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A MEASUREMENT OF LEAD SPACE ANI; ITS EFFECT 

ON THE HOMOGENEOUS l\TUCIEATJON RATE 

OF \TATER VAPOR IN HELIUM 

The existence of a "dead space" surrounding each 

nucleated water droplet is demonstrated and measurements 

of its rate of development are made. The effects of this 

"dead space" are considered to be due to both the removal 

of vapor from the helium-water vapor mixture and the 

evolution of heat about the drop due to its growth. The 

results confirm the usefulness of the concept of a "dead 

space" and provide A means for its measurement with 

respect to time. Recommendations for further study and 

a method of correcting for dead space effects is given. 
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CHAPTER I 

INTRODUCTION 

The formation of clouds in the earth's atmosphere 

is governed by the large number of foreign particles 

present in suspension ~n the a1r. These particles 

afford convenient centers for natural conaensat1on. Such 
1 condensation ls the subject of Fletcher's heterogeneous 

nucleation theory. This theory ~s based on the theory 

of homogeneous nucleation, thus a comprehensive under-

standing of the processes of homogeneous nucleat~on should 

serve well in promoting an understanding of all forms of 

nucleation. 

1. Homogeneous Nucleation. 
2 

Wilson was among the 

first to observe homogeneous nucleation in cloud chambers. 

Volmer3 conceived a physical mechanism which allowed him 

to calculate a theoretical homogeneous nucleation rate. 

Extensions of Volmer's approach have appeared over the 

last three decades. Many of these theoretical attacl{s 

are based on the liqu1d drop model in which very small 

droplets, representing the in1t1al fragments of the new 

phase, are assumed to have the well-defined thermodynamic 

propert1es of the bulk liquid phase. Starting from this 

point, the theories gtve a homogeneous nucleation rate 

law wh1ch possesses the following general form: 



2 

J =A exp [(l:Bs)2] , (1-1) 

where J is the number of drops formed/cm3-sec and S is 

the supersaturation. The quantities A and B may be func-

tions of temperature, pressure, and supersaturation. For 

the range of supersaturations studied experimentally, about 

4.3 to 5.8, the quantities A and B may be considered as con

stant. The 1/(ln S) 2 term dominates the changes in B and 

the exponential dominates the changes in A. In the work be-

low, A and B will then be considered as constant factors. 

The theory predicts an increase by a factor of 102 in 

the nucleation rate with an increase of 5% in supersatura-

tion. As a result, experimenters have made determinations 

of the "c~itical supersaturation," i.e. the minimum super-

saturation required to produce a barely observable quantity 

of droplets during a cloud chamber expansion. Such measure-

ments can only provide an approximate determination of the 

temperature dependence on the critical supersaturation. 

Frey attempted to measure the increase in the nucleation 

rate as a function of supersaturation. It was apparent that 

4 
droplet growth effects dominated his experiment. 

2. Statement of the Problem. To advance our under----------- -- ---
standing of the nucleation process, experimental techniques 

must be employed which are capable of discerning the firm 

details of the theories. Experimental techniaues in current 

usage measure the combined effects of nucleation and droplet 

growth. 



3 

A means of discerning the way in which the growth of 

a droplet perturbs the region immediately adjacent to it 

is needed. Such jnformation would offer a means of 

correcting experimental measurements of the nucleation 

rate for the effects of droplet growth. Courtney5 calcu-

lates the rate of droplet growth. However, he assumes a 

uniform vapor distribution throughout the volume and 

neglects the evolution of heat from the droplets. Such 

procedures are only justified for the crudest sort of 

ana lysis. 
6 Allard and Kassner developed a technique for making 

precise measurements of the combined effects of nucleation 

and droplet growth. They described a technique for 

correcting the measurements for the effects of droplet 

growth which turned out to be somewhat impractical due to 

the limitations of the apparatus. 

The concept of "dead space" surrounding a growing 

droplet appears to be the most realistic and practical 

means of taking droplet growth effects into account. This 

"dead space" is defined as the volume surrounding a drop 

in which no further nucleation occurs as a result of: 

1) removal of water molecules from the vapor by the growing 

drop, 2) evolution of the latent heat of condensation from 

the droplet. 

This work describes a technique which allows the 

approximate measurement of the dead space around a growing 

droplet as a function of its age. This data will provide 



a means of correcting measured nucleation rates so that 

these can be properly compared with nucleation theory. 

4 



CHAPTER IJ 

THE THEORY 

Theoretical approaches to the physics of nucleation 

vary in both model and result. A brief review of the 

theoretical treatments of homogeneous nucleation will be 

given along with some theoretical treatments of droplet 

5 

growth. Much is to be gained by such a review as it shows 

how widely diversified the theories are and it provides 

a meaningful basis for a detailed discussion of some 

aspects of the physics of nucleation. A convenient 

term1nus for all theoretical nucleation treatments is the 

nucleation rate. This relates the number of drops 

formed/cm 3-sec as a function of the supersaturation. 

1. Liquid_ Drop The~ of Homogeneous Nucleati~n. A 

basic starting point for many of these theories is the 

liquid drop model. The assumptions made are: 1) the first 

fragments of the condensed phase are well-defined liquid 

droplets which have the bulk properties of the liquid, 

2) once nuclei are formed and become free growing, they 

are imagined to be removed from the system and re-inserted 

as monomers. 

All of the liquid drop theories agree to the general 

form of the rate law: 

-B ] 
J = A exp [ )2 

(ln S 
(2-1) 

' 
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where A and B are auantities to be considered as constant, 

and S is the supersaturation. The kinetic coefficient, A, 

23 -1 -3 is on the order of 10 sec -em depending upon the means 

by which it is derived. The exponential factor, B, is gen

erally on the order of 102 and may be a function of tempera-

ture. In this work the temperature is taken at a constant 

value. 

The nucleation rate is very sensitively dependent 

upon the supersaturation through the exponential term so 

that a small change in S, say from 4.? to 5.0, results in 

a large change in J, say from 50 drops/cm3 -sec to several 

thousand drops/cm3-sec. 

2. The Exponential Factor. An analysis of the 

results of various theoretical treatments shows that the 

constant, B, in Eq. (2-1) is the same. 7 Farley's develop-

ment of the quantity B will be given here. 

A system is initially at a temperature T and pressure 

P. The system contains one liquid drop with g molecules 

and radius r. If m is the mass of one molecule and p is 

the density of the bulk liquid, then the relation, 

mg = 4/3 1r r3p , (2-2) 

follows directly. If ¢a is the Gibbs free energy per 

molecule of the vapor phase and cpb is the Gibbs free ener

gy per molecule of the liauid phase, then the free energy 

¢g of the liquid drop of g molecules may be written as: 

¢g = (cpb -¢a )g + 47r r2cr ' (2-3) 



where a- is the surface tension. The l.qst· term arises 

because the molecules in the surface do not have a full 

complement of interacting molecules on all sides. 

Ea. (2-2) may be expressed as follows, 

47rr2a- = [ Ju(4/J) 1/3 1T 1/3 m 2/3 213 
p 2/J ] g • 

(2-4) 

Considering the auantity in brackets as a constant, C, 

Eq. (2-4) becomes, 

, 4~2u = cg2/3 • (2-5) 

Making this substitution in Ea. (2-3), one obtains, 

c/>g = ( cf>b-cf>a )g + Cg
2 /3 • (2-6) 

7 

,,,'hen the vapor is undersaturated, cf>a is less than cf>b, 

conseauently the free energy is monotonic increasing with 

g. However, when the vapor is supersaturated, cf>a is 

greater than cpb and the free energy passes through a maximum 

at g = g*. In a supersaturated vapor, clusters of size g* 

will become rree growing (nucleate) with the addition of 

a single molecule, or evaporate with the removal of a 

single molecule. At dcp/dg = O, g = g* and clusters of 

size g* are in equilibrium with the vapor. Thus 

cf>b- cf>a = -2/3 Cg*-1/J = 
' (2-7) 

where r* is the radius of a cluster of size g*. 

Substituting Eq. (2-7) into Ea. (2-3) gives the free 

energy at equilibrium: 

cpg• = 4/J ., r*2a- • (2-8) 



It is helpful to consider clusters of size less than 

g* to be embryos, clusters of size g* to be nuclei, and 

clusters of size greater than g* to be free-growing 

droplets. 8 In essence, the nucleation rate concerns 

itself with the rate at which nuclei are formed. Thus, 

knowledge of the distribution of cluster sizes from 

g = 1 to g = g*, or greater, is necessRry. In order to 

maintain a tractable rate theory, the equilibrium distri-

bution of cluster size, Ng, is assumed adequate. If No 

is the number of monomers per unit volume, then kinetic 

theory gives Ng as: 

Ng = cN0 exp(-¢g*/kT) 

where c is a constant. 

= cNo exp [-41TI'*2cr] 
3kT ' 

(2-9) 

q 
The Kelvin eauation gives the eauilibrium condition 

between the cluster and the vapor: 

RTlnS = 2Ma"/pr, (2-10) 

where T is absolute temperature, 

R is the gas constant, 

M is the molecular weight of the liauid, 

P is the density of the bulk liquid, 

S is the supersaturation, 

r is the cluster radius. 

An expression for r is obtained from this equation 

2Mcr 
r = • pRTlnS 

(2-11) 

8 



.. 

9 

If Ea. (2-11) 1s substituted into Ea. (2-9), tr.e result is 

Ng = cNo exp [-16~~3M2 
3kR2T3p2 L~ 

' 
where the B factor of Eq. (2-1) is recognized to be 

B = -
16~~M2 

3kR2T3p2 • 
(2-12) 

Although this is the generally accepted theoretical 

expression for the B factor, both theoreticians and 

experimenters realize that this result has some obvious 

short-comings due to the fact that ~and p are normally 

taken as bulk values. The justification for the use of 

bulk values in describing nuclei of such small size is 

dubious. 

Work has been done both in theory and experiment to 

determine corrected values of ~ for droplets of 200 ! 

diameter or less in both saturated and supersaturated 

atmospheres.lO,ll,l2 

3. Evaluation of the Kinetic Coefficient. The -- -
following discussion outlines some of the techniaues 

employed by various theoretical investigators for 

evaluating the kinetic coefficient, A. 

Becker and C8ring13 use the same approach outlined 

in the preceding section for determining the exponential 

factor. The kinetic coefficient is evaluated by consider-

ing the condensation process to involve a series of quasi-

chemical reactions which take a cluster from the g-mer to 
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(g+l)-mer. Assuming a stationary distribution of cluster 

sizes in the vapor, the nucleation process may be considered 

as a series of slow reactions through the distribution 

of cluster sizes. Assigning a probability for the 

evaporation of a molecule from a cm2 of surface 1n time dt, 

and a similar probability for the condensation of a 

molecule, Becker and CBring postulate a current flowing 

through the distribution of cluster sizes. A system of 

equations are set up which are analogous to Ohm's law. 

The nucleation process is considered to be a series of 

resistances through which the nucleation rate J flows as a 

current between the potential difference represented by the 

droplet surface. This mathematical artifice allows the 

kinetic coefficient to be evAluated; the result is shown 

in Table I. 

The Becker-D6ring treatment is set forth clearly by 
14 Schmitt. Becker and D6ring maintain that their method 

gives some insight into the significance of the kinetic 

coefficient which other workers, namely Farkas, 1 5 overlook. 
16 Zeldovich derives a rate law which is equivalent to 

that of Becker and D6ring except for the factor, y , the 

so-called Zeldovich factor, which accounts for the fact 

that the system may depart from the equilibrium distribution 

of cluster sizes due to the steady state current. Table I 

shows the result of his calculation. 
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Farkas15 evaluates the kinetic coefficient by assuming 

the classical liquid drop hypothesis and considering the 

effect of collisions of vapor molecules with the clusters. 

The number of molecules in a given cluster is assumed to 

fluctuate in a fashion similar to the movement of Brownian 

particles in a force field. The ratio of the number of 

clusters of size g+l to the number of size g is obtained. 

and is identified as a differential form of the nucleation 

rate. The nucleation rate J is thereby a function of 

clusters of g and g+l molecules and the corresponding 

probabil1ties for condensing or evaporat1ng a s1ngle mole

cule from these clusters. This system of differential 

equations is then approximated by a single differential 

equation which is solved with appropr1ate boundary condi

tions. Becker and D8r1ng13 ma1ntain that the undeterm1ned 

constant, c (shown in Table I), 1n the Farkas theory should 

have been ident1fied as the total surface area of all the 

monomer molecules. 
17 Sander and ramkBhler perform a ser1es of experiments 

to test the temperature dependence of the Becker and DBring 

theory. They measure the critical supersaturation for 

homogeneous nucleation over the greatest possible tempera-

ture range, from +35° C to -75° c. Although offer1ng a 

nucleat1on rate law, they do not show explic1tly the steps 

taken to evaluate the kinet1c coeff1c1ent. They 1nd1cate 

the use of the same start1ng po1nt as Becker and D~r1ng13 
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and VolmerJ but perform a somewhat more exact calculation. 

As can be seen in Table I, this results in a correction of 

the B factor as well as the A factor of the general rate 

law. Using their own rate law, Sander and Damk~hler are 

able to plot a nucleation rate curve that falls between 

that given by Becker and D6ring and Volmer. 

Volmer3 first establishes the B factor, in the same 

fashion as given in paragraph 2 above. By considering that 

all drops, which exist in the vapor, pass through a 

critical size in the process of their growth, the critical 

size is pictured as a narrow gate to the process of 

nucleation. Obviously, the nucleation rate must be 

proportional to the number of drops of critical size 

existing in the vapor at any instant in a state of 

unstable equilibrium; i.e. proportional to exp [-B/(lnS) 2) • 

Assuming, as do others, that once a drop becomes free 

growing it is removed from the system and replaced by 

single water vapor molecules, eoual in number to those 

contained in the free growing drop, he maintains that the 

nucleation rate is the product of the number of such drops 

and the number of single molecules of the vapor striking 

the surface of such a critical size drop per unit time. 

Taking an expression for the number of vapor molecules 

striking a unit area per unit time from kinetic theory, he 

obtains the result given in Table I. This method of attack 

is one of the earliest and many authors have modified this 
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basic approach. 

Frenke118 discusses the theoretical works of Volmer3 

13 and Becker and DOring in some detail. He proceeds to 

derive an expression for the velocity of condensation 

(nucleation rate) from a purely kinetic argument, rejecting 

the thermodynamic concepts which lead to the theories of 

Volmer and Farkas. 15 His argument closely parallels that 

of Becker and DBring in that he starts with a detailed 

microscopic balancing of clusters of molecules going from 

size n to clusters of n+l and n-1 molecules. Becker and 

D6ring consider this balancing condition to lead to an 

equilibrium distribution of clusters. Frenkel follows 

Zeldovich16 and assumes the balancing condition results in 

a simple non-equilibrium distribution of clusters. By 

continuing his analysis in the same vein as Becker and 

DBring and Zeldovich, he arrives at the rate law presented 

in Table I. Farley7 goes through similar arguments to 

obtain the result for the A factor listed below. 

The works in Table I are listed by author. The last 

column shows the number of drops nucleated cm-3-sec-1 at 

a supersaturation of 5.0, and a final temperature of 

-5.0° c. The meaning of the various auantities in the 

A and B factors is given on the page following Table I. 
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1. 10x l0
5 
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where z1 is the number of water molecules/unit volume, 

P1 is the vapor pressure of the liquid immediately 

after the expansion but before condensation, 

M is the molecular weight, 

a- is the surface tension, 

No is Avogadro's number, 

S is supersaturation, 

R is the gas constant, 

T is absolute temperature, 

g is the number of molecules in drops of critical 

size, 

p is density, 

OK is the surface area of spherical water molecule 

in droplet embryos, 

01 is the surface area of spherical water molecule 

in vapor phase, 

y is the 7eldovich factor, 

c is the proportionality constant. 

15 

The results tabulated in Table I have been reduced to 

the desired form by the author for comparison purposes. 

In some cases the way they appeared in the literature 

obscured the heavy dependence upon s. The form presented 

here is convenient for numerical calculations. Fig. 1 

shows some of these theoretical rate laws along with 

Schmitt's empiricAl rate law. Appendix B shows the 

values used for calculating the constants A and B along 

with the values found for A and B. 
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4. Droplet Growth Theory. A brief review of work on 

droplet growth is in order to provide sufficient bAckground 

for the work to follow. 

19 Bagge, Becker, and Bekow start by considering 

condensation as a quasi-stationary diffusion problem. 

Obviously, for the drop radius R to increase, vapor must 

diffuse to the drop surface and condense. The equation 

for the increase of drop mass per unit time yields: 

dm/dt =P47Tr2 dr/dt = 47rr2r: (op(r)/orJr=R, (2-13) 

where p is the density of the bulk liquid, the variable 

p(r) is the existing vapor density in the vicinity of the 

drop, And D is the diffusion coefficient of the vapor 

molecule in the supporting gas. Assuming the diffusion 

equ8tion to be an accurate description of the case, the 

density distribution about the drop is regulated so that 

p(r) obeys 

'VP(r) = 0 • (2-14) 

Fig. 2 shows the geometry of the problem and the 

pertinent variables. 

p ( r) 

i' ~ ~?:::::::..--1)~--------1/ roo P ( 00) =Po 

FIGURE 2 
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Boundary conditions for the system are: 

P{r) = PR at r = R 

P(r) = Po atr=ro • 

Applying these boundary conditions to the general solution 

of Eq. (2-14), one has: 

R 
P (r) = fb ---;- [Po -Itt] • (2-1.5) 

From Eqns. (2-13) and (2-1.5) the increase in drop radius 

per unit time follows: 

Dfb 1 PRJ 
dR/dt = fJ -; [1 - Po • (2-16) 

Taking P (R) ':!!! Poo where Poo is the equilibrium saturation 

vapor pressure and directly integrating Eo. (2-16), gives 

R2 = 
2~ [1- ~] t 

P Po ' (2-17) 

where Po I P00 = s. Fig. 3 shows the drop radius as a function 

of time for various supersaturations. 

The authors consider the possibility that warming of 

the drop due to condensation may cause a decrease in its 

growth rate. They arrive at an equation for the tempera-

ture difference between the drop and its environment. This 

modification supports the very slow droplet growth rate 

observed experimentally by these authors. 

The author uses Eq. (2-13) in a computer program 

designed to keep up with the droplet growth during a cloud 
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chamber expansion where nucleation is taking place. By 

using Ea. (2-13) the maximum possible rate of droplet 
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growth is represented. This gives the rate of removal of 

vapor molecules from the system. If one now smears out 

the effects of vapor depletion by assuming a uniform 

vapor distribution, the uniform vapor density may be 

adjusted for the depletion of vApor and a new homogeneous 

nucleation rate calculAted. Thus, this somewhat unre8listic 

model may be utilized as a simple means of keeping track 

of the nucleation rate as a function of the time during 

a nucleation experiment. Further detail is given in 

Appendix A. 

Courtney5 presents a somewhat different attack on 

the problem. Assuming a collision-frequency growth law, 

the net mass M depositing per second onto a cluster of 

g molecules with surface area Sg may be written as: 

(dM/dt)cluster = mSg [ague- agr ur], (2-18) 

where m is the mass of a depositing molecule, 

ag is the accomodation coefficient for condensation, 

agr is the accomodation coefficient for evaporation, 

u is the collision frequency per unit area for 

deposition from the vapor 8ctually present per 

unit concentration of vapor, 

ur is the collision frequency per unit area for 

deposition from the vapor at equilibrium, 



c is the actual concentration of vapor present, 

Sg is the surface area of a cluster. 

The concentration of water vapor in equilibrium with a 

plane surface, assuming ag and agr do not change with 

concentration, is then given by, 

21 

~ = { agr ur)/{ ag u) • {2-19) 

Substituting this result in Eq. (2-18) gives, 

{dM/dt)cluster = ag um{c - ~)Sg • 

The author goes on to show that, 

{2-20) 

{dM/dt)cluster = d{P47Tr3/3)/dt = SgPdr/dt. {2-21) 

The combim~tion of Eons. {2-20) and {2-21) yields, 

dr/dt = (aum/p){c- 0E) • 
Q 

{2-22) 

Integrating the last equation from t• to t gives the 

radius r{t) of a drop. Assuming that the radius of the 

cluster is negligible compared to its radii at later times 

when the cluster becomes the size of a drop, one has: 

t 

rt = to.9um/p) J {c - CE )dt , 
t' 

where t' evidently is employed to avoid ambiguities 

occurring at the initial stages of growth. 

{2-23) 

Courtney then continues in an effort to incorporate 

this result into Frenkel's rate law. This work is tedious 

and not of general use here. 



22 

Compared to the work of Bagge, Becker, and Bekow1 9 

the results are similar but not identical. Courtney's 

treatment is presented in the language of chemical 

kinetics whereas Bagge, Becker, and Bekow set the problem 

up as a macroscopic diffusion problem. 

Any effort to mAke precise meAsurements of homogeneous 

nucleation rates is hampered by the fact that droplet growth 

commences as soon as a droplet is nucleated. And for 

measurements of nucleation that are made over a finite 

length of time, as are all experimental observations, 

droplet growth and the thermodynamic and hydrodynamic 

perturbations incurred have an effect that has hitherto 

not been examined in detail. Schmitt14 minimized the 

effects of droplet growth in his measurements by performing 

experiments in which droplets were nucleated for very 

short lengths of time, on the order of 0.015 seconds for 

90% nucleations. This author intends to concentrate on 

that effect which Schmitt minimized in hopes that this 

information will prove useful in correcting experimental 

measurements of homogeneous nucleation rates. 
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CHAPTER III 

THE CLOUD CHAMBER 

The Cloud Chamber is a valuable tool in nucleation 

studies since cloud chamber data may be used to easily 

calculate supersaturations and nucleation rates. 

1. Supersaturation. Supersaturation is the ratio of 

the vapor density immediately after the expansion but before 

condensation to the equilibrium vapor density at the final 
20 14 temperature of the expansion. Schmitt shows that the 

supersaturation may be calculated from the expression, 

s = ..El. .!]:_ 
PF Pr ' (3-1) 

where pi is the equilibrium vapor pressure at the initial 

temperature previous to expansion, 

PF is the equilibrium vapor pressure at the final 

temperature after the expansion, 

P1 is the initial absolute pressure, 

PF is the final absolute pressure. 

Both PF and Pr are directly measurable quantities with the 

instrumentation available on the u. M. R. Cloud Chamber. 

The vapor pressures PI 8.nd PF are direct functions of the 

temperature and values of Pr and PF are given in the 

International Critical Tables21 for the temperature range 

encompassed in an expansion. The initial temperature, 



which is known, enables determination of PI· The final 

temperature, Nhich may be calculated by means of the 

adiabatic law, 

24 

1-Y 

TIPI y 
1-Y 

= TFPFY 
' (3-2) 

enables determination of PF• 

22 It has been shown by Allard that the expansion 

chamber can be programmed to a constant supersaturation for 

about 0.5 seconds after the expansion in the center of the 

chamber. Studies in this work require that the chamber 

maintain S constant for less than 0.5 sec. Possible 

error in the calculation of S may arise from three sources: 

1) the initial temperature, 2) the initial and final 

pressures, and 3) the adiabatic index used in Ea. (3-2). 

The error in final temperature is implicit in the last 

two considerations above. If the pressures are measured 

to 0.5 mm of Hg, the initial temperature is known to 

o.o5o K and the adiabatic index for the helium-water vapor 

mixture taken to be accurate in the third decimal place, 

then the supersaturation may be in error by ! 1/10. An 

analysis of the operating characteristics of the cloud 

chamber has been carried out by Packwood. 23 It can be 

concluded from the work of Allard, 22 Schmitt, 14 and 

Packwood23 that sufficient precision and accuracy are 

possible to allow nucleation rates to be measured to 
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within ± 101. Definitions of several other terms used 

commonly in cloud chamber research should be mPde here. 

2. Homogeneous Nucleation. Homogeneous nucleation 

m?y be defined as spont~neous formation of droplets of the 

mother phase independently of foreign centers of nucleation, 

such 8S dust particles. Homogeneous nucleAtion is dependent 

mainly upon the degree of supersaturation Attained by the 

system. 

J. Sensitive Time. The definition of sensitive time, 

To, as used here is very specialized. As shown by 
14 Schmitt, the data which is obtained from the u. M. R. 

Cloud Chamber may be best interpreted by computing the 

supersaturation at a series of points on the pressure 

spike. Then by integrating in a discrete fAshion an 

empirical nucleation rate curve over the time varying 

curve, the total number of droplets nucleated can be 

determined and compared with that which is observed. 0ue 

to the nature of the general form of the rate law, more 

nucleation occurs at the peak of the pressure spike than 

along the sides. The sensitive time, which is a measure 

of the time that the cloud chamber is at a supersaturation 

high enough to cause homogeneous nucle?tion, shall be 

defined as that width of the spike which includes 90% of 

the drops formed using the method of numerical integration 

given by Schmitt. Fig. 4 illustrates this concept a little 

more meaningfully. 
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4. The Basic Cloud Chamber Experiment. The Cloud 

Chamber used at the University of Missouri at Rolla is 
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a necessarily complex instrument but basically it performs 
22 a very simple function. Allard gives a detailed 

explanation of its operation. 

A cloud chamber experiment consists of an expansion 

of the interior volume of the chamber, known as the 

sensitive volume. The pressure of the sensitive volume is 

monitored by a solid st~te pressure transducer thus 

allowing a very sensitive measure of the pressure at any 

time during the expansion. The piston is maintained at 

some arbitrary ready position where the initial temperature 

and pressure readings are taken. The piston is then 

allowed to drop a set amount which may be controlled by 

the timing circuits. This results in an expansion of the 

sensitive volume which occurs in about 0.05 seconds. The 

pressure circuit measures the initial pressure, turns "off" 

during the bulk of the expansion itself, and then turns 

"on" again to measure the pressure for a time near the end 

of the expansion. Several expanded scales are employed. 

Since compressive heating effects tend to compress the 

sensitive volume shortly after the expansion, a series of 

slow expansion valves are normally used at this point. 

These may be set to compensate exactly for the compressive 

heating effect, thus resulting in a steady final pressure 

trace from the transducer. It has been found that the 
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piston and the mass of water above it tend to oscillate, 

since they are trapped between two gases. These oscilla

tions are of such a magnitude as to make the final pressure 

oscillate with an amplitude of several inches of water. 

This destroys the possibility of defining a final constant 

supersaturation, thereby making it impossible to perform 

the square pulse expansion envisioned by Allard and 
6 Kassner. Fig. 5-A shows the ideal square pulse and 

Fig. 5-B the type of square pulse obtained due to oscilla-

tions. 

Schmitt14 avoided this difficulty by making use of the 

first spike resulting from the oscillations. Instead of 

staying at the pressure of the system at the end of the 

expansion, a compression valve was turned on for a very 

short time. This resulted in a final pressure trace which 

very nearly approximated a parabola. The sensitive volume 

was recompressed just enough to take it below the critical 

supersaturation so that the oscillations did not affect 

the cloud chamber during the time allowed for droplets 

growing to photographable size. Fig. 5-C shows the type of 

pressure trace resulting from this type of expansion. The 

author makes use of this same technique since it provides 

data which may be interpreted with ease in comparison to 

that shown in Fig. 5-B. 

The basic cloud chamber experiment then yields the 

initial pressure, the initial temperature, the final 
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pressure, and a. photograph of the resulting droplet 

population as data. As shown above, with the help of the 

International Critical Tables and the adiabatic law, the 

supersaturation may be calculated from this inform8tion. 

Since the parabolic pulse expansion does not have a 

constant final pressure, as does a square pulse expansion, 

the supersaturation may be calculated for a number of 

points along the parabolic pulse providing a time varying 

curve of supersaturation. This is the Po!P~ employed in 
19 the work of Bagge, Becker, and Bekm<~, Eq. (2-17) of this 

work. 

). Analyzing Photographic Data. In order to gather 

useful information from an expansion it is necessary to 

know how many drops formed in the sensitive volume. About 

two hundredths of a second after the parabolic pulse 

expansion, the nuclei formed in that pulse have grown to a 

size large enough thPt they may be seen. At this time a 

sequence of three stereoscopic photographs are begun. The 
22 technique of photography is explained in detail by Allard 

14 and Schmitt. From the pictures taken during the expansion, 

the number of drops formed per cmJ may be obtained by pro-

jecting the negative on a screen which is divided into 

squares of such a size that they represent a cubic centi-

meter of the sensitive volume when the width of the 

illuminating beam is taken into consideration. From these 

drop counts one may determine the nucleation rate by 



multiplying the drop count by 1/To for that expansion. 

Thus, the cloud chamber is a tool ca.pable of giving 

the information necessary to study nucleation rate laws, 

namely the supersaturation and the nucle9tion rate. 

31 
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CHAPTER IV 

THE EXPERIMENT 

There are many ways in which the dead space may be 

investigated experimentally. After considerable discussion 

amongst the cloud-chamber group, two promising experiments 

were attempted. The first experiment gives a physical 

picture of the dead space, the second provides a means of 

measuring its growth. 

1. An Illustration of Dead Space. The concept of a 

dead space surrounding free growing drops may at first seem 

rather nebulous. A simple experiment may be performed to 

show that such a dead space indeed exists. 

Latent heat evolving from the condensing drop was 

assumed to be the major contributor to the dead space. 

Thus, if a source of heat could be introduced into the 

cloud chamber, a dead space about that source should exist. 

A wire of .04 inch diameter Trophet-A Nichrome was placed 

ih the sensitive volume via one of the side ports. The 

wire w.!=ls bent so that it dipped do"l-'rn into the water and 

came out of the water at the center of the chamber. It 

stood about 7 centimeters above the water level and per

pendicular to it so that the wire appeared as a point when 

seen by the camera. A series of expansions were then per

formed ranging from medium to heavy fogs. The heat capacity 
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of the wire is sufficiently large that it remains at approx

imately 24° C, even though the sensitive volume temperature 

may be as low as -5° c. 
This basic experiment showed a rather dramatic example 

of dead space, as shown in Plate 1. This picture was 

taken at supersaturation of about 5.5 and shows ouite 

clearly that there exists A region about the wire in which 

no nucleation occurs. The dead space radius as measured 

is approximately .9 em. 

The same experiment was performed in argon. Since 

argon has a lower thermal conductivity, the dead space for 

argon should be smaller if heat is the major contributor. 

Plate 2 shows the result for argon. The measured value 

of deAd space radius is approximately .J em. 

2. A Theoretical Analysis of the Wire Experiment. 

Assuming heat the major cause of dead space in the wire 

experiment, one may make use of the heat diffusion 

equation: 

d2 t .l dt ll 
K( dr2 + r dr ) = dT ' 

(4-1) 

where K is the diffusion coefficient, t is the temperature, 
24 

r is the rPdius, and T is the time. Carslaw and Jaeger 

do the problem in detail for cylindrical geometry and give 

a general solution that may be used. The boundary condi-

t1ons are: 







t(r,O) = t 0 

t(a,T) = t• 

t (oo, T) = t 0 ' 

(4-2) 

where a is the radius of the wire, to is the temperature 

of the bulk vapor immediately after the expansion, and t• 

is the temperature of the wire. Choosing appropriate 
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values of the diffusivity, wire radius, and time yields one 

of a family of curves representing the solution which are 

indexed by the quantity Kr/a 2 • From this curve the temper

ature of the bulk vapor at given distance from the wire 

may be found. Although the solution is exact, the value 

of the diffusivity of gases is in doubt since it varies 

with the temperature of the gas. Thus, the graphs shown in 

Fig. 6 for helium and Fig. 7 for argon are at best first 

approximations to the true solutions. The values of the 

diffusivity for both gases were taken at standard conditions. 

In Fig. 6 and Fig. 7, graphs are shown for an expansion 

with final supersaturations at 5.6. The supersaturation at 

a specified distance from the wire or the temperature of the 

vapor at a specified distance from the wire is plotted. 

Below the line labelled Scrit' nucleation is negligible; 

above this line, it is measurable. The upper curve for 

both helium and argon shows the supersaturation profile at 

.065 seconds after the expansion, which is the time at the 

peak of the pulse. The lower curve for both Figures 6 and 

7 shows the supersaturation at 0.3 sec. after the expansion, 

which is the time that Plates 1 and 2 were taken. 
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Thus, the intersection of the lower curve with Scrit 

marks the dead space radius as analyzed theoretically. For 

helium this is about .? em as compared to .9 em measured, 

and for argon about .15 em as compared to .J em measured. 

rv:aking use of Becker and roring's nucleation rate, a 

profile of the number of drops nucleated in 0.3 seconds at 

different distances from the wire is plotted for helium, 

cf. Fig. 8, from the supersaturation profile in Fig. 6. 

This plot shows the same step function behavior as seen 

experimentally in Plates 1 and 2. 

J. Double Pulse Expansions. This experiment con

sisted of two parts: 1) calibration run, 2) data run. The 

calibration run consists of a series of 10 to 15 single 

pulse expansions similar to the type used by Schmitt. The 

timing was Adjusted so that all exp~nsions in this run had 

approximately the same peak supersaturation. After drop 

counts and calculations were made, the drop count per cm3 

was plotted versus peak supersaturation for these expansions. 

This plot, shown in Fig. 9, served to establish the nuclea

tion for a given pulse in a simpler fashion than that 

employed by Schmitt. This plot is used later. 

The second part of the experiment consisted of double 

pulse expansions, an example of which is given in Fig. 10. 

The first pulse of this expansion is identical to that 

performed in the calibration run. The second pulse of the 

expansion was made so that it reached about the same peak 
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supersaturation as the first pulse. The time between the 

first and second pulses could be varied from 0.05 seconds 

to 0.50 seconds. Pictures were taken after the second 

pulse. In this fashion, droplets nucleated in the first 

pulse could grow so that their dead space would affect the 

number of drops nucleated in the second pulse. Since the 

time between pulses could be varied, the effect of dead 

space due to droplets nucleated during the first pulse 

could be measured with respect to droplet age. 

4. Mathematical Analysis. The details of the analysis 

are quite straightforward. If No is the number of drops/cm3 

observed for a double pulse, then: 

No = N1 + [1 - D{t)N~ N2 ' (4-J) 

where N1 is the number of drops/cm3 nucleated under pulse 

one as taken from calibration run data, and N2 is the 

number of drops/cm3 nucleated under the second pulse taken 

from the same calibration curve, and D(t) is the dead space 

in cmJ/drop. The factor in brackets is the correction for 

that portion of the volume rendered "dead" by droplets from 

the first pulse. Eq. (4-1) may be solved for the quantity 

I;(t), 

I.{t) = Nl + N2 - No 

NlN2 
• (4-4) 

The various parameters have not been selected so that 

the gross effects of droplet growth override sufficiently 



the random statistical nature of the nucleation process. 

The accuracy of a single drop count observation is !~ 

where N is the total number of drops counted. 25 

If the number observed is greater than the number 

that should be nucleated by both pulses, then D(t) is 

meaningless. Thus, No should be less than or equal to 

N1 + N2 • This is observed in practice. 
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From Eq. (4-J) it is obvious that the quantity C(t)N1 

may be equal to unity but never greater than unity, other

wise N2 would be negative, which is physically impossible. 

If one looks at the limiting case when D{t)N1 = 1, then the 

second term in Eq. (4-J) is zero. Thus, N1 = No and the 

dead space per drop is simply: 

1 
D =- ' 

1 N1 
(4-5) 

where D1 is the limiting dead space. Thus, the maximum 

observable dead space is a very definite function of the 

droplet density. If 10 drops/cmJ are nucleated in the 

first pulse, then the largest dead space necessary per drop 

to render the cubic centimeter incapable of further nuclea

tion is 0.1 cm3. After D(t) becomes this large, the dead 

spaces of different droplets overlap and the concept of 

independent ''dead spaces" becomes meaningless. For a 

hundred drops/cmJ r 1 is 0.01 cmJ per drop. Thus, for 

higher droplet densities, the maximum dead space per drop 

becomes smaller. From this analysis one has the limiting 

values that No may take on for these experiments: 
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Nl ~ No ~ (Nl + N2) • (4-6) 

This is what one would expect physically, namely that the 

number of drops/cmJ observed for the two pulses should be 

somewhere between the number nucleated in the first pulse 

and the number nucleated in both pulses, as taken from the 

ca libra ted data. 

The analysis above assumes that for a single drop the 

nucleation about it varies as a step function with the 

distance from the drop. From the theoretical analysis in 

parRgraph 2, one would expect it to vary in a continuous 

fashion. Figure 11 shows these two models superimposed. 

Note that the step function curve does not extend as far 

away from the drop as the diffusion curve. Thus, in actu

ality, droplets begin to compete with one another sooner 

than is indicated by the simple analysis involving D(t). 

5. Other· Details of the Experiment. Since the super

saturation for an expansion is very sensitive to small 

changes in the operating parameters, five double pulse ex-

pansions were taken with the time between the two pulses 

fixed. A second set of five expansions was taken with a 

different time between the two pulses, and so on for four 

different times out to about .25 seconds separating the 

two pulses. Several runs of this type were made and these 

resulted in data for droplet densities from 5 to about 

30 drops/cm3 • Droplet densities higher than 30 drops/cm3 

are difficult to work with since a large amount of time 

is required for drop counting. 
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peak supersaturations were always calculated. A 

computer program, the details of which are shown in 

Appendix A, performed the calculations of supersaturation. 

Drop counts were done on four of the six frames taken 

by the stereoscopic camera. A volume from 10 to 64 cm3 

was counted, depending on droplet density, for each of the 

frames. The last four of the six frames were counted 

since the first two frames were taken too close to the 

second pulse to be of any value. The results of the drop 

counts were summed and averaged, then figured per cm3 • 

This procedure was followed in drop counting for both the 

calibration And data runs so that any systematic error 

would be duplic8.ted in all cases. 

With the peak supersaturations and drop counts, one 

has N1 , N2 , and No and is able to perform the analysis 

given above for each series of runs. The data, as finally 

reduced, is shown in Fig. 12. The dead space in cmJ per 

drop is plotted versus time. Each of the curves represents 

a certain drop density and is so labelled. 

Since there is no way in which dead space may be 

measured by this technique for times less than .05 seconds, 

the effect of dead space on droplets nucleated in the first 

pulse itself is unknown. From the theoretical analysis 

done in paragraph 2, the actual dead space curve would look 

like the dashed line in Fig. 13, if dead space could be 

measured for very short times. 
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Jt has been shown by two different experiments and 

also from theory that a dead space does exist around grow

ing droplets. This dead space is physically measurable 

and it is a major f~ctor to be considered by those doing 

nucleation rate studies with the cloud chamber. 
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CHAPTER V 

CONCLUSIONS 

The results of this study show that future use of the 

cloud chamber as a tool for studying nucleation rates will 

have to make allowance for dead space effects. 

1. Dead Space per Unit Volume. In order to visualize 

the effect of dead space on one cm3 of the sensitive 

volume, a plot of percent dead space in a cm3 versus time 

is shown in Fig. 14. The percent figure is obtained simply 

by multiplying r(t) times the drop densities from the 

information tn Fig. 13. The result of this plot is to 

remove the dependence on droplet densities. Interestingly 

enough, this plot shows that for the drop densities 

studied, the percent dead space curve is almost the same. 

Thus, a density of 5 drops/cm3 takes out about the same 

total dead space as a density of JO drops/cm3 • This im-

3 plies that a em of vapor at a supersaturation of 4.7 is 

3 not made dead appreciably faster than a em of vapor at a 

supersaturation of 5.0; this, despite the higher drop 

density of the latter case. This can be said only for 

those droplet densities studied, namely from 5 to 30 

drops/cm3 • 

2. Vapor Depletion. A cause of dead space present 

in the double pulse experiment is removal of water mole-

cules from the vapor by nucleation and growing drops. The 
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computer program is designed to measure the effect of 

vapor depletion in an approximate way. A series of square 

pulse expansions run on the computer show that at a drop

let density of l03 drops/cm3 vapor depletion effects com-

mence about 0.1 seconds after the expansion. For droplet 

densities of 105 drops/cm3 vapor depletion effects commence 

about .OJ seconds after the expansion. 

Thus, the dead space that has been measured in the 

cloud chamber by the double pulse expansion is in truth the 

result of two physical phenomena: 1) evolution of heat from 

the growing drop, and 2) removal of water molecules from 

the vapor by growing drops. The contribution to the dead 

space due to heat seems to predominate for low drop densi-

ties when vapor depletion effects are truly small. From 

the trend of percent dead space curves in Fig. 14 and the 

information above, one would expect the percent dead space 

curve for high droplet densities to be as shown by curve F 

in Fig. 14. 

J. Further Work. In order to apply these results as 

corrections for empirically determined nucleation rates 

with the cloud chamber, the author proposes some topics for 

further study. 

The method of numerical integration of expansions as 

performed by Schmitt should be done with two changes in 

procedure. First, cloud chamber expansions of the same 

maximum supersaturation should be performed With some means 
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of changing the width of the pulse. Second, the integra-

tion should also take into account dead space effects for 

each interval of the pulse, making use of the work pre-

sented above. Such an experiment would correct Schmitt's 

empirical curve for the effects of dead space. 

Another worthwhile investigation would be to perform 

the experiment done by Schmitt with argon instead of helium. 
26 

Preliminary studies by Dawbarn show that for the same 

peak supersaturation, an expansion in argon yields approx-

imately eight times as many drops nucleated as in helium. 

This startling result points up the fact that dead space 

does drastically affect cloud chamber measurements. The 

dead space for argon is considerably smaller then that for 

helium for drops of equal age. Thus, drops growing with 

argon as an inert gas do not perturb the sensitive volume 

as quickly or drastically as drops growing in helium. 

Consequently, rate determinations in argon may prove a 

worthwhile effort. 

A last recommendation would be performing the experi-

ment in a vacuum. Thus, effects of the inert gas would be 

removed altogether. This experiment would necessitate the 

building of a new piece of apparatus and would pose several 

difficult technical problems. However, it would minimize 

dead space effects on the homogeneous nucleation rate as 

determined with the cloud chamber. 
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APPENDIX A 

The computer program shown here is designed to be as 

flexible as possible for not only this work but work done 

in the future. It consists of a mainline deck and three 

subroutines. The program is written in Fortran II and 

provisions have been made for storing the subroutines on 

a magnetic memory disc to facilitate its use. 

The program performs one of two main calculations in 

one of three ways. The main calculations available are: 

1) supersaturations and final temperatures, 2) supersat

urations and an accounting for the number of water mole

cules per cm3 removed by nucleation and growth. This 

information is applied at each interval as a correction 

for both the final supersaturation and the nucleation rate. 

Both calculations give the total number of drops nucleated 

under the pulse as done in Schmitt's numerical integration. 

This last calculation provides the user with the option 

to use any one of five rate laws, those being: Farley, 

Becker and D~ring, Sander and Damk8hler, Volmer, and 

Schmitt's empirical curve. If the user desires, he may 

program any or all of the other rate laws into subroutine 

PHJOOR. 

The ways in which expansions may be calculated are 

three: 1) point by point data read from the final pres

sure trace, 2) pressure data from an internally generated 



parabolic pulse, 3) pressure data from an internally 

generated square pulse. The choice of calculation is 

determined by the user. 
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The three subroutines are used to calculate the 

supersaturation, the number of molecules in a drop of 

critical radius, and the number of drops nucleated in a 

pulse. Data input to this program consists of four parts; 

1) label, specifying the date, operator, experiment, and 

expansion number, 2) calibration data which calibrates the 

final and initial pressure scales, J) the option card 

which enables the user to specify which calculation to be 

performed from whAt kind of pulse and using a specific 

rate law, 4) the initial pressure, final pressure, initial 

temperature, and sensitive time width. The data in part 4 

is entered in various ways depending upon the form the 

final pressure pulse the user desires. The final program 

is shown below. 



C CENTRAL PROGRAM FOR CLOUD CHAMBER CALCULATIONS 
C SUBROUTINE PH300S (SUPERSATURATION) 
C SUBROUTINE PH300G (NUMBER OF MOLECULES PER DROP) 
C SUBROUTINE PH300R (NUCLEATION RATE) 

DIMENSION DRPNU(l00),EMREM(l00),VP(351),READNC 90) 
COMMON RSTAR,SIGMA,R,S,PI,GSTAR,APF,EMF,_BJ_ADN_&f,TQ,DT,PCRIT,BO, 

lPHIN,TF,TI,GAM,VP,VPI,ID,AVNO,IRATE,CONST,AVNOR,PFUNC,CINST,API, 
lVPF,N,RATE . 

10 FORHAT(511) 
11 FORMAT (F6.3,13F5.3) 
12 FORMAT (6Fl2.5) 

450 FORMAT (612) 
980 FORMAT (6El2.5) 

READ ll,(VP(J),J=l,351) 
READ 980,BO,SIGMA,PI,R,GAM,AVNO 
CINST=36.**•66666 
CONST=l8•**1.66666 
AVNOR=AVN0**•33333 
PFUNC=PI**•33333 

300 READ lO,IO,IT,IM,IRATE,NDET 
PRINT 999 

999 FORMAT (lHl) 
IFCNDET-1)801,802,802 

801 READ 12,XI,YI,XF,YF,TI 
EMI=5.347 
EMF=5.564 
BI=YI-EMI*XI 

----------~B~F=YF-EMF*XF 
802 CONTINUE 

READ 450 9 LM,LD,LY,LOP,LEX,LSEQ 
PRINT 4-51, LM,LO,LY,LOP,LEX,LSEQ 

451 FORMAT (1X,5HDATE ,I2,1H/,I2,1H/,I2,2X,9HOPERATOR ,I2,2X, 
115HEXPERIMENT NO. ,I2,2X 9 14HEXPANSION NO. 9 12) 

-----------=IF~(lD-fr56,51,52 

50 PRINT 55 
55 FORMAT(lX,32HPRESSURE DATA ENTERED FROM PULSE) 

--···---- ----------------------- -

V\ 

"' 



GO TO 60 
51 PRINT 56 
56 FORMAT(lX,37HPRESSURE DATA GENERATED FROM PARABOLA) 

GO TO 60 
52 PRINT 57 
57 FORHAT(lX,41HPRESSURE DATA GENERATED FROM SQUARE PULSE) 
60 GO TO (401,402,403,404,410J,JRATE 

401 PRINT 405 
405 FORMATI1X,22HBECKER DORING RATE LAW) 

GO TO 400 
402 PRINT 4D6 
406 FORMATflX,l7HVOLMER J RATE LAW) 

GO TO 400 
403 PRINT 407 
407 FORMAT(lX,25HSANOER DAMKOHLER RATE LAW) 

GO TO 400 
404 PRINT 408 
408 FORHAT(lX,l5HFARLEY RATE LAW) 

GO TO 400 
410 PRINT 411 
411 FORMAT (1X,11HSCHMITT LAW) 
400 IF(ID-1113,14,14 

13 READ 998, INT 
998 FORMAT (I 2) 

READ 12 1 RAPJ,(READN(N),N=l,INTJ,STW 
ENT=INT 
SOT=STW/ENT 
API=CEMI*RAPI+BI)*Z.49E+03 
GO TO 15 

14 READ 12,RAPI,RCRIT,RMIN,TO 
TNT=20 
ENT=INT 
SOT=T0/10. 
PCRIT= ( EMF*RCRfT+BF J*2-.49E+03 
API=CEMI*RAPI+Bll*2.49E+03 

15 IFCIT-1)20,21,21 "' 0 



20 PRINT 61 
61 FORMAT(lX,21HSUPERSATURATIONS ONLY,lOX,l8HFINAL TEMPERATURES) 

SSUM=O. 
00 22 L=l,INT 
EL=L 
OT=SDT*El 
N=L 
CALL PH300S 
PRINT 62,S~t~T~F=-==~~=-~----------------------------------------------------------------

62 FORHAT(lX,F6.3,25X,Fl2.5) 
CALL PH300G 
CALL PH300R 
ORPNU(L)=RATE*SDT 

22 SSUM=SSUM+DRPNU(l) 
PRINT 900,SSUM 

900 FORMAT(lX 9 24HTOTAL DROPS NUCLEATED= ,Fl0.3) 
GO TO 100 

21 DT=SDT 
N=1 
PRINT 63 

63 FORMAT(2X,5HS NOM,3X,5HS ACT,4X,8HRATE NOM,4X,8HRATE ACT,4X, 
C8HMOLE.NOM,3X,l3HTMREM TO DATE) 

CALL PH300S 
CALL PH300G 

·----------~C~A~LL PH300R 
DRPNU(l)=RATE*DT 
EHREM(l)=DRPNU(l)*GSTAR 

----=T=HREM~EMREM fil~.:__=-=-.:...:..::...:.._ ______________________________ _ 

ENSUM=EMREM(l) 
SN=S 
SAi::S 
RATEN=RATE 
ARATE=RATE 

----~EM-NOM= ( Si'f*VPF) I ( BO*TF-) -- ---
PRINT 64,SN,SA,RATEN,ARATE,EMNOM,TMREM 

64 FORMAT(2X,2(F6.3,2X),4(El0.3,2X)) 

-------------------------------------------

"' t-' 



DO 25 L=2,JNT 
El=l 
DT=SDT*El 
N=L 
CALL PH300S 
SN=S 
CALL PH300G 
CALL PH300R 
RATEN=RATE 
EMFIN=VPF/IBO*TF) 
EMNOM=SN*EMFIN 
EMCOR=EMNOM-TMREM 
S=EMCOR/EMFIN 
SA•S 
CALL PH300G 
CALL PH300R 
ARATE=RATE 
DRPNU(l)=ARATE*SDT 
EMREM(l)=DRPNU(l)*GSTAR 
GSUM=O. 
DO 30 M=l l 
EM=M 
IF(EL-EMJ32,32,31 

31 GSUM=GSUM+CDRPNU(M)*4•*Pl*.239*1EMCOR-EMF)*8.E-OB*IIEL-EMl*SOT)) 
GO TO 33 

32 ENSUM=ENSUM+EMREM(M) 
33 CONTINUE 
30 CONTINUE 

TMREM=GSUM+ENSUM 
PRINT 64,SN,SA,RATEN,ARATE,EMNOM,TMREM 

25 CONTINUE 
. SUM=O. 

DO 4 0 N = 1 , IN T 
40 SUM=SUM+DRPNU(N) 

PRINT 900,SUM 
100 CONTINUE 

0\ 
1\) 



IF (IH-1 )66 ,67 ,67 
67 GO TO 300 
66 CALL EXIT 

END 

SUBROUTINE PH300S 
DIMENSION READNC90),VP(351) 
COMMON RSTAR,SIGMA,R,S,PI,GSTAR,APF,EMF,READN,BF,TO,OT,PCRIT,BO, 

lPMIN,TF,TI,GAM,VP,VPI,ID,AVNO,IRATE,CONST,AVNOR,PFUNC,CINST,API, 
lVPF,N,RATE 
IFCID-1)1,2,3 

1 APF=(EMF*READN(N)+BF)*2.49E+03 
GO TO 4 

2 T=-TO+OT 
APF= ( ( PCRI T-PMIN) *( T**2l )/_T0**2+PM IN 
GO TO 4 

3 APF=PMIN 
4 TF=TI/((API/APF)**CCGAM-1.)/GAM)) 

J=T I* 10.-26 31. 
VPI=VP(J)*l.332E+03 
K=TF*lO. 
EK=K 
lFCTF*lO.-EK-0.5)5,5,6 

s J=lf*l0.-2631. 
GO TO 7 

6 J=TF*l0.-2630. 
7 VPF=VPCJI*l.332E+03 

--------~S~=~C~V~PI*APF)/(KvnP~F~*~A~PTI'>----------------------~-----------------------------------------

RETURN 
END 

0\ 
\.,.) 



SUBROUTINE PH300R 
DIMENSION READN(90J,VP(351) 
COMMON RSTAR,SIGMA,R,S,PI,GSTAR,APF,EMF,READN,BF,TO,OT,PCRIT,B~------------------------

lPMtN,TF,TI,GAM,VP,VPI,ID,AVNO,IRATE,CONST,AVNOR,PFUNC,CINST,API, 
lVPF,N,RATE 
Z=(VPI*APF)/(BO*API*TF) 
EXFAl=CCSIGMA/TF)**3)*(18.**2) 
EXFA2=(16.*PI*AVN0)/(3.*(R**3J*((LOGF(S))**2)) 
OENFA=EXPF(EXFAl*EXFA2) 
GFUNC=GSTAR**•33333 
GO TO C501,502 1 503,504,505),1RATE 

501 01=1. 
CA=2.*Z*VPF*SIGMA*Ol*l8.*AVNO 
CB=3.*LOGF(S)*(CR*TF)**2)*GSTAR 
CC=SQRTFC(SIGMA*AVNO)/(Pl*l8.)) 
RATE=CCCA/CB)*CC)/OENFA 
GO TO 500 

502 CA=2.*VPF*SIGMA*CONST*AVNOR*Z 
CB=3.*CLOGF(S))*(R**2)*(TF**2l*GFUNC 
CC=SQRTFCC2.*CINST*SIGMA*AVN0)/(18.*PFUNC)) 
CD=EXPF((7.4E-13)/(BO*TF)) 
RATE=f(CA/CB)*CC*CD)/OENFA 
GO TO 500 

503 CA=Z*VPF*SIGMA*CONST*AVNOR 
CB=6.*CLOGFlSl)*lR**2)*(TF**2)*GFUNC 
CC=SQRTF((2.*CINST*SIGMA*AVN0)/(18.*PFUNCJJ 
CF=(1.-(4./(GFUNC**2))+(2./GSTARJ) 
DNFA=EXPFlEXFAl*EXFA2*CFJ 
RATE=C(CA/CB)*CC)/DNFA 
GO TO 500 

504 CA=CZ*VPF*l8.)/(R*TFJ 
CB=SQRTF((2.*SIGMA*AVNO)/(PI*l8.)) 
RlTE=lCA*CB)/OENFA 
GO TO 500 

505 Sl=-38.547+10.9167*S-.619494*fS**2)+.8lb435*(S**3J-.291291*<S**4) 
C+.0260969*(S**5) 

0\ 
~ 



RATE=(lO.**Sll*lO. 
500 CONTINUE 

RETURN 
END 

SUBROUTINE PH300G 
DIMENSION READN(90),VP(351) 
COMMON RSTAR,SIGMA,R,S,PI,GSTAR,APF,EMF,READN,BF,TO,OT,PCRITrBO, 

lPMIN,TFrTI,GAM,VP,VPI,IO,AVNO,IRATE,CONST,AVNOR,PFUNC,CINST,APir 
lVPF,N,RATE 
RSTAR=(36.*SIGMA)/(R*280.*LOGF(S)) 
GSTAR=(4.*PI*(RSTAR**3))/(8.96E-23~).------------------------------------------------------
RETURN 
END 

0\ 
\}\ 



APPE1.TDIX B 

The values of the constants taken for evaluating the 

quantities A and B in the rate laws studied in Chapter II 

are listed below. 

zl ~ lo17 molecules/cm3 

P1 ~ 103 dynes/cm2 

M = 18.0 

(T = 75 dynes/em 2 

23 No = 6.025 x 10 molecules 

s = 5.0 

R 
7 

= 8.317 x 10 ergs/(gm-mole)-°K 

T = 268° Kelvin 

g ':!!!! 100 molecules 

p = 1 gm/cmJ 

46 -16 2 OK = .7 x 10 em 

-16 2 
01 = 78.5 x 10 em 

66 
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The results for evaluating the constants A and B are 

shown in the table below. 

Author A B 

24 
Becker and D~ring 6.75 X 10 125 

Y6.75 X 10 
24 

Zeldovich 125 

cl.44 x 10 
22 

125 Farkas .. 

3.38 X 10 
24 

Sander and Damk~hler 105 

Volmer 2.65 X 10 
26 

125 
26 

Frenkel 3.89 X 10 125 

1.03 X 10 
24 

125 Farley 

These are the values of A and B used to obtain the plots 

in Fig. 2. 
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