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.~.BSTRACT 

A ne-..-; sample holder for measuring the high frequency dielectric 

constant of ferroelectrics at high tez:peratu.re Has constructed. 

The ne"'.·l sample holder elininated discontinuities in the slotted 

line and improved the electrical cont?.ct between the ceramic and 

brass conponents. 

KeasureiTients of the high frequency dielectric const.cmt of an 

aged sarfl.tDle of 90;:; Bil"e03 - 10;;~ PbTi03 1.-rere :r::k-l.de as a function of 

teT:ii~erature using the ~>lotted line tec:mique. The dissipation 

function for the aged sample ·,.;ras .found to have a r,;ore normal behavior 

near the Curie point than the virgin S~"C!ples previously measured. 

Resistivity measurement-s vrere made as a function of temperature 

and volt~.go on the solid solution of 40;~ Bi1ln03 - 60;%' PbTiOJ. These 

m.ea.sure:::ents sho·.-:ed that the conduction is prim,:1.rily N-t;ype and 

the contacts are ohmic. 

A discussion is presented. •thich indicates that .for magnetic 

ions the Juhn-TeJ.lcr effect nuy affect the short range forces in 

the cryst;q_l Nhich deterr:d.ne ferroelectric parameters. 
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I. INTRODUCTION 

High temperature measurements of the dielectric constn.nt may 

present a problem because of the very large conduction losses in the 

sample. The conductivity tends to dominate the dielectric behavior 

so that the true dielectric polarization cannot be measured except 

at high frequency. Because of the high conduction losses of solid 

::elutions l-..'ith a hit:;h BiFeo3 content, the dielectric behavior of 

these semples could only be inferred £rom x-rcy d~ta on the phase 

transitions prior to the work by R.T. Smith in tlds laboratory. 

The resistivity of solid solution o.f high BiFeo3 content is of 

6 
the order of' lO ohm-em. at room temperature end decret:.ses rapidly 

-with rising tcmperr;.t~re. At the Curie point (850°C), the resistivity 

o:f these solid solutions may be as 1m..; as J 0 ohm-em. The eq_ui valent 

circuit of the sample may he considered as a. resistor in parallel 

. -with a cap~citor (see sketch). Using this model .for the sample, the 

dissipation factor (loss tanzont) is i~versely proportional to the 

.frequency-. 

"\n excellent and strai gh't. :fo··rvmrd method o:f measuring the dielectric 

' 
constant at high .frequencies (lot~r loss tangent) is to use a 
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coaxial wave g1rlde and a slotted line. The sample is used as a 

termination and is comp~:red to st=mdard short .and open terr.rl.nations. 

There are many corrections that must be made to account £or the 

discontinuities in the sample holder, the attenuation of the sample 

holder, and the size and shape of the SAmple. These corrections can 

be made using a computer. 

Ho1~ver_, it is very difficult to use even the slotted line 

technique ~~th excessively high loss samples because the voltage 

minumurn in the standing •,(ave bccor:1es excessively 1Jroad. It is 

because of this th~t the dielectric constant of pure BiFeo3 cannot 

be directly measured. There£ore another high frequency method· is 

proposed in t,his thesis which measures the phase of the forward 

and re fleeted p01..rer directly. This method may prpve to be more 

satisfactorJ \vi~h high loss samples. 

The work presented below includes high frequency dielectric 

measurements made on an a;:red sample of 90,~ BiFeo3 - lot PbTi03 as 

a function of' tempern.ture, using an improve~ s a.1nple holder. 'lhe · 

value o.f the dielectric constant a.t the transition temperature is 

much lmll'er on the aged sample and the dissipation function on the 

aeed sample has a more normal behavior. 

The projected studies o.f the ~olid solution series BiVno3-

PbTio3 to determine dielectric transitions could not be nade 

because of the high conduct~vity o.f these samples. Iastaad, 

resistivity rr..easurements \'rere made on a solid solution of 40;~ BiKn.OJ-

6(JJ{, PbTi03,: There were no anomalies in the region o.f Lhe tra.nsi tion 

temperature (400°C-425°C). 
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II. LITER.,~TURE R1WIE.\rl 

A. GE1:J'SRJ..L PH.CP:.::HTIZS 0:? ?:S'R:.1.0ELEC'I'lUC CRYST~\LS 

A ferroelectric crystal is defined as a crystal which has a 

spontaneous e]_ectric dipole n:oment. Also, in par2.llel to the 

ferrorrkqgnetic case, the ferroelectric crystal has a characteristic 

tra.nsi tion ten1::)er<1ture, or Curie point above vwhich the .ferroelectric 

properties do not exist. It has been shown by Smith et al. (l) that. 

the Curie point is about 850°C for BiFe03. This 1-1as done by extrspolating 

the Curie point of various solid solutions of BiFeo3-PbTi03 to the case 

f 10 ~.-t .,., • ,~.. 0 o u;;:, ~j11.•e ·3 • 

There are necessary and sufficent conditions for the phenonenon of 

ferroelectricity ( 2 ),{J),(4). A necessary condition is that the 

crystal belongs to a py~oelectric point group. Of the thirty-two 

point groups, t"t·tenty do not have a center of syrmne try. O:f these 

twenty, ten are polar or p~Toelectric. The ferroelectric crystals 

are a subgroup o.f the pyroelectric group. According ·to modern theoriGs 

of degt;nerate acous·tical and optical -phonon modes, there ma.y be no 

si~;·nificc>.nt difference between a p;,rroelectric and ferroelectric crystal. 

A sufficient condition for a ferroelectric crystal is that it 

exhibit a dielectric hysteresis loop. 

Ferroelectric crystals exhibit a Curie point, above v-.r'nic:1 the 

dielectric constant fol1o\ ... rs a Curie-1:leiss behavior, 

c 
E • (l) 

T-7;._ 



C is the Curie constant, Tc is the Curie temperature~ and T is the 

temperature. 'l'his relationship is found to hold to 1.-.1ithin a few 

degrees of the Curie point • 

. (1) THE POLARIZATION CA'rASTROPHE 

Tl:e occu:rence of .ferroelectricity can be descr:Ded by the 

polarizf!.tion catnstrophe, which occurs .,.lhen the local .field becomes 

infinite. This implies that there is a net polarization "tdthout an 

applied field. In 1-!-K-S units the local field can be ·vrritten 

(2) 

':.'fhere Y' is purely a roicroscopic cor:stm t;; analogous to a structure 

factor. The local field is not constant at each atomic site, thus· 

)'. can\ have different values at different atonti.c sites. By using 

the same a.rgurr..ent, eve~ though the r,-.ean value of the polarization 

(anj local field) is zero over the unit cell, this does not imply 

that the local field is zero at each atomic siteS5~(9:>r.et p be the 

dipole moment at the atom, Then: 

- ~ N~o<,;[£+~·~] (3) 

= 2:- N;_-«'i (; +- ~-~jE ~ 
'- F . 



Assume: ~ ~-~· -::: ~Prot- ) 
(.. 

z:~ d,: 
1-0:C~~-~· 

Now the dielectric constante is defined 

l:> 
/- - .- ~ c- E ~ 

c:oE+P _ 
E 

Substitution from equation (4) 

The diolec'tric constant becomes indeterminate as 

5 

(4) 

(5) 

(6) 

approaches unity. Since &-=- Jf£ ;, an infinite value of the dielectric 

constant implies a net polarization. Experimentally, the dielectric 

constant becomes ve!7 large, but not infinite. 

Slater (7) proposes that the reason for the polarization 

catastrophe is that o(( is a slowly decre<'sing function with temperature • 

.He assumes that it has a value greater than unity below the Curie 

point. In other T....rord'3, ~zN..:..el(.: 1'louJ.d be of the form 

• (7) 



Then 

I {t-e.tr=-Tc_) J 
1_t L- 1-l+ e..(r- lc..) . · 

1- c {r-lc...) 
~c (r-rc..) 

• 

C2) TH.f; DISSIPATION FACTOR 

Suppose the applied field is periodic 

(8) 

(9) 

If the field has been applied for a suffic.iently long time~ then 

one can assume that the displacerre:nt vector is also periodic in 

time, but not neces:".arily in phase 'lr.rith E : 

(10) 

Therefore: 

]) = 7:1 e.os{wf) + ?J-z S'm (wt) • (11) 

For homogeneous, isotropic samples 

(12) 

6 
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One can introduce the relationships 

71 - /-J;·(cv) Co~ ) Pz -= /2;{cu) ~o £., (13) 

D-:.. '""Do s~ ~) 1(£. (u.>) 
~$' ____. -71 - -

'])0 ~oS (~) ~(w) 
(1.4) 

Tan5 is called the loss tc.nsent, and is associated 1.<Jith the p01·rer 

dissipated by the sample. (B) 

B. PIIOEON3 IN ?.SR.ROEL};C·l'lUC CRYSTALS 

c~uppose that the ions in a lattice undergo only swa.ll 

displacements. If Qk is the char.:;e on ion K and Qk r is the charge 

on ion K' then a potential bet\-;cen the ions rtk"l.Y be ,,..rritten 

1.\lhere Dk, ' is the distance bet·deen lattice sites, and :f is any 
K 

function of Dkk 1 • If ion K is displz.ced a distance uk from the 

lattice site, cilld ion K 1 is displaced ~~ then the potential is 

of the form 

(16) 



Expending this in a Taylor 1 s series: 

(l7) 

The force between the ions is the .first derivative in the expansion: 

(18) 

This is the harmonic oscillator approximation. 

Cochran (9) assumes that there is an hannonic oscillator 

interaction bet'..veen the ions, and bet1-·1een the outer sbells of the 

ions. Thus there are three types of inter2ctions: core-core, 

core-shell~ ~Jld shell-shell. He nu~ther assumes that only the , 

outer shells of' 'the negative ions interact as a separate unit. 

This is equivalent to saying th~t the positive ions have a no~le 

gas. configuration and the outer shell is tightly bound to the 

nucleus. This is not true for the perovskites BiFeo3 and BiHno3 • 

The adiabatic or Born-Qppenheimer.approximation is assumed to 

hold: the Hamiltiorian can be split in~o a nuclear nnd electronic 

Hamiltonian. The outer shell of the negative ion is assumed to 

have an effective mass, reducing the interaction between the 

negative ion shell and the neeative ion core to a problem 1.rhich 

is the same type as the classic~l hydrogen atom: 

(19) 
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The s:-1ell-core in-teraction is thus of the same form as t:-te io1~-io-n 

interaction 

F (20) 

J~lthoueh this approAch does not have any a..l'lharmonic terms, 

it tre<::.ts the outer shell as a sef'arate particle, and gives the 

saJre ansl'rer p "".s an apj.:ro=:~ch using energ;:" perturbation· and. dipo1e 

monents. (lO) 

S~ng over all the atoms in the crystal 

(21) 

One assumes a solution of the fonn 

As an example suppose that there are t1m atorr.s per unit ce11 of 

mass :Kl and l-'1'2 and only nearest neighbor interactions are considered: 

(22) 

These may be solved sin1ultaneously: 

(23) 



Figure 1 

wavenumber 

(a) Transverse phonons £or a diatornie lattice 
{from Kitte1) 

t"requency 

Optical 
Branch 

lO 

Brillouin Zone 

wavenumber 

{b) Transverse phonons When the long and short 
.· range forces cancel. (£rom Cochran) 

' Boundary · 
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The roots are ~ for K ...:;,.Q, K ~ Y?..: 

zc c-' --~--'- J ~ Az .> (optical branch) 

( a.cousticcl br<:nch) 

This is the linear chain solution, which appears in Kittel (11). 

Ho1·rever, if both long range and short ranee forces are considered, 

it is possible for the long and short range forces to cancel for a 

particular phonon mode. Cochr.en o.sserts that this instability is the 

cause of .ferroelectric behavior. Some of the assumptions of this 

argument <1.re that the phonons are pure transverse and pu.re longitudinal 

and that the 'P-ave vector is in a symmetry direction. There are 3n 

possible phonons, ·.mere n is the number of .:-~.toms in the unit cell, 

3 acoustical phonons and 3~-3 optical phonons. Since the perovskite 

structure has 5 ato~s per unit cell, this implies 15 phonbp modes. 

However, below the Curie point there are t•vo oxyeen ions ".dth identical 

environments so there are only twelve non-degenerate phonon modes. 

Above the Curie point all oxygen ions are identical~ so there are 

only nine non-degenerate phonon modes. For BaTi03 the oxy.e;en octahedra 

aprears to be undistorted in the transition. (l2) This implies that 

there is strong covalent bonding between. t.he ox.yeen ions since there 

are different erfcctive fields at the t3~c l o~ygen ions and type 11 

o:x;vgen ions. 

C. THERl•iODYNANIC THEORIES OF F3fu1.0EI.ECTRICITY 

There are several thermodynamic theories of ferroelectrici ty 
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based on the second order phase transitjon. Cl::1ssically, the second 

order phase transition :is ch~racterized by a discontinuity in the 

second derivative o! the Gibbs free energy while the first or::ier 

transition is discontinuous in the first derivative o:f the Gibbs 

free energy. Ferroelectric transitions may be of eit:1er the first 

or second order. (FerrOT!iagnetic tra.nsitions are second order.) 

Hm..,.ever, there is e. real question as to •~hether tbere is any sharp 

delineation between .first End s..;;cond order transitions, or whether 

. it is just a case of the relative w~gnitudes of the important 

factors. 

A second order phase transition implies a gradual change 

between phases. It i.s a transition in which there is a 

continuum of phases bet'.l1een the initial and final phase. 

C. Haas (~J) . enumerates the symmetry conditions above and . 

below the transition .temperature necessary !or a transition to 

. oe second order. 

The first condition is that the less symmetric point group 

is a subgroup of the more symrnetric point group. If P0 (~) ···is 

a density function representing t~e full syn~etry of the crystal 

in the point group G0 (l?) then P0 ('r_) is an invariant. If the 

transition to another point group G(j~) lowers the synJD.etry ~ 

then -~(r)-==P0(r)- AF(r). P(r) is a subgroup o:f P 0 (r) Rnd 

therefore can:1ot h-"ve sy:rr.;~;etry operations not in P 0 (r). 

The second condition is that AP(r) is an irreducible 



representation leaving P 0 (r) invariant. 

The third condition (due to Landau) is that all odd powers 

vanish in an expansion of the free energy of crystal. If the 

free energy is expanded in terrr.s of some varic>~ble it is o.f the 

f'orm (l4) 

(24) 

Goldrich Bnd Berman (l5) imploy the iclea of Haas in connection 
\ 

•·d.th the perovski te structure. Using the Gibbs function as an 

a.ppropriate density function they state that it must span the 

higher energy s:ymmetry group G0 • It is invaric:.nt UJ."'lder inner 

products of the type L ¢/9>. One a.ss1.1J!les that· G, is -{!,. supgroup of 

G0 and G1 t is a subgroup of G1 . In other i.'Jords ;J G1 c?..n contain 

only s;;.rtr·~~etry oper2.tions that G0 con to ins: If it contains all the 

syrmnetry operations it is a trivial s1..1bgroup (just the group G0 ). 

G1 ' can contAin o:nly sym.r.:etry operations in G1 • If a density 

function P(l) is invariant under a e;rouF it must also be invariant 

under a subgroup. If a second order tr~msi tion does imply a 

gradual change betvree:n phases then the transition would go .from 

G0 to Gl to Gl •., where G0 and G1 ' are (stable) space groups. 

·Because the. Gibbs free energy is a scalar invariant in a transition 

(it must be equal in both phases_ at the transitj on teml:::erature), 

the tran~ition will gradu~lly go from the group G0 to the largest 

subgroup, Gl and will be stable. It ·..vil1 not go to G1'. Thus 

13 
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Goldrich and Berman are ab1e to list the possible transitions £rom 

any given space group by considering only the largest subgroups. 

The best known theory of .fer-roelectrici ty is that by. · · ·. 

Devonshire (lb),(l?),(lS). He assumes that the Gibbs free energy 

can be expanded using the ·polarization as a variable. If' the 

tra.neition is second order, then the coefficients for the odd 

powers are zero and 

By assuming that the spo~teneous polarization is in only one 

direction, then the equation reduces to 

It is assumed that oe and 5 are always positive., while 'f may 

be positive or negativ~. If' t is negative the transition is 

first order, and if it is positive it.is second order.(l9) 

The electric :field is given··py 

(25) 

(26) 

(27) 
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If this is equated to zero, then the spontaneous polarization is (a:>) 

?s 
.....- { ~~[(!-?)fz-1/]j%.) ~<o + • 

) 

Yz 
Ps-= {z~ ((t- ::.(/1-/ j} - )Jl>C). + 

} 

The Gibbs .free energy is not as simple a f1.mction as it at 

first seems. The Gibbs free energy, or the potential ¢ defined 

as the Gibbs free energy per mole, is much rr.ore ccmplex. It is 

a function of the mechanical stress, mechanical strain, the 

electric field, and the polarization. Also to be considered are 

crystals which contain some type of 111:1gnetic ordering (ferromagnetic 

or antiferromagnetic) m~king the potential a function of the 

magnetic field and magnetization. Thus G is a function of at 

least six variables: G- --41- G{x..~ "k.> £~P., H)M). The· .first assumption 

is that there is no mechanical strain nor stress. This is not a. 

trivial assumption since stress and strain are tensors and are 

~ functiqn of the fabrication of the crystal as well as the applied 

stresses. ( 2l) 

The assumption that the crystal may be expanded in even pm-1ers 

of the polarization and magnetization is the same as assuming the 

function is symmetric about the origin in P-l·f space: 



This assumption is only valid for those directions in the 

crystal which have mirror symmetry, ~or example along the three 

e.xes a, b, 'S in the cubic cryst.a1. In eenera.l, the crystal 

c:?nnot be anistropic. Follo1<1ing the p~.per by G:A• Smolenskii (22) 

the eA~)ansion of Gibbs energy is 

G(~P) = G-o+ «?7. + ~ P4 - PE 

+I?( 'fo(l r- If' pf':f- f\1 H -+ ¥'P'1.M'- • 
(28) 

The solution is at an extremum (equilibrium condition) when 

( dG-) - 0 J?M- . .J 
(29) 

In order for this to be a minL~um, the second derivatives 1nust 

be greater thc.n zero. (:23) 

(30) 

1~ 

Calculating the first derivatives (with no applied field) and setting 

them to zero yields 

(31) 



If the·triVial-'solutions P-:::.o, M~C> are ignored, these 

equations may be solved 

- o(- ¥'1"12. 
) 

~ 

- o{ I- 'if1: p"l. 
(32) 

• f->/ 
There are three regions of interest, namely 

(S~olenskii assumes that e~~e.but this is not the case with 

BiF'e03) 

For eM< T <: eC!.. > M=O) 'Pt!: 0 .: 

which is the standard expansion for a ferroelectric crystal, and 

is the basis of the approach of Devonshire's treatment o:f barium 

titanate (lb),(l7). The solution to -the differential equations is 

(34) 

For T .t( E9wt < ec.. ' t,he result i·s equation (32). 

D. •rH3 PEROVSKITE S'rRUC'I'URE 

An outstanding ex."'~m:Ple of the perovslcite-type :rerroelectrics 

is barium titenate, BaTio3 • Barium. titAnate has the cubic 

perovskite structure above the Curie point (120°C) and tetragonal 

perovskite structure in the ferroelectric phase. 

17 



The theories of the previous two sections are very difficult 

to apply to anything but the simplest crystal structures because 

of surrmations of the form or equation (21), i. e. 

Thus Cochran's theory cen only be easily applied to the (cubic) 

perovskite structure, the simplest ferroelectric structure. The 

formula for the perovsk~te structure .is AB03 , Hhere A and B a.re 

transition metals. The A ion is the larger ion and occupies the 

corners of the cubic unit cell. The B ion is in the center of 

the cube, and the oxygen ions occupy the fC'ces of the cube. If 

the lattice is displaced so that the A ion is at the center of the 

cube, then the B ion is at the corners, ~nd the oxygen ions are 

at the center o£ the twelve cube edges. The perovskite structure 

is sho"Wn in Figure 2. 



Figure 2 

The Perovskite Structure 

(a) B Cation at Body Center Site 

(b) A 6ation at Body Center Site 

~A Cation 

Q B Cation 

Q Oxygen Anion 
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.. . III. APPARATUS 

The apparatus .for the high frequency dielectric measurements 

is bc>,sically the same as that described by R. T. Smith. ( 24) The 

appar?tus consists o.f a vertically mounted slotted line terminated 

with a cerandc coaxial sample holder. The sibnal sensed by the 

probe o.f the slott,ed line is mixed with a local oscillator signal, 

producing a 30 megahertz beat .frequency signal which is amplified 

on an I-f strip. By comparing the position o.f the minimum and the 

j:-~~., points of the sample with the positions and ±;;Jb points of 
~ 

the open and short circuit terminations, the impecance of the 

sample can be determined. By using a comp.uter progr&-n, the real · ·· 

and imaginary dielectric constants are determined as a function o£ 

temperature. 

Important corrections are due to the attenuation of the 

sample holder and discontinuities between the sample holder and 

the slotted line. The attenuation corrections are due primar~ 

to the resistance of the fire-on platinum-gold conductive paste 

on the ceraJllic holder. However there were discontinirlties in the 

old sample holder due to the dif£erences in diameters of the outer 

and inner conductors. The outer conductor o£ the sample holder 

was .089 em. larger than that o£ the slotted line. This caused 

additional re£lections. Also, the old sample holder was extruded 

and not machined, so that the surface was rough. A new sample 

holder was made using precision ground Mullite }N-30 ceramic 
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inner and outer conductors {by }!cDanel) c-md J:recision brass tubing 

from General Radio Co. All parts o~ the sample holder were milled 

to within .ooln. All brass parts were silver plated prior to final 

assembly to improve conductivity. The new S3Jllple hoJ_der resulted in 

the following improvements: 

l. Elimination of discontinuities due to a change in diameter of 
outer and inner conductors and non-uniforrni ties cc>.used by surface 
imperfection5 in the extruded ceramic. 

2. Improved electrical contact betl,;een the ceramic center--conductor 
ann· brass center conductor. 

3. Improved design o.f the termination 1mich allm·red the thermocouple 
to be placed within 0.3 inches from the sample. 

A practical improvement was that large fins \rore rnilled into the 

outer conductor for more ef"fic-tent cooling outside the furnace. 

Using the slot·ted line teclmi·-~ue it is -yery difficult to get 

accurate data 1.zhen the s~mple is very lossy (as in the ce.se of bismuth 

ferrate). The reason is that i~ i~ difficult to measure precisely 

the position of the voltage rnin;i.mum. In the error analysis by 

R.T. Smith ( 2 5) the InP ... xir.::um error in the dielectric constant 1-1as 

20% And in the dissipation factor 25%. The residual standing wave 

ratio of his sample holder was 

7? -= I. o? ~ 

The residual st~nding wave ratio of the improved sample holder is 

TI1e residual st~nding wave ratio of an ideal sample holder is 

R=i .... 



22 

The sample may be considered as a capacitor either in series 

or in parallel 1.dth a resistor. Thus any geometrical chane;c of the 

sample Hould at most add a capacitor in series 1d th the sample 

and would not improve the prob~em of the conduction loss term masking 

the dielectric constant. 

Another l!lethod is to use a phase cow.parison method which measures 

the change of phase directly. This may require goine to hieher 

frequencies than are nm"l used, but this method Tlk'lY be the only solution 

to the measurement of' high loss samples. The method consists of 

measuring. the phase of' the forw-;:rd pmver and comparing it to the 

phase of the reflected povrer. The phase chango is compared to that 

of the open circuit and short circuit terminations. 

Block diagrams o.f the slotted line circuit and the pn~se 

comparison circuit are shmro in .figures 4 and 5. · 



Figure 3 

Block Diagrem of Slotted Line Apparatus 
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Figure 4 

Block Dic:~gram of Proposed Phase Comparison Apparatus 
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IV. EXPERD<E~T.~.L .RBSULTS AND CONCLUSIONS 

Eeasv.rement.s on the BiFe03-Pb'riOJ binary system were made 'With 

an improved sample holder on samples aeed about six months. In the 
. (26) . 

measurements by R.T. Smlth on the 90% B1Fe03 sample, the 

imaginary part of the dielectric constant increased uniforirly in the 

region 700°C-800°C -.rhile the real part approached a maxirnum. The 

total absorbed energy is usually nearly constant as a function of 

temperature for a small range in temperature. Thus one would expect 

that for a lar~e increase in the real part of the dielectric constant 

there would be a corresponding decrease in the imaginary component. 

In t,he measurement on the aged sample the expected drop in the dissi

pation function occurs (see figure 5). The relative dielectric 

constant at the Curie point is 900 for the aged sample compared to 

1700 for the virgin sample. This may be due to a valency change j n 

the Fe3+ ion (see figure 6) •. 

B. Bir-~03-PbTiOJ 

The original· intention was to measure the Curie points of this 

system at high frequency using the slotted line technique. The 

sample was found to be too conductive. Therefore resistivity 

measurements were made on a solid solution of 40% BiMno3- 6($ PbTi~ •. 

The sample was t\.YO- phase, containing both the· cubic and tetragonal 

phases. ·By determinini:T the direction of the thermoelectric effect 

(sign of the Seebeck coefficient), the conduction was found to be 
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primarily N-type. The sample showed no ~.nmr.alies near or above the 

transition temperature. The contacte are ohmic, even '11hen a pointed 

5 mil tungsten vdre is used as a contact. Graphs of resistance as 

a function of temperature ana applied voltage are shown in figures 

7, 8, and 9. 

The Bil~nOJ-PbTi03 binary system is described in a paper by Bokov 

et al. (2?) According to tm m, in the region .from 55%-lOO% FbTi03 the 

system is tetragonr~l beloltT the Curie temperature, isomorphic with 

pure PbTi03. In the region of 35%-55% the system is cubic and in the 

region from 15%-35~ PbTi03 , i:.he system is orthorhombic. 

1'hey ~V"ere unable to make single phase solutions with compositions 

above 85% Bii-'Tn03 • In. the sarnples prepared at the U!-~ l·faterials 

Research Center, it ~'ias found that the contaminant is Bi2rvrn4o10• No· 

method for removing the· contaminant has yet been found. 

From the data of Bokov, several conclusions may be tentatively 

drRvm. First, the orthorhombic phase ~~y be isomorppic with pure 

Bi~mo3 , by comparison with other phase diagrams of perovskites. 

Second~y, Bi}fu03 may have a very high transition temperature, in the 

region of 9000C, higher than the t'ransition temperature of BiFe03.~ 

Hol<"rever ~ from the samples prepared at UMR 1-:aterials Research Cente;-, 

there is indication that the region that Bokov considers orthorhombic 

may actually be two p~~se. 

There has been some work on pure Bil-~03. Both Bokov et al. ( 2S) .and 

Sugawara et al. ( 29) agree that the distance bet~en the manganese 
I, 



,...... 

~ 
0 .._ 

~ 
+) 

·¢ 
•ri 
+=' co 
•ri 
(!) 

~ 

30 

28 

26 

24 

22 

20 

1$ 

16 

14 

12 

10 

8 

4 

2 

0 

40% Bil-~03 - 60% PbTiOJ 

Resistance vs. Temperature 
near the Curie. point 

~" 
~~~ . 

~e~~ 

350 
01 I I I I 300 1 I I I I I 1 1 f I I I I I I I J 

400 450 

Temperature °C 

1'%) 
1-'· 

Otl 

~ 
~· 

l'J. 
'.() 



..-
(f.) 

s 
104 

~ 
0 .......... 
~ 

+> 
·rl 
> 

•rl 
+> 
(Q 

.r; 
tO 
(!) 

~ 

lO 

Figure $ 
f':.ESIST,\NCE AS A FUNCTION 
OF RECIPROCAL TElfPERA TURE 
(40,~ BiEn03 - 60% PbTi03) 

I 

30 



Figure 9 
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Figure 10 

PHASE DIAGRAN OF BiJ.:nO:rP:bTiOJ 
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ions is 3.93~ in the ~direction and 3.98~ in 
,.,..,. 

the b direction. 'I'hey 

both report that the unit cell is triclinic. Suga;.-.rara assigned 

fifteen lines of his x-ray analysis to the (1,1,1), (2,0,0), (2,1,1), 

and (2,2,0) peaks of the tric1inic structure. However, due to the 

complexity of the triclinic structure it is doubtful whether fifteen 

lines are sufficient to conclude the.t the structure is actually triclinic, 

or even if the sample is sing·le ph~.se. Rcth (30) indicates in his 

paper that by using the hard sphere model the structure would probably 

be of the Ti20J form and not sin81e phase. Bokov indicates that 

BiN:nO has a multiple unit cell, while Suga'.'Tara states that the 
3 

superstructure is negligible. sue~wnra assumes that the space group 

is monoclinic and by the_ extinction rules climnC?.tes all but three 

possible sp.-.ce ~roups cn32 c~ c35 Two of these are non-centrosyr.unetric a b J , , • 

and one is cent.rosymmetric·. 

C. THE J AHN-TELLER EFFECT 

The Jahn-Taller effect is the slight displacement of the 

potential minimum of an ion from the lattice site due to a lack 

of symmetry of the electronic wave function. There is a possibility 

that the Jahn-Teller effect may play an important role in the 

perovskites BiFe03 and BiHno3 . An ion like Ti4+ with a noble gas 

electron configuration has a potential '\'Tell o:f the form: 

(35) 

However, for a ion like Fe3+ wi-t.h a non-symmetric e1ectron structure .. 
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the nuclear coordinates :for a potential minir.ru.m TnE.Y not be in the 

center of the o:xyccn oct a '1edra.. The potential t-rell. :for Fe3-t- or 

J+ 
l·::h ·H:i).l probably be distorted an:Jl r:1c.1.y h.:we a barrier in the center. 

The theory of Cochran is. that the long range and short range 

forces cancel fqr a pn.rticula·r optical phonon mode~ causing a 

ferroelectric trFnsition. The salient point of this theory is that 

the ferroelectric transition is definitely a coupled behavior. Above 

the transition tempernture the spontaneous pola.riz.:.tion is zero, .::nd 

belmr that temperature the spontaneous polax:-i:mtion is a finite number. 

For the Jahn-Teller effect, the .rerroelect.ric .transition ;.qould 

be an uncoupled beha'\r:ior. As the temperature (energy') incree.ses ~ 

"=H- J-t". .."td . bet "" t the Fe-' or 1m ~on WOu...t.: J"tUnP ween s·~.~a es. At a sufficently 
I 

high temperature the I!k"Udl'!tum probability of x \'lould be at the center 

o:f the well. ·Thus one "'.·rould expect to see a. -vmshing out of the 

polarization as the tempe~e.ture is increased.· Since the transition 

would not·b~ .corupletc'until tho spontaneous polarization is zero~ a 

ver-:1 broad pealt in the dielectric constant 1r.rould be expected. For 

a:ny·· appreciable barrier the probability o£ ·observing the nucleus 

1'10uld not be a r.Ja.Xim:um at the center except .f"or very high temperature~: 

Thus t-wo e.xperiP.Jental criteria f'or a Jahn-Teller f'erroelectric tran'sition 

.are: 

l. The peak should be very broad, since the polarization is a 
monotomically decreasing function. 

2. The transition tem~)crature should be very nigh so that Pr(x) is 
a. rna.ximUI!l at the center of' the 1-rell. 

These criteria are fulfilled by solid solutions of BiFe03. From the data 
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Figure ll. 

(a) The Proposed One-Dimensional Jahn-Teller Potential 
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by Srni. th (32 ) "(33 ) (see fisure 12}, the Curie point for pure BiFe03 

extrapolates to· 850°C. The peak f'or solid solutions becomes much 

broader as the mole-percent content of DiFeo3 is increased. The 

80~b BiFe03 -20;Gf'bTiOJ and 90;'bBiJ:i'eo3 -lo;:SPbTi03 c·urves indicate a 

very diffuse peak. Thus the first. criterion is also fulfilled. 
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The Ja.hn-'feller effect implies much more complex short range 

forces thE.m proposed in the theory by Cochran. The relative importance 

of the Jahn-Teller effect in the ferroelectric transition of BiFeo3 

can be determined by infrared spectrqscopy or by the Uossbauer effect. 

If there is a soft phonon mode, then one should expect the resonant 

· absorbtion peal-e of the l:ossbauer effect to decrease as the phonon 

frequency lo1.rers. (3h) If there is no soft phonon mode, then the effect 

a 
vmuld decrease as e.--;;; 1.vhere ~ is the De bye temperature. 

E.J·~. Havinga(.35)has also proposed the Jahn-'reller effect for 

Nn.JI- ~ However, he claims that the Jahn -Teller effect distorts the 

oxygen octahedra and is a cooperativa- effect. He al·so states that 

the Jahn-Teller effect is very unfavorable to ferroelectricity. In 

contrast, the theory presented here has the assumption that the 1..rave 

function for the outer electrons of the Fe3"""or l-'Tn3+ rr.tay not assume 

the synm1etry required by the oxygen octahedra., whose bonds to the 

central ion are assmned to be partially covalent in character and 

therefore rather rigid. This means that the least energy configuration 

for the Fe3"6r En3+ion 1-'!0uld be slightly displaced from the center, 

vmich leads to the 'Jahn-Teller effect. The Jahn-'feller effect is 

uncoupled, and chanees the nature of' the short range forces in 

the crystal. 
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