacement in con-

solidation tests is needed for research work than the standard ten 

thousandths dial gauge which can stick and hang up. With the ever 

increasing use of transducers in research it is suggested that in the 

future the more accurate and reliable displacement transducers be 

utilized for measuring displacements. 
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