

# Scholars' Mine

**Masters Theses** 

Student Theses and Dissertations

Fall 2012

# Effects of high volumes of fly ash on cement paste

Karl Wehking Beckemeier

Follow this and additional works at: https://scholarsmine.mst.edu/masters\_theses



Part of the Civil Engineering Commons

Department:

## **Recommended Citation**

Beckemeier, Karl Wehking, "Effects of high volumes of fly ash on cement paste" (2012). Masters Theses. 6942.

https://scholarsmine.mst.edu/masters\_theses/6942

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

# EFFECTS OF HIGH VOLUMES OF FLY ASH ON CEMENT PASTE

by

# KARL WEHKING BECKEMEIER

# A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN CIVIL ENGINEERING

2012

Approved by

David N. Richardson, Advisor Jeffery S. Volz John J. Myers

#### **ABSTRACT**

The study of high-volume fly ash (HVFA) concrete mixtures has become popular due to the significant environmental and economic benefits which the material may provide. By including fly ash at 50 percent or greater replacement levels, substantial benefits could be obtained. However, the inclusion of fly ash can have negative effects, including incompatibilities between constituents of a mixture. As the fly ash replacement level increases, the degree and likelihood of these problems increases.

In this study, paste mixtures were made, as part of a larger HVFA concrete study, in order to determine the degree to which varying levels of fly ash would affect the paste mixtures and to determine potential methods of mitigating the negative effects of high volumes of fly ash on concrete mixtures. Five Type I or I/II portland cements were tested in combination with five Class C fly ashes at 0, 25, 50, and 70 percent replacement levels. The effects of gypsum, calcium hydroxide, and rapid set cement additions were evaluated at fly ash replacement levels of 50 and 70 percent, and the effects of a Type A/F water-reducing admixture were examined for all fly ash replacement levels. The paste properties that were evaluated included compressive strength, heat of hydration, consistency, and setting time.

Analysis of the results showed general trends for increasing fly ash replacement levels, such as slower strength gain, decreased heat of hydration, delayed setting times, and increased fluidity of the paste at very early ages. However, there were also many inconsistencies in the results, which were attributable to sulfate imbalances and increased aluminate hydration at early ages. It was found that, in many cases, these sulfate imbalances were lessened by the addition of gypsum. The additions of calcium hydroxide and rapid set cement also showed improvements, such as increased rates of strength gain and accelerated setting times.

#### ACKNOWLEDGMENTS

First, I would like to thank Dr. Richardson, my advisor, for his continual guidance, enthusiasm, and encouragement. This project would not have been possible without his knowledge and insight throughout all phases of this study.

Aside from my advisor, I would like to thank my other committee members, Dr. Volz and Dr. Myers. Their dedication to this project and generous lending of equipment is greatly appreciated.

Sincere thanks go to Mike Lusher, for his support and continued assistance throughout this project, for fixing/replacing everything I broke over the years, and for taking on the never-ceasing task of managing the materials labs. Sincere thanks also go to Drew Davis, whose help throughout this project is greatly appreciated, especially all of the hours spent running Vicats and pondering the wonders of cementitious materials. Thanks are also given to those in the campus community, friends, faculty, and staff, who helped in numerous ways to make this project possible, especially Gary Abbott, Bill Frederickson, and Scott Parker for all of their help with materials and equipment; Karen White for her help with all of the administrative processes of graduate education; and John Bullock for being John Bullock.

I would like to thank my family, especially my mother, father, and brother, for their continual support and encouragement throughout this project.

Last, but not least, I would like to thank my wife, Nickol, for her patience, understanding, and encouragement throughout the duration of this endeavor.

# TABLE OF CONTENTS

|                                             | Page |
|---------------------------------------------|------|
| ABSTRACT                                    | iii  |
| ACKNOWLEDGMENTS                             | iv   |
| LIST OF ILLUSTRATIONS                       | ix   |
| LIST OF TABLES                              | xii  |
| SECTION                                     |      |
| 1. INTRODUCTION                             | 1    |
| 1.1 STATEMENT OF PROBLEM                    | 1    |
| 1.2 OBJECTIVES                              | 2    |
| 1.3 SCOPE OF INVESTIGATION                  | 2    |
| 2. REVIEW OF LITERATURE                     | 4    |
| 2.1 PORTLAND CEMENT HYDRATION               | 4    |
| 2.2 FLY ASH PRODUCTION AND CLASSIFICATION   | 6    |
| 2.3 EFFECTS OF FLY ASH ON HYDRATION         | 7    |
| 2.4 INCOMPATIBILITIES IN HVFA MIXTURES      | 10   |
| 2.5 POWDER ADDITIONS FOR HVFA MIXTURES      | 12   |
| 2.6 METHODS OF EVALUATING HEAT EVOLUTION    | 16   |
| 2.6.1. Isothermal Calorimetry               | 16   |
| 2.6.2. Semi-Adiabatic Calorimetry           | 17   |
| 2.6.3. Adiabatic Calorimetry                | 18   |
| 2.6.4. Solution Calorimetry                 | 19   |
| 2.7 DEVELOPMENT OF THE MINIATURE SLUMP TEST | 19   |

| 2.8 EFFECTS OF HIGH VOLUMES OF FLY ASH ON PASTE PROPERTIES | 20 |
|------------------------------------------------------------|----|
| 2.8.1. Compressive Strength                                | 20 |
| 2.8.2. Heat Evolution                                      | 21 |
| 2.8.3. Consistency                                         | 22 |
| 2.8.4. Setting Time                                        | 22 |
| 3. LABORATORY INVESTIGATION                                | 23 |
| 3.1 EXPERIMENTAL DESIGN                                    | 23 |
| 3.1.1. Screening Study                                     | 23 |
| 3.1.2. Main Study                                          | 24 |
| 3.2 EQUIPMENT                                              | 27 |
| 3.2.1. Mixing Equipment                                    | 27 |
| 3.2.2. Cube Molding Equipment                              | 29 |
| 3.2.3. Curing Equipment                                    | 31 |
| 3.2.4. Compressive Strength Testing Equipment              | 31 |
| 3.2.5. Semi-Adiabatic Calorimetry Equipment                | 32 |
| 3.2.6. Miniature Slump Equipment                           | 33 |
| 3.2.7. Vicat Setting Time and Normal Consistency Equipment | 34 |
| 3.3 MATERIALS                                              | 37 |
| 3.3.1. Portland Cements                                    | 37 |
| 3.3.2. Fly Ashes                                           | 38 |
| 3.3.3. Powder Additions                                    | 38 |
| 3.3.4. Water Reducer                                       | 40 |
| 3 3 5 Water                                                | 40 |

| 3.4 TEST PROCEDURES                                          | 41   |
|--------------------------------------------------------------|------|
| 3.4.1. Pre-blending Dry Constituents                         | 41   |
| 3.4.2. Determination of Rotational Speeds for Handheld Mixer | 41   |
| 3.4.3. Combined Mixing Procedure                             | 41   |
| 3.4.4. Cube Compressive Strength                             | 42   |
| 3.4.5. Semi-adiabatic Calorimetry                            | 44   |
| 3.4.6. Miniature Slump                                       | 49   |
| 3.4.7. Normal Consistency and Vicat Time of Setting          | 50   |
| 4. RESULTS AND DISCUSSION                                    | 52   |
| 4.1 SCREENING STUDY RESULTS                                  | 52   |
| 4.1.1. Cube Compressive Strength                             | 52   |
| 4.1.2. Semi-adiabatic Calorimetry                            | 74   |
| 4.1.3. Miniature Slump                                       | 88   |
| 4.1.4. Vicat Setting Time                                    | 94   |
| 4.2 MAIN STUDY RESULTS                                       | 99   |
| 4.2.1. Outlier Analysis                                      | 99   |
| 4.2.2. Effects of Water Reducer Addition                     | 110  |
| 4.2.3. Effects of Gypsum Addition                            | 118  |
| 4.2.4. Effects of Calcium Hydroxide-Gypsum Addition          | 126  |
| 4.2.5. Effects of Rapid Set Cement-Gypsum Addition           | 133  |
| 4.3 CORRELATIONS                                             | 140  |
| 5. SUMMARY AND CONCLUSIONS                                   | 143  |
| 5 1 SHMMARY                                                  | 1/13 |

| 5.2 CONCLUSIONS                          | 144 |
|------------------------------------------|-----|
| 5.3 FUTURE RESEARCH                      | 146 |
| APPENDICES                               |     |
| A. TESTING PROCEDURES                    | 148 |
| B. OUTLIER ANALYSIS FOR CALORIMETRY DATA | 174 |
| C. SCREENING STUDY THERMAL CURVES        | 182 |
| D. MAIN STUDY THERMAL CURVES             | 196 |
| E. SCREENING STUDY MINIATURE SLUMP PLOTS | 207 |
| F. MAIN STUDY MINIATURE SLUMP PLOTS      | 221 |
| REFERENCES                               | 232 |
| VITA                                     | 235 |

# LIST OF ILLUSTRATIONS

|                                                                         | Page |
|-------------------------------------------------------------------------|------|
| Figure 3.1. Black and Decker Hand Mixer                                 | 27   |
| Figure 3.2. Equipment used in the Combined Mixing Procedure             | 29   |
| Figure 3.3. Cube Molding Equipment                                      | 30   |
| Figure 3.4. Tinius-Olsen Load Frame and Computer                        | 32   |
| Figure 3.5. F-Cal 4000, Computer, and Cylinder Molds                    | 33   |
| Figure 3.6. Miniature Slump Cones and Equipment                         | 34   |
| Figure 3.7. Vicat Apparatus with Ring and Glass Plate                   | 35   |
| Figure 3.8. Hobart Mixer and Bowl Scraper                               | 36   |
| Figure 3.9. Examples of Signal and Noise Quantities                     | 46   |
| Figure 3.10. Representation of the ΔT Quantity                          | 47   |
| Figure 3.11. Example of Setting Time Prediction by the Fractions Method | 48   |
| Figure 4.1. One-day Compressive Strengths for Cement 1 Combinations     | 56   |
| Figure 4.2. 28-day Compressive Strengths for Cement 1 Combinations      | 57   |
| Figure 4.3. One-day Compressive Strengths for Cement 2 Combinations     | 60   |
| Figure 4.4. 28-day Compressive Strengths for Cement 2 Combinations      | 61   |
| Figure 4.5. One-day Compressive Strengths for Cement 3 Combinations     | 64   |
| Figure 4.6. 28-day Compressive Strengths for Cement 3 Combinations      | 65   |
| Figure 4.7. One-day Compressive Strengths for Cement 4 Combinations     | 68   |
| Figure 4.8. 28-day Compressive Strengths for Cement 4 Combinations      | 69   |
| Figure 4.9. One-day Compressive Strengths for Cement 5 Combinations     | 72   |
| Figure 4.10. 28-day Compressive Strengths for Cement 5 Combinations     | 73   |

| Figure 4.11. Typical Series of Thermal Curves Showing Delayed Silicate Hydration and Decreased Main Hydration Peaks | 76   |
|---------------------------------------------------------------------------------------------------------------------|------|
| Figure 4.12. Series of Thermal Curves Showing Accelerated Hydration at 70% Fly Ash Replacement                      | 77   |
| Figure 4.13. Example of Type A Thermal Curve Shape                                                                  | 82   |
| Figure 4.14. Example of Type B Thermal Curve Shape                                                                  | 82   |
| Figure 4.15. Example of Type C Thermal Curve Shape                                                                  | 83   |
| Figure 4.16. Example of Type D Thermal Curve Shape                                                                  | 83   |
| Figure 4.17. Example of Type E Thermal Curve Shape                                                                  | . 84 |
| Figure 4.18. Example of Type F Thermal Curve Shape                                                                  | 84   |
| Figure 4.19. Example of Type G Thermal Curve Shape                                                                  | 85   |
| Figure 4.20. Comparison of Curve Types                                                                              | 89   |
| Figure 4.21. Example of Miniature Slump Results for Increasing Fly Ash Contents                                     | 90   |
| Figure 4.22. Effect of Water Reducer on One-Day Cube Strengths for Combination 4-1                                  | 111  |
| Figure 4.23. Effect of Water Reducer on One-Day Cube Strengths for Combination 1-3                                  | 111  |
| Figure 4.24. Effect of Water Reducer on 56-Day Cube Strengths for Combination 4-1                                   | 112  |
| Figure 4.25. Effect of Water Reducer on 56-Day Cube Strengths for Combination 1-3                                   | 112  |
| Figure 4.26. Thermal Curves Showing the Retarding Effect of Water Reducer                                           | 114  |
| Figure 4.27. Effect of Gypsum Addition on Strength Gain for Combination 4-1                                         | 120  |
| Figure 4.28. Effect of Gypsum Addition on Strength Gain for Combination 1-3                                         | 121  |
| Figure 4.29. Series of Thermal Curves Showing the Effect of Gypsum Addition                                         | 122  |
| Figure 4.30. Effect of Lime on Combination 4-1 Mixtures with Four Percent Gypsum                                    | 127  |

| Figure | 4.31. Effect of Lime on Combination 1-3 Mixtures with Four Percent  Gypsum      | 127 |
|--------|---------------------------------------------------------------------------------|-----|
| Figure | 4.32. Series of Thermal Curves Showing the Effect of Calcium Hydroxide Addition | 129 |
| Figure | 4.33. Effect of RSC on Combination 4-1 Mixtures with Four Percent Gypsum        | 134 |
| Figure | 4.34. Effect of RSC on Combination 1-3 Mixtures with Four Percent Gypsum        | 134 |
| Figure | 4.35. Series of Thermal Curves Showing the Effect of RSC Addition               | 136 |
| Figure | 4.36. Correlation of Percentage Method Final Set Times for All Mixtures         | 141 |
| Figure | 4.37. Correlation of Percentage Method Final Set Times for Type A Mixtures      | 142 |

# LIST OF TABLES

|                                                                             | Page |
|-----------------------------------------------------------------------------|------|
| Table 3.1. Main Study Combinations                                          | 26   |
| Table 3.2. Hand Mixer Rotational Speeds                                     | 28   |
| Table 3.3. Cement Oxide Analyses (Screening Study)                          | 37   |
| Table 3.4. Cement Oxide Analyses (Main Effects Study)                       | 37   |
| Table 3.5. Fly Ash Oxide Analyses                                           | 38   |
| Table 3.6. Oxide Analysis of RSC                                            | 39   |
| Table 3.7. CTS Rapid Set Cement Compressive Strength Results                | 40   |
| Table 3.8. Combined Mixing Procedure Sequence                               | 43   |
| Table 4.1. 1-Day Cube Strength Outlier Analysis for Cement 1 Combinations   | 54   |
| Table 4.2. 28-Day Cube Strength Outlier Analysis for Cement 1 Combinations  | 55   |
| Table 4.3. 1-Day Cube Strength Outlier Analysis for Cement 2 Combinations   | 58   |
| Table 4.4. 28-Day Cube Strength Outlier Analysis for Cement 2 Combinations  | 59   |
| Table 4.5. 1-Day Cube Strength Outlier Analysis for Cement 3 Combinations   | 62   |
| Table 4.6. 28-Day Cube Strength Outlier Analysis for Cement 3 Combinations  | 63   |
| Table 4.7. 1-Day Cube Strength Outlier Analysis for Cement 4 Combinations   | 66   |
| Table 4.8. 28-Day Cube Strength Outlier Analysis for Cement 4 Combinations  | 67   |
| Table 4.9. 1-Day Cube Strength Outlier Analysis for Cement 5 Combinations   | 70   |
| Table 4.10. 28-Day Cube Strength Outlier Analysis for Cement 5 Combinations | 71   |
| Table 4.11. Thermal Curve Data for Cement 1 Combinations                    | 78   |
| Table 4.12. Thermal Curve Data for Cement 2 Combinations                    | 78   |
| Table 4.13. Thermal Curve Data for Cement 3 Combinations                    | 79   |

| Table 4.14. Thermal Curve Data for Cement 4 Combinations                           | 79  |
|------------------------------------------------------------------------------------|-----|
| Table 4.15. Thermal Curve Data for Cement 5 Combinations                           | 80  |
| Table 4.16. Miniature Slump Results for Cement 1                                   | 91  |
| Table 4.17. Miniature Slump Results for Cement 2                                   | 91  |
| Table 4.18. Miniature Slump Results for Cement 3                                   | 92  |
| Table 4.19. Miniature Slump Results for Cement 4                                   | 92  |
| Table 4.20. Miniature Slump Results for Cement 5                                   | 93  |
| Table 4.21. Vicat Setting Time Results for Cement 1                                | 95  |
| Table 4.22. Vicat Setting Time Results for Cement 2                                | 95  |
| Table 4.23. Vicat Setting Time Results for Cement 3                                | 96  |
| Table 4.24. Vicat Setting Time Results for Cement 4                                | 96  |
| Table 4.25. Vicat Setting Time Results for Cement 5                                | 97  |
| Table 4.26. Outlier Analysis of 1-Day Cube Strengths for Combination 4-1 Mixtures  | 100 |
| Table 4.27. Outlier Analysis of 3-Day Cube Strengths for Combination 4-1 Mixtures  | 101 |
| Table 4.28. Outlier Analysis of 7-Day Cube Strengths for Combination 4-1 Mixtures  | 102 |
| Table 4.29. Outlier Analysis of 28-Day Cube Strengths for Combination 4-1 Mixtures | 103 |
| Table 4.30. Outlier Analysis of 56-Day Cube Strengths for Combination 4-1 Mixtures | 104 |
| Table 4.31. Outlier Analysis of 1-Day Cube Strengths for Combination 1-3 Mixtures  | 105 |
| Table 4.32. Outlier Analysis of 3-Day Cube Strengths for Combination 1-3 Mixtures  | 106 |

| Table 4.33. Outlier Analysis of 7-Day Cube Strengths for Combination 1-3  Mixtures                               | 107 |
|------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.34. Outlier Analysis of 28-Day Cube Strengths for Combination 1-3 Mixtures                               | 108 |
| Table 4.35. Outlier Analysis of 56-Day Cube Strengths for Combination 1-3 Mixtures                               | 109 |
| Table 4.36. Calorimetry Results for Mixtures with Increasing Water Reducer Dosages                               | 115 |
| Table 4.37. Miniature Slump Results for Mixtures with Increasing Water Reducer Dosages                           | 117 |
| Table 4.38. Vicat Results for Mixtures with Increasing Water Reducer Dosages                                     | 119 |
| Table 4.39. Calorimetry Results for Mixtures with Increasing Gypsum Additions                                    | 123 |
| Table 4.40. Miniature Slump Results for Mixtures with Increasing Gypsum Additions                                | 125 |
| Table 4.41. Vicat Results for Mixtures with Increasing Gypsum Additions                                          | 126 |
| Table 4.42. Calorimetry Results for Mixtures with Increasing Calcium Hydroxide Additions and Four Percent Gypsum | 130 |
| Table 4.43. Miniature Slump Results for Mixtures with Increasing Lime Addition and Four Percent Gypsum           | 131 |
| Table 4.44. Vicat Results for Mixtures with Increasing Lime Additions                                            | 132 |
| Table 4.45. Calorimetry Results for Mixtures with Increasing RSC Additions and Four Percent Gypsum               | 137 |
| Table 4.46. Miniature Slump Results for Mixtures with Increasing RSC Addition and Four Percent Gypsum            | 138 |
| Table 4.47. Vicat Results for Mixtures with Increasing RSC Additions                                             | 139 |

#### 1. INTRODUCTION

The study of high-volume fly ash concrete mixtures has become popular due to the potential of the material to provide significant environmental and economic benefits. By increasing the amount of fly ash introduced into concrete mixtures, less cement would be produced, which would decrease CO<sub>2</sub> emissions, and less fly ash would be placed in landfills. The use of less cement, along with the sustainability benefits of HVFA concrete, would also decrease the amount of raw materials which would need to be extracted to produce portland cement concrete. Immediate economic benefits occur because portland cement is replaced with a less expensive by-product material. For properly designed HVFA mixtures, increased durability and long-term strengths would provide long-term economic benefits, because infrastructure components would have to be replaced less often. By being able to increase the incorporation of fly ash into concrete at 50 percent or greater replacements, substantial benefits could be obtained.

# 1.1 STATEMENT OF PROBLEM

Incorporating fly ash in a concrete mixture provides benefits to both fresh and hardened properties of the concrete. Improvements in fresh properties include increased workability, increased pumpability, and reduced bleeding. Hardened concrete benefits could include greater long-term strength, decreased early-age temperature rise, and increased durability. The use of fly ash can also have negative effects on concrete mixtures. These commonly include decreased strengths at early ages, delayed setting times, loss of certain forms of durability, and lower later strengths. Also,

incompatibilities between constituents of the mixture can lead to detrimental effects on the properties of the concrete.

As the amount of fly ash used in a mixture increases, the degree and likelihood of the above-mentioned problems increases. Therefore, in high volume fly ash concrete, it is necessary to assess the degree to which these problems may occur and determine methods of mitigating these problems in order for HVFA concrete to be a viable construction material.

# 1.2 OBJECTIVES

The objectives of this study were to determine the degree to which paste mixtures are affected by varying levels of Class C fly ash and determine strategies to mitigate the negative effects of increasing the proportion of fly ash in a paste mixture. The properties that were evaluated included compressive strength, heat of hydration, consistency, and setting time.

As part of a larger HVFA concrete project, the paste testing was done to gain knowledge of the cementitious materials without the effect of coarse and fine aggregates. Also, the nature of paste testing allowed a greater volume of cementitious combinations to be evaluated in a given period of time than would have been possible with concrete testing.

### 1.3 SCOPE OF INVESTIGATION

To evaluate a variety of cement and fly ash combinations, five Type I portland cements and five Class C fly ashes were chosen to be representative of those commonly

available in the State of Missouri. The levels of fly ash replacement were 0, 25, 50, and 70 percent by mass. The use of gypsum, calcium hydroxide, and rapid set cement were each evaluated, at two dosage levels, as powder additions to improve properties of the HVFA combinations. All mixtures were evaluated at a constant water-cementitious materials ratio (w/cm) of 0.40. Also, a water reducing admixture was added to some of the mixtures to evaluate its influence on properties of the paste.

The paste mixtures were tested for compressive strength, heat of hydration, consistency, and setting time. Compressive strength testing was performed using two-inch cubes at testing ages of 1, 3, 7, 28, and 56 days. The paste setting time was evaluated for each combination using the Vicat time of set method, in accordance with ASTM C 191. Heat evolution of the paste mixtures was evaluated using a semi-adiabatic field calorimeter, which collected temperature data on three replicates for each mixture simultaneously over a 48-hour period. The consistency of the paste mixtures was evaluated at 2, 5, 15, 30, and 45 minutes after initial mixing using miniature slump cones.

### 2. REVIEW OF LITERATURE

### 2.1 PORTLAND CEMENT HYDRATION

Four primary compounds make up approximately 90 percent of portland cement by mass. These compounds are tricalcium silicate (C<sub>3</sub>S), dicalcium silicate (C<sub>2</sub>S), tricalcium aluminate (C<sub>3</sub>A), and tetracalcium aluminoferrite (C<sub>4</sub>AF). C<sub>3</sub>S is also known as alite and C<sub>2</sub>S is also known as belite. The remaining portion of the cement consists of a calcium sulfate source and grinding aids, both of which are added during the grinding process. The calcium sulfate source, which constitutes four to six percent of the cement, may be in the form of anhydrous calcium sulfate, calcium sulfate dihydrate, calcium sulfate hemihydrate, or a combination of these forms. Calcium sulfate dihydrate, also known as gypsum, is the most common source of sulfate in portland cement. Hemihydrate is formed during the finish grinding of the cement (Kosmatka, Kerkhoff, & Panarese, 2003).

The hydration of cement begins immediately with the addition of water to cement. It is thought that cement hydration takes place by two mechanisms, through-solution hydration and topochemical hydration, also known as solid-state hydration. Through-solution hydration is thought to occur during early ages. With this mechanism, the compounds go in to solution and form hydrates. The solution then becomes supersaturated and the hydrates precipitate from the solution. The other hydration mechanism, solid-state hydration, is thought to occur at later ages. With this mechanism, the compounds do not go into solution and the hydration reactions occur at the surface of the compounds (Mehta & Monteiro, 1993).

The hydration reactions of the aluminates, C<sub>3</sub>A and C<sub>4</sub>AF, are immediate upon contact with water and are both similar. Their rapid reaction is slowed by the inclusion of a calcium sulfate source. The calcium sulfates go into solution quickly and decrease the solubility of the aluminates, which retards their hydration. During early hydration, the sulfate-aluminate ratio in solution is high and ettringite, or high-sulfate, is formed. The formation of ettringite is primarily responsible for early stiffening, setting, and strength gain. At later ages, when the sulfate supply is depleted, the aluminate reactions are no longer suppressed and they begin reacting more rapidly. This causes the already formed ettringite to become unstable and convert to monosulfate, also known as low-sulfate. It should be noted that the sulfate-aluminate balance highly influences setting behavior. In an under-sulfated system, the rapid aluminate reactions will result in flash set, which involves immediate setting, large amounts of released heat, and low ultimate strengths. In an extremely over-sulfated system, the high concentration of calcium and sulfate in solution will result in the quick formation of gypsum. This does not cause large amounts of heat to be released and can be undone by remixing. However, over-sulfating can lead to other problems, such as lower strengths and higher amounts of shrinkage (Mehta & Monteiro, 1993).

The hydration of the silicates, C<sub>3</sub>S and C<sub>2</sub>S, results in the formation of calcium silicate hydrates (C-S-H) and calcium hydroxide (CH). C-S-H has a variable chemical composition and is primarily responsible for the strength of the paste. CH has a definite chemical composition and, when compared to C-S-H, has a much lower contribution to strength. Also, high amounts of CH in a system can lead to durability issues because it has a much higher solubility in acidic solutions, when compared to C-S-H, and is a

necessary component of the delayed, expansive ettringite formation known as sulfate attack. Therefore, cement pastes with greater amounts of C-S-H and lower amounts of CH will be stronger and more durable. When compared to C<sub>2</sub>S, the hydration of C<sub>3</sub>S occurs more rapidly, produces less C-S-H, and produces more CH. It contributes to setting and early strength gain. C<sub>2</sub>S, which reacts slowly and produces more C-S-H, contributes to the ultimate strength of the paste. It should also be noted that the presence of sulfate in solution increases the solubility of the silicate compounds, which increases the hydration rates of the silicates (Mehta & Monteiro, 1993).

### 2.2 FLY ASH PRODUCTION AND CLASSIFICATION

Fly ash is a by-product of power production from coal-fired power plants. As the finely ground coal passes through the furnace, most of the volatile matter and carbon are burnt off. The mineral impurities remain in the flue gas and fuse together. As the flue gas leaves the furnace, the ash is cooled rapidly and either agglomerates to form bottom ash or remains in the gas stream as fly ash. Before leaving the plant, fly ash is removed from the gasses by electrostatic precipitators or bag filters. The material consists of spherical, glassy particles that generally require no processing before use in concrete applications (Malhotra & Mehta, 1996).

Fly ashes are generally categorized as high-calcium or low-calcium, which corresponds to the ASTM classifications of Class C and Class F, respectively. The four principle constituents of fly ash are silica (SiO<sub>2</sub>), alumina (Al<sub>2</sub>O<sub>3</sub>), iron (Fe<sub>2</sub>O<sub>3</sub>), and calcium (CaO). The proportions of these constituents vary widely and are dependent on the source of coal used in production. Generally, Class C fly ashes are produced from

sub-bituminous and lignite coal sources, while Class F fly ashes are produced from bituminous and anthracite coal sources. Carbon may also be present in the fly ash due to incomplete combustion of the coal. Typical Class C fly ashes have less than 1% carbon, while some Class F fly ashes may contain up to 20%, based on Loss on Ignition (LOI) tests (ACI Committee 232, 2003).

To be classified as ASTM Class C, the sum of the SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> constituents of the fly ash must be greater than 50%. This is lower than the requirements for Class F, because most Class C fly ashes have CaO contents exceeding 20% (ACI Committee 232, 2003). In general, these fly ashes possess cementitious as well as pozzolanic properties.

ASTM requirements state that the sum of the SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> constituents of a fly ash must be greater than 70% to be classified as Class F (ACI Committee 232, 2003). This allows for much lower CaO concentrations than in Class C fly ash. Because of this, Class F fly ashes typically have very little or no cementitious properties of their own and are primarily pozzolanic.

### 2.3 EFFECTS OF FLY ASH ON HYDRATION

As mentioned previously, the hydration of the silicates in portland cement produces C-S-H and CH. With the addition of a pozzolan such as fly ash, silica is added to the system which reacts with CH in the presence of water to form C-S-H. This is known as the pozzolanic reaction. The pozzolanic reaction is comparatively slow and results in slower rates of heat evolution and strength gain. However, the consumption of

CH and filling of pores in the paste results in higher ultimate strengths and improved durability (Mindess, et al., 2003; Mehta & Monteiro, 1993).

Wang, et al. (2006) studied the effect of fly ash and chemical admixtures on the heat release of paste mixtures. Type I and Type II cements were used in combination with Class F and Class C fly ashes at 20 percent replacement. Type A, water-reducing, and Type B, retarding admixtures were also evaluated. It was found that the Class F fly ash had little effect on the timing of the main hydration peak, but did significantly reduce the total heat released in the first 24 hours. This reduction in the rate of heat release was attributed to the dilution of the more reactive cement with less reactive fly ash. The sulfate depletion peak, usually observed as a shoulder that occurs after the peak on the main hydration curve, was also not significantly affected, which indicates that the rate of sulfate consumption was not affected by the fly ash. The use of Class C fly ash resulted in a severely delayed main hydration curve. As with the Class F fly ash, it also reduced the total heat released and did not appear to affect the rate of sulfate consumption. However, since the main hydration curve was delayed, the shoulders, indicating sulfate depletion, occur before the peak of the main curve. The addition of the chemical admixtures resulted in significantly delayed main hydration curves for all of the mixtures. The effect was more pronounced for the Class C fly ash mixtures, which also showed a greater reduction in the total heat released. For the Type II cement in combination with either fly ash, the higher admixture dosage caused hydration to almost completely stop.

Jiang, et al.(1999) studied the hydration of paste mixtures made with portland cement and Class F fly ash at 40, 55, and 70 percent replacement levels. They also varied the w/cm and included water-reducing and activating admixtures in some of the pastes. It

was found that the fly ash mixtures had lower early strengths, but showed greater rates of strength gain at later ages, when compared to the control mixture. The CH content of the mixtures at 28 days generally decreased with increasing fly ash contents, though it was found that the 70 percent fly ash mixture had a higher CH content than both the 40 and 55 percent fly ash mixtures. From pore structure analysis, it was determined that the total porosity at 28 days increased with increasing fly ash contents. However, the pore size distributions showed that the pore sizes were decreased with the inclusion of fly ash. Scanning electron microscopy of the paste microstructure at early and later ages showed that increasing fly ash contents led to a less dense microstructure and also revealed that, even at 90 days, unreacted fly ash particles remained in the paste structure. It was also found in this study that the addition of an activator admixture would increase the activity of the fly ash.

In a study by Hubert, et al. (2001), the hydration products of high volume fly ash binders were investigated. Paste mixtures were prepared with portland cement and one of two fly ashes. Mixtures were made with 0, 60, 70, and 85 percent by weight of each fly ash. Hydration was stopped after 3, 7, 28, and 90 days to study the hydration products and pore solution of the hardened paste. It was found that increasing amounts of fly ash decreased the CH content of the paste. A similar effect was seen with the ettringite content except that, for one of the fly ashes, the ettringite content was still high compared to the control, which means it was a hydration product of the fly ash. The other fly ash had a lower sulfate content and resulted in lower ettringite levels. By observing the amount of active silica in the pastes, it was determined that the inclusion of fly ash led to increased C-S-H contents in the paste. The greatest improvement in C-S-H formation for

Fly Ash 1 was seen at 85 percent replacement, while the greatest improvement for Fly Ash 2 was found at 60 percent replacement. However, Fly Ash 2 had a lower silica content at 85 percent replacement than Fly Ash 1. This was attributed to the higher reactivity of Fly Ash 2, which would have led to quicker consumption of the CH and an earlier end to the pozzolanic reaction. From this it was observed that the reactivity of the fly ash and the amount of available CH should be balanced for optimum C-S-H formation.

### 2.4 INCOMPATIBILITIES IN HVFA MIXTURES

The composition of mineral admixtures varies considerably, even between those that fall under the same classification, such as Class C fly ash. This leads to complexity in cementitious systems, as the use of mineral admixtures in concrete mixtures is commonplace. Due to this complexity, problems such as slump loss, delayed setting, and slow rates of strength gain, are more likely to occur as a result of incompatibilities between the materials. The most common cause of incompatibility is related to the sulfate concentration in a system. If there is not a sufficient amount of sulfate, the aluminates (C<sub>3</sub>A and C<sub>4</sub>AF) will react rapidly and consume a large portion of the available calcium in the system. This will cause the hydration of the silicates (C<sub>3</sub>S and C<sub>2</sub>S) to slow down and possibly stop completely (Roberts & Taylor, 2007).

Using isothermal calorimetry, Lerch (1946) illustrated the effect of insufficient sulfate levels on portland cement. In the study, cements with differing C<sub>3</sub>A and alkali contents were tested with varying amounts of gypsum added. It was found that as the sulfate levels decreased, the initial (aluminate) peak occurred more rapidly. This occurred

because sulfate was not available to decrease the solubility of the aluminates or form a protective film of hydration products on the surfaces of the particles. The second (silicate) peak was delayed and suppressed with decreasing sulfate levels. This was attributed to a depletion of available calcium, by the aluminates, for hydration of the silicates and a lack of sulfate, which acts to increase the solubility of the silicates. Also, some mixtures showed an additional peak, which was caused by renewed aluminate hydration. It was found that this third peak was delayed and suppressed by increasing gypsum additions.

Roberts and Taylor (2007) discussed incompatibilities related to changing sulfate requirements with the additions of supplementary cement materials, admixtures, or both. It was pointed out that while increasing water reducer dosages typically result in delayed silicate hydration and slightly delayed sulfate depletion, extremely high dosages can increase initial aluminate hydration, severely delay silicate hydration, and cause sulfate depletion to occur at earlier times. The effects of Class C fly ash were attributed to the increased level of calcium aluminates in the system, which can cause the system to become under-sulfated. This leads to increased aluminate hydration, which consumes more calcium during the early stages of hydration. Due to a lack of available calcium, silicate hydration can become depressed and delayed or may stop completely. Also, the lack of sulfate decreases the solubility of the silicates which will result in slower silicate hydration.

Cost and Knight (2007) also discussed the use of Class C fly ash as a common cause of abnormal behavior in concrete, due to increased aluminate levels, along with high temperatures, sulfate levels, chemical admixtures, and hot-weather concreting

practices. It was noted that the potential for erratic behavior may increase in hot-weather concrete operations if the dosage of Class C fly ash is increased to utilize the retarding effect of the material. As part of the study, the heat generation of several paste mixtures was evaluated, using semi-adiabatic calorimetry, to detect incompatibilities. The paste was made with a Type II cement at varying sulfate levels and a Class C fly ash at varying replacement levels. The results showed that the only combination to generate a typical silicate peak was the 3.3% sulfate cement with 10% fly ash. The combinations of this cement with 25% and 35% fly ash both showed extremely depressed silicate hydration peaks. The 3.7% sulfate cement with 25% fly ash showed improvement in the silicate peak, but at 35% fly ash only a small peak was developed. To investigate an additional increase in sulfate, the sulfate content of the cement was increased to 4.1% in combination with the 35% replacement level of Class C fly ash. This seemed to somewhat restore the silicate peak, but it was delayed significantly.

As can be seen, the use of Class C fly ash can cause significant problems in concrete when the proper sulfate balance has been compromised. High temperatures and the use of chemical admixtures, such as water reducers, can increase the magnitude of incompatibility related problems as these can affect the solubility and reaction rate of compounds in the system (Cost & Knight, 2007).

### 2.5 POWDER ADDITIONS FOR HVFA MIXTURES

Bentz (2010) noted that for HVFA mixtures to be commonly used in construction, it would be necessary to ensure improved and consistent early age performance from these mixtures. In his study, isothermal calorimetry was used to evaluate the effectiveness

of various powder additions in correcting the severe retardation illustrated by many calorimetric studies of HVFA mixtures. A Type II/V portland cement in combination with a Class C fly ash and a Class F fly ash were evaluated at 50 percent replacements. The powder additions included aluminum trihydroxide, calcium hydroxide, cement kiln dust, condensed silica fume, limestone, and rapid-set cement. A polycarboxylate type high-range water reducer (HRWR) was also included in some of the paste mixtures.

To separate the retarding effects of dilution of the cement, sulfate imbalance, and HRWR from those of the fly ash alone, these were studied separately. Paste mixtures were made with the Type II/V cement at 0.3 and 0.6 water-cement ratios. It was found that while this increase in w/cm retarded the silicate peak by approximately one hour, it did not explain the almost four hour retardation seen in the 50 percent fly ash mixtures. To achieve a proper sulfate balance in the mixtures with 50 percent Class C fly ash, which is known to disturb the sulfate balance, mixtures with 50 percent Class C fly ash, varying gypsum additions, and no HRWR were tested. From the results, a gypsum addition of two percent was chosen for the remaining mixtures to be tested. It was noted that while the addition of gypsum eventually produced normal hydration characteristics, it did not resolve the severe retardation of the system. The effect of the HRWR was evaluated for both Class C and Class F fly ash mixtures. For the Class C mixtures, it was found that the retardation seen with the mixture containing both Class C fly ash and HRWR was more severe than that caused by either component when added individually to the mixture. For Class F fly ash, no retardation was observed with the addition of the fly ash alone, but the addition of the HRWR did cause retardation of the system (Bentz, 2010).

The effects of the powder additions were evaluated for the Class C fly ash mixtures with the two percent gypsum addition. A five percent addition of limestone powder had little effect on hydration. A 10 percent addition of aluminum trihydroxide did little to accelerate hydration but did increase the height of the peaks slightly. The 10 percent addition of cement kiln dust caused slight acceleration but more significantly increased the area under the curve, indicating increased early-age hydration. The five percent addition of condensed silica fume accelerated hydration by more than one hour, but this was not enough to restore the timing of the hydration to that seen with the 100 percent cement control mixture. The two other powder additions, calcium hydroxide and rapid set cement, showed more promise in mitigating retardation of the Class C fly ash systems (Bentz, 2010).

Calcium hydroxide was added because it has been established that if early aluminate hydration consumes enough of the available calcium, silicate hydration can be severely retarded or fail to occur completely. While the addition of gypsum does supply additional calcium it is likely that this is consumed by aluminate hydration, so the addition of calcium hydroxide was used to provide additional calcium to the system to aid in hydration of the silicates. The effect of the five percent, by mass of total cementitious materials, calcium hydroxide addition was evaluated for mixtures containing no fly ash, with and without the HRWR. For the mixture without HRWR, an acceleration of approximately 1.5 hours was observed, along with an increase in the area under the curve. For the mixture with HRWR, an acceleration of approximately 2.5 hours was observed. Next, the calcium hydroxide addition was evaluated for the 50 percent fly ash mixtures with their required HRWR dosages. For the Class C fly ash, an acceleration of

approximately 5.5 hours was observed, which almost restored the timing of the hydration curve to that of the 100 percent cement control mixture. For the Class F fly ash, an acceleration of approximately 5 hours was observed. These accelerations were verified by similar accelerations in setting times, which were tested by needle penetration. It was noted, however, that the calcium hydroxide additions resulted in significantly lower cube compressive strengths at 28 days for the Class F fly ash mixtures (Bentz, 2010).

Because it was thought that rapid set cement may not be significantly affected by the retarding effect of the fly ash, it was added in an effort to improve the early hydration reactions and strength development of the system. Accelerations were observed for 10 and 20 percent additions of rapid set cement to the Class C fly ash mixtures. The 10 percent addition was chosen for further study to avoid the possibility of setting occurring too quickly with the 20 percent addition. To evaluate the effect of the fly ashes and HRWR on the rapid set cement alone, mixtures were made with the rapid set cement alone, rapid set cement with 50 percent fly ash replacements, and rapid set cement with 50 percent fly ash replacements and HRWR addition. It was found that the Class C fly and HRWR both contributed to retardation in the mixtures. However, the Class F fly ash accelerated the hydration. In all cases, the mixtures produced peaks which were within one hour of that of the 100 percent rapid set cement mixture. This indicates that the rapid set cement is not as sensitive to the effect of fly ash, when compared to the Type II/V cement. Following the study of the effect of fly ash and HRWR on the rapid set cement, the rapid set cement was evaluated at a 10 percent addition in the Type II/V cement mixtures with 50 percent fly replacements and required HRWR dosages. It was found that the rapid set cement provided two contributions to the system. These were the

hydration of the rapid set cement alone and an acceleration of the portland cement-fly ash combination. For the Class C fly ash mixture, it was observed that the rapid set cement reacted immediately and provided an acceleration of approximately four hours. For the Class F fly ash mixture, it was observed that the rapid set cement reactions peaked after two hours, while the retardation of the system was increased by approximately eight hours. It was noted that mortar cube compressive strengths at 28 days for the Class C fly ash with a 10 percent addition of rapid set cement were 105 percent of those obtained without rapid set cement. For the Class F fly ash with a five percent addition of rapid set cement, cube compressive strengths at 28 days were 92 percent of those obtained without the rapid set cement, while the strengths with and without rapid set cement were similar at 56 days (Bentz, 2010).

# 2.6 METHODS OF EVALUATING HEAT EVOLUTION

There are many calorimetry methods and tools used to evaluate the heat evolution of cementitious mixtures. Some of the more widely used calorimeters include isothermal, semi-adiabatic, adiabatic, and solution calorimeters. The type of calorimetry device, mixing method, temperature of mixing environment, and sample size can all affect the results for a given mixture. Also, calorimetry results are reported in different ways, depending on the type of calorimeter being used. Therefore, it is necessary to have an understanding of the method behind varying calorimetry techniques when interpreting the results of heat of hydration experiments (Wang, 2006).

**2.6.1. Isothermal Calorimetry.** Isothermal calorimetry is used to measure the rate of heat production of a specimen kept at near isothermal conditions. This means that

the temperature of the specimen is kept at a near constant temperature during hydration. A typical isothermal calorimeter employs two heat flow sensors, each with an attached specimen vial holder, and a heat sink with a thermostat. A prepared sample is placed in one of the vials and an inert specimen is placed in the other vial. Each vial is then placed into one of the vial holders. The heat released during hydration then passes to the heat flow sensors. The output of the inert specimen sensor is subtracted from the output of the test specimen sensor to result in the calorimeter output. The heat production is measured in watts (W) or joules per second (J/s). The results are usually reported in relation to the specimen mass as mW/g or J/s/g (ASTM C 1679, 2009). Isothermal calorimetry is used as a precise means of determining the heat produced solely by the cementitious materials at a given temperature. The results are generally used quantitatively.

2.6.2. Semi-Adiabatic Calorimetry. Semi-adiabatic calorimetry measures the temperature of a partially insulated specimen over time. There are a variety of semi-adiabatic systems available that differ in the size of sample used and the degree of insulation. The objective for a given system is to insulate the sample in a way that minimizes the influence of the ambient temperature, but also does not retain excessive heat that would accelerate the hydration of the specimen and distort the thermal profile. One common system uses plastic cylinder molds as the specimen container. The container is placed in a cylindrical receptacle in the device, which consists of an insulated box with a thermistor at the bottom, so that the thermal readings are taken from the bottom of the specimen. Another common method uses thermocouples or thermistors, which are inserted into the center of the specimen. With this method, the specimen

container is anything that can hold a sufficient sample, such as plastic cylinders or even coffee cups (Cost, 2009).

Semi-adiabatic calorimetry is generally used as an economical alternative to isothermal calorimetry that can also be used in field conditions. The results are generally used for comparative and qualitative evaluation. However, some researchers have used more elaborate semi-adiabatic methods to achieve quantitative results, such as the adiabatic temperature rise or predicted setting times. Also, semi-adiabatic conditions may provide a better model for the thermal conditions inside a non-massive concrete structure, where gradual heat loss occurs.

2.6.3. Adiabatic Calorimetry. In adiabatic calorimetry, there is no heat loss or gain experienced by the specimen and the temperature of the specimen is measured during hydration. An economical adiabatic calorimeter used by Gibbon, Ballim, and Grieve consisted of a large tank with heater elements, a temperature probe, and stirrers. Inside of the tank, the specimen container was placed with a temperature probe inserted in the center of the specimen. The water temperature was controlled to be maintained at the same temperature as the hydrating sample. After completion of a test, the temperature readings were used to determine the specific heat and heat of hydration. The heat of hydration curve was then integrated to give a plot of total heat produced over time (Gibbon, et al., 1997).

This type of calorimetry is often used to determine the cumulative temperature rise of the concrete over time. It provides a model of the heat conditions in massive concrete structures, where there is little or no dissipation of heat.

**2.6.4. Solution Calorimetry.** Solution calorimetry is most often used to determine the adherence of a hydraulic cement to ASTM specifications on heat of hydration requirements at 7 and 28 days. However, it may also be used for research purposes to determine the heat of hydration at any age. The method involves dissolving two samples in a solution of nitric acid and hydrofluoric acid. One of the samples consists of the dry cementitious materials, while the other is a corresponding, partially hydrated paste specimen. The paste specimen is prepared ahead of time and stored in a sealed vile and placed in a water bath. At the time of testing, the paste specimen is removed from the vile and crushed with a mortar and pestle until all of the material passes through a No. 20 sieve. The heat of solution of the dissolving specimens is measured and the difference between the dry and partially hydrated specimens is taken as the heat of hydration (ASTM C 186, 2005).

### 2.7 DEVELOPMENT OF THE MINIATURE SLUMP TEST

Kantro (1980) developed the miniature slump test as a rapid means of determining the effects of admixtures on the rheological properties of cement pastes. In this study, a miniature slump cone was made of Lucite with a height of 2.25 inches, top diameter of 0.75 inches, and bottom diameter of 1.50 inches. These dimensions were chosen to be in proportion to the dimensions of the traditional slump cone used for ASTM C 143. After performing the test, the area of the paste pat was determined. The miniature slump test was used on paste mixtures with varying water-cement ratios and various admixtures. It was found that the method was suitable for comparative testing and evaluating loss in workability. Also, though it was determined that the miniature slump test was more

sensitive, it was found that the overall effects observed with the paste testing correlated with the results of corresponding concrete testing.

Other researchers have utilized the miniature slump cone to evaluate the early stiffening behavior of pastes (Bhattacharja & Tang, 2001; Roberts & Taylor, 2007). In these studies, the paste was mixed following a standard procedure and the miniature slump test was performed at 2, 5, 15, and 30 minutes after the start of mixing. It was noted that later times, such as 45 minutes, may also be used. The use of an early stiffening index, which was calculated by dividing the pat area at 30 minutes by the pat area at 5 minutes, was discussed by Roberts and Taylor (2007). They stated that calculated indices less than 0.85 are generally considered to indicate rapid stiffening behavior. It was also noted by these researchers that because pastes are more sensitive to incompatibilities, paste systems that indicated potential problems may behave normally in concrete mixtures.

# 2.8 EFFECTS OF HIGH VOLUMES OF FLY ASH ON PASTE PROPERTIES

**2.8.1.** Compressive Strength. The rate of strength gain in mixtures containing high volumes of Class C fly ash will be slower due to the slow rate of the pozzolanic reaction. This results in lower early strengths. However, the pozzolanic reaction will also generally produce greater strengths at later ages. This is due to the replacement of the weak CH products with C-S-H, which is stronger, and the filling of pores with pozzolanic reaction products, which reduces the overall porosity of the paste and leads to an increase in strength (Detwiler, et al., 1996).

In a study by Jiang, et al. (1999), the strength development of paste mixtures with varying Class F fly ash contents, water-cementitious materials ratios, and admixture dosages were evaluated. Fly ash replacements of 40, 55, and 70 percent were used and the w/cm of these mixtures were between 0.24 and 0.38. It was found that early strengths decreased with increasing fly ash contents. Also, the fly ash mixtures showed greater increases in strength gain at later ages, though their strengths at 90 days were still less than that obtained by the 100 percent cement control mixture.

Bentz, et al. (2010) evaluated the strength gain characteristics of mortars containing 50 percent of either Class C or Class F fly ash. The strengths were evaluated at 1, 7, 28, 56, 182, and 365 days. It was found that one day strengths of the fly ash mixtures were only approximately 30 percent of those achieved with the 100 percent cement mortar. At later ages, the strengths of these mixtures approached that of the control. At 365 days, all of the mixtures with 50 percent fly ash had compressive strengths that were greater than 85 percent of the strength of the control mixture. Also, while both fly ash mixtures had similar strengths at 1 day, it was found that between 1 and 7 days, the Class C fly ash mixture showed greater strength gains, indicating that the Class C fly ash contributed more to early hydration reactions.

**2.8.2. Heat Evolution.** Schindler and Folliard (2003) performed semi-adiabatic calorimetry on combinations of Type I cement with 15, 25, 35, and 45 percent Class C or Class F fly ash replacements by volume. The results were then used to back-calculate the adiabatic temperature rise. It was found that with increasing Class C fly ash replacement, the total heat of hydration was not significantly affected, but the rate of hydration was slowed. It is also apparent from these results that the peak temperature decreased with

increasing levels of Class C fly ash. With increasing levels of Class F fly ash, the total heat of hydration and the rate of heat evolution were reduced, which would result in little heat development at early ages.

Bentz (2010) evaluated the effects of 50 percent Class C and Class F fly ash replacement on Type II/V cement paste mixtures using isothermal calorimetry. It was found that the mixtures with Class C fly ash experienced retarded silicate hydration peaks. Even with the addition of gypsum to correct the sulfate imbalance, the silicate peak was significantly delayed. For the Class F fly ash mixtures, the silicate peak was not delayed.

- **2.8.3. Consistency.** Due to their spherical particle shapes, fly ashes are known to increase the flowability of cementitious mixtures. This occurs because the spherical shape reduces friction between particles in the mixture (Mindess, et al., 2003).
- 2.8.4. Setting Time. It has been found by several researchers that the use of fly ash can significantly delay setting times (ACI Committee 232, 2003). Bentz et al. (2010) evaluated the effects of 50 percent Class C or Class F fly ash replacement on Type II/V cement pastes. It was found that initial set was delayed by at least three hours for both mixtures containing fly ash, when compared to the 100 percent cement control mixture. For the Class C fly ash mixture, final set was delayed by almost three hours, while a delay of over four hours was observed for the Class F fly ash mixture. It should be noted that the Class C fly ash mixture included a two percent addition of gypsum, by mass of total cementitious materials, to correct the sulfate imbalance caused by the fly ash.

### 3. LABORATORY INVESTIGATION

#### 3.1 EXPERIMENTAL DESIGN

Five Type I portland cements and five Class C fly ashes, which are representative of those common to the eastern and western portions of the State of Missouri, were investigated in this study. Each cement was tested in combination with each Class C fly ash at replacement levels of 0, 25, 50, and 70 percent by mass of cement. The zero percent replacement level was used as a baseline. The 25 percent replacement level was chosen since it is typically the highest replacement level used in concrete mixtures containing fly ash. The 50 and 70 percent replacements levels were chosen based on previous research at the Missouri University of Science and Technology. Gypsum, hydrated lime, and rapid set cement were investigated as powder additions. Also, the addition of a water reducer was examined. In regard to w/cm, a survey of typical Missouri Department of Transportation (MoDOT) structural and paving revealed that a w/cm of 0.45 and 0.40 has been used. Because of concerns about low strength for high volume flyash mixtures, all of the paste mixtures were prepared with a constant water-cementitious materials ratio (w/cm) of 0.40.

**3.1.1. Screening Study.** The Screening Study included testing each combination of Type I cement and Class C fly ash at the four replacement levels, resulting in 80 combinations. These mixtures contained only cement, fly ash, and water. Testing for the Screening Study included semi-adiabatic calorimetry, cube compressive strength, miniature slump, and Vicat setting time. Compressive strength tests were performed at specimen ages of 1 day and 28 days.

**3.1.2. Main Study.** The Main Study investigated the effects of gypsum, hydrated lime, rapid set cement, and a water reducer on two combinations of cement and fly ash. The two cement-fly ash combinations were chosen for further study from the Screening Study based on having the highest and lowest reactivity of the cement-fly ash combinations. The levels of reactivity of the combinations were based on 1 -day cube strengths. A low dose, 2.75 fl. oz./cwt., and high dose, 5.00 fl. oz./cwt., of water reducer were investigated at each level of fly ash replacement. The gypsum, hydrated lime, and rapid set cement were investigated at the 50 and 70 percent levels of fly ash replacement with the low dose of water reducer. The gypsum levels were two and four percent of the actual percentage of fly ash. The hydrated lime and rapid set cement were evaluated at two levels with a gypsum level of four percent. The hydrated lime levels were five and ten percent of the actual percentage of fly ash, while the rapid set cement levels were 10 and 20 percent of the actual percentage of fly ash. This resulted in 48 paste mixtures for the Main Study. Equations 1 through 4, below, show the equations used in calculating the proportions of the cementitious materials. Nominal % Activator refers to the nominal percentage of either hydrated lime or rapid set cement used in the mixture, which are percentages by weight of flyash, as opposed to a total cementitious basis.

$$Actual \% Fly Ash = \frac{100}{1+R+\frac{Nominal \% Gypsum}{100} + \frac{Nominal \% Activator}{100}}$$
(1)

$$Actual \% Portland Cement = R(Actual \% Fly Ash)$$
 (2)

$$Actual \% Gypsum = \frac{Nominal \% Gypsum}{100} (Actual \% Fly Ash)$$
 (3)

$$Actual \% \ Activator = \frac{Nominal \% \ Activator}{100} (Actual \% \ Fly \ Ash) \tag{4}$$

$$R = \frac{Nominal \% Portland Cement}{Nominal \% Fly Ash}$$
 (5)

Table 3.1, on the following page, shows the combinations used in the Main Study. The percentages shown are nominal percentages. Cements are designated "1", "2", "3", "4", or "5", as are the fly ashes. Thus, a combination of Cement 4 and Fly ash 1 would be "4-1". Testing for mixtures in the Main Study included semi-adiabatic calorimetry, cube compressive strength, miniature slump, and Vicat setting time. Compressive strength testing was performed at specimen ages of 1, 3, 7, 28, and 56 days.

Table 3.1. Main Study Combinations

| Portland | FI 4.1  | Cement | Fly Ash | Gypsum | Calcium Hydroxide | Rapid Set Cement | Water Reducer  |
|----------|---------|--------|---------|--------|-------------------|------------------|----------------|
| Cement   | Fly Ash | (%)    | (%)     | (%)    | (%)               | (%)              | (fl. oz./cwt.) |
| 4        | 1       | 100    |         |        |                   |                  |                |
| 4        | 1       | 100    |         |        |                   |                  | 2.75           |
| 4        | 1       | 100    |         |        |                   |                  | 5.00           |
| 4        | 1       | 75     | 25      |        |                   |                  |                |
| 4        | 1       | 75     | 25      |        |                   |                  | 2.75           |
| 4        | 1       | 75     | 25      |        |                   |                  | 5.00           |
| 4        | 1       | 50     | 50      |        |                   |                  |                |
| 4        | 1       | 50     | 50      |        |                   |                  | 2.75           |
| 4        | 1       | 50     | 50      |        |                   |                  | 5.00           |
| 4        | 1       | 50     | 50      | 2      |                   |                  | 2.75           |
| 4        | 1       | 50     | 50      | 4      |                   |                  | 2.75           |
| 4        | 1       | 50     | 50      | 4      | 5                 |                  | 2.75           |
| 4        | 1       | 50     | 50      | 4      | 10                |                  | 2.75           |
| 4        | 1       | 50     | 50      | 4      |                   | 10               | 2.75           |
| 4        | 1       | 50     | 50      | 4      |                   | 20               | 2.75           |
| 4        | 1       | 30     | 70      |        |                   |                  |                |
| 4        | 1       | 30     | 70      |        |                   |                  | 2.75           |
| 4        | 1       | 30     | 70      |        |                   |                  | 5.00           |
| 4        | 1       | 30     | 70      | 2      |                   |                  | 2.75           |
| 4        | 1       | 30     | 70      | 4      |                   |                  | 2.75           |
| 4        | 1       | 30     | 70      | 4      | 5                 |                  | 2.75           |
| 4        | 1       | 30     | 70      | 4      | 10                |                  | 2.75           |
| 4        | 1       | 30     | 70      | 4      |                   | 10               | 2.75           |
| 4        | 1       | 30     | 70      | 4      |                   | 20               | 2.75           |
| 1        | 3       | 30     |         |        |                   |                  | 2.73           |
| 1        | 3       |        |         |        |                   |                  | 2.75           |
| 1        | 3       |        |         |        |                   |                  | 5.00           |
| 1        | 3       |        | 25      |        |                   |                  |                |
| 1        | 3       |        | 25      |        |                   |                  | 2.75           |
| 1        | 3       |        | 25      |        |                   |                  | 5.00           |
| 1        | 3       |        | 50      |        |                   |                  | 5.00           |
| 1        | 3       |        | 50      |        |                   |                  | 2.75           |
| 1        | 3       |        | 50      |        |                   |                  | 5.00           |
| 1        | 3       |        | 50      | 2      |                   |                  | 2.75           |
| 1        | 3       |        | 50      | 4      |                   |                  | 2.75           |
| 1        | 3       |        | 50      | 4      | 5                 |                  | 2.75           |
| 1        | 3       |        | 50      | 4      | 10                |                  | 2.75           |
| 1        | 3       |        | 50      | 4      |                   | 10               | 2.75           |
| 1        | 3       |        | 50      | 4      |                   | 20               | 2.75           |
| 1        | 3       |        | 70      |        |                   |                  | 2.73           |
| 1        | 3       |        | 70      |        |                   |                  | 2.75           |
| 1        | 3       |        | 70      |        |                   |                  | 5.00           |
| 1        | 3       |        | 70      | 2      |                   |                  | 2.75           |
| 1        | 3       |        | 70      | 4      |                   |                  | 2.75           |
|          | 3       |        |         |        |                   |                  |                |
| 1        | 3       |        | 70      | 4      | 5                 |                  | 2.75           |
| 1        |         |        | 70      | 4      | 10                | 10               | 2.75           |
| 1        | 3       |        | 70      | 4      |                   | 10               | 2.75           |
| 1        | 3       |        | 70      | 4      |                   | 20               | 2.75           |

# 3.2 EQUIPMENT

This section covers the equipment used for the mixing and testing procedures performed in this study. The section below on mixing equipment describes the equipment used to mix paste batches for the calorimetry, compressive strength, and miniature slump tests. The equipment used to mix paste batches for the Vicat setting time procedure is described later under Vicat Setting Time Equipment.

**3.2.1. Mixing Equipment.** The paste batches for semi-adiabatic calorimetry, compressive strength, and miniature slump testing were mixed using the same procedure and equipment. The batches were mixed using a 250-watt Black and Decker Model MX217 hand mixer with egg beater-style paddles, shown in Figure 3.1, below.



Figure 3.1. Black and Decker Hand Mixer

The mixer had six speed settings along with a "Power Boost" option that would increase the mixing speed when pushed. The rotational speeds for the various settings are given below in Table 3.2.

Table 3.2. Hand Mixer Rotational Speeds

| Speed Setting | Rotational Speed (RPM) |
|---------------|------------------------|
| 1             | 390                    |
| 2             | 440                    |
| 3             | 490                    |
| 4             | 540                    |
| 5             | 600                    |
| 6             | 670                    |
| Power Boost   | 700                    |

The paste was mixed in a stainless steel mixing bowl from a Hobart Model A-200 mixer, which had a capacity of 20 quarts. Temperature measurements of the paste, after mixing, were made using an analog thermometer with a probe length of five inches.

Other equipment included a stopwatch for timing of the mixing procedure and a ladle to transport the paste mixture from the mixing bowl. Figure 3.2, below, shows the mixing bowl, thermometer, and other equipment used during mixing.



Figure 3.2. Equipment used in the Combined Mixing Procedure

3.2.2. Cube Molding Equipment. Steel and plastic molds were used to mold the two-inch paste cubes. The steel molds contained three compartments and consisted of two sides with a thickness of one half of an inch, four slats with a thickness of two tenths of an inch, and a base plate with screws for holding the components together. The two thicker sides each had four grooves to hold the slats in place and the four slats were inserted between the thicker sides so that they were parallel to each other. This assembly was held in place on the base plate by two screws on one of the thicker sides and one screw on the other side, which was also used for tightening the assembly together. The plastic molds consisted of two side pieces, a base plate, and six thumb screws. The two side pieces were held together by two of the longer thumb screws to form the cubes

diagonal to the length of the mold. The other four screws were used to hold the assembled side components to the base plate.

Other equipment used to mold the paste cubes included a tamper, trowel, and vacuum grease. The tamper was made of Plexiglas and had a width of about one inch, thickness of about one half of an inch, and a length of about four inches. The trowel was made of steel and had a rectangular blade 4.25 inches long and two inches wide. The vacuum grease was Dow Corning High-Vacuum Grease and was used to seal together the components of the cube molds. Figure 3.3, below, shows the cube molding equipment.

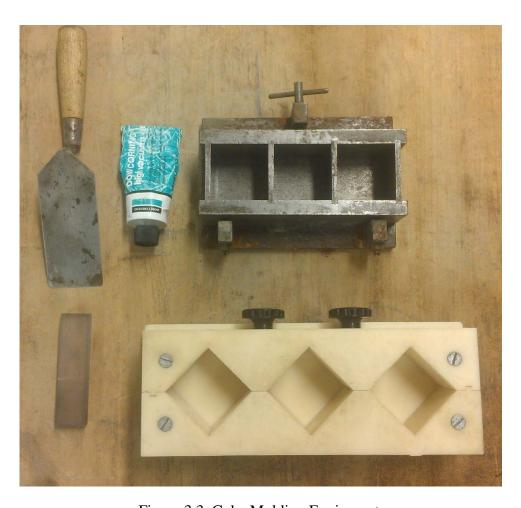



Figure 3.3. Cube Molding Equipment

3.2.3. Curing Equipment. After three days of curing, the paste cubes were removed from the molds and placed in buckets of water saturated with hydrated lime. The buckets had a capacity of five gallons and were stored in a moist room, which had a relative humidity maintained at 95% or greater. The moist room itself was not explicitly controlled for temperature, but the temperature was maintained at the same temperature as the surrounding building and was relatively constant.

3.2.4. Compressive Strength Testing Equipment. The two-inch cube specimens were tested for compressive strength on a hydraulic, Tinius-Olsen tension/compression machine with a capacity of 200,000 pounds. The Tinius-Olsen is controlled using a desktop computer with MTestW software. Two loading platens were used to apply the load to the two loading faces of the cube specimens. The lower, square loading platen was about twelve inches tall and had a diagonal dimension of 3.5 inches. It was attached to a larger, circular loading platen, typically used for cylinder testing, which rested on the lower table of the Tinius-Olsen machine. The upper, circular loading platen was about six inches tall and was attached to the upper crosshead of the Tinius-Olsen machine. The loading block of the upper platen was spherically seated and had a diameter of 3.5 inches. Figure 3.4 shows the Tinius-Olsen machine with the loading platens and the computer used to control the machine.



Figure 3.4. Tinius-Olsen Load Frame and Computer

Other equipment included digital calipers for measuring the dimensions of the specimen and sand paper to smooth the loading faces of the specimen. The sand paper had a grit size of 60. The complete testing method is detailed in Appendix A.

3.2.5. Semi-Adiabatic Calorimetry Equipment. Temperature measurements were taken on hydrating paste specimens over time using an F-Cal 4000 Field Calorimeter from Calmetrix, Inc., which is shown in Figure 3.5. The F-Cal 4000 consists of four receptacles in an insulated box with thermistors at the bottom of each receptacle. The thermistors, along with a USB port, are connected to a single data logger. The

receptacles are sized to hold standard 4"x8" cylinder molds. Plastic 4"x8" cylinder molds were used in this study.



Figure 3.5. F-Cal 4000, Computer, and Cylinder Molds

Data was collected from the F-Cal 4000 data logger using the CalCommander v1.3 Software Suite from Calmetrix, Inc. This required the calorimeter to be connected to a desktop computer with a USB cable. Once data was collected by and exported from the CalCommander software, data reduction was performed using Microsoft Excel 2010 and TableCurve 2D software.

**3.2.6. Miniature Slump Equipment.** Two miniature slump cones were fabricated from Plexiglas with the dimensions given by Kantro (1980). The inside of the cones had dimensions in the same proportion as those specified for a standard slump cone as given

in ASTM C 143. These dimensions were 0.75 inches for the top diameter, 1.5 inches for the bottom diameter, and 2.25 inches for the height.

Figure 3.6, shows the two cones used in this study, along with other equipment used for performing this test, which included a Plexiglas board, plastic discs, and a spatula. The rectangular Plexiglas board was flat with a smooth surface and had dimensions of 39 inches by 13 inches by 0.2 inches. The plastic discs were cut from Zip-Lock bags and had diameters of about two inches. The stainless steel spatula had a length of four inches and a width of 0.7 inches.



Figure 3.6. Miniature Slump Cones and Equipment

**3.2.7. Vicat Setting Time and Normal Consistency Equipment.** The Vicat apparatus described in ASTM C 191 and ASTM C 187 was used for both the Vicat setting time and normal consistency tests. The apparatus, shown in Figure 3.7, consists of

a moveable rod that has one end with a diameter of 10 millimeters and another end with a removable needle that has a diameter of one millimeter. The rod is held in a frame that has a scale with a 50 millimeter length divided into one millimeter increments. An indicator attached to the rod moves along this scale and a set screw in the frame is used to hold the rod. The conical ring and base plate, which hold the paste, rest on the bottom portion of the frame. The conical ring is made of rigid plastic and the base plate is made of glass.



Figure 3.7. Vicat Apparatus with Ring and Glass Plate

The paste was mixed using a Hobart Model N50 mixer, bowl, and paddle, which conform to the requirements of ASTM C 305. The mixer has three speeds and moves the paddle in both planetary and revolving motions. Other equipment used to perform these tests included a bowl scraper with a semi-rigid rubber blade as specified in ASTM C 305, rubber gloves, and a steel trowel with a rectangular blade 4.25 inches long and two inches wide. Figure 3.8, below, shows the mixer and other equipment discussed above.



Figure 3.8. Hobart Mixer and Bowl Scraper

## 3.3 MATERIALS

**3.3.1. Portland Cements.** Five portland cements were chosen that were representative of those commonly used in the eastern and western portions of the State of Missouri. The cements were all either ASTM Type I or Type I/II. Oxide analyses were provided by the producers and are included below in Table 3.3.

Table 3.3. Cement Oxide Analyses (Screening Study)

| Material | Type/Class | SiO <sub>2</sub> (%) | Al <sub>2</sub> O <sub>3</sub> (%) | Fe <sub>2</sub> O <sub>3</sub> (%) | CaO (%) | SO <sub>3</sub> (%) | Na <sub>2</sub> O (%) | K <sub>2</sub> O (%) | EqAlk (%) |
|----------|------------|----------------------|------------------------------------|------------------------------------|---------|---------------------|-----------------------|----------------------|-----------|
| Cement 1 | Type I/II  | 20.40                | 4.21                               | 3.62                               | 63.83   | 2.49                | 0.20                  | 0.45                 | 0.52      |
| Cement 2 | Type I/II  | 19.90                | 5.10                               | 3.80                               | 62.60   | 3.00                |                       |                      | 0.50      |
| Cement 3 | Type I/II  | 20.30                | 4.69                               | 3.22                               | 63.00   | 2.82                |                       |                      | 0.50      |
| Cement 4 | Type I     | 19.85                | 4.63                               | 3.23                               | 64.08   | 3.28                | 0.18                  | 0.48                 | 0.49      |
| Cement 5 | Type I/II  | 19.80                | 4.80                               | 3.10                               | 63.20   | 3.10                |                       |                      | 0.55      |

The cement oxide analyses were performed on materials that were produced at a similar time as those received during the first shipment of materials. A second shipment of Cement 1 and Cement 4 were received approximately six months after the first delivery. As can be seen in Table 3.4, below, the analyses are quite similar.

Table 3.4. Cement Oxide Analyses (Main Effects Study)

| Cement | SiO <sub>2</sub> | $Al_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | CaO   | SO <sub>3</sub> | Na <sub>2</sub> O | K <sub>2</sub> O | EqAlk | $C_3S$ | C <sub>3</sub> A | Fineness   |
|--------|------------------|-----------|--------------------------------|-------|-----------------|-------------------|------------------|-------|--------|------------------|------------|
| Cement | (%)              | (%)       | (%)                            | (%)   | (%)             | (%)               | (%)              | (%)   | (%)    | (%)              | $(cm^2/g)$ |
| 1      | 20.29            | 4.05      | 3.64                           | 63.43 | 2.91            | 0.2               | 0.47             | 0.54  | 57     | 4                | 4000       |
| 4      | 20               | 4.6       | 3.1                            | 63.9  | 3.1             |                   |                  | 0.53  | 61     | 7                | 3900       |

**3.3.2. Fly Ashes.** Five fly ashes were chosen that were representative of those commonly used in the eastern and western portions of the State of Missouri. All of the fly ashes conformed to the requirements for ASTM Class C fly ash. The results of the oxide analyses for the fly ashes are included in Table 3.5.

Table 3.5. Fly Ash Oxide Analyses

| Flyash  | SiO <sub>2</sub> | $Al_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | CaO   | $SO_3$ | Na <sub>2</sub> O | K <sub>2</sub> O | EqAlk | Retained #325 | LOI  |
|---------|------------------|-----------|--------------------------------|-------|--------|-------------------|------------------|-------|---------------|------|
| Tiyasii | (%)              | (%)       | (%)                            | (%)   | (%)    | (%)               | (%)              | (%)   | (%)           | (%)  |
| 1       | 33.72            | 21.9      | 7.15                           | 25.31 | 2.25   | 1.4               | 0.41             | 1.68  | 11.16         | 0.37 |
| 2       | 33.34            | 20.57     | 6.15                           | 26.34 | 1.87   | 1.63              | 0.43             | 1.92  | 11.17         | 0.49 |
| 3       | 35.42            | 16.88     | 7.97                           | 23.21 | 3.46   | 1.4               | 0.56             | 1.78  | 19.37         | 3.05 |
| 4       | 30.55            | 18.78     | 7.48                           | 28.43 | 3.33   | 1.5               | 0.45             | 1.81  | 10.17         | 0.57 |
| 5       | 32.26            | 19.03     | 6.24                           | 27.94 | 2.4    | 2.2               | 0.33             | 2.43  | 13.04         | 0.26 |

The fly ash oxide analyses were performed by the Materials Research Center (MRC), at the Missouri University of Science and Technology, on the first shipment of materials received. Also, particle size distributions were analyzed by the Ash Grove Cement Company Technical Center on this initial shipment. A second shipment of Fly Ash 3 was received approximately six months after the first shipment. Fly Ash 1 was continually resupplied from bulk shipments to the Missouri University of Science and Technology.

**3.3.3. Powder Additions.** Three materials were used as powder additions in the paste mixtures. These included gypsum, hydrated lime, and rapid set cement. The gypsum was manufactured from recycled drywall by USA Gypsum. According to the

manufacturer's website, the material has a calcium sulfate (CaSO<sub>4</sub>) content of 96.0% and a moisture content no greater than 2.0%. The hydrated lime was Standard Hydrated Lime acquired from Mississippi Lime. Typical data from the manufacturer's website reported an available calcium hydroxide (Ca(OH)<sub>2</sub>) content of 96.8%, CaSO<sub>4</sub> content of 0.1%, and free moisture content of 0.7%. The rapid set cement was Rapid Set Cement manufactured by CTS Cement Manufacturing Corporation. The advertised oxide analysis is shown in Table 3.6.

Table 3.6. Oxide Analysis of RSC

| Parameter               | Percent |
|-------------------------|---------|
| Calcium oxide (CaO)     | 50.87   |
| Silicon dioxide (SiO2)  | 15.40   |
| Aluminum oxide (Al2O3)  | 13.74   |
| Sulfur trioxide (SO3)   | 12.52   |
| Iron oxide (FesO3)      | 2.38    |
| Magnesium oxide (MgO)   | 1.26    |
| Total alkalis (as Na2O) | 0.56    |
| Loss on ignition        | 2.84    |
| Insoluble residue       | 0.78    |
| Specific gravity        | 2.98    |

The manufacturer also provided results for modified ASTM C 109 tests performed with the material. These compressive strength results are given below in Table 3.7.

Table 3.7. CTS Rapid Set Cement Compressive Strength Results

| Rapid Set Cer         | Rapid Set Cement Compressive Strength |  |  |  |  |  |  |  |  |  |  |
|-----------------------|---------------------------------------|--|--|--|--|--|--|--|--|--|--|
| (Modified ASTM C 109) |                                       |  |  |  |  |  |  |  |  |  |  |
| Time                  | Compressive Strength (psi)            |  |  |  |  |  |  |  |  |  |  |
| 1.5 hours             | 2500                                  |  |  |  |  |  |  |  |  |  |  |
| 3 hours               | 5000                                  |  |  |  |  |  |  |  |  |  |  |
| 24 hours              | 6500                                  |  |  |  |  |  |  |  |  |  |  |
| 28 days               | 8000                                  |  |  |  |  |  |  |  |  |  |  |

**3.3.4. Water Reducer.** The water-reducing admixture used in this project was Glenium 7500 from BASF, which was a polycarboxylate and conformed to ASTM C 494/C 494M requirements for both a Type A, water-reducing admixture and a Type F, high-range water-reducing admixture. The recommended dosage range provided by the manufacturer was 2 to 15 fl. oz./cwt. of cementitious materials.

**3.3.5. Water.** The water used for all of the mixtures was supplied from a single source of deionized water.

#### 3.4 TEST PROCEDURES

- **3.4.1. Pre-blending Dry Constituents.** Prior to mixing of the paste batches, the dry constituents of the mixture were pre-blended. This was performed by transferring no more than 1200 grams of the materials into a 4 inchx8 inch plastic cylinder mold in similar proportions as those used in the mixture. The cap was then placed on the cylinder and the cylinder was held horizontally with one hand on each end. The cylinder was then shaken 25 cycles using a six inch throw. This procedure is included in all of the test procedures in Appendix A.
- 3.4.2. Determination of Rotational Speeds for Handheld Mixer. An adjustable rate strobe light was used to determine the rotational speeds for the various settings on the handheld mixer. To do this, a piece of white tape was attached to a fin of one paddle and a piece of orange tape was placed on the other paddle. The mixer was then started and the strobe light was adjusted to flash at different rates until the tape on the paddles appeared to stop moving. It was also noted that each fin appeared to stop when the proper rate was set on the light. This rate was read in RPMs from the dial used to adjust the flashing rate. The rates determined were between 390 and 700 RPM, which is a reasonable result for this appliance. Judgment had to be used to make sure that higher or lower speeds were not taken to be the actual speed of the blender, since the stopped-movement appearance can occur at higher or lower flashing rates on the strobe light that would be unreasonable for this type of device.
- **3.4.3. Combined Mixing Procedure.** The paste for the cube compressive strength, semi-adiabatic calorimeter, and miniature slump tests was typically mixed in a single batch. In order to mix the materials adequately and within the time requirements of

the tests being performed, a handheld kitchen mixer was used as recommended by Cost (T. Cost, personal communication, April 10, 2011). As noted by Cost (2009), the use of equipment and methods other than those given in ASTM C 305 can shorten mixing times to as little as 60 seconds. In this study, the initial mixing of the paste batch was performed in 90 seconds, which allowed the first miniature slump test to be performed at two minutes after mixing began. The initial mixing consisted of adding the water to the cementitious materials, allowing the cement to absorb the water for 10 seconds, mixing for 20 seconds at Speed 2 (440 rpm), and then mixing for 60 seconds at Speed 6 (670 rpm). As noted by Kantro (1980), brief setting of the paste mixture can be avoided by remixing the paste. This was done in this study by remixing the paste for 30 seconds at Speed 2 prior to each miniature slump test. The calorimeter specimens were prepared and inserted into the calorimeter after the 5-minute miniature slump test, which allowed for early data collection, and the cube specimens were molded after the 15-minute miniature slump test, so that molding began within 2 minutes and 30 seconds after remixing. In Table 3.8, on the following page, the complete sequence of testing can be seen.

In some cases, not all of the tests were performed using a single batch of paste.

For these cases, the same mixing and remixing sequences were followed with the tests being performed at their respective times in the combined mixing procedure.

**3.4.4. Cube Compressive Strength.** All of the cube molds were sealed with vacuum grease to prevent the paste from leaking. Excess vacuum grease was removed from the interior of the molds to avoid deforming the shape of the cubes. The mixing procedure for the paste followed the combined mixing procedure, which was discussed previously, using the handheld mixer.

Table 3.8. Combined Mixing Procedure Sequence

| Elapsed Time (mm:ss) | Action                                                                                              |
|----------------------|-----------------------------------------------------------------------------------------------------|
| 0:00                 | Add water to mixing bowl with cementitious materials Record Time (Start Time)                       |
| 0:10                 | Start mixing at Speed 2 (440 RPM)                                                                   |
| 0:30                 | Start mixing at Speed 6 (670 RPM)                                                                   |
| 1:30                 | Stop Mixing Record Temperature of Paste Prepare mini-slump test                                     |
| 2:00                 | Lift mini-slump cone                                                                                |
| 4:00                 | Remix paste at Speed 2                                                                              |
| 4:30                 | Prepare mini-slump test                                                                             |
| 5:00                 | Lift mini-slump cone<br>Prepare calorimeter specimens<br>Insert calorimeter specimens in F-Cal 4000 |
| 10:00                | Close and latch the lid of the F-Cal 4000                                                           |
| 13:00                | Remix paste at Speed 2                                                                              |
| 13:30                | Prepare mini-slump test                                                                             |
| 15:00                | Lift mini-slump cone<br>Mold cement cubes                                                           |
| 28:00                | Remix paste at Speed 2                                                                              |
| 28:30                | Prepare mini-slump test                                                                             |
| 30:00                | Lift mini-slump cone                                                                                |
| 43:00                | Remix paste at Speed 2                                                                              |
| 43:30                | Prepare mini-slump test                                                                             |
| 45:00                | Lift mini-slump cone                                                                                |
| 60:00                | Measure and record mini-slump diameters                                                             |

The molding of the specimens followed the filling, tamping, and leveling procedures outlined in ASTM C 109 with a deviation of the time at which molding began. ASTM C 109 states that specimen molding should begin within two minutes and 30 seconds after completion of the original mixing of the batch. In this study, molding started after completion of the 15-minute miniature slump test, which would mean that molding started approximately fourteen minutes after completion of the initial mixing. However, this molding time was within two minutes and 30 seconds after completion of the remixing for the 15-minute miniature slump test. Also, it was noted that the paste at this time was sufficiently fluid to allow for complete consolidation. Following the completion of the molding procedures, the specimens were placed in the moist room. Further details on mold removal and specimen storage can be found in the "Compressive Strength of Cement Cubes" procedure in Appendix A.

The compressive strengths of the cubes were tested on the Tinius-Olsen load frame at a load rate of 200 pounds/second, which is within the range allowed by ASTM C 109. Prior to loading the specimens, the molded faces of the cubes that were to be loaded, were sanded to provide plane loading surfaces. The loading faces of the cubes and the load platens were cleaned of any debris prior to the start of loading.

The complete test procedure is titled "Compressive Strength of Cement Cubes" and is included in Appendix A.

**3.4.5. Semi-adiabatic Calorimetry.** Semi-adiabatic calorimetry was performed for the paste mixtures using an F-Cal 4000 calorimeter with CalCommander software from Calmetrix. Three paste specimens were inserted into the F-Cal 4000 for each mixture, with one receptacle containing an inert specimen. It was decided that three

specimens should be used for each mixture, instead of testing multiple mixtures simultaneously, so that the results for a given specimen would not be affected by the temperature rise of other specimens with different compositions. The inert specimen consisted of high-silica sand and deionized water with a water-to-sand ratio equal to the water-to-cementitious materials ratio of 0.40 and mass similar to the paste specimens. The use of a water and sand combination is intended to better simulate the thermal conductivity of the paste specimens, when compared to a dry sand inert specimen (T. Cost, personal communication, April 10, 2011). The mass of the inert specimen was 1250.0 grams and the masses of the paste specimens were 1250.0 grams with a tolerance of 10.0 grams. This mass is recommended in the F-Cal 4000/8000 User Manual and fills approximately one-third of the cylinder's volume. As noted in a draft ASTM for evaluating hydration using thermal measurements (2011), the "masses of all specimens that will be compared with each other shall not differ by more than 5%". A tolerance of 10.0 grams was chosen because it was within this range, was easily accomplished, and could lessen the variability between specimens when compared to specimens differing in mass by 5%.

Once logging in the F-Cal 4000 was complete, the data was retrieved using the CalCommader software. From the software, the data for each logging channel was exported as a separate Text Document (.txt) file. These were then imported into Microsoft Excel and the Signal-to-Noise ratio (S/N) was calculated for each of the three specimens. The Signal is the difference between the highest and lowest temperatures recorded for the sample being tested. The Noise is the difference between the highest and lowest temperatures recorded for the inert specimen. Figure 3.9, below, shows an

example of the temperature versus time curves resulting from the raw data for a typical hydrating cement paste sample and corresponding inert specimen. The Signal and Noise quantities are indicated in the figure. Use of this data will be discussed in a later section.

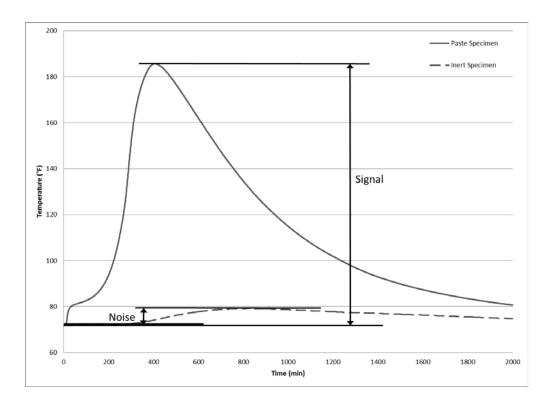



Figure 3.9. Examples of Signal and Noise Quantities

Cost (2009) noted that the curve generated for the inert specimen should be subtracted from the curve for the hydrating specimen, so that the resulting data represents only the heat evolution of the sample and not variances in the ambient temperature. Cost designated this quantity as  $\Delta T$ , which is shown below in Figure 3.10. In this study, the curves for the three specimens were averaged to result in a single hydration curve for

each paste mixture. The curve for the inert specimen was then subtracted from this averaged curve to result in a corrected average hydration curve.

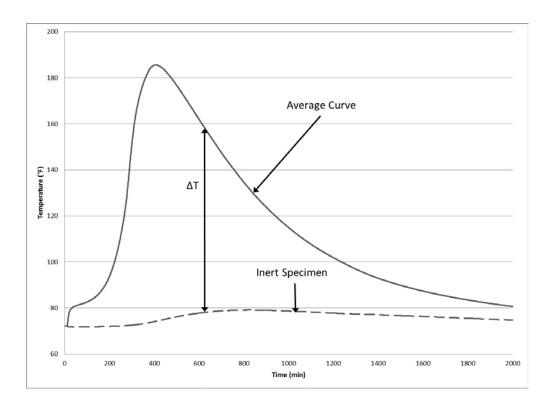



Figure 3.10. Representation of the ΔT Quantity

This corrected curve was then used to calculate predicted setting times using the Fractions Method and Derivatives Method, as discussed by Sandberg and Liberman (2007). For the Fractions Method, the main hydration response rise (M) is calculated, which is the difference between the peak temperature of the main hydration curve and the lowest temperature during the dormant period, and then two percentage values of the main hydration response rise are chosen to represent the initial and final set times. For

this study, 20% of the main response was chosen for initial set and 50% was chosen for final set. A representation of the calculated values for the Fractions Method is shown below in Figure 3.11. For the Derivatives Method, initial set is taken as the time when the maximum second derivative of the main hydration curve occurs and final set is taken as the time when the maximum first derivative of the main hydration curve occurs.

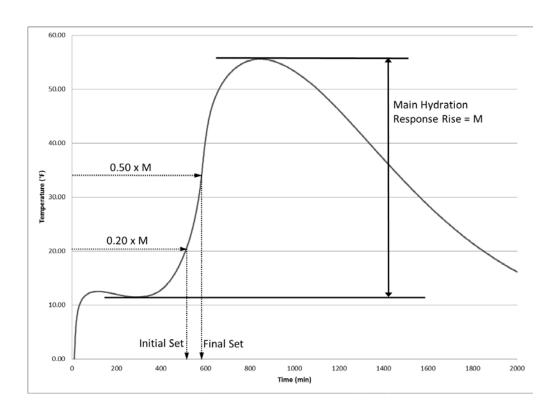



Figure 3.11. Example of Setting Time Prediction by the Fractions Method

The complete semi-adiabatic calorimetry procedure, including data reduction, is titled "Using the F-Cal 4000 & CalCommander Software for Testing Cement Paste" and is included in Appendix A.

Before testing began, a verification of the internal connections was performed, as suggested in the F-Cal 4000/8000 User Manual, to ensure that the connections had not been damaged during shipping. This was done by filling four cylinders with water at 110°F and inserting them into the F-Cal 4000. After thirty minutes, the temperature reading was checked for each of the sensors to ensure that no two sensors differed by more than 2°F.

**3.4.6. Miniature Slump.** The paste for the miniature slump test was mixed according to the combined mixing procedure previously discussed. The test was performed at 2, 5, 15, 30, and 45 minutes, as was done by Bhattacharja and Tang (2001). The tests at 2 and 5 minutes were performed 30 seconds after the end of mixing or remixing. The tests at 15, 30, and 45 minutes were performed one minute and 30 seconds after the end of remixing to allow for a longer period to fill the cone, which was needed for stiffer mixtures.

The cones were placed on thin plastic discs, as suggested by Bhattacharja and Tang (2001), to prevent leaking from the bottom of the cone. The discs had diameters of two inches and were cut from Zip-Lock sandwich bags.

Previous research (Kantro, 1980; Bhattacharja & Tang, 2001), discussed the use of a planimeter for measuring the area of the miniature slump pats. To do this, tracings of the pats were made on paper and measured after the pats had hardened and were removed. While this method gives more accurate results, time constraints and concerns about variability introduced by the paper led to the use of diameter measurements for area determination in this study, which has been found to be an accurate alternative for pat areas that remain nearly circular. In this study, this method involved taking four diameter

measurements, separated by a rotation of 45 degrees, to obtain an average diameter from which the area was calculated.

The diameter measurements were taken at 60 minutes after the start of mixing.

This time was chosen to allow the later miniature slump tests time to stabilize without allowing sufficient time for the results of the earlier tests to be affected by shrinkage from hydration and drying.

The complete test procedure, which was adapted from the procedures given by Kantro (1980) and Bhattacharja & Tang (2001), is titled "Miniature Slump Cone" and is included in Appendix A.

3.4.7. Normal Consistency and Vicat Time of Setting. The paste for the normal consistency test was mixed according the Procedure for Mixing Pastes given in ASTM C 305 with one deviation. In this study, the bowl and paddle were wetted before mixing commenced to provide a more constant surface condition of these items when multiple tests were run in succession. Care was taken to ensure that excess water was not present, which would affect the normal consistency results. Following the mixing procedure, normal consistency was determined according to ASTM C 187.

The paste from the normal consistency test was used to determine the time of setting by the Vicat method according to ASTM C 191 with one deviation. The specimen was kept in the moist room between penetration measurements and was covered with a plastic sheet while in the moist room to prevent damage to the surface of the specimen from dripping water. Similar modifications to ASTM C 191 have been made by other researchers (Bentz & Ferraris, 2010) to prevent evaporation from the surface of the specimen during the test.

For specimens that experienced initial set prior to the first penetration reading at 30 minutes, a penetration of 40 millimeters was assumed at time zero. This made possible the interpolation of initial set at a penetration of 25 millimeters, as described in ASTM C 191.

The complete test procedure is titled "Time of Setting by Vicat Needle" and is included in Appendix A.

#### 4. RESULTS AND DISCUSSION

## 4.1 SCREENING STUDY RESULTS

In the Screening Study, paste mixtures were made from the five Type I or I/II cements, each in combination with the five Class C fly ashes at the 0, 25, 50, and 70 percent replacement levels. Testing of the paste in the Screening Study included cube compressive strength at one and 28 days, semi-adiabatic calorimetry, miniature slump, and Vicat setting time.

- **4.1.1. Cube Compressive Strength.** The three cube compressive strength test results for each mixture were analyzed for outliers using ASTM E 178. Once the analysis indicated that a value was a possible outlier, the decision was made whether or not to remove the value from the data using the following criteria:
  - 1. If two of the tests where identical or extremely similar, the ASMT E 178 analysis indicated that the other value was an outlier, even though it was reasonably close to the other two values. In this case, the indicated outlier was not considered to be an actual outlier.
  - 2. Due to the nature of compressive strength testing, it is unlikely that an error in the procedure would occur which would result in an unreasonably high value.
    Because of this, high values, which were indicated to be outliers by the ASTM E
    178 analysis, were generally not considered to be actual outliers.
  - 3. In some cases, a value barely crossed the threshold of the ASTM E 178 analysis to be considered an outlier. In these cases, judgment was used to determine

whether the value was an actual outlier, by considering other factors such as standard deviation and overall magnitude of the values.

If no values were removed, the three results were averaged to obtain the cube compressive strength for the given mixture. If a value was determined to be an outlier, the cube compressive strength was taken as the average of the two remaining values. In the following outlier analysis tables, values that were discarded as actual outliers have been bolded and the cells containing the values have been shaded.

The outlier analyses for the one and 28 day cube strengths for the Cement 1 combinations are given below in Tables 4.1 and 4.2, respectively. The ASTM E 178 analysis indicated three possible outliers, but only one value, Test 3 of the 28-day tests for combination 1-2 with 50 percent fly ash replacement, was considered to be an actual outlier.

Table 4.1. 1-Day Cube Strength Outlier Analysis for Cement 1 Combinations

|             | Propo  | rtions  |                      |        |        |      |     |    | Outli | er Analys | sis               |                  |                  |                          |                         |                                |
|-------------|--------|---------|----------------------|--------|--------|------|-----|----|-------|-----------|-------------------|------------------|------------------|--------------------------|-------------------------|--------------------------------|
| Combination | Cement | Fly Ash | Cube Strengths (psi) |        |        | i)   | σ   | n  | Max.  | Min.      | 4                 | t                |                  | Outlier <sub>MAX</sub> ? | Outlier 2               | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1               | Test 2 | Test 3 | Avg. |     | 11 | wax.  | 141111.   | t <sub>CRIT</sub> | t <sub>MAX</sub> | t <sub>MIN</sub> | Outher <sub>MAX</sub> :  | Outher <sub>Min</sub> . | Strength (psi)                 |
| Baseline 1  | 100    | 0       | 4917                 | 4145   | 5018   | 4693 | 478 | 3  | 5018  | 4145      | 1.153             | 0.680            | 1.148            | NO                       | NO                      | 4693                           |
| 1-1         | 75     | 25      | 2727                 | 2709   | 2979   | 2805 | 151 | 3  | 2979  | 2709      | 1.153             | 1.152            | 0.639            | NO                       | NO                      | 2805                           |
| 1-1         | 50     | 50      | 1176                 | 1274   | 1288   | 1246 | 61  | 3  | 1288  | 1176      | 1.153             | 0.688            | 1.147            | NO                       | NO                      | 1246                           |
| 1-1         | 30     | 70      | 341                  | 347    | 310    | 332  | 20  | 3  | 347   | 310       | 1.153             | 0.720            | 1.142            | NO                       | NO                      | 332                            |
| 1-2         | 75     | 25      | 2925                 | 2840   | 2878   | 2881 | 43  | 3  | 2925  | 2840      | 1.153             | 1.035            | 0.961            | NO                       | NO                      | 2881                           |
| 1-2         | 50     | 50      | 594                  | 616    | 619    | 610  | 13  | 3  | 619   | 594       | 1.153             | 0.677            | 1.149            | NO                       | NO                      | 610                            |
| 1-2         | 30     | 70      | 37                   | 42     | 42     | 40   | 3   | 3  | 42    | 37        | 1.153             | 0.625            | 1.153            | NO                       | YES                     | 40                             |
| 1-3         | 75     | 25      | 2790                 | 2708   | 2825   | 2774 | 60  | 3  | 2825  | 2708      | 1.153             | 0.849            | 1.102            | NO                       | NO                      | 2774                           |
| 1-3         | 50     | 50      | 626                  | 656    | 683    | 655  | 29  | 3  | 683   | 626       | 1.153             | 0.982            | 1.017            | NO                       | NO                      | 655                            |
| 1-3         | 30     | 70      | 21                   | 11     | 16     | 16   | 5   | 3  | 21    | 11        | 1.153             | 1.000            | 1.000            | NO                       | NO                      | 16                             |
| 1-4         | 75     | 25      | 2803                 | 2753   | 2745   | 2767 | 31  | 3  | 2803  | 2745      | 1.153             | 1.145            | 0.703            | NO                       | NO                      | 2767                           |
| 1-4         | 50     | 50      | 334                  | 328    | 343    | 335  | 7   | 3  | 343   | 328       | 1.153             | 1.061            | 0.926            | NO                       | NO                      | 335                            |
| 1-4         | 30     | 70      | 66                   | 70     | 68     | 68   | 2   | 3  | 70    | 66        | 1.153             | 0.982            | 1.017            | NO                       | NO                      | 68                             |
| 1-5         | 75     | 25      | 2802                 | 2993   | 2977   | 2924 | 105 | 3  | 2993  | 2802      | 1.153             | 0.653            | 1.151            | NO                       | NO                      | 2924                           |
| 1-5         | 50     | 50      | 497                  | 538    | 510    | 515  | 21  | 3  | 538   | 497       | 1.153             | 1.099            | 0.855            | NO                       | NO                      | 515                            |
| 1-5         | 30     | 70      | 101                  | 101    | 96     | 100  | 3   | 3  | 101   | 96        | 1.153             | 0.620            | 1.154            | NO                       | YES                     | 100                            |

Table 4.2. 28-Day Cube Strength Outlier Analysis for Cement 1 Combinations

|             | Propo  | rtions  |        | Outlier Analysis |            |          |     |   |       |        |            |                  |                  |                          |                         |                                |
|-------------|--------|---------|--------|------------------|------------|----------|-----|---|-------|--------|------------|------------------|------------------|--------------------------|-------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre        | ngths (psi | ns (psi) |     |   | Max.  | Min.   | 4          | 4                | 4                | Outlier 2                | Outlier 2               | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2           | Test 3     | Avg.     | σ   | n | wax.  | WHIII. | $t_{CRIT}$ | t <sub>MAX</sub> | t <sub>MIN</sub> | Outlier <sub>MAX</sub> ? | Outher <sub>MIN</sub> : | Strength (psi)                 |
| Baseline 1  | 100    | 0       | 11237  | 11165            | 11500      | 11300    | 176 | 3 | 11500 | 11165  | 1.153      | 1.131            | 0.769            | NO                       | NO                      | 11300                          |
| 1-1         | 75     | 25      | 10566  | 11657            | 10754      | 10992    | 583 | 3 | 11657 | 10566  | 1.153      | 1.140            | 0.730            | NO                       | NO                      | 10992                          |
| 1-1         | 50     | 50      | 8354   | 8021             | 7361       | 7912     | 506 | 3 | 8354  | 7361   | 1.153      | 0.874            | 1.090            | NO                       | NO                      | 7912                           |
| 1-1         | 30     | 70      | 3984   | 4299             | 4039       | 4108     | 168 | 3 | 4299  | 3984   | 1.153      | 1.139            | 0.733            | NO                       | NO                      | 4108                           |
| 1-2         | 75     | 25      | 10153  | 9645             | 9979       | 9925     | 258 | 3 | 10153 | 9645   | 1.153      | 0.880            | 1.087            | NO                       | NO                      | 9925                           |
| 1-2         | 50     | 50      | 7980   | 7997             | 7636       | 7871     | 204 | 3 | 7997  | 7636   | 1.153      | 0.618            | 1.154            | NO                       | YES                     | 7989                           |
| 1-2         | 30     | 70      | 4084   | 3956             | 4213       | 4084     | 128 | 3 | 4213  | 3956   | 1.153      | 1.002            | 0.998            | NO                       | NO                      | 4084                           |
| 1-3         | 75     | 25      | 11641  | 10060            | 10407      | 10703    | 831 | 3 | 11641 | 10060  | 1.153      | 1.129            | 0.774            | NO                       | NO                      | 10703                          |
| 1-3         | 50     | 50      | 7641   | 8195             | 7787       | 7874     | 287 | 3 | 8195  | 7641   | 1.153      | 1.117            | 0.813            | NO                       | NO                      | 7874                           |
| 1-3         | 30     | 70      | 2522   | 2450             | 2455       | 2475     | 40  | 3 | 2522  | 2450   | 1.153      | 1.152            | 0.638            | NO                       | NO                      | 2475                           |
| 1-4         | 75     | 25      | 9565   | 9396             | 10706      | 9889     | 712 | 3 | 10706 | 9396   | 1.153      | 1.147            | 0.692            | NO                       | NO                      | 9889                           |
| 1-4         | 50     | 50      | 8588   | 8695             | 9127       | 8803     | 285 | 3 | 9127  | 8588   | 1.153      | 1.134            | 0.755            | NO                       | NO                      | 8803                           |
| 1-4         | 30     | 70      | 5809   | 6234             | 6069       | 6037     | 214 | 3 | 6234  | 5809   | 1.153      | 0.918            | 1.066            | NO                       | NO                      | 6037                           |
| 1-5         | 75     | 25      | 11121  | 11438            | 11468      | 11342    | 192 | 3 | 11468 | 11121  | 1.153      | 0.656            | 1.151            | NO                       | NO                      | 11342                          |
| 1-5         | 50     | 50      | 8354   | 8073             | 8543       | 8323     | 236 | 3 | 8543  | 8073   | 1.153      | 0.930            | 1.058            | NO                       | NO                      | 8323                           |
| 1-5         | 30     | 70      | 5556   | 5782             | 5727       | 5688     | 118 | 3 | 5782  | 5556   | 1.153      | 0.797            | 1.122            | NO                       | NO                      | 5688                           |

Figure 4.1, given below, shows the cube strengths after one day for Cement 1 in combination with each fly ash. As can be seen, the strength decreased significantly with increasing fly ash replacement levels.

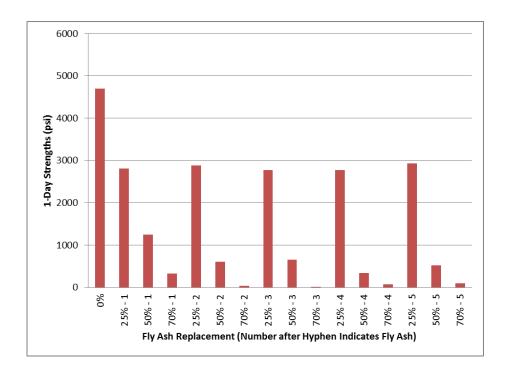



Figure 4.1. One-day Compressive Strengths for Cement 1 Combinations

Figure 4.2, below, shows the cube strengths after 28 days for Cement 1 in combination with each fly ash. The mixtures with 25 percent fly ash replacement generally show strengths comparable to the baseline and the combination with 25 percent of Fly Ash 5 exceeds the baseline strength by about 40 psi. The 70 percent fly ash mixtures show strengths much lower than the baseline, though not as severely as at one day.

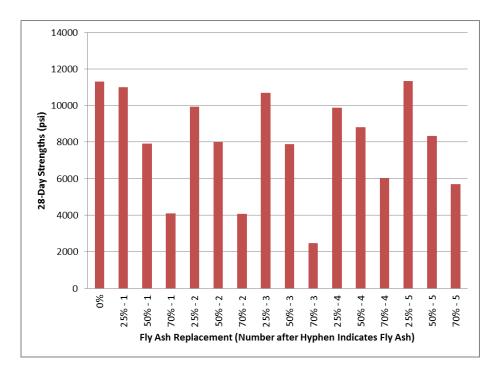



Figure 4.2. 28-day Compressive Strengths for Cement 1 Combinations

The outlier analyses for the one and 28 day cube strengths for the Cement 2 combinations are given, below, in Tables 4.3 and 4.4, respectively. The ASTM E 178 analysis indicated five possible outliers, but none of these were discarded as actual outliers.

Table 4.3. 1-Day Cube Strength Outlier Analysis for Cement 2 Combinations

|             | Propo  | rtions  |        |           |            |      |     |    | Outli | er Analys | sis               |           |              |                          |                         | A                              |
|-------------|--------|---------|--------|-----------|------------|------|-----|----|-------|-----------|-------------------|-----------|--------------|--------------------------|-------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre | ngths (psi | )    |     | n  | Max.  | Min.      |                   | 4         | 4            | Outlier <sub>MAX</sub> ? | Outlier 2               | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2    | Test 3     | Avg. | σ   | 11 | wax.  | WHIII.    | t <sub>CRIT</sub> | $t_{MAX}$ | $t_{ m MIN}$ | Outher <sub>MAX</sub> :  | Outher <sub>MIN</sub> : | Strength (psi)                 |
| Baseline 2  | 100    | 0       | 4353   | 4527      | 4807       | 4562 | 229 | 3  | 4807  | 4353      | 1.153             | 1.068     | 0.914        | NO                       | NO                      | 4562                           |
| 2-1         | 75     | 25      | 2809   | 2702      | 2657       | 2722 | 78  | 3  | 2809  | 2657      | 1.153             | 1.106     | 0.840        | NO                       | NO                      | 2722                           |
| 2-1         | 50     | 50      | 1050   | 1055      | 1178       | 1094 | 73  | 3  | 1178  | 1050      | 1.153             | 1.154     | 0.615        | YES                      | NO                      | 1094                           |
| 2-1         | 30     | 70      | 398    | 407       | 415        | 407  | 9   | 3  | 415   | 398       | 1.153             | 0.975     | 1.023        | NO                       | NO                      | 407                            |
| 2-2         | 75     | 25      | 2325   | 2586      | 2562       | 2491 | 144 | 3  | 2586  | 2325      | 1.153             | 0.659     | 1.151        | NO                       | NO                      | 2491                           |
| 2-2         | 50     | 50      | 929    | 944       | 930        | 934  | 8   | 3  | 944   | 929       | 1.153             | 1.154     | 0.608        | YES                      | NO                      | 934                            |
| 2-2         | 30     | 70      | 168    | 186       | 179        | 178  | 9   | 3  | 186   | 168       | 1.153             | 0.886     | 1.084        | NO                       | NO                      | 178                            |
| 2-3         | 75     | 25      | 2219   | 2338      | 2407       | 2321 | 95  | 3  | 2407  | 2219      | 1.153             | 0.900     | 1.077        | NO                       | NO                      | 2321                           |
| 2-3         | 50     | 50      | 827    | 873       | 813        | 837  | 31  | 3  | 873   | 813       | 1.153             | 1.122     | 0.796        | NO                       | NO                      | 837                            |
| 2-3         | 30     | 70      | 64     | 60        | 63         | 62   | 2   | 3  | 64    | 60        | 1.153             | 0.878     | 1.089        | NO                       | NO                      | 62                             |
| 2-4         | 75     | 25      | 2677   | 2645      | 2649       | 2657 | 17  | 3  | 2677  | 2645      | 1.153             | 1.149     | 0.674        | NO                       | NO                      | 2657                           |
| 2-4         | 50     | 50      | 1052   | 1063      | 1041       | 1052 | 11  | 3  | 1063  | 1041      | 1.153             | 1.012     | 0.987        | NO                       | NO                      | 1052                           |
| 2-4         | 30     | 70      | 90     | 93        | 88         | 90   | 3   | 3  | 93    | 88        | 1.153             | 1.039     | 0.956        | NO                       | NO                      | 90                             |
| 2-5         | 75     | 25      | 2580   | 2416      | 2635       | 2544 | 114 | 3  | 2635  | 2416      | 1.153             | 0.801     | 1.121        | NO                       | NO                      | 2544                           |
| 2-5         | 50     | 50      | 1103   | 1071      | 1100       | 1091 | 18  | 3  | 1103  | 1071      | 1.153             | 0.673     | 1.149        | NO                       | NO                      | 1091                           |
| 2-5         | 30     | 70      | 289    | 288       | 277        | 285  | 7   | 3  | 289   | 277       | 1.153             | 0.667     | 1.150        | NO                       | NO                      | 285                            |

Table 4.4. 28-Day Cube Strength Outlier Analysis for Cement 2 Combinations

|             | Propo  | rtions  |        |           |            |       |     |    | Outlie | er Analys | sis        |           |              |                          |                          | A                              |
|-------------|--------|---------|--------|-----------|------------|-------|-----|----|--------|-----------|------------|-----------|--------------|--------------------------|--------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre | ngths (psi | i)    | _   | n  | Max.   | Min.      | 4          |           | 4            | Outlier <sub>MAX</sub> ? | Outlier 2                | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2    | Test 3     | Avg.  | ь   | 11 | wax.   | IVI III.  | $t_{CRIT}$ | $t_{MAX}$ | $t_{ m MIN}$ | Outher <sub>MAX</sub> :  | Outlier <sub>MIN</sub> : | Strength (psi)                 |
| Baseline 2  | 100    | 0       | 12299  | 12217     | 10609      | 11708 | 953 | 3  | 12299  | 10609     | 1.153      | 0.620     | 1.154        | NO                       | YES                      | 11708                          |
| 2-1         | 75     | 25      | 10180  | 9864      | 10278      | 10107 | 217 | 3  | 10278  | 9864      | 1.153      | 0.788     | 1.125        | NO                       | NO                       | 10107                          |
| 2-1         | 50     | 50      | 6321   | 7584      | 7818       | 7241  | 805 | 3  | 7818   | 6321      | 1.153      | 0.717     | 1.142        | NO                       | NO                       | 7241                           |
| 2-1         | 30     | 70      | 3076   | 3065      | 3093       | 3078  | 14  | 3  | 3093   | 3065      | 1.153      | 1.067     | 0.916        | NO                       | NO                       | 3078                           |
| 2-2         | 75     | 25      | 6159   | 6464      | 5124       | 5916  | 702 | 3  | 6464   | 5124      | 1.153      | 0.781     | 1.127        | NO                       | NO                       | 5916                           |
| 2-2         | 50     | 50      | 3860   | 4589      | 4214       | 4221  | 364 | 3  | 4589   | 3860      | 1.153      | 1.009     | 0.991        | NO                       | NO                       | 4221                           |
| 2-2         | 30     | 70      | 2681   | 2720      | 2540       | 2647  | 95  | 3  | 2720   | 2540      | 1.153      | 0.770     | 1.130        | NO                       | NO                       | 2647                           |
| 2-3         | 75     | 25      | 8928   | 8828      | 8907       | 8888  | 53  | 3  | 8928   | 8828      | 1.153      | 0.763     | 1.132        | NO                       | NO                       | 8888                           |
| 2-3         | 50     | 50      | 6835   | 6561      | 7154       | 6850  | 297 | 3  | 7154   | 6561      | 1.153      | 1.024     | 0.974        | NO                       | NO                       | 6850                           |
| 2-3         | 30     | 70      | 2708   | 2700      | 2699       | 2702  | 5   | 3  | 2708   | 2699      | 1.153      | 1.153     | 0.629        | YES                      | NO                       | 2702                           |
| 2-4         | 75     | 25      | 10209  | 10718     | 10351      | 10426 | 263 | 3  | 10718  | 10209     | 1.153      | 1.111     | 0.827        | NO                       | NO                       | 10426                          |
| 2-4         | 50     | 50      | 7981   | 8100      | 7638       | 7906  | 240 | 3  | 8100   | 7638      | 1.153      | 0.807     | 1.119        | NO                       | NO                       | 7906                           |
| 2-4         | 30     | 70      | 4339   | 4480      | 4480       | 4433  | 81  | 3  | 4480   | 4339      | 1.153      | 0.580     | 1.155        | NO                       | YES                      | 4433                           |
| 2-5         | 75     | 25      | 8291   | 8069      | 7384       | 7915  | 473 | 3  | 8291   | 7384      | 1.153      | 0.796     | 1.122        | NO                       | NO                       | 7915                           |
| 2-5         | 50     | 50      | 7923   | 8003      | 7557       | 7828  | 238 | 3  | 8003   | 7557      | 1.153      | 0.738     | 1.138        | NO                       | NO                       | 7828                           |
| 2-5         | 30     | 70      | 4193   | 4151      | 4450       | 4264  | 162 | 3  | 4450   | 4151      | 1.153      | 1.145     | 0.704        | NO                       | NO                       | 4264                           |

Figure 4.3, given below, shows the cube strengths after one day for Cement 2 in combination with each fly ash. As can be seen, the strength decreased significantly with increasing fly ash replacement levels.

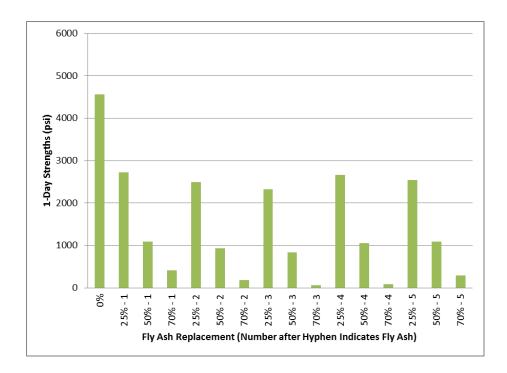



Figure 4.3. One-day Compressive Strengths for Cement 2 Combinations

Figure 4.4, below, shows the cube strengths after 28 days for Cement 2 in combination with each fly ash. Here, almost all of the fly ash mixtures show greatly decreased strengths compared to the baseline, with only combination 2-4 at 25 percent replacement being within 2000 psi of the baseline.

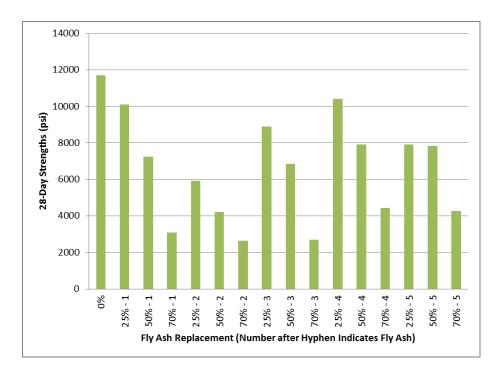



Figure 4.4. 28-day Compressive Strengths for Cement 2 Combinations

The outlier analyses for the one and 28 day cube strengths for the Cement 3 combinations are given, below, in Tables 4.5 and 4.6, respectively. The ASTM E 178 analysis indicated two possible outliers, but neither of these where discarded as actual outliers.

Table 4.5. 1-Day Cube Strength Outlier Analysis for Cement 3 Combinations

|             | Propo  | rtions  |        |           |            |      |     |    | Outlie | er Analys | sis               | -         |              |                          |                          | A                              |
|-------------|--------|---------|--------|-----------|------------|------|-----|----|--------|-----------|-------------------|-----------|--------------|--------------------------|--------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre | ngths (psi | i)   | _   | n  | Max.   | Min.      |                   | 4         | 4            | Outlier <sub>MAX</sub> ? | Outlier 2                | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2    | Test 3     | Avg. | σ   | 11 | wax.   | W1111.    | t <sub>CRIT</sub> | $t_{MAX}$ | $t_{ m MIN}$ | Outher <sub>MAX</sub> :  | Outlier <sub>MIN</sub> : | Strength (psi)                 |
| Baseline 3  | 100    | 0       | 5052   | 5406      | 5088       | 5182 | 195 | 3  | 5406   | 5052      | 1.153             | 1.150     | 0.666        | NO                       | NO                       | 5182                           |
| 3-1         | 75     | 25      | 3124   | 3135      | 3287       | 3182 | 91  | 3  | 3287   | 3124      | 1.153             | 1.153     | 0.633        | NO                       | NO                       | 3182                           |
| 3-1         | 50     | 50      | 1233   | 1300      | 1281       | 1271 | 35  | 3  | 1300   | 1233      | 1.153             | 0.837     | 1.107        | NO                       | NO                       | 1271                           |
| 3-1         | 30     | 70      | 289    | 316       | 319        | 308  | 16  | 3  | 319    | 289       | 1.153             | 0.681     | 1.148        | NO                       | NO                       | 308                            |
| 3-2         | 75     | 25      | 3300   | 3746      | 3519       | 3522 | 223 | 3  | 3746   | 3300      | 1.153             | 1.007     | 0.993        | NO                       | NO                       | 3522                           |
| 3-2         | 50     | 50      | 795    | 814       | 802        | 804  | 9   | 3  | 814    | 795       | 1.153             | 1.064     | 0.920        | NO                       | NO                       | 804                            |
| 3-2         | 30     | 70      | 58     | 53        | 55         | 55   | 3   | 3  | 58     | 53        | 1.153             | 1.024     | 0.974        | NO                       | NO                       | 55                             |
| 3-3         | 75     | 25      | 3152   | 2987      | 3324       | 3154 | 169 | 3  | 3324   | 2987      | 1.153             | 1.006     | 0.994        | NO                       | NO                       | 3154                           |
| 3-3         | 50     | 50      | 912    | 923       | 915        | 917  | 5   | 3  | 923    | 912       | 1.153             | 1.124     | 0.792        | NO                       | NO                       | 917                            |
| 3-3         | 30     | 70      | 23     | 24        | 21         | 22   | 1   | 3  | 24     | 21        | 1.153             | 0.908     | 1.072        | NO                       | NO                       | 22                             |
| 3-4         | 75     | 25      | 3336   | 3005      | 2983       | 3108 | 198 | 3  | 3336   | 2983      | 1.153             | 1.153     | 0.632        | NO                       | NO                       | 3108                           |
| 3-4         | 50     | 50      | 316    | 353       | 347        | 339  | 20  | 3  | 353    | 316       | 1.153             | 0.715     | 1.143        | NO                       | NO                       | 339                            |
| 3-4         | 30     | 70      | 137    | 141       | 140        | 139  | 2   | 3  | 141    | 137       | 1.153             | 0.926     | 1.060        | NO                       | NO                       | 139                            |
| 3-5         | 75     | 25      | 3413   | 3262      | 3310       | 3329 | 77  | 3  | 3413   | 3262      | 1.153             | 1.098     | 0.859        | NO                       | NO                       | 3329                           |
| 3-5         | 50     | 50      | 936    | 930       | 911        | 926  | 13  | 3  | 936    | 911       | 1.153             | 0.785     | 1.126        | NO                       | NO                       | 926                            |
| 3-5         | 30     | 70      | 141    | 131       | 140        | 137  | 5   | 3  | 141    | 131       | 1.153             | 0.645     | 1.152        | NO                       | NO                       | 137                            |

Table 4.6. 28-Day Cube Strength Outlier Analysis for Cement 3 Combinations

|             | Propo  | rtions  |        |           |            |       |     |   | Outli | er Analys | sis        |                  |                  |                          |                          | A                              |
|-------------|--------|---------|--------|-----------|------------|-------|-----|---|-------|-----------|------------|------------------|------------------|--------------------------|--------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre | ngths (psi | i)    |     |   | Max.  | Min.      |            |                  | 4                | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2    | Test 3     | Avg.  | σ   | n | wax.  | IVI III.  | $t_{CRIT}$ | ι <sub>MAX</sub> | t <sub>MIN</sub> | Outher <sub>MAX</sub> :  | Outher <sub>MIN</sub> :  | Strength (psi)                 |
| Baseline 3  | 100    | 0       | 12430  | 11309     | 11679      | 11806 | 571 | 3 | 12430 | 11309     | 1.153      | 1.092            | 0.870            | NO                       | NO                       | 11806                          |
| 3-1         | 75     | 25      | 9235   | 10653     | 9769       | 9886  | 716 | 3 | 10653 | 9235      | 1.153      | 1.072            | 0.908            | NO                       | NO                       | 9886                           |
| 3-1         | 50     | 50      | 7068   | 6931      | 6979       | 6993  | 69  | 3 | 7068  | 6931      | 1.153      | 1.084            | 0.886            | NO                       | NO                       | 6993                           |
| 3-1         | 30     | 70      | 3647   | 4595      | 4715       | 4319  | 585 | 3 | 4715  | 3647      | 1.153      | 0.677            | 1.149            | NO                       | NO                       | 4319                           |
| 3-2         | 75     | 25      | 10797  | 10371     | 10376      | 10514 | 244 | 3 | 10797 | 10371     | 1.153      | 1.155            | 0.588            | YES                      | NO                       | 10514                          |
| 3-2         | 50     | 50      | 6864   | 7011      | 6278       | 6718  | 388 | 3 | 7011  | 6278      | 1.153      | 0.757            | 1.134            | NO                       | NO                       | 6718                           |
| 3-2         | 30     | 70      | 3768   | 3832      | 3855       | 3818  | 45  | 3 | 3855  | 3768      | 1.153      | 0.814            | 1.116            | NO                       | NO                       | 3818                           |
| 3-3         | 75     | 25      | 9491   | 10100     | 9438       | 9676  | 368 | 3 | 10100 | 9438      | 1.153      | 1.152            | 0.648            | NO                       | NO                       | 9676                           |
| 3-3         | 50     | 50      | 6730   | 6798      | 6911       | 6813  | 91  | 3 | 6911  | 6730      | 1.153      | 1.071            | 0.909            | NO                       | NO                       | 6813                           |
| 3-3         | 30     | 70      | 2326   | 2383      | 2346       | 2351  | 29  | 3 | 2383  | 2326      | 1.153      | 1.086            | 0.882            | NO                       | NO                       | 2351                           |
| 3-4         | 75     | 25      | 10871  | 10499     | 9894       | 10421 | 493 | 3 | 10871 | 9894      | 1.153      | 0.912            | 1.069            | NO                       | NO                       | 10421                          |
| 3-4         | 50     | 50      | 7450   | 7688      | 7937       | 7692  | 243 | 3 | 7937  | 7450      | 1.153      | 1.007            | 0.993            | NO                       | NO                       | 7692                           |
| 3-4         | 30     | 70      | 5019   | 5644      | 5396       | 5353  | 315 | 3 | 5644  | 5019      | 1.153      | 0.925            | 1.061            | NO                       | NO                       | 5353                           |
| 3-5         | 75     | 25      | 8594   | 9648      | 8732       | 8991  | 573 | 3 | 9648  | 8594      | 1.153      | 1.146            | 0.694            | NO                       | NO                       | 8991                           |
| 3-5         | 50     | 50      | 5824   | 6302      | 6048       | 6058  | 239 | 3 | 6302  | 5824      | 1.153      | 1.020            | 0.978            | NO                       | NO                       | 6058                           |
| 3-5         | 30     | 70      | 5455   | 5451      | 5522       | 5476  | 40  | 3 | 5522  | 5451      | 1.153      | 1.154            | 0.620            | YES                      | NO                       | 5476                           |

The cube strengths at one day for combinations with Cement 3 are shown below in Figure 4.5. It can be seen that the strength decreased significantly with increasing fly ash replacement levels.

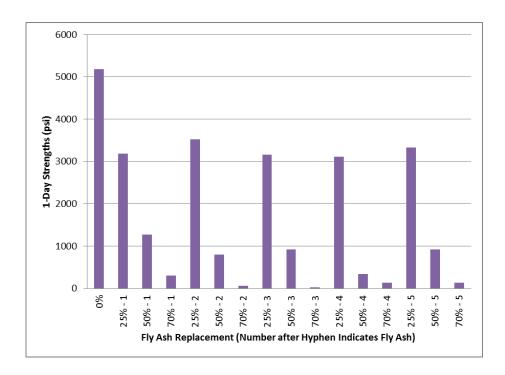



Figure 4.5. One-day Compressive Strengths for Cement 3 Combinations

Figure 4.6, below, shows the cube strengths after 28 days for Cement 3 in combination with each fly ash. These combinations show decreasing strength with increasing fly ash replacement, though not as severely as some of the combinations with Cement 2.

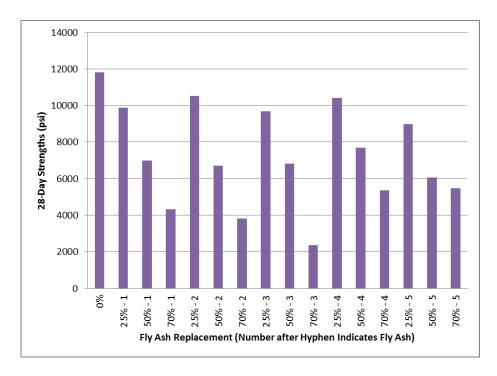



Figure 4.6. 28-day Compressive Strengths for Cement 3 Combinations

The outlier analyses for the one and 28 day cube strengths for the Cement 4 combinations are given, below, in Tables 4.7 and 4.8, respectively. The ASTM E 178 analysis indicated five possible outliers. Only Test 2 of the 1-day strengths for combination 4-4 with 25 percent fly ash was discarded as an actual outlier.

Table 4.7. 1-Day Cube Strength Outlier Analysis for Cement 4 Combinations

|             | Propo  | rtions  |        |           |            |      |     |     | Outli | er Analys | sis               |           |           |                          |                         | A                              |
|-------------|--------|---------|--------|-----------|------------|------|-----|-----|-------|-----------|-------------------|-----------|-----------|--------------------------|-------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre | ngths (psi | i)   | _   | n   | Max.  | Min.      |                   | 4         | 4         | Outlier <sub>MAX</sub> ? | Outlier 2               | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2    | Test 3     | Avg. | σ   | 111 | wax.  | IVI III.  | t <sub>CRIT</sub> | $t_{MAX}$ | $t_{MIN}$ | Outher <sub>MAX</sub> :  | Outher <sub>MIN</sub> : | Strength (psi)                 |
| Baseline 4  | 100    | 0       | 4037   | 4280      | 4025       | 4114 | 144 | 3   | 4280  | 4025      | 1.153             | 1.154     | 0.620     | YES                      | NO                      | 4114                           |
| 4-1         | 75     | 25      | 3757   | 3799      | 3458       | 3671 | 186 | 3   | 3799  | 3458      | 1.153             | 0.686     | 1.147     | NO                       | NO                      | 3671                           |
| 4-1         | 50     | 50      | 1925   | 1966      | 1914       | 1935 | 27  | 3   | 1966  | 1914      | 1.153             | 1.133     | 0.758     | NO                       | NO                      | 1935                           |
| 4-1         | 30     | 70      | 678    | 628       | 689        | 665  | 32  | 3   | 689   | 628       | 1.153             | 0.742     | 1.137     | NO                       | NO                      | 665                            |
| 4-2         | 75     | 25      | 3625   | 3632      | 3618       | 3625 | 7   | 3   | 3632  | 3618      | 1.153             | 1.006     | 0.994     | NO                       | NO                      | 3625                           |
| 4-2         | 50     | 50      | 1298   | 1346      | 1261       | 1302 | 42  | 3   | 1346  | 1261      | 1.153             | 1.040     | 0.954     | NO                       | NO                      | 1302                           |
| 4-2         | 30     | 70      | 286    | 271       | 274        | 277  | 8   | 3   | 286   | 271       | 1.153             | 1.137     | 0.743     | NO                       | NO                      | 277                            |
| 4-3         | 75     | 25      | 2973   | 3503      | 3216       | 3230 | 265 | 3   | 3503  | 2973      | 1.153             | 1.027     | 0.971     | NO                       | NO                      | 3230                           |
| 4-3         | 50     | 50      | 1376   | 1357      | 1358       | 1364 | 11  | 3   | 1376  | 1357      | 1.153             | 1.151     | 0.656     | NO                       | NO                      | 1364                           |
| 4-3         | 30     | 70      | 320    | 308       | 320        | 316  | 7   | 3   | 320   | 308       | 1.153             | 0.587     | 1.155     | NO                       | YES                     | 316                            |
| 4-4         | 75     | 25      | 3601   | 3151      | 3614       | 3455 | 264 | 3   | 3614  | 3151      | 1.153             | 0.600     | 1.154     | NO                       | YES                     | 3608                           |
| 4-4         | 50     | 50      | 1511   | 1498      | 1440       | 1483 | 38  | 3   | 1511  | 1440      | 1.153             | 0.736     | 1.138     | NO                       | NO                      | 1483                           |
| 4-4         | 30     | 70      | 333    | 341       | 321        | 332  | 10  | 3   | 341   | 321       | 1.153             | 0.926     | 1.060     | NO                       | NO                      | 332                            |
| 4-5         | 75     | 25      | 3807   | 3761      | 3782       | 3783 | 23  | 3   | 3807  | 3761      | 1.153             | 1.019     | 0.979     | NO                       | NO                      | 3783                           |
| 4-5         | 50     | 50      | 1617   | 1755      | 1693       | 1688 | 69  | 3   | 1755  | 1617      | 1.153             | 0.965     | 1.031     | NO                       | NO                      | 1688                           |
| 4-5         | 30     | 70      | 535    | 527       | 536        | 533  | 5   | 3   | 536   | 527       | 1.153             | 0.630     | 1.153     | NO                       | YES                     | 533                            |

Table 4.8. 28-Day Cube Strength Outlier Analysis for Cement 4 Combinations

|             | Propo  | rtions  |        |           |            |       |     |   | Outlie | er Analys | sis        |                  |              |                          |                         | A                              |
|-------------|--------|---------|--------|-----------|------------|-------|-----|---|--------|-----------|------------|------------------|--------------|--------------------------|-------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre | ngths (psi | i)    | _   | , | Max.   | Min.      | 4          |                  | 4            | Outlier <sub>MAX</sub> ? | Outlier 2               | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2    | Test 3     | Avg.  | ь   | n | wax.   | WHIII.    | $t_{CRIT}$ | ι <sub>MAX</sub> | $t_{ m MIN}$ | Outher <sub>MAX</sub> :  | Outher <sub>MIN</sub> : | Strength (psi)                 |
| Baseline 4  | 100    | 0       | 11479  | 11002     | 11303      | 11261 | 241 | 3 | 11479  | 11002     | 1.153      | 0.903            | 1.075        | NO                       | NO                      | 11261                          |
| 4-1         | 75     | 25      | 10736  | 10658     | 10210      | 10535 | 284 | 3 | 10736  | 10210     | 1.153      | 0.709            | 1.144        | NO                       | NO                      | 10535                          |
| 4-1         | 50     | 50      | 8562   | 8701      | 8238       | 8500  | 238 | 3 | 8701   | 8238      | 1.153      | 0.843            | 1.105        | NO                       | NO                      | 8500                           |
| 4-1         | 30     | 70      | 4246   | 4231      | 3954       | 4144  | 164 | 3 | 4246   | 3954      | 1.153      | 0.623            | 1.153        | NO                       | YES                     | 4144                           |
| 4-2         | 75     | 25      | 10180  | 10425     | 9554       | 10053 | 449 | 3 | 10425  | 9554      | 1.153      | 0.829            | 1.111        | NO                       | NO                      | 10053                          |
| 4-2         | 50     | 50      | 7813   | 8023      | 8192       | 8009  | 190 | 3 | 8192   | 7813      | 1.153      | 0.962            | 1.034        | NO                       | NO                      | 8009                           |
| 4-2         | 30     | 70      | 3917   | 3893      | 3715       | 3842  | 110 | 3 | 3917   | 3715      | 1.153      | 0.682            | 1.148        | NO                       | NO                      | 3842                           |
| 4-3         | 75     | 25      | 10102  | 9943      | 9719       | 9921  | 192 | 3 | 10102  | 9719      | 1.153      | 0.938            | 1.052        | NO                       | NO                      | 9921                           |
| 4-3         | 50     | 50      | 7953   | 7849      | 7744       | 7849  | 105 | 3 | 7953   | 7744      | 1.153      | 0.997            | 1.003        | NO                       | NO                      | 7849                           |
| 4-3         | 30     | 70      | 2884   | 2913      | 2893       | 2897  | 15  | 3 | 2913   | 2884      | 1.153      | 1.100            | 0.855        | NO                       | NO                      | 2897                           |
| 4-4         | 75     | 25      | 11129  | 10070     | 10897      | 10698 | 556 | 3 | 11129  | 10070     | 1.153      | 0.773            | 1.129        | NO                       | NO                      | 10698                          |
| 4-4         | 50     | 50      | 7924   | 8464      | 7878       | 8088  | 326 | 3 | 8464   | 7878      | 1.153      | 1.152            | 0.646        | NO                       | NO                      | 8088                           |
| 4-4         | 30     | 70      | 4877   | 5012      | 4971       | 4953  | 69  | 3 | 5012   | 4877      | 1.153      | 0.851            | 1.102        | NO                       | NO                      | 4953                           |
| 4-5         | 75     | 25      | 10048  | 10812     | 10716      | 10525 | 416 | 3 | 10812  | 10048     | 1.153      | 0.689            | 1.147        | NO                       | NO                      | 10525                          |
| 4-5         | 50     | 50      | 8153   | 7880      | 8412       | 8148  | 266 | 3 | 8412   | 7880      | 1.153      | 0.991            | 1.008        | NO                       | NO                      | 8148                           |
| 4-5         | 30     | 70      | 4907   | 4943      | 4929       | 4926  | 18  | 3 | 4943   | 4907      | 1.153      | 0.925            | 1.061        | NO                       | NO                      | 4926                           |

Figure 4.7, below, shows the cube strengths after one day for Cement 4 in combination with each fly ash. The 25 percent combinations do not show as great of a decrease from the baseline compared to the 25 percent combinations with other cements. It should also be noted that the baseline mixture for Cement 4 had the lowest strength of all the baseline mixtures.

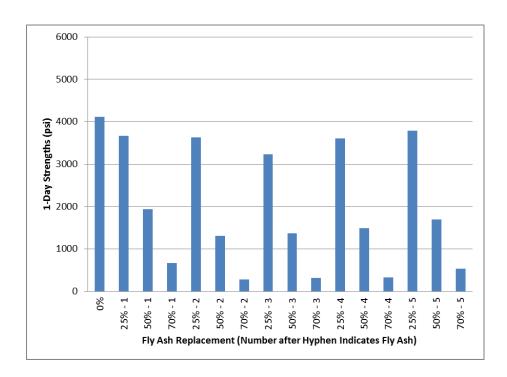



Figure 4.7. One-day Compressive Strengths for Cement 4 Combinations

The cube strengths at 28 days for combinations with Cement 4 are shown, below, in Figure 4.8. Here, the 25 percent fly ash mixtures show strengths within 1500 psi of the baseline. The 70 percent fly ash combinations continue to show significantly decreased strengths, when compared to the baseline.



Figure 4.8. 28-day Compressive Strengths for Cement 4 Combinations

The outlier analyses for the one and 28 day cube strengths for the Cement 5 combinations are given, below, in Tables 4.9 and 4.10, respectively. The ASTM E 178 analysis indicated three possible outliers. Only Test 2 of the 28-day tests for combination 5-2 with 50 percent fly ash was discarded as an actual outlier.

Table 4.9. 1-Day Cube Strength Outlier Analysis for Cement 5 Combinations

|             | Propo  | rtions  |        |           |            |      |     |    | Outlie | er Analys | sis               |                  |                  |                          |                          | A                              |
|-------------|--------|---------|--------|-----------|------------|------|-----|----|--------|-----------|-------------------|------------------|------------------|--------------------------|--------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre | ngths (psi | ()   | σ   | n  | Max.   | Min.      |                   | 4                | t                | Outlier <sub>MAX</sub> ? | Outlier 2                | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2    | Test 3     | Avg. | 0   | 11 | wax.   | WHIII.    | t <sub>CRIT</sub> | t <sub>MAX</sub> | t <sub>MIN</sub> | Outher <sub>MAX</sub> :  | Outlier <sub>MIN</sub> : | Strength (psi)                 |
| Baseline 5  | 100    | 0       | 4963   | 4588      | 4894       | 4815 | 200 | 3  | 4963   | 4588      | 1.153             | 0.741            | 1.137            | NO                       | NO                       | 4815                           |
| 5-1         | 75     | 25      | 3196   | 3028      | 3209       | 3144 | 101 | 3  | 3209   | 3028      | 1.153             | 0.637            | 1.153            | NO                       | NO                       | 3144                           |
| 5-1         | 50     | 50      | 1380   | 1408      | 1433       | 1407 | 26  | 3  | 1433   | 1380      | 1.153             | 0.983            | 1.017            | NO                       | NO                       | 1407                           |
| 5-1         | 30     | 70      | 610    | 595       | 631        | 612  | 18  | 3  | 631    | 595       | 1.153             | 1.044            | 0.949            | NO                       | NO                       | 612                            |
| 5-2         | 75     | 25      | 3054   | 3308      | 2845       | 3069 | 232 | 3  | 3308   | 2845      | 1.153             | 1.030            | 0.967            | NO                       | NO                       | 3069                           |
| 5-2         | 50     | 50      | 934    | 1012      | 1049       | 998  | 59  | 3  | 1049   | 934       | 1.153             | 0.862            | 1.096            | NO                       | NO                       | 998                            |
| 5-2         | 30     | 70      | 192    | 198       | 189        | 193  | 5   | 3  | 198    | 189       | 1.153             | 1.100            | 0.854            | NO                       | NO                       | 193                            |
| 5-3         | 75     | 25      | 2735   | 2832      | 2663       | 2743 | 85  | 3  | 2832   | 2663      | 1.153             | 1.045            | 0.948            | NO                       | NO                       | 2743                           |
| 5-3         | 50     | 50      | 874    | 852       | 847        | 858  | 14  | 3  | 874    | 847       | 1.153             | 1.139            | 0.733            | NO                       | NO                       | 858                            |
| 5-3         | 30     | 70      | 109    | 102       | 104        | 105  | 3   | 3  | 109    | 102       | 1.153             | 1.133            | 0.759            | NO                       | NO                       | 105                            |
| 5-4         | 75     | 25      | 2941   | 3034      | 2928       | 2968 | 58  | 3  | 3034   | 2928      | 1.153             | 1.147            | 0.687            | NO                       | NO                       | 2968                           |
| 5-4         | 50     | 50      | 1086   | 1094      | 1124       | 1101 | 20  | 3  | 1124   | 1086      | 1.153             | 1.132            | 0.763            | NO                       | NO                       | 1101                           |
| 5-4         | 30     | 70      | 96     | 98        | 106        | 100  | 5   | 3  | 106    | 96        | 1.153             | 1.147            | 0.689            | NO                       | NO                       | 100                            |
| 5-5         | 75     | 25      | 3065   | 3014      | 3210       | 3096 | 102 | 3  | 3210   | 3014      | 1.153             | 1.119            | 0.808            | NO                       | NO                       | 3096                           |
| 5-5         | 50     | 50      | 1207   | 1175      | 1159       | 1180 | 24  | 3  | 1207   | 1159      | 1.153             | 1.088            | 0.880            | NO                       | NO                       | 1180                           |
| 5-5         | 30     | 70      | 310    | 334       | 330        | 325  | 13  | 3  | 334    | 310       | 1.153             | 0.729            | 1.140            | NO                       | NO                       | 325                            |

Table 4.10. 28-Day Cube Strength Outlier Analysis for Cement 5 Combinations

|             | Propo  | rtions  |        |           |            |       |      |   | Outlie | er Analys | sis        |                  |              |                         |                          | A                              |
|-------------|--------|---------|--------|-----------|------------|-------|------|---|--------|-----------|------------|------------------|--------------|-------------------------|--------------------------|--------------------------------|
| Combination | Cement | Fly Ash | (      | Cube Stre | ngths (psi | i)    | _    |   | Max.   | Min.      | 4          | 4                | +            | Outlier 2               | Outlier 2                | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | Test 1 | Test 2    | Test 3     | Avg.  | σ    | n | wax.   | IVI III.  | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{ m MIN}$ | Outher <sub>MAX</sub> : | Outlier <sub>MIN</sub> : | Strength (psi)                 |
| Baseline 5  | 100    | 0       | 12240  | 12086     | 12295      | 12207 | 109  | 3 | 12295  | 12086     | 1.153      | 0.811            | 1.117        | NO                      | NO                       | 12207                          |
| 5-1         | 75     | 25      | 11241  | 9997      | 12025      | 11087 | 1023 | 3 | 12025  | 9997      | 1.153      | 0.917            | 1.066        | NO                      | NO                       | 11087                          |
| 5-1         | 50     | 50      | 7990   | 8061      | 7964       | 8005  | 50   | 3 | 8061   | 7964      | 1.153      | 1.115            | 0.817        | NO                      | NO                       | 8005                           |
| 5-1         | 30     | 70      | 4230   | 4366      | 4366       | 4321  | 78   | 3 | 4366   | 4230      | 1.153      | 0.579            | 1.155        | NO                      | YES                      | 4321                           |
| 5-2         | 75     | 25      | 11486  | 10830     | 10416      | 10911 | 539  | 3 | 11486  | 10416     | 1.153      | 1.066            | 0.917        | NO                      | NO                       | 10911                          |
| 5-2         | 50     | 50      | 8006   | 7388      | 7997       | 7797  | 354  | 3 | 8006   | 7388      | 1.153      | 0.590            | 1.155        | NO                      | YES                      | 8001                           |
| 5-2         | 30     | 70      | 3775   | 3683      | 3732       | 3730  | 46   | 3 | 3775   | 3683      | 1.153      | 0.980            | 1.019        | NO                      | NO                       | 3730                           |
| 5-3         | 75     | 25      | 11659  | 11322     | 11462      | 11481 | 169  | 3 | 11659  | 11322     | 1.153      | 1.052            | 0.939        | NO                      | NO                       | 11481                          |
| 5-3         | 50     | 50      | 7747   | 7551      | 7809       | 7703  | 135  | 3 | 7809   | 7551      | 1.153      | 0.793            | 1.123        | NO                      | NO                       | 7703                           |
| 5-3         | 30     | 70      | 2398   | 2348      | 2490       | 2412  | 72   | 3 | 2490   | 2348      | 1.153      | 1.083            | 0.888        | NO                      | NO                       | 2412                           |
| 5-4         | 75     | 25      | 12625  | 11969     | 11644      | 12079 | 500  | 3 | 12625  | 11644     | 1.153      | 1.092            | 0.872        | NO                      | NO                       | 12079                          |
| 5-4         | 50     | 50      | 7813   | 7405      | 7656       | 7625  | 206  | 3 | 7813   | 7405      | 1.153      | 0.915            | 1.067        | NO                      | NO                       | 7625                           |
| 5-4         | 30     | 70      | 4133   | 3913      | 4010       | 4019  | 110  | 3 | 4133   | 3913      | 1.153      | 1.037            | 0.958        | NO                      | NO                       | 4019                           |
| 5-5         | 75     | 25      | 11871  | 11933     | 11217      | 11674 | 397  | 3 | 11933  | 11217     | 1.153      | 0.653            | 1.151        | NO                      | NO                       | 11674                          |
| 5-5         | 50     | 50      | 8807   | 8652      | 8716       | 8725  | 78   | 3 | 8807   | 8652      | 1.153      | 1.053            | 0.936        | NO                      | NO                       | 8725                           |
| 5-5         | 30     | 70      | 4324   | 4322      | 4281       | 4309  | 24   | 3 | 4324   | 4281      | 1.153      | 0.613            | 1.154        | NO                      | YES                      | 4309                           |

Figure 4.9, below, shows the cube strengths after one day for Cement 5 in combination with each fly ash. It can be seen that strength decreased significantly with increasing fly ash replacement levels.

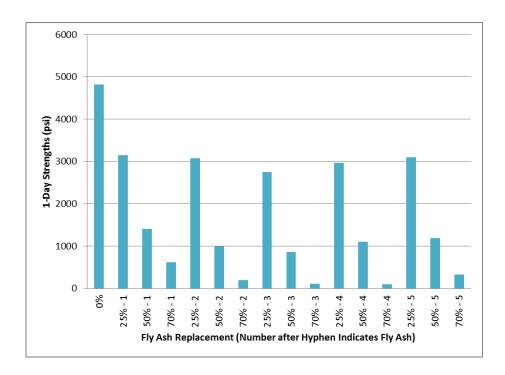



Figure 4.9. One-day Compressive Strengths for Cement 5 Combinations

The cube strengths at 28 days for combinations with Cement 5 are shown, below, in Figure 4.10. The 25 percent fly ash combinations shows strengths within 1500 psi of the baseline and the 25 percent combination with Fly Ash 4 is only 128 psi less than the baseline. The 50 and 70 percent fly ash combinations continue to show significantly decreased strength levels, compared to the baseline.

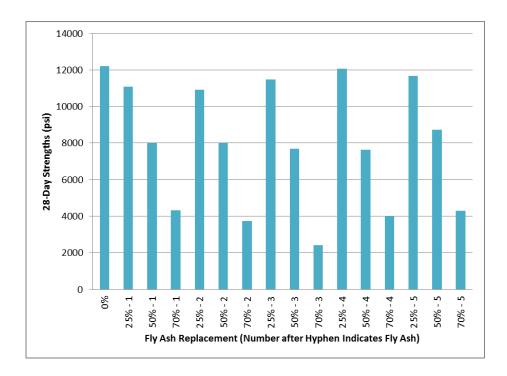



Figure 4.10. 28-day Compressive Strengths for Cement 5 Combinations

It can be seen from the results above that increasing fly ash contents leads to significant reductions in one day strengths. While these strengths are still significantly reduced at 28 days for mixtures with 50 and 70 percent fly ash, noticeable strength gain has occurred since the testing at one day. At 28 days, all of the mixtures with 50 percent fly ash had strengths between approximately 6000 and 8000 psi, except for Cement 2 in combination with Fly Ash 2 which had a compressive strength closer to 4000 psi. This shows that particular cement-fly ash combinations may perform much differently than combinations of similar materials.

The strength gain behavior shown in the results above is typical for mixtures containing a pozzolan and correlates well with the results of previous researchers (Jiang et al., 1999; Bentz et al., 2010). During the first day, the pozzolanic reaction has not

begun to contribute to the strength of the paste. Between one and 28 days, the slow pozzolanic reaction has begun to contribute to the strength of the paste. Also, if the increased aluminate levels have created a sulfate imbalance, rapid aluminate hydration, in combination with a lack of sulfate, may have led to much slower silicate hydration. This would lead to significantly slower strength gain.

**4.1.2. Semi-adiabatic Calorimetry.** Calculations were performed on the raw temperature log data, from the F-Cal 4000, as discussed in the Laboratory Investigation. These included the calculation of the Signal-to-Noise Ratios (S/N) for the individual temperature logs and the prediction of setting times by two methods.

The three Signal-to-Noise Ratios for each test were used as a measure of resolution of the test and as a means of performing an outlier analysis on the temperature logs. According to a draft ASTM for evaluating hydration using thermal measurements (2011), the signal-to-noise ratio "shall be a minimum of 5.0." While a few of the mixtures had S/N less than 5.0, it was determined that this was due to low signal values resulting from mixtures which produced little heat, rather than high levels of noise which would have significantly affected the results. The outlier analysis was performed using ASTM E 178, which indicated three possible outliers. These values were indicated falsely as outliers because the other two values in each data set were extremely similar. Due to this, none of the values were discarded as outliers. The outlier analysis of the calorimetry results can be found in Appendix B.

Following the evaluation of the S/N for each temperature log, the three logs were averaged and then corrected for the inert specimen log to obtain the corrected average thermal curve for each mixture. The values determined from the thermal curve for each

mixture included the maximum temperature rise ( $\Delta T_{max}$ ), the time at which the maximum temperature rise occurs, and the main hydration response rise (M). The predicted initial and final set times were also calculated by the Fractions Method and Derivatives Method. These values are summarized in Tables 4.11 through 4.15, below, for each mixture.

As can be seen in these results, M decreases with increasing fly ash replacement for most combinations. Two exceptions are combination 1-5 with 70 percent fly ash and combination 3-5 with 70 percent fly ash.

The predicted final set by the Percentage Method is the time at which 50 percent of the main hydration response rise has occurred. This value was used to compare the placement of the curves with respect to time. For the most part, with increasing fly ash replacement the predicted final set by the Percentage Method occurs at a later time for fly ash replacements up to 50 percent. The only exception to this is combination 4-5 at 50 percent fly ash replacement, which has a predicted final set 22 minutes earlier than the combination with 25 percent fly ash replacement. Many of the combinations with 70 percent fly ash replacement showed predicted final set times that occurred earlier than at 50 percent fly ash replacement.

These results correlate well with the findings of Schindler and Folliard (2003) and Bentz (2010), who noted that up to 50 percent cement replacement with Class C fly ash resulted in retarded silicate hydration and a decrease in the main hydration peak, as illustrated in Figure 4.11, below.



Figure 4.11. Typical Series of Thermal Curves Showing Delayed Silicate Hydration and Decreased Main Hydration Peaks

The earlier predicted set times seen with the 70 percent fly ash mixtures, as shown in Figure 4.12, below, may be explained by sulfate imbalances, which could lead to rapid aluminate hydration and flash setting behavior. In this case the peak from which the setting time calculations were made would have been the aluminate hydration peak.

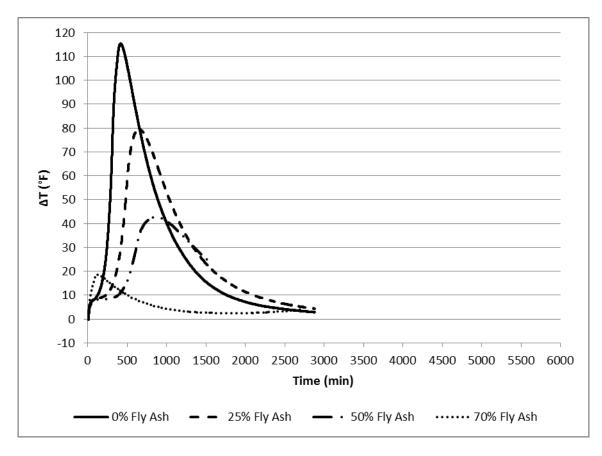



Figure 4.12. Series of Thermal Curves Showing Accelerated Hydration at 70% Fly Ash

Replacement

Table 4.11. Thermal Curve Data for Cement 1 Combinations

|             | Propo | rtions    |       |                  | Time at           |        | Se          | tting Time | Prediction         | ns        |
|-------------|-------|-----------|-------|------------------|-------------------|--------|-------------|------------|--------------------|-----------|
| Combination | C     | E1 A - I- | Curve | $\Delta T_{max}$ |                   | M (°F) | Percentag   | e Method   | Deriv              | atives    |
| Combination | (%)   | (%)       | Type  | (° <b>F</b> )    | ΔT <sub>max</sub> | M (F)  | Initial Set | Final Set  | <b>Initial Set</b> | Final Set |
|             | (70)  | (70)      |       |                  | (min)             |        | (min)       | (min)      | (min)              | (min)     |
| Baseline 1  | 100   | 0         | A     | 98.91            | 501               | 91.62  | 264         | 321        | 303                | 325       |
| 1-1         | 75    | 25        | A     | 71.81            | 685               | 65.54  | 369         | 445        | 246                | 458       |
| 1-1         | 50    | 50        | A     | 45.50            | 883               | 37.46  | 506         | 592        | 577                | 613       |
| 1-1         | 30    | 70        | В     | 24.45            | 882               | 16.85  | 641         | 730        | 755                | 769       |
| 1-2         | 75    | 25        | A     | 75.56            | 713               | 68.02  | 354         | 426        | 385                | 420       |
| 1-2         | 50    | 50        | C     | 31.59            | 1256              | 22.73  | 488         | 571        | 510                | 562       |
| 1-2         | 30    | 70        | В     | 10.05            | 599               | 2.47   | 493         | 519        | 499                | 519       |
| 1-3         | 75    | 25        | A     | 72.96            | 749               | 63.27  | 392         | 469        | 444                | 471       |
| 1-3         | 50    | 50        | C     | 33.58            | 1050              | 24.27  | 477         | 572        | 512                | 560       |
| 1-3         | 30    | 70        | G     | 22.25            | 94                | 12.50  | 26          | 41         | 33                 | 43        |
| 1-4         | 75    | 25        | A     | 78.15            | 829               | 69.00  | 425         | 500        | 443                | 478       |
| 1-4         | 50    | 50        | D     | 20.04            | 642               | 9.30   | 445         | 511        | 513                | 530       |
| 1-4         | 30    | 70        | G     | 19.99            | 197               | 9.32   | 61          | 104        | 77                 | 117       |
| 1-5         | 75    | 25        | A     | 83.17            | 756               | 72.22  | 391         | 463        | 410                | 443       |
| 1-5         | 50    | 50        | D     | 19.41            | 597               | 7.24   | 426         | 486        | 491                | 500       |
| 1-5         | 30    | 70        | G     | 21.68            | 204               | 14.30  | 64          | 108        | 70                 | 110       |

Table 4.12. Thermal Curve Data for Cement 2 Combinations

|             | Propo | rtions    |       |                  | Time at           |        | Se                 | tting Time | Prediction         | ns        |
|-------------|-------|-----------|-------|------------------|-------------------|--------|--------------------|------------|--------------------|-----------|
| Combination | C4    | E1 A - I- | Curve | $\Delta T_{max}$ | ΔT <sub>max</sub> | M (°F) | Percentag          | e Method   | Deriv              | atives    |
| Combination |       | 1 '       | Type  | (° <b>F</b> )    |                   | M (F)  | <b>Initial Set</b> | Final Set  | <b>Initial Set</b> | Final Set |
|             | (%)   | (%)       |       |                  | (min)             |        | (min)              | (min)      | (min)              | (min)     |
| Baseline 2  | 100   | 0         | A     | 96.40            | 521               | 91.84  | 305                | 374        | 366                | 386       |
| 2-1         | 75    | 25        | A     | 81.29            | 705               | 74.01  | 380                | 455        | 448                | 468       |
| 2-1         | 50    | 50        | A     | 53.69            | 763               | 45.27  | 455                | 548        | 550                | 569       |
| 2-1         | 30    | 70        | В     | 30.52            | 819               | 22.03  | 573                | 671        | 696                | 711       |
| 2-2         | 75    | 25        | A     | 80.25            | 714               | 74.55  | 374                | 452        | 436                | 457       |
| 2-2         | 50    | 50        | A     | 47.50            | 822               | 41.16  | 438                | 520        | 508                | 528       |
| 2-2         | 30    | 70        | Е     | 17.39            | 757               | 10.42  | 541                | 612        | 619                | 638       |
| 2-3         | 75    | 25        | A     | 72.43            | 644               | 65.40  | 376                | 452        | 436                | 464       |
| 2-3         | 50    | 50        | A     | 38.92            | 861               | 31.75  | 462                | 552        | 476                | 575       |
| 2-3         | 30    | 70        | E     | 11.41            | 627               | 2.86   | 471                | 526        | 439                | 539       |
| 2-4         | 75    | 25        | A     | 83.87            | 744               | 75.83  | 413                | 484        | 461                | 482       |
| 2-4         | 50    | 50        | C     | 45.47            | 927               | 35.42  | 481                | 556        | 520                | 548       |
| 2-4         | 30    | 70        | Е     | 14.71            | 588               | 3.44   | 471                | 512        | 381                | 527       |
| 2-5         | 75    | 25        | A     | 85.44            | 738               | 77.19  | 414                | 486        | 458                | 483       |
| 2-5         | 50    | 50        | C     | 49.62            | 977               | 39.13  | 508                | 581        | 547                | 565       |
| 2-5         | 30    | 70        |       |                  |                   |        |                    |            |                    |           |

Table 4.13. Thermal Curve Data for Cement 3 Combinations

|             | Propo | rtions    |       |                  | Time at           |                        | Se          | tting Time | Prediction  | ns        |
|-------------|-------|-----------|-------|------------------|-------------------|------------------------|-------------|------------|-------------|-----------|
| Combination | C4    | E1 A - I- | Curve | $\Delta T_{max}$ |                   | M (OE)                 | Percentag   | e Method   | Deriva      | atives    |
| Combination | (%)   |           | Type  | (° <b>F</b> )    | ΔT <sub>max</sub> | <b>M</b> (° <b>F</b> ) | Initial Set | Final Set  | Initial Set | Final Set |
|             | (70)  | (%)       |       |                  | (min)             |                        | (min)       | (min)      | (min)       | (min)     |
| Baseline 3  | 100   | 0         | A     | 111.88           | 413               | 104.13                 | 228         | 284        | 279         | 292       |
| 3-1         | 75    | 25        | A     | 94.29            | 622               | 84.57                  | 364         | 427        | 412         | 428       |
| 3-1         | 50    | 50        | A     | 55.64            | 839               | 44.21                  | 512         | 581        | 571         | 589       |
| 3-1         | 30    | 70        | В     | 28.24            | 767               | 16.15                  | 582         | 652        | 655         | 669       |
| 3-2         | 75    | 25        | A     | 94.90            | 632               | 87.45                  | 369         | 429        | 399         | 422       |
| 3-2         | 50    | 50        | C     | 43.65            | 1010              | 35.26                  | 521         | 582        | 547         | 573       |
| 3-2         | 30    | 70        | G     | 12.26            | 664               | 5.09                   | 546         | 576        | 556         | 569       |
| 3-3         | 75    | 25        | A     | 89.61            | 635               | 80.68                  | 364         | 428        | 409         | 425       |
| 3-3         | 50    | 50        | C     | 39.26            | 966               | 29.80                  | 506         | 583        | 544         | 582       |
| 3-3         | 30    | 70        | F     | 12.15            | 400               | 1.86                   | 179         | 316        | 259         | 366       |
| 3-4         | 75    | 25        | A     | 101.17           | 664               | 92.04                  | 413         | 469        | 433         | 451       |
| 3-4         | 50    | 50        | D     | 25.77            | 660               | 14.02                  | 500         | 550        | 533         | 561       |
| 3-4         | 30    | 70        | F     | 20.99            | 185               | 13.23                  | 38          | 86         | 73          | 149       |
| 3-5         | 75    | 25        | A     | 99.82            | 703               | 88.10                  | 446         | 505        | 456         | 477       |
| 3-5         | 50    | 50        | D     | 24.73            | 607               | 12.11                  | 452         | 493        | 474         | 492       |
| 3-5         | 30    | 70        | G     | 23.04            | 232               | 12.19                  | 62          | 116        | 71          | 73        |

Table 4.14. Thermal Curve Data for Cement 4 Combinations

|             | Propo  | rtions    |       |                  | Time at           |         | Se          | tting Time | Pre diction | ns        |
|-------------|--------|-----------|-------|------------------|-------------------|---------|-------------|------------|-------------|-----------|
| Combination | Coment | Els: A ab | Curve | $\Delta T_{max}$ | ΔT <sub>max</sub> | M (°F)  | Percentag   | e Method   | Deriv       | atives    |
| Combination | (%)    | (%)       | Type  | (° <b>F</b> )    |                   | WI (II) | Initial Set | Final Set  | Initial Set | Final Set |
|             | (70)   | (70)      |       |                  | (min)             |         | (min)       | (min)      | (min)       | (min)     |
| Baseline 4  | 100    | 0         | A     | 108.25           | 486               | 102.35  | 288         | 353        | 352         | 376       |
| 4-1         | 75     | 25        | A     | 99.92            | 567               | 90.53   | 306         | 374        | 365         | 390       |
| 4-1         | 50     | 50        | A     | 58.97            | 785               | 50.61   | 475         | 573        | 579         | 599       |
| 4-1         | 30     | 70        | В     | 35.17            | 794               | 25.68   | 537         | 640        | 669         | 687       |
| 4-2         | 75     | 25        | A     | 81.61            | 713               | 77.95   | 412         | 513        | 517         | 542       |
| 4-2         | 50     | 50        | A     | 57.41            | 837               | 50.65   | 483         | 578        | 575         | 598       |
| 4-2         | 30     | 70        | Е     | 17.74            | 885               | 12.68   | 591         | 696        | 721         | 743       |
| 4-3         | 75     | 25        | A     | 78.41            | 705               | 71.82   | 431         | 526        | 535         | 555       |
| 4-3         | 50     | 50        | A     | 45.85            | 917               | 37.34   | 545         | 642        | 614         | 671       |
| 4-3         | 30     | 70        | Е     | 16.53            | 1489              | 8.42    | 561         | 649        | 623         | 662       |
| 4-4         | 75     | 25        | A     | 106.63           | 649               | 97.37   | 391         | 462        | 449         | 466       |
| 4-4         | 50     | 50        | C     | 73.23            | 980               | 61.22   | 477         | 553        | 514         | 536       |
| 4-4         | 30     | 70        | Е     | 23.63            | 1150              | 10.70   | 503         | 570        | 555         | 583       |
| 4-5         | 75     | 25        | A     | 91.93            | 791               | 86.69   | 474         | 563        | 546         | 569       |
| 4-5         | 50     | 50        | A     | 72.94            | 881               | 62.02   | 463         | 541        | 515         | 540       |
| 4-5         | 30     | 70        | Е     | 19.85            | 681               | 7.17    | 512         | 562        | 561         | 574       |

Table 4.15. Thermal Curve Data for Cement 5 Combinations

|             | Proportions |         |               |               | Time at                 |        | Setting Time Predictions |           |             |           |  |
|-------------|-------------|---------|---------------|---------------|-------------------------|--------|--------------------------|-----------|-------------|-----------|--|
| Combination | Cement (%)  | Fly Ash | Curve<br>Type | AT            | $\Delta T_{\text{max}}$ | M (°F) | Percentage Method        |           | Derivatives |           |  |
| Combination |             |         |               | (° <b>F</b> ) | (min)                   |        | Initial Set              | Final Set | Initial Set | Final Set |  |
|             | (70)        | (70)    |               |               |                         |        | (min)                    | (min)     | (min)       | (min)     |  |
| Baseline 5  | 100         | 0       | A             | 115.40        | 414                     | 109.28 | 237                      | 298       | 299         | 313       |  |
| 5-1         | 75          | 25      | A             | 83.82         | 678                     | 78.40  | 382                      | 471       | 471         | 494       |  |
| 5-1         | 50          | 50      | A             | 55.05         | 844                     | 48.54  | 494                      | 605       | 615         | 639       |  |
| 5-1         | 30          | 70      | В             | 29.81         | 868                     | 21.08  | 619                      | 720       | 754         | 766       |  |
| 5-2         | 75          | 25      | A             | 91.18         | 674                     | 84.30  | 372                      | 452       | 441         | 461       |  |
| 5-2         | 50          | 50      | A             | 45.15         | 909                     | 39.35  | 488                      | 583       | 568         | 599       |  |
| 5-2         | 30          | 70      | E             | 16.81         | 789                     | 10.55  | 548                      | 632       | 386         | 672       |  |
| 5-3         | 75          | 25      | A             | 79.41         | 657                     | 71.89  | 378                      | 464       | 470         | 490       |  |
| 5-3         | 50          | 50      | A             | 42.77         | 854                     | 34.77  | 487                      | 584       | 610         | 625       |  |
| 5-3         | 30          | 70      | G             | 18.46         | 129                     | 9.85   | 36                       | 58        | 41          | 51        |  |
| 5-4         | 75          | 25      | A             | 85.66         | 788                     | 79.33  | 446                      | 534       | 512         | 543       |  |
| 5-4         | 50          | 50      | C             | 46.15         | 980                     | 35.01  | 544                      | 625       | 598         | 628       |  |
| 5-4         | 30          | 70      | G             | 14.80         | 530                     | 1.96   | 448                      | 476       | 434         | 493       |  |
| 5-5         | 75          | 25      | A             | 91.67         | 743                     | 85.84  | 434                      | 518       | 493         | 518       |  |
| 5-5         | 50          | 50      | C             | 50.45         | 1063                    | 39.70  | 533                      | 617       | 570         | 700       |  |
| 5-5         | 30          | 70      |               |               |                         |        |                          |           |             |           |  |

Along with the data discussed previously, the thermal curve for each combination was categorized as one of seven curve types based on the general shape of the curve. The general curve shapes were chosen as those which commonly occurred and had distinct attributes from the other curve shapes. It should be noted that since the specimens were not inserted into the calorimeter until approximately 10 minutes following the start of hydration, the dormant period may or may not be well defined. Also, each curve initially shows a sharp rise in temperature. This is due to the rapid increase in temperature of the thermistors, which were at the ambient temperature prior to coming in contact with the hydrating specimens that had already begun to rise in temperature.

In Appendix C, plots are included that show the curve for the baseline mixture, along with the curves for the three fly ash replacement levels of each portland cement and fly ash combination. The curve type for each mixture has been included here in Tables

- 4.11 through 4.15, above. Examples of the curve shapes are shown below in Figures 4.13 through 4.19. Defining characteristics of the seven curve shapes are as follows:
  - Type A: Typical curve shape for normally hydrating portland cement. The
    dormant period may or may not be well-defined before the main hydration
    temperature rise. The main hydration temperature rise is, for the most part,
    symmetrical about a vertical line at the time where the peak of the curve occurs.
  - Type B: Extremely low magnitude, but abrupt, peak following the dormant period. This curve is not symmetrical, as Type A was, but shows a sharp rise before the peak with a lower slope descent following the peak.
  - Type C: Lower magnitude and wider overall shape of the main hydration curve,
     with an abrupt change in the rate of temperature rise occurring prior to the peak of the curve.
  - Type D: Two separate peaks following a dormant period. The second peak is significantly larger in magnitude and occurs shortly after the first peak.
  - Type E: Abrupt, but low magnitude, rise following a dormant period. Following the rise, the temperature may remain nearly unchanged for a period or show two peaks of similar magnitudes. The second peak occurs shortly after the first peak and may indicate two overlapping hydration peaks.
  - Type F: Immediate, but low magnitude, rise which is not followed by a second peak and appears to approach a ΔT of zero.
  - Type G: Abrupt, but low magnitude, initial rise followed by an extended dormant period and a low magnitude second rise. These curves do not approach a ΔT of zero during the dormant period.

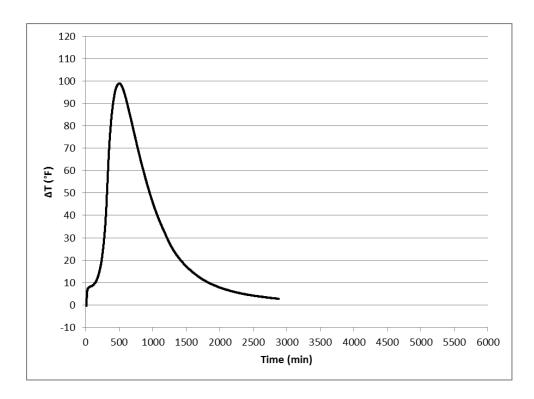



Figure 4.13. Example of Type A Thermal Curve Shape

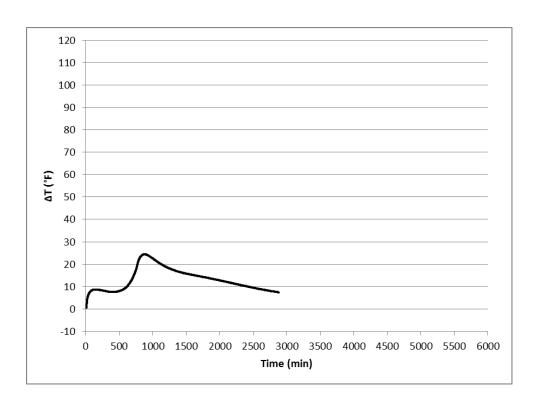



Figure 4.14. Example of Type B Thermal Curve Shape

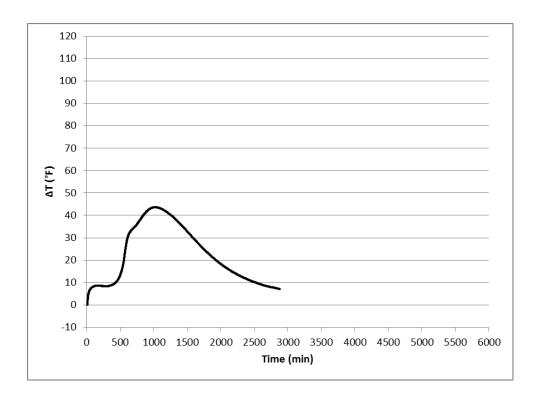



Figure 4.15. Example of Type C Thermal Curve Shape

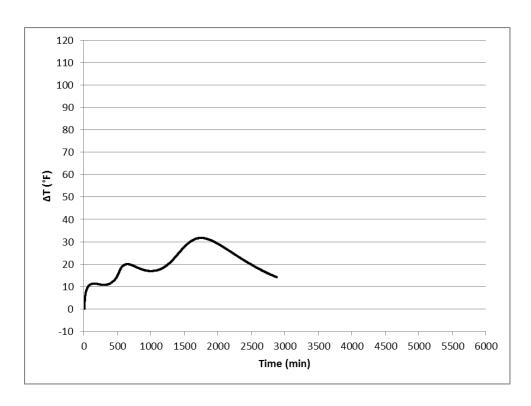



Figure 4.16. Example of Type D Thermal Curve Shape

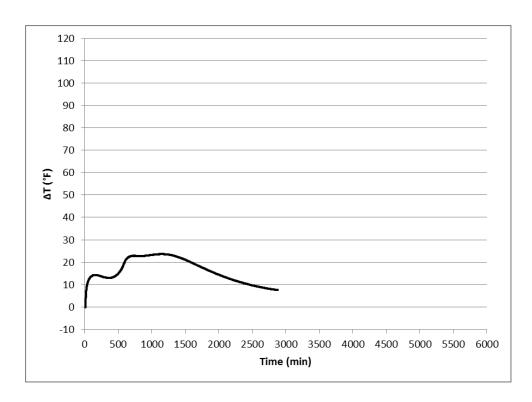



Figure 4.17. Example of Type E Thermal Curve Shape

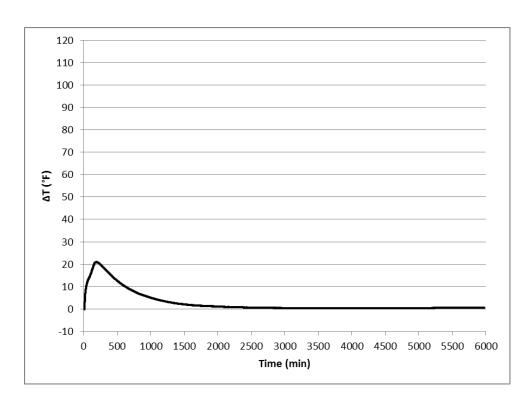



Figure 4.18. Example of Type F Thermal Curve Shape

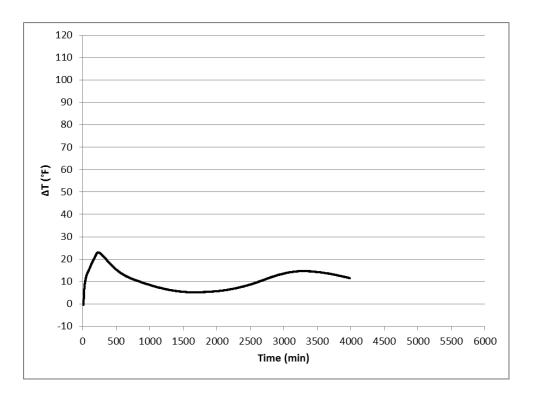



Figure 4.19. Example of Type G Thermal Curve Shape

To explain the curve shapes shown above, a few points which should first be emphasized include: (1) the role of sulfate in hydration; (2) the effect of rapid aluminate hydration on the cementitious system; and (3) the effect of alkali content. (1) As discussed by Lerch (1946), aluminates are less soluble and silicates are more soluble in solutions containing sulfates. This results in aluminate hydration being retarded and silicate hydration being accelerated once the sulfates go into solution. Also, it is thought that rapidly forming ettringite around the particles may assist in slowing the aluminate reactions. When available sulfate is depleted form the system, renewed aluminate hydration will occur rapidly and silicate hydration will occur at a significantly slower

rate. (2) If hydration of the aluminates is not controlled at early ages by sulfate, calcium will be rapidly consumed by the aluminates. This results in a lack of available calcium for silicate hydration and will result in extremely slow or nonexistent silicate hydration (Roberts & Taylor, 2007). (3) According to Lerch (1946), high alkali concentrations can result in more rapid reactions between the aluminates and gypsum. This may account for differences in the heat evolution characteristics of systems which may otherwise appear to be chemically similar.

Type A curves result from normally hydrating paste systems. When water first comes in contact with the cement, aluminates go into solution and begin reacting rapidly. As sulfate goes into solution, the solubility of the aluminates decreases which results in a dormant period. A contribution to this effect is also made by the formation of ettringite around the particles. Following the dormant period, the high calcium concentration of the pore solution causes the silicates to begin hydrating, which is accompanied by a large rise in temperature. This rise reaches a peak when the hydration products have formed around the particles sufficiently to slow further hydration, at which point the rate of heat evolution decreases. With the addition of fly ash, Type A curves will decrease in magnitude and occur at later times, because the content of the more reactive cement has been decreased. xThis curve type is associated with fly ash replacement levels of 0 and 25 percent. Also, some 50 percent fly ash mixtures may result in Type A curves.

Type B and E curves occur due to similar processes. In the case of Type B curves, the sulfate has been consumed and the remaining aluminates being reacting rapidly, which results in significant heat generation. After the aluminate peak occurs, the thermal curve decreases abnormally slowly. This may be caused by extremely slow silicate

hydration, which would result from a lack of calcium and sulfate. Type E curves suggest similar behavior, but with less severe sulfate depletion. The plateau shape of these curves may be the result of partially overlapping aluminate and silicate hydration peaks. Both Type B and Type E curves are associated with 70 percent fly ash mixtures.

Type C, D, and G curves can be viewed as increasingly severe forms of the same behavior. For Type C curves, a lack of sulfate results in a rapid aluminate hydration rise, which occurs during hydration of the silicates. Sufficient calcium is still available for silicate hydration, but it is retarded by a lack of sulfate, increasing the period over which the curve occurs. Type D curves may result from a similar process, but with a more delayed silicate peak due to an even greater lack of sulfate. Type G curves can be attributed to a severe lack of sulfate, resulting in extremely rapid aluminate hydration followed by extremely delayed and suppressed silicate hydration. So, as unmet sulfate demand increases, the aluminate peak occurs earlier and the silicate peak occurs later. Type C and D curves occur for mixtures with 50 percent fly ash, while Type G curves occur for 70 percent fly ash mixtures.

Type F curves result from conditions similar to those seen with Type G curves, except that silicate hydration is severely suppressed or nonexistent. This results from the consumption of the available calcium by the aluminates during early hydration. As can be seen, the curve approaches zero following the aluminate reactions, which indicates that very little or no heat is being generated by the paste. Type F curves are associated with mixtures containing 70 percent fly ash.

Shown below, in Figure 4.20, are all of the previously discussed curve types on a single plot for comparison to a typical, Type A, curve. When compared to Type A, Type

B curves have a slightly delayed and severely decreased peak. Type C curves are significantly shorter, broader, and have a "shoulder" occurring before the peak of the curve. The peak for this curve type is significantly delayed, when compared to a Type A. Type D curves have two separate peaks, where the second peak is larger than the first and occurs after the first. Here, the first peak may occur at a similar time as the main peak of a Type A curve. Type E curves have a delayed, but abrupt, low magnitude rise. Following the rise, the temperature may show a plateau or two extremely close peaks of similar magnitude. Type F curves show a sharp, low magnitude peak, which occurs earlier than the peak of a Type A curve. Following the peak, the ΔT appears to approach zero. Type G curves have an abrupt, early peak, which is similar to Type F and is followed by an extended dormant period. Following the dormant period, a second peak occurs at a time much later than the peaks of the other curve types.

4.1.3. Miniature Slump. The miniature slump test was performed for each mixture at 2, 5, 15, 30, and 45 minutes after mixing began. Four diameter measurements were taken for each miniature slump test and then averaged. The average diameter was used to calculate the area of the paste pat. These values are summarized for each mixture in Tables 4.16 through 4.20, below. It can been seen from the results that as fly ash replacement increases the pat area typically increases considerably at 2, 5, and 15 minutes. The results also show that the miniature slump area decreases more rapidly over time with increasing fly ash levels. From 15 to 45 minutes, the miniature slump results for a given combination, at 50 and 70 percent fly ash replacement, tend to converge on the baseline mixture results and either remain above the baseline or drop below the baseline. The 25 percent fly ash mixtures generally remain higher than the baseline. A

typical plot of miniature slump pat area over time for increasing fly ash replacement levels is shown below in Figure 4.21. Plots of the results for all mixtures can be found in Appendix E.

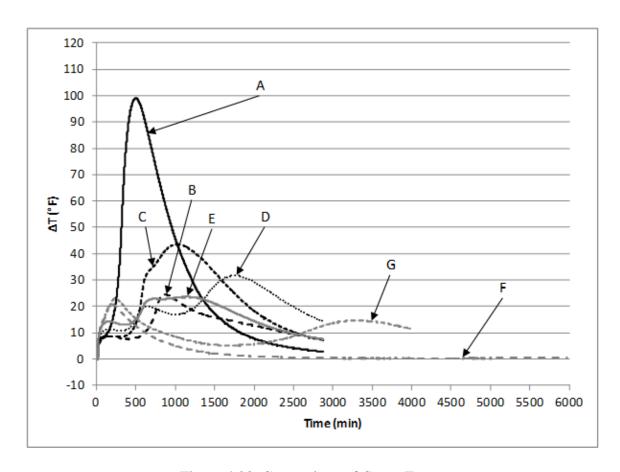



Figure 4.20. Comparison of Curve Types

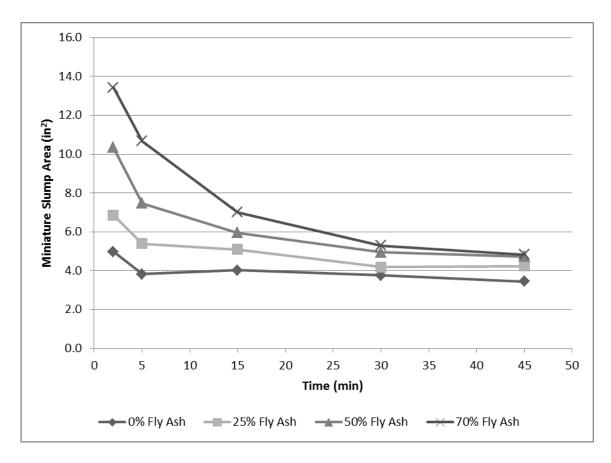



Figure 4.21. Example of Miniature Slump Results for Increasing Fly Ash Contents

Roberts & Taylor (2007) discussed the use of an early stiffening index, which is calculated by dividing the pat area at 30 minutes by the pat area at 5 minutes. Rapid stiffening is indicated by an index value less than 0.85. This index value was calculated for each mixture and is also included in the tables below. For all of the combinations with 50 and 70 percent fly ash, a value less than 0.85 was obtained. Cement 5 had the only 100 percent cement mixture with a value less than 0.85. It should also be noted that, for Cements 2 and 5, a majority of the mixtures had values indicating early stiffening behavior.

Table 4.16. Miniature Slump Results for Cement 1

|             | Proportions |         |       | Early Stiffening |        |        |        |                |
|-------------|-------------|---------|-------|------------------|--------|--------|--------|----------------|
| Combination | Cement      | Fly Ash | 2-min | 5-min            | 15-min | 30-min | 45-min | Index          |
|             | (%)         | (%)     | Test  | Test             | Test   | Test   | Test   | (30-min/5-min) |
| Baseline 1  | 100         | 0       | 2.0   | 2.7              | 2.8    | 2.5    | 2.7    | 0.93           |
| 1-1         | 75          | 25      | 3.1   | 3.8              | 3.7    | 3.8    | 3.5    | 1.02           |
| 1-1         | 50          | 50      | 5.5   | 4.9              | 4.8    | 4.1    | 4.2    | 0.84           |
| 1-1         | 30          | 70      | 6.0   | 4.8              | 3.9    | 3.3    | 3.2    | 0.69           |
| 1-2         | 75          | 25      | 3.4   | 3.7              | 3.6    | 3.3    | 3.5    | 0.87           |
| 1-2         | 50          | 50      | 6.1   | 5.5              | 4.9    | 4.3    | 4.1    | 0.79           |
| 1-2         | 30          | 70      | 11.2  | 8.4              | 5.6    | 4.6    | 4.5    | 0.55           |
| 1-3         | 75          | 25      | 2.6   | 3.4              | 3.4    | 3.2    | 3.3    | 0.95           |
| 1-3         | 50          | 50      | 5.9   | 4.8              | 3.8    | 3.9    | 3.8    | 0.83           |
| 1-3         | 30          | 70      | 8.2   | 6.3              | 4.5    | 3.7    | 3.7    | 0.59           |
| 1-4         | 75          | 25      | 2.6   | 3.1              | 3.1    | 2.8    | 2.8    | 0.89           |
| 1-4         | 50          | 50      | 5.1   | 4.4              | 3.2    | 2.6    | 2.7    | 0.59           |
| 1-4         | 30          | 70      | 6.9   | 5.7              | 3.3    | 2.8    | 2.6    | 0.50           |
| 1-5         | 75          | 25      | 3.1   | 3.3              | 3.1    | 2.9    | 3.0    | 0.87           |
| 1-5         | 50          | 50      | 7.0   | 5.4              | 4.4    | 3.6    | 3.6    | 0.68           |
| 1-5         | 30          | 70      | 10.2  | 10.6             | 5.5    | 3.8    | 3.4    | 0.36           |

Table 4.17. Miniature Slump Results for Cement 2

|             | Proportions |         |       | Miniatur |        | Early Stiffening |        |                |
|-------------|-------------|---------|-------|----------|--------|------------------|--------|----------------|
| Combination | Cement      | Fly Ash | 2-min | 5-min    | 15-min | 30-min           | 45-min | Index          |
|             | (%)         | (%)     | Test  | Test     | Test   | Test             | Test   | (30-min/5-min) |
| Baseline 2  | 100         | 0       | 5.0   | 3.8      | 4.0    | 3.8              | 3.4    | 0.98           |
| 2-1         | 75          | 25      | 6.8   | 5.4      | 6.0    | 5.1              | 4.8    | 0.95           |
| 2-1         | 50          | 50      | 11.6  | 7.9      | 7.0    | 6.0              | 5.9    | 0.75           |
| 2-1         | 30          | 70      | 13.3  | 9.2      | 5.8    | 4.5              | 4.7    | 0.49           |
| 2-2         | 75          | 25      | 6.9   | 5.4      | 5.1    | 4.2              | 4.2    | 0.78           |
| 2-2         | 50          | 50      | 10.3  | 7.5      | 5.9    | 5.0              | 4.7    | 0.66           |
| 2-2         | 30          | 70      | 13.4  | 10.7     | 7.0    | 5.3              | 4.8    | 0.50           |
| 2-3         | 75          | 25      | 6.2   | 5.2      | 4.5    | 3.9              | 3.9    | 0.76           |
| 2-3         | 50          | 50      | 9.2   | 7.0      | 5.1    | 4.1              | 4.1    | 0.58           |
| 2-3         | 30          | 70      | 13.1  | 7.5      | 4.7    | 3.7              | 3.7    | 0.49           |
| 2-4         | 75          | 25      | 6.3   | 5.2      | 4.3    | 3.8              | 3.7    | 0.72           |
| 2-4         | 50          | 50      | 7.8   | 6.5      | 3.9    | 3.2              | 3.1    | 0.49           |
| 2-4         | 30          | 70      | 9.9   | 8.7      | 3.5    | 2.6              | 2.7    | 0.30           |
| 2-5         | 75          | 25      | 7.1   | 5.6      | 4.8    | 4.2              | 3.9    | 0.75           |
| 2-5         | 50          | 50      | 11.7  | 9.1      | 5.3    | 4.2              | 3.8    | 0.46           |
| 2-5         | 30          | 70      | 14.3  | 12.7     | 4.8    | 3.5              | 3.3    | 0.27           |

Table 4.18. Miniature Slump Results for Cement 3

|             | Proportions |         |       | Miniatur | Early Stiffening |        |        |                |
|-------------|-------------|---------|-------|----------|------------------|--------|--------|----------------|
| Combination | Cement      | Fly Ash | 2-min | 5-min    | 15-min           | 30-min | 45-min | Index          |
|             | (%)         | (%)     | Test  | Test     | Test             | Test   | Test   | (30-min/5-min) |
| Baseline 3  | 100         | 0       | 2.2   | 2.4      | 2.4              | 2.4    | 2.4    | 1.00           |
| 3-1         | 75          | 25      | 2.1   | 3.1      | 3.1              | 2.8    | 2.9    | 0.90           |
| 3-1         | 50          | 50      | 3.7   | 4.1      | 4.0              | 3.3    | 3.5    | 0.81           |
| 3-1         | 30          | 70      | 5.0   | 4.6      | 3.4              | 2.9    | 2.8    | 0.63           |
| 3-2         | 75          | 25      | 2.1   | 3.1      | 2.9              | 2.7    | 2.9    | 0.90           |
| 3-2         | 50          | 50      | 3.6   | 4.4      | 4.0              | 3.6    | 3.4    | 0.83           |
| 3-2         | 30          | 70      | 7.7   | 6.0      | 5.3              | 4.5    | 4.3    | 0.75           |
| 3-3         | 75          | 25      | 2.2   | 2.9      | 2.8              | 2.8    | 2.9    | 0.96           |
| 3-3         | 50          | 50      | 4.4   | 4.2      | 3.9              | 3.3    | 3.4    | 0.79           |
| 3-3         | 30          | 70      | 6.8   | 6.0      | 4.5              | 3.7    | 3.6    | 0.61           |
| 3-4         | 75          | 25      | 1.9   | 2.7      | 2.6              | 2.5    | 2.5    | 0.93           |
| 3-4         | 50          | 50      | 3.9   | 3.4      | 2.9              | 2.7    | 2.5    | 0.79           |
| 3-4         | 30          | 70      | 6.5   | 5.1      | 2.9              | 2.4    | 2.4    | 0.47           |
| 3-5         | 75          | 25      | 2.2   | 3.1      | 2.9              | 2.7    | 2.5    | 0.86           |
| 3-5         | 50          | 50      | 4.6   | 4.9      | 3.6              | 3.0    | 2.9    | 0.61           |
| 3-5         | 30          | 70      | 8.4   | 6.1      | 4.1              | 3.1    | 3.1    | 0.50           |

Table 4.19. Miniature Slump Results for Cement 4

| Proportions |        |         |       | Miniatur |        | Early Stiffening |        |                |
|-------------|--------|---------|-------|----------|--------|------------------|--------|----------------|
| Combination | Cement | Fly Ash | 2-min | 5-min    | 15-min | 30-min           | 45-min | Index          |
|             | (%)    | (%)     | Test  | Test     | Test   | Test             | Test   | (30-min/5-min) |
| Baseline 4  | 100    | 0       | 3.8   | 3.8      | 3.8    | 3.5              | 3.7    | 0.92           |
| 4-1         | 75     | 25      | 5.4   | 4.6      | 4.6    | 4.2              | 3.9    | 0.91           |
| 4-1         | 50     | 50      | 8.3   | 7.4      | 6.0    | 5.4              | 5.2    | 0.72           |
| 4-1         | 30     | 70      | 9.2   | 7.3      | 5.7    | 4.7              | 4.3    | 0.64           |
| 4-2         | 75     | 25      | 3.0   | 3.3      | 4.0    | 3.5              | 3.4    | 1.08           |
| 4-2         | 50     | 50      | 6.8   | 6.2      | 4.7    | 4.5              | 4.3    | 0.73           |
| 4-2         | 30     | 70      | 9.3   | 9.7      | 6.4    | 5.3              | 4.6    | 0.54           |
| 4-3         | 75     | 25      | 5.0   | 4.6      | 4.4    | 4.1              | 3.7    | 0.88           |
| 4-3         | 50     | 50      | 6.2   | 5.5      | 4.4    | 3.9              | 3.7    | 0.71           |
| 4-3         | 30     | 70      | 8.8   | 6.1      | 4.4    | 3.5              | 3.5    | 0.57           |
| 4-4         | 75     | 25      | 4.5   | 4.4      | 3.7    | 3.3              | 3.2    | 0.77           |
| 4-4         | 50     | 50      | 6.9   | 4.7      | 3.2    | 3.0              | 2.7    | 0.65           |
| 4-4         | 30     | 70      | 8.0   | 4.8      | 2.9    | 2.7              | 2.4    | 0.57           |
| 4-5         | 75     | 25      | 6.4   | 5.8      | 4.9    | 3.7              | 3.5    | 0.64           |
| 4-5         | 50     | 50      | 8.9   | 6.9      | 4.9    | 3.8              | 4.0    | 0.55           |
| 4-5         | 30     | 70      | 10.0  | 9.8      | 4.9    | 3.4              | 3.3    | 0.35           |

Table 4.20. Miniature Slump Results for Cement 5

|             | Propo  | rtions  |       | Miniatur | e Slump A | rea (in²) |        | Early Stiffening |
|-------------|--------|---------|-------|----------|-----------|-----------|--------|------------------|
| Combination | Cement | Fly Ash | 2-min | 5-min    | 15-min    | 30-min    | 45-min | Index            |
|             | (%)    | (%)     | Test  | Test     | Test      | Test      | Test   | (30-min/5-min)   |
| Baseline 5  | 100    | 0       | 3.1   | 3.7      | 3.0       | 2.8       | 2.8    | 0.77             |
| 5-1         | 75     | 25      | 5.2   | 4.8      | 4.7       | 4.1       | 3.9    | 0.85             |
| 5-1         | 50     | 50      | 6.7   | 5.9      | 5.0       | 4.2       | 4.0    | 0.71             |
| 5-1         | 30     | 70      | 9.0   | 5.0      | 3.3       | 2.8       | 2.7    | 0.56             |
| 5-2         | 75     | 25      | 5.2   | 4.8      | 4.2       | 3.7       | 3.6    | 0.77             |
| 5-2         | 50     | 50      | 8.2   | 6.7      | 5.6       | 4.6       | 4.4    | 0.69             |
| 5-2         | 30     | 70      | 11.4  | 8.3      | 5.8       | 4.3       | 4.2    | 0.51             |
| 5-3         | 75     | 25      | 5.2   | 4.7      | 4.3       | 3.6       | 3.8    | 0.77             |
| 5-3         | 50     | 50      | 6.9   | 5.8      | 5.0       | 4.3       | 4.1    | 0.74             |
| 5-3         | 30     | 70      | 10.3  | 6.6      | 4.8       | 3.9       | 3.5    | 0.58             |
| 5-4         | 75     | 25      | 4.4   | 4.3      | 3.6       | 3.0       | 3.0    | 0.71             |
| 5-4         | 50     | 50      | 6.2   | 4.7      | 3.1       | 2.7       | 2.8    | 0.58             |
| 5-4         | 30     | 70      | 8.4   | 4.8      | 2.6       | 2.3       | 2.1    | 0.48             |
| 5-5         | 75     | 25      | 5.6   | 5.3      | 4.5       | 3.8       | 3.5    | 0.72             |
| 5-5         | 50     | 50      | 8.8   | 6.9      | 5.0       | 3.9       | 3.7    | 0.57             |
| 5-5         | 30     | 70      | 14.9  | 12.2     | 5.0       | 3.2       | 3.2    | 0.26             |

The increase in miniature slump area with increasing fly ash replacement is expected, because it is known that fly ash increases workability, due to the spherical and glassy characteristics of fly ash particles. The more rapid loss in slump area and lower early stiffening indices seen with increasing fly ash replacement may be explained by increased aluminate levels and sulfate imbalance, which would lead to rapid setting behavior.

**4.1.4. Vicat Setting Time.** The initial and final setting times for each mixture were determined by the Vicat method according to ASTM C 191. As part of the Vicat setting time method, the water required to achieve normal consistency of the paste was determined according to ASTM C 187. The results of the normal consistency and setting time tests are summarized in Tables 4.21 through 4.25, below, for each mixture. The results show that, except for Cement 2 combinations, initial set generally increases with 25 percent fly ash replacement and then decreases with 50 and 70 percent fly ash replacement. For mixtures made with Fly Ashes 1, 2, or 3, final set tended to increase with fly ash replacement up to 50 percent. For mixtures made with Fly Ashes 4 and 5, final set generally increased at 25 percent fly ash replacement and then decreased at the 50 and 70 percent replacement levels, similar to initial set. The increases in setting times for mixtures with 25 to 50 percent fly ash is explained by the retarding effect of fly ash noted by other researchers including Bentz (2010). The decrease in setting times can be attributed to sulfate imbalances which are significant enough to produce flash setting behavior. The differences in the fly ash replacement level at which setting times began to decrease could be explained by differing sulfate requirements, which would lead to varying degrees of sulfate imbalance for each system. It should also be noted that the required water for normal consistency decreased with increasing fly ash replacement levels for all combinations. This is explained by the increased fluidity achieved when replacing portland cement with fly ash, which is composed of spherical, glassy particles.

Table 4.21. Vicat Setting Time Results for Cement 1

|             | Propo  | rtions  | Water for Normal | Vicat F            | Results   |
|-------------|--------|---------|------------------|--------------------|-----------|
| Combination | Cement | Fly Ash | Consistency      | <b>Initial Set</b> | Final Set |
|             | (%)    | (%)     | (0.5%)           | (min)              | (min)     |
| Baseline 1  | 100    | 0       | 26.0             | 110                | 210       |
| 1-1         | 75     | 25      | 23.0             | 184                | 345       |
| 1-1         | 50     | 50      | 20.5             | 95                 | 390       |
| 1-1         | 30     | 70      | 19.5             | 34                 | 405       |
| 1-2         | 75     | 25      | 24.0             | 218                | 390       |
| 1-2         | 50     | 50      | 21.0             | 208                | 510       |
| 1-2         | 30     | 70      | 19.5             | 87                 | 450       |
| 1-3         | 75     | 25      | 24.5             | 171                | 375       |
| 1-3         | 50     | 50      | 21.5             | 142                | 435       |
| 1-3         | 30     | 70      | 20.0             | 49                 | 525       |
| 1-4         | 75     | 25      | 23.0             | 203                | 450       |
| 1-4         | 50     | 50      | 21.0             | 47                 | 360       |
| 1-4         | 30     | 70      | 19.0             | 15                 | 135       |
| 1-5         | 75     | 25      | 22.5             | 178                | 480       |
| 1-5         | 50     | 50      | 19.0             | 33                 | 180       |
| 1-5         | 30     | 70      | 17.5             | 11                 | 45        |

Table 4.22. Vicat Setting Time Results for Cement 2

|             | Propo  | rtions  | Water for Normal | Vicat I     | Results   |
|-------------|--------|---------|------------------|-------------|-----------|
| Combination | Cement | Fly Ash | Consistency      | Initial Set | Final Set |
|             | (%)    | (%)     | (0.5%)           | (min)       | (min)     |
| Baseline 2  | 100    | 0       | 25.0             | 158         | 255       |
| 2-1         | 75     | 25      | 22.0             | 182         | 360       |
| 2-1         | 50     | 50      | 19.0             | 67          | 375       |
| 2-1         | 30     | 70      | 18.0             | 20          | 420       |
| 2-2         | 75     | 25      | 21.5             | 154         | 345       |
| 2-2         | 50     | 50      | 20.0             | 71          | 435       |
| 2-2         | 30     | 70      | 19.0             | 57          | 495       |
| 2-3         | 75     | 25      | 22.5             | 151         | 390       |
| 2-3         | 50     | 50      | 21.0             | 40          | 650       |
| 2-3         | 30     | 70      | 19.0             | 12          | 150       |
| 2-4         | 75     | 25      | 21.5             | 92          | 360       |
| 2-4         | 50     | 50      | 20.0             | 35          | 300       |
| 2-4         | 30     | 70      | 18.5             | 12          | 90        |
| 2-5         | 75     | 25      | 21.0             | 80          | 345       |
| 2-5         | 50     | 50      | 19.0             | 13          | 90        |
| 2-5         | 30     | 70      | 17.5             | 11          | 45        |

Table 4.23. Vicat Setting Time Results for Cement 3

|             | Propo | rtions | Water for Normal | Vicat I     | Results |
|-------------|-------|--------|------------------|-------------|---------|
| Combination |       | •      | Consistency      | Initial Set |         |
|             | (%)   | (%)    | (0.5%)           | (min)       | (min)   |
| Baseline 3  | 100   | 0      | 25.0             | 78          | 180     |
| 3-1         | 75    | 25     | 23.0             | 170         | 315     |
| 3-1         | 50    | 50     | 20.5             | 85          | 360     |
| 3-1         | 30    | 70     | 19.0             | 31          | 225     |
| 3-2         | 75    | 25     | 23.0             | 146         | 315     |
| 3-2         | 50    | 50     | 20.5             | 101         | 435     |
| 3-2         | 30    | 70     | 19.0             | 59          | 435     |
| 3-3         | 75    | 25     | 23.0             | 123         | 300     |
| 3-3         | 50    | 50     | 21.0             | 96          | 450     |
| 3-3         | 30    | 70     | 19.5             | 40          | 375     |
| 3-4         | 75    | 25     | 23.0             | 172         | 375     |
| 3-4         | 50    | 50     | 21.0             | 33          | 300     |
| 3-4         | 30    | 70     | 19.0             | 12          | 60      |
| 3-5         | 75    | 25     | 22.5             | 124         | 345     |
| 3-5         | 50    | 50     | 20.0             | 12          | 75      |
| 3-5         | 30    | 70     | 18.5             | 11          | 30      |

Table 4.24. Vicat Setting Time Results for Cement 4

|             | Propo  | rtions  | Water for Normal | Vicat I     | Results   |
|-------------|--------|---------|------------------|-------------|-----------|
| Combination | Cement | Fly Ash | Consistency      | Initial Set | Final Set |
|             | (%)    | (%)     | (0.5%)           | (min)       | (min)     |
| Baseline 4  | 100    | 0       | 24.0             | 81          | 180       |
| 4-1         | 75     | 25      | 23.0             | 132         | 270       |
| 4-1         | 50     | 50      | 21.5             | 107         | 300       |
| 4-1         | 30     | 70      | 20.5             | 14          | 285       |
| 4-2         | 75     | 25      | 23.0             | 213         | 450       |
| 4-2         | 50     | 50      | 21.0             | 78          | 525       |
| 4-2         | 30     | 70      | 19.0             | 53          | 480       |
| 4-3         | 75     | 25      | 23.0             | 238         | 435       |
| 4-3         | 50     | 50      | 21.5             | 101         | 660       |
| 4-3         | 30     | 70      | 20.5             | 48          | 300       |
| 4-4         | 75     | 25      | 22.5             | 125         | 360       |
| 4-4         | 50     | 50      | 20.0             | 34          | 270       |
| 4-4         | 30     | 70      | 19.5             | 12          | 105       |
| 4-5         | 75     | 25      | 22.5             | 123         | 255       |
| 4-5         | 50     | 50      | 21.0             | 15          | 195       |
| 4-5         | 30     | 70      | 19.5             | 11          | 60        |

Table 4.25. Vicat Setting Time Results for Cement 5

|             | Propo | rtions | Water for Normal | Vicat I     | Results   |
|-------------|-------|--------|------------------|-------------|-----------|
| Combination |       | •      | Consistency      | Initial Set | Final Set |
|             | (%)   | (%)    | (0.5%)           | (min)       | (min)     |
| Baseline 5  | 100   | 0      | 26.0             | 146         | 285       |
| 5-1         | 75    | 25     | 23.0             | 158         | 300       |
| 5-1         | 50    | 50     | 20.5             | 100         | 405       |
| 5-1         | 30    | 70     | 19.0             | 21          | 465       |
| 5-2         | 75    | 25     | 24.0             | 179         | 330       |
| 5-2         | 50    | 50     | 21.0             | 175         | 435       |
| 5-2         | 30    | 70     | 19.0             | 59          | 495       |
| 5-3         | 75    | 25     | 24.0             | 149         | 315       |
| 5-3         | 50    | 50     | 21.0             | 54          | 390       |
| 5-3         | 30    | 70     | 20.0             | 13          | 150       |
| 5-4         | 75    | 25     | 23.0             | 167         | 345       |
| 5-4         | 50    | 50     | 21.0             | 48          | 375       |
| 5-4         | 30    | 70     | 19.0             | 14          | 120       |
| 5-5         | 75    | 25     | 22.5             | 136         | 345       |
| 5-5         | 50    | 50     | 19.0             | 13          | 135       |
| 5-5         | 30    | 70     | 18.0             | 11          | 45        |

The results of the Screening Study show some general trends in the properties of paste mixtures with increasing fly ash replacement levels. Cube compressive strengths were severely decreased at early ages, but experienced significant increases at later ages, indicating slower rates of strength gain. The thermal curves illustrated that the silicate hydration peaks were delayed and decreased in magnitude, due to the slower rate and lower heat production of the pozzolanic reaction. The miniature slump results showed increasing pat areas at times up to 15 minutes, which can be attributed to the spherical, glassy characteristics of fly ash. The effects of the fly ash particles were also seen in the decreased water required to achieve normal consistency, when performing the Vicat

setting time test. Also, many of the Vicat results indicated increases in setting times.

These results are typical for fly ash mixtures, which have slower reaction rates, due to the pozzolanic reaction, resulting in slower strength gain, decreased heat generation, and delayed setting times.

Some of the results in the Screening Study contradict the generalizations made in the previous paragraph. These results may be attributed to sulfate imbalances, which are increasingly likely at higher fly ash replacement levels. Sulfate imbalances, which cause accelerated early hydration of the aluminates, can lead to severely slow strength gain, rapid losses in fluidity, and decreased setting times. The changes in the hydration reactions of mixtures experiencing sulfate imbalances can also been observed in the unusual curve shapes obtained from the calorimetry results for these mixtures.

## 4.2 MAIN STUDY RESULTS

In the Main Study, two cement and fly ash combinations were chosen from the Screening Study for further study with powder additions and a water reducer. The two combinations, 4-1 and 1-3, were chosen as the most and least reactive combinations based on one-day cube strength results from the Screening Study. The effect of adding a water reducer was evaluated at the 0, 25, 50, and 70 percent fly ash replacement levels. The effects of gypsum, lime, and rapid set cement additions were evaluated at the 50 and 70 percent fly ash replacement levels. Paste testing for the Main Study included cube compressive strength, semi-adiabatic calorimetry, miniature slump, and Vicat setting time. Compressive strength testing was performed at 1, 3, 7, 28, and 56 days.

4.2.1. Outlier Analysis. The three cube compressive strength results for each mixture were evaluated for outliers as discussed above in Section 4.1.1. The results of the outlier analyses for Combination 4-1 mixtures are shown below in Tables 4.26 through 4.30. The results of the outlier analyses for Combination 1-3 mixtures are shown below in Tables 4.31 through 4.35. Values which were discarded as outliers have been bolded and the cell has been shaded. For Combination 4-1, the ASTM E 178 analysis indicated 16 possible outliers. Of these, two values were discarded as actual outliers, while the others were falsely indicated as outlying values. Two additional values, which were not indicated as outliers by the ASTM E 178 analysis, were discarded as outliers. For Combination 1-3, the ASTM E 178 analysis indicated 10 possible outliers. Of these, one value was discarded as an actual outlier. No other values were discarded as outlying values. An outlier analysis was also run on the calorimeter data for the Main Study and has been included in Appendix B.

Table 4.26. Outlier Analysis of 1-Day Cube Strengths for Combination 4-1 Mixtures.

|             |        |         | Nominal | Proportio | ns  |              |        |          |          |      |     |   | Outlie | r Analysi | is         |                  |           |                          |                          |                |
|-------------|--------|---------|---------|-----------|-----|--------------|--------|----------|----------|------|-----|---|--------|-----------|------------|------------------|-----------|--------------------------|--------------------------|----------------|
| Combination | Cement | Fly Ash | Gypsum  | Lime      | RSC | WR           | Cı     | ıbe Stre | ngths (p | si)  |     |   |        | 3.6:      | ,          |                  | ,         | 0 41 0                   | 0 41 0                   | Average Cube   |
|             | (%)    | (%)     | (%)     | (%)       | (%) | (fl.oz./cwt) | Test 1 | Test 2   | Test 3   | Avg. | σ   | n | Max.   | Min.      | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Strength (psi) |
| 4-1         | 100    | 0       | 0       | 0         | 0   | 0.00         | 4037   | 4280     | 4025     | 4114 | 144 | 3 | 4280   | 4025      | 1.153      | 1.154            | 0.620     | YES                      | NO                       | 4114           |
| 4-1         | 100    | 0       | 0       | 0         | 0   | 2.75         | 3597   | 4577     | 4424     | 4199 | 527 | 3 | 4577   | 3597      | 1.153      | 0.717            | 1.142     | NO                       | NO                       | 4199           |
| 4-1         | 100    | 0       | 0       | 0         | 0   | 5.00         | 5045   | 5406     | 5278     | 5243 | 183 | 3 | 5406   | 5045      | 1.153      | 0.891            | 1.081     | NO                       | NO                       | 5243           |
| 4-1         | 75     | 25      | 0       | 0         | 0   | 0.00         | 3757   | 3799     | 3458     | 3671 | 186 | 3 | 3799   | 3458      | 1.153      | 0.686            | 1.147     | NO                       | NO                       | 3671           |
| 4-1         | 75     | 25      | 0       | 0         | 0   | 2.75         | 3436   | 3396     | 3327     | 3387 | 55  | 3 | 3436   | 3327      | 1.153      | 0.900            | 1.076     | NO                       | NO                       | 3387           |
| 4-1         | 75     | 25      | 0       | 0         | 0   | 5.00         | 2926   | 2752     | 2894     | 2857 | 93  | 3 | 2926   | 2752      | 1.153      | 0.746            | 1.136     | NO                       | NO                       | 2857           |
| 4-1         | 50     | 50      | 0       | 0         | 0   | 0.00         | 1925   | 1966     | 1914     | 1935 | 27  | 3 | 1966   | 1914      | 1.153      | 1.133            | 0.758     | NO                       | NO                       | 1935           |
| 4-1         | 50     | 50      | 0       | 0         | 0   | 2.75         | 1370   | 1375     | 1399     | 1381 | 15  | 3 | 1399   | 1370      | 1.153      | 1.144            | 0.710     | NO                       | NO                       | 1381           |
| 4-1         | 50     | 50      | 0       | 0         | 0   | 5.00         | 1219   | 1256     | 1176     | 1217 | 40  | 3 | 1256   | 1176      | 1.153      | 0.969            | 1.028     | NO                       | NO                       | 1217           |
| 4-1         | 50     | 50      | 2       | 0         | 0   | 2.75         | 1324   | 1277     | 1250     | 1284 | 37  | 3 | 1324   | 1250      | 1.153      | 1.075            | 0.902     | NO                       | NO                       | 1284           |
| 4-1         | 50     | 50      | 4       | 0         | 0   | 2.75         | 714    | 694      | 722      | 710  | 14  | 3 | 722    | 694       | 1.153      | 0.829            | 1.110     | NO                       | NO                       | 710            |
| 4-1         | 50     | 50      | 4       | 5         | 0   | 2.75         | 609    | 631      | 626      | 622  | 11  | 3 | 631    | 609       | 1.153      | 0.786            | 1.126     | NO                       | NO                       | 622            |
| 4-1         | 50     | 50      | 4       | 10        | 0   | 2.75         | 1249   | 1195     | 1257     | 1234 | 34  | 3 |        | 1195      | 1.153      | 0.689            | 1.147     | NO                       | NO                       | 1234           |
| 4-1         | 50     | 50      | 4       | 0         | 10  | 2.75         | 755    | 783      | 784      | 774  | 17  | 3 | 784    | 755       | 1.153      | 0.606            | 1.154     | NO                       | YES                      | 774            |
| 4-1         | 50     | 50      | 4       | 0         | 20  | 2.75         | 1170   | 1199     | 1238     | 1202 | 34  | 3 | 1238   | 1170      | 1.153      | 1.044            | 0.950     | NO                       | NO                       | 1202           |
| 4-1         | 30     | 70      | 0       | 0         | 0   | 0.00         | 678    | 628      | 689      | 665  | 32  | 3 | 689    | 628       | 1.153      | 0.742            | 1.137     | NO                       | NO                       | 665            |
| 4-1         | 30     | 70      | 0       | 0         | 0   | 2.75         | 300    | 307      | 321      | 309  | 10  | 3 | 321    | 300       | 1.153      | 1.098            | 0.858     | NO                       | NO                       | 309            |
| 4-1         | 30     | 70      | 0       | 0         | 0   | 5.00         | 362    | 364      | 381      | 369  | 10  | 3 |        | 362       | 1.153      | 1.152            | 0.645     | NO                       | NO                       | 369            |
| 4-1         | 30     | 70      | 2       | 0         | 0   | 2.75         | 453    | 457      | 477      | 462  | 13  | 3 | 477    | 453       | 1.153      | 1.145            | 0.704     | NO                       | NO                       | 462            |
| 4-1         | 30     | 70      | 4       | 0         | 0   | 2.75         | 204    | 207      | 225      | 212  | 11  | 3 | 225    | 204       | 1.153      | 1.142            | 0.720     | NO                       | NO                       | 212            |
| 4-1         | 30     | 70      | 4       | 5         | 0   | 2.75         | 556    | 561      | 554      | 557  | 3   | 3 | 561    | 554       | 1.153      | 1.135            | 0.750     | NO                       | NO                       | 557            |
| 4-1         | 30     | 70      | 4       | 10        | 0   | 2.75         | 556    | 546      | 529      |      | 13  | 3 |        | 529       | 1.153      | 0.899            | 1.077     | NO                       | NO                       | 544            |
| 4-1         | 30     | 70      | 4       | 0         | 10  | 2.75         | 679    | 655      | 693      | 675  | 19  | 3 |        | 655       | 1.153      | 0.906            | 1.073     | NO                       | NO                       | 675            |
| 4-1         | 30     | 70      | 4       | 0         | 20  | 2.75         | 816    | 794      | 795      | 802  | 13  | 3 | 816    | 794       | 1.153      | 1.154            | 0.606     | YES                      | NO                       | 802            |

Table 4.27. Outlier Analysis of 3-Day Cube Strengths for Combination 4-1 Mixtures.

|             |        |         | Nominal 1 | Proportio | ns  |              |        |          |          |      |     |   | Outlie | r Analys | is                |                  |           |                         |                         |                |
|-------------|--------|---------|-----------|-----------|-----|--------------|--------|----------|----------|------|-----|---|--------|----------|-------------------|------------------|-----------|-------------------------|-------------------------|----------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | C      | ube Stre | ngths (p | si)  |     |   |        | 3.61     | ,                 |                  | ,         | 0.41. 0                 | 0.41. 0                 | Average Cube   |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test 1 | Test 2   | Test 3   | Avg. | σ   | n | Max.   | Min.     | t <sub>CRIT</sub> | t <sub>MAX</sub> | $t_{MIN}$ | Outner <sub>MAX</sub> ? | Outher <sub>MIN</sub> ? | Strength (psi) |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 0.00         | 8341   | 8015     | 7977     | 8111 | 200 | 3 | 8341   | 7977     | 1.153             | 1.150            | 0.668     | NO                      | NO                      | 8111           |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 2.75         | 8423   | 8187     | 7965     | 8192 | 229 | 3 | 8423   | 7965     | 1.153             | 1.010            | 0.989     | NO                      | NO                      | 8192           |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 5.00         | 8908   | 8708     |          | 8808 |     | ŀ |        |          |                   |                  |           |                         |                         | 8808           |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 0.00         | 6179   | 6156     | 6235     | 6190 | 41  | 3 | 6235   | 6156     | 1.153             | 1.108            | 0.836     | NO                      | NO                      | 6190           |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 2.75         | 6754   | 6807     | 6775     | 6779 | 27  | 3 | 6807   | 6754     | 1.153             | 1.063            | 0.923     | NO                      | NO                      | 6779           |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 5.00         | 6124   | 6235     | 6048     | 6136 | 94  | 3 | 6235   | 6048     | 1.153             | 1.055            | 0.934     | NO                      | NO                      | 6136           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 0.00         | 3530   | 3485     | 3589     | 3535 | 52  | 3 | 3589   | 3485     | 1.153             | 1.044            | 0.949     | NO                      | NO                      | 3535           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 2.75         | 2937   | 3372     | 3534     | 3281 | 309 | 3 | 3534   | 2937     | 1.153             | 0.820            | 1.114     | NO                      | NO                      | 3281           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 5.00         | 3515   | 3623     | 3603     | 3580 | 57  | 3 | 3623   | 3515     | 1.153             | 0.743            | 1.137     | NO                      | NO                      | 3580           |
| 4-1         | 50     | 50      | 2         | 0         | 0   | 2.75         | 3257   | 3461     | 3333     | 3351 | 103 | 3 | 3461   | 3257     | 1.153             | 1.073            | 0.906     | NO                      | NO                      | 3351           |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 3416   | 3334     | 3237     | 3329 | 90  | 3 | 3416   | 3237     | 1.153             | 0.970            | 1.027     | NO                      | NO                      | 3329           |
| 4-1         | 50     | 50      | 4         | 5         | 0   | 2.75         | 3100   | 3206     | 3183     | 3163 | 56  | 3 | 3206   | 3100     | 1.153             | 0.775            | 1.129     | NO                      | NO                      | 3163           |
| 4-1         | 50     | 50      | 4         | 10        | 0   | 2.75         | 3104   | 3025     | 3272     | 3134 | 126 | 3 | 3272   | 3025     | 1.153             | 1.097            | 0.860     | NO                      | NO                      | 3134           |
| 4-1         | 50     | 50      | 4         | 0         | 10  | 2.75         | 2978   | 2973     | 2871     | 2940 | 61  | 3 | 2978   | 2871     | 1.153             | 0.617            | 1.154     | NO                      | YES                     | 2940           |
| 4-1         | 50     | 50      | 4         | 0         | 20  | 2.75         | 3377   | 3257     | 3394     | 3343 | 75  | 3 | 3394   | 3257     | 1.153             | 0.687            | 1.147     | NO                      | NO                      | 3343           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 0.00         | 1109   | 1074     | 1120     | 1101 | 24  | 3 | 1120   | 1074     | 1.153             | 0.787            | 1.125     | NO                      | NO                      | 1101           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 2.75         | 946    | 1083     | 1080     | 1036 | 78  | 3 | 1083   | 946      | 1.153             | 0.598            | 1.154     | NO                      | YES                     | 1036           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 5.00         | 1117   | 1148     | 1207     | 1157 | 46  | 3 | 1207   | 1117     | 1.153             | 1.091            | 0.873     | NO                      | NO                      | 1157           |
| 4-1         | 30     | 70      | 2         | 0         | 0   | 2.75         | 1261   | 1284     | 1323     | 1289 | 31  | 3 | 1323   | 1261     | 1.153             | 1.069            | 0.912     | NO                      | NO                      | 1289           |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 1586   | 1721     | 1622     | 1643 | 70  | 3 | 1721   | 1586     | 1.153             | 1.116            | 0.814     | NO                      | NO                      | 1643           |
| 4-1         | 30     | 70      | 4         | 5         | 0   | 2.75         | 1404   | 1443     | 1451     | 1433 | 25  | 3 | 1451   | 1404     | 1.153             | 0.727            | 1.140     | NO                      | NO                      | 1433           |
| 4-1         | 30     | 70      | 4         | 10        | 0   | 2.75         | 1291   | 1255     | 1247     | 1264 | 23  | 3 | 1291   | 1247     | 1.153             | 1.140            | 0.730     | NO                      | NO                      | 1264           |
| 4-1         | 30     | 70      | 4         | 0         | 10  | 2.75         | 1667   | 1690     | 1665     | 1674 | 14  | 3 | 1690   | 1665     | 1.153             | 1.150            | 0.664     | NO                      | NO                      | 1674           |
| 4-1         | 30     | 70      | 4         | 0         | 20  | 2.75         | 1896   | 1907     | 1852     | 1885 | 29  | 3 | 1907   | 1852     | 1.153             | 0.756            | 1.134     | NO                      | NO                      | 1885           |

Table 4.28. Outlier Analysis of 7-Day Cube Strengths for Combination 4-1 Mixtures.

|             |        |         | Nominal 1 | Proportio | ns  |              |       |          |          |       |     |   | Outlie | r Analys | is         |                  |           |                          |                         |                |
|-------------|--------|---------|-----------|-----------|-----|--------------|-------|----------|----------|-------|-----|---|--------|----------|------------|------------------|-----------|--------------------------|-------------------------|----------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | Cı    | ıbe Stre | ngths (p | si)   |     |   |        | 3.61     | ,          |                  | ,         | 0 41 0                   | 0.41. 0                 | Average Cube   |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) |       |          | Test 3   | Avg.  | σ   | n | Max.   | Min.     | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outner <sub>MIN</sub> ? | Strength (psi) |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 0.00         | 9152  | 9630     | 10236    | 9672  | 543 | 3 | 10236  | 9152     | 1.153      | 1.037            | 0.958     | NO                       | NO                      | 9672           |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 2.75         | 10274 | 10604    | 9818     | 10232 | 394 | 3 | 10604  | 9818     | 1.153      | 0.943            | 1.049     | NO                       | NO                      | 10232          |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 5.00         | 11053 | 9988     | 10764    | 10602 | 551 | 3 | 11053  | 9988     | 1.153      | 0.820            | 1.114     | NO                       | NO                      | 10602          |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 0.00         | 7738  | 7761     | 8027     | 7842  | 160 | 3 | 8027   | 7738     | 1.153      | 1.152            | 0.648     | NO                       | NO                      | 7842           |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 2.75         | 7003  | 7577     | 8261     | 7613  | 630 | 3 | 8261   | 7003     | 1.153      | 1.028            | 0.969     | NO                       | NO                      | 7613           |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 5.00         | 7214  | 7812     |          | 7513  |     |   |        |          |            |                  |           |                          |                         | 7513           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 0.00         | 5007  | 4882     | 5000     | 4963  | 70  | 3 | 5007   | 4882     | 1.153      | 0.628            | 1.153     | NO                       | YES                     | 4963           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 2.75         | 4926  | 4737     | 4901     | 4855  | 102 | 3 | 4926   | 4737     | 1.153      | 0.694            | 1.146     | NO                       | NO                      | 4855           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 5.00         | 4840  | 5013     | 5082     | 4978  | 125 | 3 | 5082   | 4840     | 1.153      | 0.832            | 1.109     | NO                       | NO                      | 4978           |
| 4-1         | 50     | 50      | 2         | 0         | 0   | 2.75         | 4919  | 4853     | 4660     | 4811  | 135 | 3 | 4919   | 4660     | 1.153      | 0.805            | 1.119     | NO                       | NO                      | 4811           |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 5135  | 5032     | 5188     | 5118  | 80  | 3 | 5188   | 5032     | 1.153      | 0.878            | 1.088     | NO                       | NO                      | 5118           |
| 4-1         | 50     | 50      | 4         | 5         | 0   | 2.75         | 4791  | 4910     | 4912     | 4871  | 69  | 3 | 4912   | 4791     | 1.153      | 0.596            | 1.155     | NO                       | YES                     | 4871           |
| 4-1         | 50     | 50      | 4         | 10        | 0   | 2.75         | 4697  | 4671     | 4552     | 4640  | 77  | 3 |        | 4552     | 1.153      | 0.741            | 1.137     | NO                       | NO                      | 4640           |
| 4-1         | 50     | 50      | 4         | 0         | 10  | 2.75         | 5386  | 5066     | 5444     | 5299  | 203 | 3 | 5444   | 5066     | 1.153      | 0.713            | 1.143     | NO                       | NO                      | 5299           |
| 4-1         | 50     | 50      | 4         | 0         | 20  | 2.75         | 5290  | 5300     | 5345     | 5311  | 30  | 3 | 5345   | 5290     | 1.153      | 1.139            | 0.735     | NO                       | NO                      | 5311           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 0.00         | 1785  | 1704     | 1731     | 1740  | 42  | 3 | 1785   | 1704     | 1.153      | 1.091            | 0.873     | NO                       | NO                      | 1740           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 2.75         | 2075  | 2073     | 2020     | 2056  | 31  | 3 | 2075   | 2020     | 1.153      | 0.610            | 1.154     |                          | YES                     | 2056           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 5.00         | 2071  | 2101     | 2054     | 2075  | 24  | 3 | 2101   | 2054     | 1.153      | 1.076            |           |                          | NO                      | 2075           |
| 4-1         | 30     | 70      | 2         | 0         | 0   | 2.75         | 2085  | 2110     | 2068     | 2088  | 21  | 3 | 2110   | 2068     | 1.153      | 1.053            | 0.937     | NO                       | NO                      | 2088           |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 2352  | 2481     | 2490     | 2441  | 77  |   | 2490   | 2352     | 1.153      | 0.631            | 1.153     | NO                       | NO                      | 2441           |
| 4-1         | 30     | 70      | 4         | 5         | 0   | 2.75         | 2140  | 2198     | 2134     | 2157  | 35  |   | 2198   | 2134     | 1.153      | 1.151            | 0.659     |                          | NO                      | 2157           |
| 4-1         | 30     | 70      | 4         | 10        | 0   | 2.75         | 1952  | 2015     | 2010     | 1992  | 35  |   | 2015   | 1952     | 1.153      | 0.648            | 1.152     | NO                       | NO                      | 1992           |
| 4-1         | 30     | 70      | 4         | 0         | 10  | 2.75         | 2710  | 2885     | 2785     | 2793  | 88  | 3 | 2885   | 2710     | 1.153      | 1.044            | 0.949     |                          | NO                      | 2793           |
| 4-1         | 30     | 70      | 4         | 0         | 20  | 2.75         | 2983  | 3040     | 3178     | 3067  | 100 | 3 | 3178   | 2983     | 1.153      | 1.107            | 0.838     | NO                       | NO                      | 3067           |

Table 4.29. Outlier Analysis of 28-Day Cube Strengths for Combination 4-1 Mixtures.

|             |        |         | Nominal l | Proportio | ns  |              |        |          |          |       |      |   | Outlie | r Analys | is                |           |           |                          |                          |                |
|-------------|--------|---------|-----------|-----------|-----|--------------|--------|----------|----------|-------|------|---|--------|----------|-------------------|-----------|-----------|--------------------------|--------------------------|----------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | C      | ube Stre | ngths (p | si)   |      |   | 3.6    | 3.5      |                   | ,         | ,         | 0 41 9                   | 0 41' 0                  | Average Cube   |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test 1 |          | Test 3   | Avg.  | σ    | n | Max.   | Min.     | t <sub>CRIT</sub> | $t_{MAX}$ | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Strength (psi) |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 0.00         | 11479  | 11002    | 11303    | 11261 | 241  | 3 | 11479  | 11002    | 1.153             | 0.903     | 1.075     | NO                       | NO                       | 11261          |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 2.75         | 12541  | 11329    | 10859    | 11576 | 867  | 3 | 12541  | 10859    | 1.153             | 1.112     | 0.826     | NO                       | NO                       | 11576          |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 5.00         | 13147  | 10736    | 13085    | 12323 | 1374 | 3 | 13147  | 10736    | 1.153             | 0.600     | 1.154     | NO                       | YES                      | 13116          |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 0.00         | 10736  | 10658    | 10210    | 10535 | 284  | 3 | 10736  | 10210    | 1.153             | 0.709     | 1.144     | NO                       | NO                       | 10535          |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 2.75         | 10641  | 11270    | 11133    | 11015 | 331  | 3 | 11270  | 10641    | 1.153             | 0.772     | 1.130     | NO                       | NO                       | 11015          |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 5.00         | 11332  | 10349    | 10968    | 10883 | 497  | 3 | 11332  | 10349    | 1.153             | 0.903     | 1.075     | NO                       | NO                       | 10883          |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 0.00         | 8562   | 8701     | 8238     | 8500  | 238  | 3 | 8701   | 8238     | 1.153             | 0.843     | 1.105     | NO                       | NO                       | 8500           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 2.75         | 6453   | 6491     | 6038     | 6327  | 252  | 3 | 6491   | 6038     | 1.153             | 0.651     | 1.151     | NO                       | NO                       | 6327           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 5.00         | 6861   | 6300     | 6563     | 6574  | 281  | 3 | 6861   | 6300     | 1.153             | 1.020     | 0.979     | NO                       | NO                       | 6574           |
| 4-1         | 50     | 50      | 2         | 0         | 0   | 2.75         | 6739   | 6933     | 6821     | 6831  | 97   | 3 | 6933   | 6739     | 1.153             | 1.048     | 0.944     | NO                       | NO                       | 6831           |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 6747   | 7220     | 6781     | 6916  | 264  | 3 | 7220   | 6747     | 1.153             | 1.152     | 0.641     | NO                       | NO                       | 6916           |
| 4-1         | 50     | 50      | 4         | 5         | 0   | 2.75         | 6468   | 6599     | 6463     | 6510  | 77   | 3 | 6599   | 6463     | 1.153             | 1.154     | 0.605     | YES                      | NO                       | 6510           |
| 4-1         | 50     | 50      | 4         | 10        | 0   | 2.75         | 6123   | 6125     | 6231     | 6160  | 62   | 3 | 6231   | 6123     | 1.153             | 1.155     | 0.593     | YES                      | NO                       | 6160           |
| 4-1         | 50     | 50      | 4         | 0         | 10  | 2.75         | 6945   | 7426     | 7203     | 7191  | 241  | 3 | 7426   | 6945     | 1.153             | 0.976     | 1.023     | NO                       | NO                       | 7191           |
| 4-1         | 50     | 50      | 4         | 0         | 20  | 2.75         | 7794   | 8019     | 7859     | 7891  | 116  | 3 | 8019   | 7794     | 1.153             | 1.109     | 0.834     | NO                       | NO                       | 7891           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 0.00         | 4246   | 4231     | 3954     | 4144  | 164  | 3 | 4246   | 3954     | 1.153             | 0.623     | 1.153     | NO                       | YES                      | 4144           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 2.75         | 2928   | 2970     | 3335     | 3078  | 224  | 3 | 3335   | 2928     | 1.153             | 1.149     | 0.670     | NO                       | NO                       | 3078           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 5.00         | 3419   | 3115     | 3138     | 3224  | 169  | 3 | 3419   | 3115     | 1.153             | 1.152     | 0.642     | NO                       | NO                       | 3224           |
| 4-1         | 30     | 70      | 2         | 0         | 0   | 2.75         | 3184   | 3201     | 3118     | 3168  | 44   | 3 | 3201   | 3118     | 1.153             | 0.755     | 1.134     | NO                       | NO                       | 3168           |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 3558   | 3762     | 3612     | 3644  | 106  |   | 3762   | 3558     | 1.153             | 1.115     | 0.817     | NO                       | NO                       | 3644           |
| 4-1         | 30     | 70      | 4         | 5         | 0   | 2.75         | 3152   | 3219     | 3316     | 3229  | 82   | 3 | 3316   | 3152     | 1.153             | 1.056     | 0.932     | NO                       | NO                       | 3229           |
| 4-1         | 30     | 70      | 4         | 10        | 0   | 2.75         | 2765   | 2808     | 2748     | 2774  | 31   | 3 | 2808   | 2748     | 1.153             | 1.112     | 0.825     | NO                       | NO                       | 2774           |
| 4-1         | 30     | 70      | 4         | 0         | 10  | 2.75         | 3829   | 3967     | 3766     | 3854  | 103  | 3 | 3967   | 3766     | 1.153             | 1.100     | 0.855     | NO                       | NO                       | 3854           |
| 4-1         | 30     | 70      | 4         | 0         | 20  | 2.75         | 4465   | 4397     | 4460     | 4441  | 38   | 3 | 4465   | 4397     | 1.153             | 0.646     | 1.152     | NO                       | NO                       | 4441           |

Table 4.30. Outlier Analysis of 56-Day Cube Strengths for Combination 4-1 Mixtures.

|             |        |         | Nominal l | Proportio | ns  |              |        |          |          |       |      |   | Outlie | r Analys | is         |                  |           |                         | -                        | 4 6.1          |
|-------------|--------|---------|-----------|-----------|-----|--------------|--------|----------|----------|-------|------|---|--------|----------|------------|------------------|-----------|-------------------------|--------------------------|----------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | C      | ube Stre | ngths (p | si)   |      |   |        | 3.5      | ,          | ,                | ,         | 0.41. 0                 | 0.411 0                  | Average Cube   |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test 1 |          | Test 3   | Avg.  | σ    | n | Max.   | Min.     | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outher <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Strength (psi) |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 0.00         | 13126  | 12662    | 12802    | 12863 | 238  | 3 | 13126  | 12662    | 1.153      | 1.104            | 0.845     | NO                      | NO                       | 12863          |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 2.75         | 13887  | 13475    | 13513    | 13625 | 227  | 3 | 13887  | 13475    | 1.153      | 1.151            | 0.660     | NO                      | NO                       | 13625          |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 5.00         | 13996  | 13474    | 12402    | 13291 | 813  | 3 | 13996  | 12402    | 1.153      | 0.868            | 1.094     | NO                      | NO                       | 13291          |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 0.00         | 12184  | 10893    | 10299    | 11125 | 963  | 3 | 12184  | 10299    | 1.153      | 1.098            | 0.858     | NO                      | NO                       | 11125          |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 2.75         | 12278  | 12722    | 12659    | 12553 | 240  | 3 | 12722  | 12278    | 1.153      | 0.703            | 1.145     | NO                      | NO                       | 12553          |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 5.00         | 12838  | 11237    | 13140    | 12405 | 1022 | 3 | 13140  | 11237    | 1.153      | 0.718            | 1.142     | NO                      | NO                       | 12989          |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 0.00         | 8664   | 8606     | 8860     | 8710  | 133  | 3 | 8860   | 8606     | 1.153      | 1.126            | 0.784     | NO                      | NO                       | 8710           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 2.75         | 7725   | 8220     | 8268     | 8071  | 301  | 3 | 8268   | 7725     | 1.153      | 0.656            | 1.151     | NO                      | NO                       | 8071           |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 5.00         | 8534   | 8504     | 8332     | 8457  | 109  | 3 | 8534   | 8332     | 1.153      | 0.708            | 1.144     | NO                      | NO                       | 8457           |
| 4-1         | 50     | 50      | 2         | 0         | 0   | 2.75         | 8071   | 8199     | 8238     | 8169  | 87   | 3 | 8238   | 8071     | 1.153      | 0.789            | 1.125     | NO                      | NO                       | 8169           |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 7896   | 8369     | 8359     | 8208  | 270  | 3 | 8369   | 7896     | 1.153      | 0.596            | 1.154     | NO                      | YES                      | 8364           |
| 4-1         | 50     | 50      | 4         | 5         | 0   | 2.75         | 6907   | 7353     | 7351     | 7204  | 257  | 3 | 7353   | 6907     | 1.153      | 0.580            | 1.155     | NO                      | YES                      | 7204           |
| 4-1         | 50     | 50      | 4         | 10        | 0   | 2.75         | 7396   | 7655     | 7511     | 7521  | 130  | 3 | 7655   | 7396     | 1.153      | 1.035            | 0.961     | NO                      | NO                       | 7521           |
| 4-1         | 50     | 50      | 4         | 0         | 10  | 2.75         | 7597   | 8470     | 8588     | 8218  | 542  | 3 | 8588   | 7597     | 1.153      | 0.683            | 1.148     | NO                      | NO                       | 8218           |
| 4-1         | 50     | 50      | 4         | 0         | 20  | 2.75         | 8494   | 7692     | 8371     | 8186  | 432  | 3 | 8494   | 7692     | 1.153      | 0.714            | 1.143     | NO                      | NO                       | 8186           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 0.00         | 4110   | 4090     | 4176     | 4125  | 45   | 3 | 4176   | 4090     | 1.153      | 1.125            | 0.789     | NO                      | NO                       | 4125           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 2.75         | 4322   | 4325     | 4433     | 4360  | 63   | 3 | 4433   | 4322     | 1.153      | 1.154            | 0.598     | YES                     | NO                       | 4360           |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 5.00         | 4447   | 4451     | 4368     | 4422  | 47   | 3 | 4451   | 4368     | 1.153      | 0.619            | 1.154     | NO                      | YES                      | 4422           |
| 4-1         | 30     | 70      | 2         | 0         | 0   | 2.75         | 3464   | 3623     | 3791     | 3626  | 163  | 3 | 3791   | 3464     | 1.153      | 1.009            | 0.991     | NO                      | NO                       | 3626           |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 4251   | 4282     | 4027     | 4187  | 139  | 3 | 4282   | 4027     | 1.153      | 0.686            | 1.147     | NO                      | NO                       | 4267           |
| 4-1         | 30     | 70      | 4         | 5         | 0   | 2.75         | 3304   | 3572     | 3338     | 3405  | 146  | 3 | 3572   | 3304     | 1.153      | 1.147            | 0.691     | NO                      | NO                       | 3405           |
| 4-1         | 30     | 70      | 4         | 10        | 0   | 2.75         | 3091   | 3282     | 3396     | 3256  | 155  | 3 | 3396   | 3091     | 1.153      | 0.906            | 1.073     | NO                      | NO                       | 3256           |
| 4-1         | 30     | 70      | 4         | 0         | 10  | 2.75         | 4457   | 4720     | 4745     | 4641  | 160  | 3 | 4745   | 4457     | 1.153      | 0.655            | 1.151     | NO                      | NO                       | 4641           |
| 4-1         | 30     | 70      | 4         | 0         | 20  | 2.75         | 5287   | 5125     | 5210     | 5207  | 81   | 3 | 5287   | 5125     | 1.153      | 0.982            | 1.017     | NO                      | NO                       | 5207           |

Table 4.31. Outlier Analysis of 1-Day Cube Strengths for Combination 1-3 Mixtures.

|             |        |         | Nominal l | Proportio | ns  |              |        |          |           |      |     |   | Outlie | r Analys | is         |                  |           |                         |                          |                |
|-------------|--------|---------|-----------|-----------|-----|--------------|--------|----------|-----------|------|-----|---|--------|----------|------------|------------------|-----------|-------------------------|--------------------------|----------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | C      | ube Stre | ngths (ps | si)  |     |   |        | 3.6      | ,          |                  |           | 0.41. 0                 | 0 41 9                   | Average Cube   |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test 1 | Test 2   | Test 3    | Avg. | σ   | n | Max.   | Min.     | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outner <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Strength (psi) |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 0.00         | 4917   | 4145     | 5018      | 4693 | 478 | 3 | 5018   | 4145     | 1.153      | 0.680            | 1.148     | NO                      | NO                       | 4693           |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 2.75         | 4088   | 4336     | 4103      | 4176 | 139 | 3 | 4336   | 4088     | 1.153      | 1.153            | 0.628     | YES                     | NO                       | 4176           |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 5.00         | 3030   | 3092     | 3137      | 3086 | 54  | 3 | 3137   | 3030     | 1.153      | 0.941            | 1.050     | NO                      | NO                       | 3086           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 0.00         | 2790   | 2708     | 2825      | 2774 | 60  | 3 | 2825   | 2708     | 1.153      | 0.849            | 1.102     | NO                      | NO                       | 2774           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 2.75         | 2064   | 2002     | 2028      | 2031 | 31  | 3 | 2064   | 2002     | 1.153      | 1.052            | 0.938     | NO                      | NO                       | 2031           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 5.00         | 1622   | 1646     | 1659      | 1642 | 19  | 3 | 1659   | 1622     | 1.153      | 0.877            | 1.089     | NO                      | NO                       | 1642           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 0.00         | 626    | 656      | 683       | 655  | 29  | 3 | 683    | 626      | 1.153      | 0.982            | 1.017     | NO                      | NO                       | 655            |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 237    | 238      | 242       | 239  | 3   | 3 | 242    | 237      | 1.153      | 1.080            | 0.893     | NO                      | NO                       | 239            |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 5.00         | 131    | 138      | 137       | 135  | 4   | 3 | 138    | 131      | 1.153      | 0.660            | 1.151     | NO                      | NO                       | 135            |
| 1-3         | 50     | 50      | 2         | 0         | 0   | 2.75         | 347    | 351      | 346       | 348  | 3   | 3 | 351    | 346      | 1.153      | 1.129            | 0.774     | NO                      | NO                       | 348            |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 322    | 314      | 309       | 315  | 6   | 3 | 322    | 309      | 1.153      | 1.078            | 0.898     | NO                      | NO                       | 315            |
| 1-3         | 50     | 50      | 4         | 5         | 0   | 2.75         | 659    | 663      | 648       | 656  | 8   | 3 | 663    | 648      | 1.153      | 0.816            | 1.116     | NO                      | NO                       | 656            |
| 1-3         | 50     | 50      | 4         | 10        | 0   | 2.75         | 684    | 685      | 722       | 697  | 22  | 3 | 722    | 684      | 1.153      | 1.155            | 0.594     | YES                     | NO                       | 697            |
| 1-3         | 50     | 50      | 4         | 0         | 10  | 2.75         | 666    | 656      | 660       | 660  | 5   | 3 | 666    | 656      | 1.153      | 1.080            | 0.894     | NO                      | NO                       | 660            |
| 1-3         | 50     | 50      | 4         | 0         | 20  | 2.75         | 622    | 599      | 597       | 606  | 13  | 3 | 622    | 597      | 1.153      | 1.152            | 0.649     | NO                      | NO                       | 606            |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 0.00         | 21     | 11       | 16        | 16   | 5   | 3 |        | 11       | 1.153      | 1.000            | 1.000     | NO                      | NO                       | 16             |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 55     | 58       | 61        | 58   | 3   | 3 | 61     | 55       | 1.153      | 1.042            | 0.952     | NO                      | NO                       | 58             |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 5.00         | 58     | 56       | 62        | 59   | 3   | 3 | _      | 56       | 1.153      | 1.130            | 0.772     | NO                      | NO                       | 59             |
| 1-3         | 30     | 70      | 2         | 0         | 0   | 2.75         | 63     | 65       | 63        | 64   | 1   | 3 | 65     | 63       | 1.153      | 1.152            | 0.641     | NO                      | NO                       | 64             |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 219    | 207      | 209       | 212  | 6   | 3 | 219    | 207      | 1.153      | 1.134            | 0.755     | NO                      | NO                       | 212            |
| 1-3         | 30     | 70      | 4         | 5         | 0   | 2.75         | 241    | 247      | 244       | 244  | 3   | 3 | 247    | 241      | 1.153      | 0.945            | 1.048     | NO                      | NO                       | 244            |
| 1-3         | 30     | 70      | 4         | 10        | 0   | 2.75         | 231    | 235      | 255       | 240  | 13  | 3 | 255    | 231      | 1.153      | 1.134            | 0.756     | NO                      | NO                       | 240            |
| 1-3         | 30     | 70      | 4         | 0         | 10  | 2.75         | 270    | 286      | 268       | 275  | 10  | 3 | 286    | 268      | 1.153      | 1.149            | 0.672     | NO                      | NO                       | 275            |
| 1-3         | 30     | 70      | 4         | 0         | 20  | 2.75         | 431    | 455      | 444       | 443  | 12  | 3 | 455    | 431      | 1.153      | 0.959            | 1.037     | NO                      | NO                       | 443            |

Table 4.32. Outlier Analysis of 3-Day Cube Strengths for Combination 1-3 Mixtures.

|             |        |         | Nominal 1 | Proportio | ns  |              |        |          |           |      |     |   | Outlie | r Analys | is         |                  |           |                          |                          |                                |
|-------------|--------|---------|-----------|-----------|-----|--------------|--------|----------|-----------|------|-----|---|--------|----------|------------|------------------|-----------|--------------------------|--------------------------|--------------------------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | C      | ube Stre | ngths (ps | si)  |     |   |        | 3.5      |            |                  | ,         | 0.41. 0                  | 0.41. 0                  | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test 1 | Test 2   | Test 3    | Avg. | σ   | n | Max.   | Min.     | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Strength (psi)                 |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 0.00         | 8091   | 7844     | 7742      | 7892 | 179 | 3 | 8091   | 7742     | 1.153      | 1.107            | 0.838     | NO                       | NO                       | 7892                           |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 2.75         | 7842   | 8004     | 7867      | 7905 | 87  | 3 | 8004   | 7842     | 1.153      | 1.142            | 0.718     | NO                       | NO                       | 7905                           |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 5.00         | 7641   | 7684     | 8046      | 7790 | 222 | 3 | 8046   | 7641     | 1.153      | 1.149            | 0.673     | NO                       | NO                       | 7790                           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 0.00         | 4422   | 5298     | 4566      | 4762 | 470 | 3 | 5298   | 4422     | 1.153      | 1.141            | 0.724     | NO                       | NO                       | 4762                           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 2.75         | 5308   | 5406     | 5447      | 5387 | 71  | 3 | 5447   | 5308     | 1.153      | 0.840            | 1.106     | NO                       | NO                       | 5387                           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 5.00         | 4815   | 4989     | 5079      | 4961 | 134 | 3 | 5079   | 4815     | 1.153      | 0.878            | 1.088     | NO                       | NO                       | 4961                           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 0.00         | 2405   | 2217     | 2389      | 2337 | 104 | 3 | 2405   | 2217     | 1.153      | 0.652            | 1.151     | NO                       | NO                       | 2337                           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 2500   | 2425     | 2326      | 2417 | 87  | 3 | 2500   | 2326     | 1.153      | 0.949            | 1.044     | NO                       | NO                       | 2417                           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 5.00         | 2182   | 2125     | 2169      | 2159 | 30  | 3 | 2182   | 2125     | 1.153      | 0.775            | 1.129     | NO                       | NO                       | 2159                           |
| 1-3         | 50     | 50      | 2         | 0         | 0   | 2.75         | 2017   | 2191     | 2186      | 2131 | 99  | 3 | 2191   | 2017     | 1.153      | 0.604            | 1.154     | NO                       | YES                      | 2131                           |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 2261   | 2197     | 2238      | 2232 | 33  |   | 2261   | 2197     | 1.153      | 0.890            | 1.082     | NO                       | NO                       | 2232                           |
| 1-3         | 50     | 50      | 4         | 5         | 0   | 2.75         | 2563   | 2608     | 2677      | 2616 | 57  | 3 | 2677   | 2563     | 1.153      | 1.059            | 0.928     | NO                       | NO                       | 2616                           |
| 1-3         | 50     | 50      | 4         | 10        | 0   | 2.75         | 2808   | 2783     | 2638      | 2743 | 92  | 3 | 2808   | 2638     | 1.153      | 0.705            | 1.145     | NO                       | NO                       | 2743                           |
| 1-3         | 50     | 50      | 4         | 0         | 10  | 2.75         | 3021   | 2796     | 2886      | 2901 | 114 | _ | 3021   | 2796     | 1.153      | 1.058            | 0.929     |                          | NO                       | 2901                           |
| 1-3         | 50     | 50      | 4         | 0         | 20  | 2.75         | 2997   | 2948     | 2848      | 2931 | 76  | 3 | 2997   | 2848     | 1.153      | 0.865            | 1.095     | NO                       | NO                       | 2931                           |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 0.00         | 74     |          | 82        | 75   | 6   | 3 | 82     | 70       |            | 1.103            | 0.847     | NO                       | NO                       | 75                             |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 70     |          | 71        | 71   | 1   | 3 | . –    | 70       |            | 0.816            | 1.115     |                          | NO                       | 71                             |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 5.00         | 78     | 69       | 82        | 76   | 6   | _ |        | 69       | 1.153      | 0.894            | 1.080     | NO                       | NO                       | 76                             |
| 1-3         | 30     | 70      | 2         | 0         | 0   | 2.75         | 453    | 460      | 457       | 457  | 3   | _ |        | 453      | 1.153      | 0.987            | 1.012     |                          | NO                       | 457                            |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 1020   | 983      | 991       | 998  | 20  | _ | 1020   | 983      | 1.153      | 1.127            | 0.782     |                          | NO                       | 998                            |
| 1-3         | 30     | 70      | 4         | 5         | 0   | 2.75         | 918    | 929      | 893       | 913  | 18  | _ | 929    | 893      | 1.153      | 0.839            | 1.107     |                          | NO                       | 913                            |
| 1-3         | 30     | 70      | 4         | 10        | 0   | 2.75         | 747    | 782      | 813       | 781  | 33  | _ | 813    | 747      | 1.153      | 0.977            | 1.021     | NO                       | NO                       | 781                            |
| 1-3         | 30     | 70      | 4         | 0         | 10  | 2.75         | 1009   | 1008     | 1019      | 1012 | 6   | 3 |        | 1008     | 1.153      | 1.151            | 0.654     |                          | NO                       | 1012                           |
| 1-3         | 30     | 70      | 4         | 0         | 20  | 2.75         | 539    | 630      | 533       | 567  | 54  | 3 | 630    | 533      | 1.153      | 1.153            | 0.628     | YES                      | NO                       | 567                            |

Table 4.33. Outlier Analysis of 7-Day Cube Strengths for Combination 1-3 Mixtures.

|             |        |         | Nominal l | Proportio | ns  |              |        |          |           |      |     |   | Outlie | r Analys | is         |                  |           |                         |                          |                |
|-------------|--------|---------|-----------|-----------|-----|--------------|--------|----------|-----------|------|-----|---|--------|----------|------------|------------------|-----------|-------------------------|--------------------------|----------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | Cı     | ube Stre | ngths (ps | si)  |     |   | 3.6    | 3.5      | _          |                  | 4         | 0.41. 0                 | 0.41. 0                  | Average Cube   |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test 1 | Test 2   | Test 3    | Avg. | σ   | n | Max.   | Min.     | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outner <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Strength (psi) |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 0.00         | 8746   | 8851     | 9396      | 8998 | 349 | 3 | 9396   | 8746     | 1.153      | 1.142            | 0.721     | NO                      | NO                       | 8998           |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 2.75         | 9602   | 8946     | 8498      | 9015 | 555 | 3 | 9602   | 8498     | 1.153      | 1.057            | 0.931     | NO                      | NO                       | 9015           |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 5.00         | 9755   | 8727     | 8694      | 9059 | 603 | 3 | 9755   | 8694     | 1.153      | 1.154            | 0.604     | YES                     | NO                       | 9059           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 0.00         | 7086   | 7253     | 6762      | 7034 | 249 | 3 | 7253   | 6762     | 1.153      | 0.878            | 1.089     | NO                      | NO                       | 7034           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 2.75         | 7334   | 7427     | 7789      | 7517 | 241 | 3 | 7789   | 7334     | 1.153      | 1.133            | 0.761     | NO                      | NO                       | 7517           |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 5.00         | 8453   | 8363     | 8012      | 8276 | 233 | 3 | 8453   | 8012     | 1.153      | 0.760            | 1.133     | NO                      | NO                       | 8276           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 0.00         | 4050   | 4287     | 4318      | 4218 | 147 | 3 | 4318   | 4050     | 1.153      | 0.680            | 1.148     | NO                      | NO                       | 4218           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 4387   | 4246     | 4233      | 4289 | 85  | 3 | 4387   | 4233     | 1.153      | 1.152            | 0.650     | NO                      | NO                       | 4289           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 5.00         | 4017   | 3926     | 3851      | 3932 | 83  | 3 | 4017   | 3851     | 1.153      | 1.031            | 0.966     | NO                      | NO                       | 3932           |
| 1-3         | 50     | 50      | 2         | 0         | 0   | 2.75         | 3954   | 3981     | 3978      | 3971 | 15  | 3 | 3981   | 3954     | 1.153      | 0.659            | 1.151     | NO                      | NO                       | 3971           |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 4106   | 4314     | 4159      | 4193 | 108 | 3 | 4314   | 4106     | 1.153      | 1.119            | 0.806     | NO                      | NO                       | 4193           |
| 1-3         | 50     | 50      | 4         | 5         | 0   | 2.75         | 4480   | 4356     | 4360      | 4399 | 70  | 3 | 4480   | 4356     | 1.153      | 1.154            | 0.605     | YES                     | NO                       | 4399           |
| 1-3         | 50     | 50      | 4         | 10        | 0   | 2.75         | 4170   | 4102     | 4282      | 4185 | 91  | 3 | 4282   | 4102     | 1.153      | 1.071            | 0.910     | NO                      | NO                       | 4185           |
| 1-3         | 50     | 50      | 4         | 0         | 10  | 2.75         | 4502   | 4672     | 4589      | 4587 | 85  | 3 | 4672   | 4502     | 1.153      | 0.994            | 1.006     | NO                      | NO                       | 4587           |
| 1-3         | 50     | 50      | 4         | 0         | 20  | 2.75         | 4857   | 4926     | 4571      | 4785 | 188 | 3 | 4926   | 4571     | 1.153      | 0.750            | 1.135     | NO                      | NO                       | 4785           |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 0.00         | 91     | 95       | 94        | 93   | 2   | 3 | 95     | 91       | 1.153      | 0.899            | 1.077     | NO                      | NO                       | 93             |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 87     | 107      | 114       | 103  | 14  | 3 | 114    | 87       | 1.153      | 0.795            | 1.123     | NO                      | NO                       | 103            |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 5.00         | 103    | 85       | 106       | 98   | 11  | 3 | 106    | 85       | 1.153      | 0.723            | 1.141     | NO                      | NO                       | 98             |
| 1-3         | 30     | 70      | 2         | 0         | 0   | 2.75         | 1393   | 1513     | 1471      | 1459 | 61  | 3 | 1513   | 1393     | 1.153      | 0.889            | 1.083     | NO                      | NO                       | 1459           |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 1651   | 1708     | 1729      | 1696 | 40  | 3 | 1729   | 1651     | 1.153      | 0.817            | 1.115     | NO                      | NO                       | 1696           |
| 1-3         | 30     | 70      | 4         | 5         | 0   | 2.75         | 1584   | 1659     | 1545      | 1596 | 58  | 3 | 1659   | 1545     | 1.153      | 1.089            | 0.878     | NO                      | NO                       | 1596           |
| 1-3         | 30     | 70      | 4         | 10        | 0   | 2.75         | 1403   | 1456     | 1437      | 1432 | 27  | 3 | 1456   | 1403     | 1.153      | 0.899            | 1.077     | NO                      | NO                       | 1432           |
| 1-3         | 30     | 70      | 4         | 0         | 10  | 2.75         | 1860   | 1816     | 1949      | 1875 | 68  | 3 | 1949   | 1816     | 1.153      | 1.094            | 0.867     | NO                      | NO                       | 1875           |
| 1-3         | 30     | 70      | 4         | 0         | 20  | 2.75         | 2432   | 2435     | 2427      | 2431 | 4   | 3 | 2435   | 2427     | 1.153      | 0.881            | 1.087     | NO                      | NO                       | 2431           |

Table 4.34. Outlier Analysis of 28-Day Cube Strengths for Combination 1-3 Mixtures.

|             |        |         | Nominal l | Proportio | ns  |              |        |          |           |       |     |   | Outlie | r Analys | is         |                  |           |                          |                          |                |
|-------------|--------|---------|-----------|-----------|-----|--------------|--------|----------|-----------|-------|-----|---|--------|----------|------------|------------------|-----------|--------------------------|--------------------------|----------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | C      | ube Stre | ngths (ps | si)   |     |   |        | 3.6      | ,          |                  |           | 0.41. 0                  | 0 411 9                  | Average Cube   |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test 1 | Test 2   |           | Avg.  | σ   | n | Max.   | Min.     | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Strength (psi) |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 0.00         | 11237  | 11165    | 11500     | 11300 | 176 | 3 | 11500  | 11165    | 1.153      | 1.131            | 0.769     | NO                       | NO                       | 11300          |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 2.75         | 12902  | 12812    | 12291     | 12668 | 330 | 3 | 12902  | 12291    | 1.153      | 0.709            | 1.144     | NO                       | NO                       | 12668          |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 5.00         | 11127  | 12223    | 11667     | 11673 | 548 | 3 | 12223  | 11127    | 1.153      | 1.005            | 0.995     | NO                       | NO                       | 11673          |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 0.00         | 11641  | 10060    | 10407     | 10703 | 831 | 3 | 11641  | 10060    | 1.153      | 1.129            | 0.774     | NO                       | NO                       | 10703          |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 2.75         | 10421  | 10604    | 10706     | 10577 | 144 | 3 | 10706  | 10421    | 1.153      | 0.892            | 1.081     | NO                       | NO                       | 10577          |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 5.00         | 11553  | 10807    | 11245     | 11201 | 375 | 3 | 11553  | 10807    | 1.153      | 0.937            | 1.053     | NO                       | NO                       | 11201          |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 0.00         | 7641   | 8195     | 7787      | 7874  | 287 | 3 | 8195   | 7641     | 1.153      | 1.117            | 0.813     | NO                       | NO                       | 7874           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 6015   | 5570     | 5900      | 5828  | 231 | 3 | 6015   | 5570     | 1.153      | 0.807            | 1.119     | NO                       | NO                       | 5828           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 5.00         | 6086   | 6193     | 5928      | 6069  | 133 | 3 | 6193   | 5928     | 1.153      | 0.929            | 1.059     | NO                       | NO                       | 6069           |
| 1-3         | 50     | 50      | 2         | 0         | 0   | 2.75         | 5669   | 5602     | 5595      | 5622  | 41  | 3 | 5669   | 5595     | 1.153      | 1.151            | 0.659     | NO                       | NO                       | 5622           |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 5855   | 5724     | 5905      | 5828  | 94  | 3 | 5905   | 5724     | 1.153      | 0.823            | 1.113     | NO                       | NO                       | 5828           |
| 1-3         | 50     | 50      | 4         | 5         | 0   | 2.75         | 5909   | 6025     | 5974      | 5969  | 58  | 3 | 6025   | 5909     | 1.153      | 0.956            | 1.039     | NO                       | NO                       | 5969           |
| 1-3         | 50     | 50      | 4         | 10        | 0   | 2.75         | 5509   | 5240     | 5448      | 5399  | 141 | 3 | 5509   | 5240     | 1.153      | 0.782            | 1.127     | NO                       | NO                       | 5399           |
| 1-3         | 50     | 50      | 4         | 0         | 10  | 2.75         | 6600   | 6651     | 6732      | 6661  | 67  | 3 | 6732   | 6600     | 1.153      | 1.065            | 0.919     | NO                       | NO                       | 6661           |
| 1-3         | 50     | 50      | 4         | 0         | 20  | 2.75         | 7198   | 7103     | 7149      | 7150  | 47  | 3 | 7198   | 7103     | 1.153      | 1.011            | 0.988     | NO                       | NO                       | 7150           |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 0.00         | 2522   | 2450     | 2455      | 2475  | 40  | 3 | 2522   | 2450     | 1.153      | 1.152            | 0.638     | NO                       | NO                       | 2475           |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 2523   | 2679     | 2560      | 2588  | 81  | 3 | 2679   | 2523     | 1.153      | 1.124            | 0.790     | NO                       | NO                       | 2588           |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 5.00         | 2470   | 2595     | 2446      | 2504  | 80  | 3 | 2595   | 2446     | 1.153      | 1.142            | 0.720     | NO                       | NO                       | 2504           |
| 1-3         | 30     | 70      | 2         | 0         | 0   | 2.75         | 2897   | 2771     | 2825      | 2831  | 64  | 3 | 2897   | 2771     | 1.153      | 1.045            | 0.948     | NO                       | NO                       | 2831           |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 2705   | 2995     | 2970      | 2890  | 161 | 3 | 2995   | 2705     | 1.153      | 0.652            | 1.151     | NO                       | NO                       | 2890           |
| 1-3         | 30     | 70      | 4         | 5         | 0   | 2.75         | 2663   | 2601     | 2742      | 2669  | 70  | 3 | 2742   | 2601     | 1.153      | 1.037            | 0.958     | NO                       | NO                       | 2669           |
| 1-3         | 30     | 70      | 4         | 10        | 0   | 2.75         | 2673   | 2653     | 2728      | 2685  | 39  | 3 | 2728   | 2653     | 1.153      | 1.118            | 0.808     | NO                       | NO                       | 2685           |
| 1-3         | 30     | 70      | 4         | 0         | 10  | 2.75         | 3594   | 3436     | 3601      | 3544  | 93  |   | 3601   | 3436     | 1.153      | 0.612            | 1.154     | NO                       | YES                      | 3544           |
| 1-3         | 30     | 70      | 4         | 0         | 20  | 2.75         | 4330   | 4351     | 4403      | 4362  | 38  | 3 | 4403   | 4330     | 1.153      | 1.110            | 0.831     | NO                       | NO                       | 4362           |

Table 4.35. Outlier Analysis of 56-Day Cube Strengths for Combination 1-3 Mixtures.

|             |        |         | Nominal l | Proportio | ns  | -            |        |           |           |       |     |   | Outlie | r Analys | is         |                  |           | -                       |                          |                                |
|-------------|--------|---------|-----------|-----------|-----|--------------|--------|-----------|-----------|-------|-----|---|--------|----------|------------|------------------|-----------|-------------------------|--------------------------|--------------------------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | Cı     | ube Strei | ngths (ps | si)   |     |   | 3.6    | 3.5      |            |                  |           | 0.41. 0                 | 0 411 9                  | Average Cube<br>Strength (psi) |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test 1 | Test 2    | Test 3    | Avg.  | σ   | n | Max.   | Min.     | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outner <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | Strength (psi)                 |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 0.00         | 11599  | 11509     | 11856     | 11655 | 180 | 3 | 11856  | 11509    | 1.153      | 1.118            | 0.809     | NO                      | NO                       | 11655                          |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 2.75         | 13994  | 14006     | 13937     | 13979 | 37  | 3 | 14006  | 13937    | 1.153      | 0.738            | 1.138     | NO                      | NO                       | 13979                          |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 5.00         | 14060  | 13435     | 13948     | 13814 | 333 | 3 | 14060  | 13435    | 1.153      | 0.738            | 1.138     | NO                      | NO                       | 13814                          |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 0.00         | 11716  | 11789     | 12010     | 11838 | 153 | 3 | 12010  | 11716    | 1.153      | 1.121            | 0.799     | NO                      | NO                       | 11838                          |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 2.75         | 11884  | 11944     | 11805     | 11877 | 69  | 3 | 11944  | 11805    | 1.153      | 0.952            | 1.042     | NO                      | NO                       | 11877                          |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 5.00         | 11869  | 12037     | 11833     | 11913 | 108 | 3 | 12037  | 11833    | 1.153      | 1.139            | 0.735     | NO                      | NO                       | 11913                          |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 0.00         | 7466   | 7650      | 7323      | 7480  | 164 | 3 | 7650   | 7323     | 1.153      | 1.039            | 0.956     | NO                      | NO                       | 7480                           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 6999   | 6652      | 7093      | 6915  | 232 | 3 | 7093   | 6652     | 1.153      | 0.767            | 1.131     | NO                      | NO                       | 6915                           |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 5.00         | 7374   | 7076      | 7245      | 7232  | 149 | 3 | 7374   | 7076     | 1.153      | 0.951            | 1.043     | NO                      | NO                       | 7232                           |
| 1-3         | 50     | 50      | 2         | 0         | 0   | 2.75         | 7172   | 7494      | 7395      | 7354  | 165 | 3 | 7494   | 7172     | 1.153      | 0.852            | 1.101     | NO                      | NO                       | 7354                           |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 6919   | 7044      | 6994      | 6986  | 63  | 3 | 7044   | 6919     | 1.153      | 0.931            | 1.057     | NO                      | NO                       | 6986                           |
| 1-3         | 50     | 50      | 4         | 5         | 0   | 2.75         | 6375   | 6401      | 6403      | 6393  | 16  | 3 | 6403   | 6375     | 1.153      | 0.634            | 1.153     | NO                      | NO                       | 6393                           |
| 1-3         | 50     | 50      | 4         | 10        | 0   | 2.75         | 6156   | 5881      | 5878      | 5972  | 159 | 3 | 6156   | 5878     | 1.153      | 1.155            | 0.588     | YES                     | NO                       | 5972                           |
| 1-3         | 50     | 50      | 4         | 0         | 10  | 2.75         | 8155   | 8332      | 8259      | 8249  | 89  | 3 | 8332   | 8155     | 1.153      | 0.937            | 1.053     | NO                      | NO                       | 8249                           |
| 1-3         | 50     | 50      | 4         | 0         | 20  | 2.75         | 8391   | 8396      | 8653      | 8480  | 150 | 3 | 8653   | 8391     | 1.153      | 1.155            | 0.595     | YES                     | NO                       | 8480                           |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 0.00         | 3126   | 3210      |           | 3168  |     |   |        |          |            |                  |           |                         |                          | 3168                           |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 3596   | 3958      | 4048      | 3867  | 239 | 3 | 4048   | 3596     | 1.153      | 0.755            | 1.134     | NO                      | NO                       | 3867                           |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 5.00         | 3316   | 3504      | 3423      | 3414  | 94  | 3 | 3504   | 3316     | 1.153      | 0.951            | 1.043     | NO                      | NO                       | 3414                           |
| 1-3         | 30     | 70      | 2         | 0         | 0   | 2.75         | 3629   | 3928      | 3747      | 3768  | 151 | 3 | 3928   | 3629     | 1.153      | 1.062            | 0.923     | NO                      | NO                       | 3768                           |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 3632   | 3860      | 3757      | 3750  | 114 | 3 | 3860   | 3632     | 1.153      | 0.966            | 1.031     | NO                      | NO                       | 3750                           |
| 1-3         | 30     | 70      | 4         | 5         | 0   | 2.75         | 3224   | 3321      | 3329      | 3291  | 58  | 3 | 3329   | 3224     | 1.153      | 0.643            | 1.152     | NO                      | NO                       | 3291                           |
| 1-3         | 30     | 70      | 4         | 10        | 0   | 2.75         | 3030   | 3099      | 3226      | 3118  | 100 | 3 | 3226   | 3030     | 1.153      | 1.084            | 0.887     | NO                      | NO                       | 3118                           |
| 1-3         | 30     | 70      | 4         | 0         | 10  | 2.75         | 4341   | 4217      | 4435      | 4331  | 110 | 3 | 4435   | 4217     | 1.153      | 0.951            | 1.043     | NO                      | NO                       | 4331                           |
| 1-3         | 30     | 70      | 4         | 0         | 20  | 2.75         | 5507   | 5977      | 5955      | 5813  | 265 | 3 | 5977   | 5507     | 1.153      | 0.619            | 1.154     | NO                      | YES                      | 5966                           |

**4.2.2. Effects of Water Reducer Addition.** The effects of a Type A/F water reducing admixture were evaluated at a low dose, 2.75 fluid ounces/hundredweight, and a high dose, 5.00 fluid ounces/hundredweight. These dosages were added to the paste mixtures at the 0, 25, 50, and 70 percent fly ash replacement levels.

The effect of the water reducer on compressive strength was varied for both combinations. Figures 4.22 and 4.23 show the effect of the water reducer on one-day cube strengths for Combinations 4-1 and 1-3, respectively. The 100 percent cement mixture for Combination 4-1 shows increasing strengths with greater water reducer dosage. This is expected, because the addition of a water reducer is generally known to increase dispersion of cement particles, resulting in greater strengths. For Combination 1-3, however, increasing dosages led to decreased strengths. Also, for the mixtures containing fly ash, increasing water reducer dosages typically resulted in lower strengths at one day.

The results of the 56-day cube compressive strength tests with increasing water reducer dosages for Combinations 4-1 and 1-3 are shown below in Figures 4.24 and 4.25, respectively. As can be seen, the addition of the water reducer resulted in 56-day strengths that were similar to or exceeded the baseline mixtures with no water reducer addition. At ages between one and 56 days, the results generally trended from those at one day to those at 56 days with respect to the mixtures that did not include the water reducer.

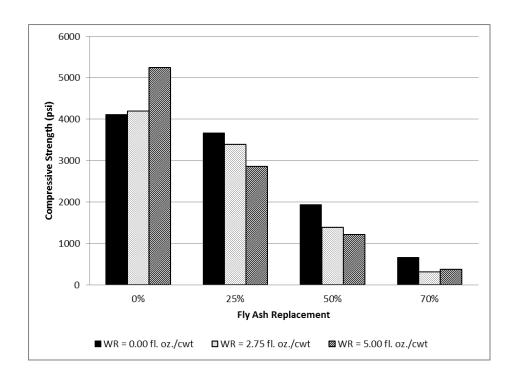



Figure 4.22. Effect of Water Reducer on One-Day Cube Strengths for Combination 4-1

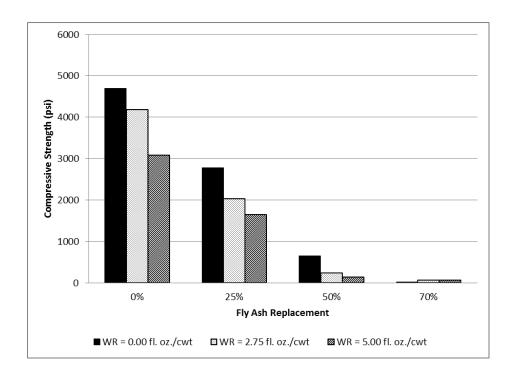



Figure 4.23. Effect of Water Reducer on One-Day Cube Strengths for Combination 1-3

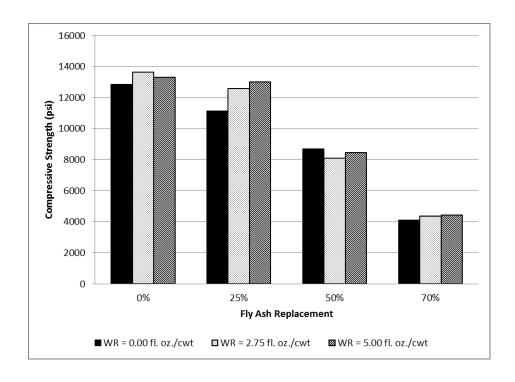



Figure 4.24. Effect of Water Reducer on 56-Day Cube Strengths for Combination 4-1

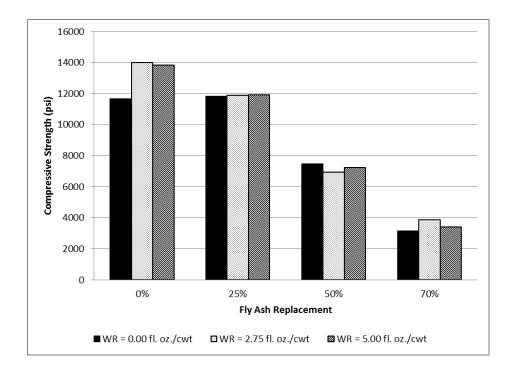



Figure 4.25. Effect of Water Reducer on 56-Day Cube Strengths for Combination 1-3

The calorimetry results are shown in Table 4.36 for mixtures with the two water reducer dosages and corresponding mixtures without the water reducer. As can be seen, the water reducer addition did not result in significant changes in curve shape for the mixtures. The exception to this is Combination 1-3 with 70 percent fly ash, which changed from a Type G to Type F curve with the addition of a water reducer. This may be explained by the increased dispersion, and therefore increased hydration rate, caused by the water reducer. This would lead to increased aluminate hydration, which may suppress silicate hydration if a majority of the calcium was consumed by the aluminates. The results also show that increased dosages led to a delay in the main hydration curve for all fly ash replacement levels, based on the predicted final set by the Percentage Method. An example of this effect is shown in the series of curves in Figure 4.26, below.

Similar effects were found by Bentz (2010) with the addition of a water-reducing admixture. Two exceptions in this study were Combination 4-1 with 100 percent cement, which decreased by 39 minutes with the high dosage, and Combination 1-3 with 70 percent fly ash, which decreased 5 minutes with the low dosage. This may be caused by the effects of sulfate imbalance, as discussed in the Screening Study Results section. The curves for all mixtures are included in Appendix D.

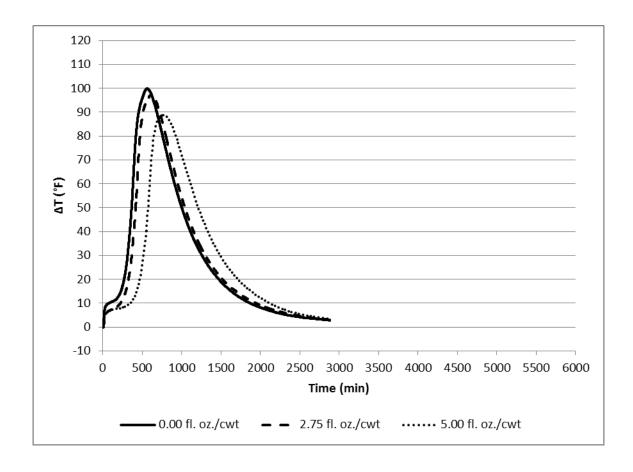



Figure 4.26. Thermal Curves Showing the Retarding Effect of Water Reducer

Table 4.36. Calorimetry Results for Mixtures with Increasing Water Reducer Dosages

|             |        |          | Nominal       | Proportio   | ns   | -            |       |                  | Time at           |        | Se                 | etting Time | Prediction         | ns        |
|-------------|--------|----------|---------------|-------------|------|--------------|-------|------------------|-------------------|--------|--------------------|-------------|--------------------|-----------|
| Combination | Comont | El A ala | C             | Lime        | RSC  | WR           | Curve | $\Delta T_{max}$ |                   | M (°F) | Percentag          | e Method    | Deriva             | atives    |
| Combination | (%)    | (%)      | Gypsum<br>(%) | Lime<br>(%) | (%)  | (fl.oz./cwt) | Type  | (° <b>F</b> )    | ΔT <sub>max</sub> | MI (F) | <b>Initial Set</b> | Final Set   | <b>Initial Set</b> | Final Set |
|             | (70)   | (70)     | (70)          | (70)        | (70) | (II.OZ./CWI) |       |                  | (min)             |        | (min)              | (min)       | (min)              | (min)     |
| 4-1         | 100    | 0        | 0             | 0           | 0    | 0.00         | A     | 108.25           | 486               | 102.35 | 288                | 353         | 352                | 376       |
| 4-1         | 100    | 0        | 0             | 0           | 0    | 2.75         | A     | 107.74           | 551               | 105.17 | 347                | 413         | 407                | 435       |
| 4-1         | 100    | 0        | 0             | 0           | 0    | 5.00         | A     | 116.16           | 501               | 112.74 | 314                | 374         | 373                | 395       |
| 4-1         | 75     | 25       | 0             | 0           | 0    | 0.00         | A     | 99.92            | 567               | 90.53  | 306                | 374         | 365                | 390       |
| 4-1         | 75     | 25       | 0             | 0           | 0    | 2.75         | A     | 97.39            | 618               | 91.73  | 345                | 420         | 424                | 440       |
| 4-1         | 75     | 25       | 0             | 0           | 0    | 5.00         | A     | 88.80            | 753               | 82.75  | 483                | 569         | 572                | 592       |
| 4-1         | 50     | 50       | 0             | 0           | 0    | 0.00         | A     | 58.97            | 785               | 50.61  | 475                | 573         | 579                | 599       |
| 4-1         | 50     | 50       | 0             | 0           | 0    | 2.75         | A     | 59.37            | 846               | 50.66  | 543                | 639         | 642                | 663       |
| 4-1         | 50     | 50       | 0             | 0           | 0    | 5.00         | A     | 57.82            | 948               | 50.06  | 621                | 722         | 722                | 744       |
| 4-1         | 30     | 70       | 0             | 0           | 0    | 0.00         | В     | 35.17            | 794               | 25.68  | 537                | 640         | 669                | 687       |
| 4-1         | 30     | 70       | 0             | 0           | 0    | 2.75         | В     | 28.98            | 964               | 20.25  | 680                | 796         | 833                | 851       |
| 4-1         | 30     | 70       | 0             | 0           | 0    | 5.00         | В     | 30.61            | 984               | 22.88  | 707                | 812         | 473                | 853       |
| 1-3         | 100    | 0        | 0             | 0           | 0    | 0.00         | A     | 98.91            | 501               | 91.62  | 264                | 321         | 303                | 325       |
| 1-3         | 100    | 0        | 0             | 0           | 0    | 2.75         | A     | 103.14           | 532               | 95.84  | 314                | 378         | 361                | 388       |
| 1-3         | 100    | 0        | 0             | 0           | 0    | 5.00         | A     | 92.43            | 636               | 83.58  | 407                | 481         | 477                | 496       |
| 1-3         | 75     | 25       | 0             | 0           | 0    | 0.00         | A     | 72.96            | 749               | 63.27  | 392                | 469         | 444                | 471       |
| 1-3         | 75     | 25       | 0             | 0           | 0    | 2.75         | A     | 80.95            | 757               | 70.36  | 423                | 490         | 457                | 480       |
| 1-3         | 75     | 25       | 0             | 0           | 0    | 5.00         | A     | 72.64            | 836               | 62.53  | 502                | 577         | 544                | 575       |
| 1-3         | 50     | 50       | 0             | 0           | 0    | 0.00         | C     | 33.58            | 1050              | 24.27  | 477                | 572         | 512                | 560       |
| 1-3         | 50     | 50       | 0             | 0           | 0    | 2.75         | C     | 34.69            | 1245              | 23.07  | 493                | 778         | 335                | 498       |
| 1-3         | 50     | 50       | 0             | 0           | 0    | 5.00         | C     | 30.88            | 1497              | 20.77  | 564                | 1020        | 522                | 561       |
| 1-3         | 30     | 70       | 0             | 0           | 0    | 0.00         | G     | 22.25            | 94                | 12.50  | 26                 | 41          | 33                 | 43        |
| 1-3         | 30     | 70       | 0             | 0           | 0    | 2.75         | F     | 19.85            | 92                | 12.13  | 27                 | 36          | 32                 | 36        |
| 1-3         | 30     | 70       | 0             | 0           | 0    | 5.00         | F     | 19.26            | 96                | 12.44  | 27                 | 38          | 33                 | 38        |

The results of the miniature slump testing for mixtures with the low and high water reducer dosages are shown below in Table 4.37. Plots of the results can be found in Appendix E. Generally, as was expected, an increase in water reducer dosage resulted in increased pat area at all test times. Exceptions to this are the 50% and 70% fly ash mixtures for Combination 1-3. The low dosage with 50% fly ash and both dosages with 70% fly ash both show rapidly decreasing pat areas over time. For the 70% fly ash mixtures, some tests at later times were not able to be performed due to the stiffness of the paste. A sulfate imbalance, which resulted in rapid aluminate hydration, could explain the rapid setting behavior of some of these mixtures. For the zero and 25 percent fly ash mixtures at both water reducer dosages, the pat area typically increased at early ages and then began to gradually decrease, starting at five or fifteen minutes. This may have occurred because, even though the water reducer was added with the mixing water, it may have taken a period of time for the admixture to become active. However, Combination 1-3 with zero percent fly ash had increasing pat areas through 45 minutes for both dosages. An explanation for this behavior has not yet been found. The 50 and 70 percent fly ash mixtures showed decreasing pat areas over time, except for the 50 percent fly ash mixtures with the high water reducer dosage, which both increased from two to five minutes. A majority of the mixtures showed early stiffening behavior according to the guidelines presented by Roberts & Taylor (2007). Also, many of the mixtures had early stiffening indices greater than 1.00, which means that the pat areas for these mixtures increased from five to thirty minutes.

Table 4.37. Miniature Slump Results for Mixtures with Increasing Water Reducer Dosages.

|             |        |         | Nominal l | Proportio | ns  |              | -     | Miniatur | e Slump A | rea (in²) |        | Early Stiffening |
|-------------|--------|---------|-----------|-----------|-----|--------------|-------|----------|-----------|-----------|--------|------------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | 2-min | 5-min    | 15-min    | 30-min    | 45-min | Index            |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test  | Test     | Test      | Test      | Test   | (30-min/5-min)   |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 0.00         | 3.8   | 3.8      | 3.8       | 3.5       | 3.7    | 0.92             |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 2.75         | 6.1   | 7.3      | 7.9       | 6.1       | 5.7    | 0.83             |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 5.00         | 12.6  | 16.6     | 20.2      | 19.0      | 18.5   | 1.14             |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 0.00         | 5.4   | 4.6      | 4.6       | 4.2       | 3.9    | 0.91             |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 2.75         | 13.3  | 15.8     | 13.7      | 11.6      | 10.0   | 0.73             |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 5.00         | 17.4  | 20.1     | 22.3      | 20.3      | 20.3   | 1.01             |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 0.00         | 8.3   | 7.4      | 6.0       | 5.4       | 5.2    | 0.72             |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 2.75         | 21.1  | 18.0     | 16.4      | 13.7      | 12.0   | 0.76             |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 5.00         | 23.5  | 24.9     | 23.7      | 23.4      | 21.1   | 0.94             |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 0.00         | 9.2   | 7.3      | 5.7       | 4.7       | 4.3    | 0.64             |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 2.75         | 24.4  | 20.1     | 12.3      | 9.6       | 8.9    | 0.48             |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 5.00         | 26.9  | 25.0     | 21.1      | 20.4      | 20.6   | 0.81             |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 0.00         | 2.0   | 2.7      | 2.8       | 2.5       | 2.7    | 0.93             |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 2.75         | 4.8   | 8.1      | 11.3      | 10.9      | 12.4   | 1.35             |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 5.00         | 6.4   | 16.9     | 24.3      | 27.9      | 28.4   | 1.65             |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 0.00         | 2.6   | 3.4      | 3.4       | 3.2       | 3.3    | 0.95             |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 2.75         | 7.3   | 8.7      | 8.4       | 7.3       | 6.4    | 0.84             |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 5.00         | 8.7   | 14.5     | 17.1      | 17.1      | 16.8   | 1.17             |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 0.00         | 5.9   | 4.8      | 3.8       | 3.9       | 3.8    | 0.83             |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 10.8  | 6.7      | 4.4       | 3.2       | 3.4    | 0.47             |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 5.00         | 15.6  | 16.0     | 14.2      | 12.8      | 10.7   | 0.80             |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 0.00         | 8.2   | 6.3      | 4.5       | 3.7       | 3.7    | 0.59             |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 12.2  | 6.2      | 2.8       |           |        |                  |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 5.00         | 18.9  | 14.8     | 7.7       | 2.5       |        | 0.17             |

Table 4.38, below, summarizes the results of the Vicat setting time test for mixtures with increasing water reducer dosages. It shows that, generally, as the water reducer dosage increases, initial set increases, except for Combination 1-3 mixtures with 50 and 70 percent fly ash. Final set also increases with increased water reducer dosage, except for Combination 1-3 with 70 percent fly ash. Also, the final set time for Combination 4-1 with 25 percent fly ash decreased by 15 minutes with the low dose, but increased significantly with the high dose. Sulfate imbalance, resulting in rapid setting behavior, would explain the decrease in setting times for the mixtures with higher fly ash contents. The results also show that, as expected, the water required to achieve normal consistency usually decreased with increased dosages of the water reducer. The mixtures with 50 and 70 percent fly ash for Combination 1-3 showed little or no change in water requirement with the addition of the water reducer.

**4.2.3. Effects of Gypsum Addition.** The effects of gypsum addition were evaluated for both combinations at the 50 and 70 percent fly ash replacement levels. The two levels of gypsum addition were two and four percent, nominally.

Table 4.38. Vicat Results for Mixtures with Increasing Water Reducer Dosages

|             |        |         | Nominal l | Proportio | ns  |              | Water for Normal | Vicat F            | Results   |
|-------------|--------|---------|-----------|-----------|-----|--------------|------------------|--------------------|-----------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | Consistency      | <b>Initial Set</b> | Final Set |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | (0.5%)           | (min)              | (min)     |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 0.00         | 24.0             | 81                 | 180       |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 2.75         | 24.5             | 138                | 255       |
| 4-1         | 100    | 0       | 0         | 0         | 0   | 5.00         | 23.5             | 167                | 375       |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 0.00         | 23.0             | 132                | 270       |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 2.75         | 22.5             | 137                | 255       |
| 4-1         | 75     | 25      | 0         | 0         | 0   | 5.00         | 21.0             | 190                | 420       |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 0.00         | 21.5             | 107                | 300       |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 2.75         | 20.0             | 87                 | 345       |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 5.00         | 18.5             | 126                | 450       |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 0.00         | 20.5             | 14                 | 285       |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 2.75         | 19.0             | 18                 | 420       |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 5.00         | 16.5             | 38                 | 450       |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 0.00         | 26.0             | 110                | 210       |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 2.75         | 25.5             | 147                | 315       |
| 1-3         | 100    | 0       | 0         | 0         | 0   | 5.00         | 24.0             | 171                | 360       |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 0.00         | 24.5             | 171                | 375       |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 2.75         | 23.5             | 214                | 510       |
| 1-3         | 75     | 25      | 0         | 0         | 0   | 5.00         | 23.0             | 238                | 555       |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 0.00         | 21.5             | 142                | 435       |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 21.5             | 65                 | 495       |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 5.00         | 21.0             | 73                 | 510       |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 0.00         | 20.0             | 49                 | 525       |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 20.0             | 17                 | 135       |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 5.00         | 20.0             | 12                 | 90        |

The effect of gypsum addition on the strength gain of the two combinations can be seen below in Figures 4.27 and 4.28. For Combination 4-1, the strengths after one day were slightly increased with increased gypsum addition, except for the 70 percent fly ash mixtures at 56 days. Here, the mixture with zero percent gypsum was greater than the 2 percent gypsum mixture and very close to the 4 percent gypsum mixture. Similar trends were seen for the Combination 1-3 mixtures, but with a significant difference in the 70 percent fly ash mixtures at early ages. As can be seen in the figure below, the 70 percent fly ash mixture with no gypsum experiences very little strength gain through seven days.

The strength gain curve was restored with the addition of 2 percent gypsum and showed further increases in early strengths with the addition of 4 percent gypsum. This indicates that the gypsum addition corrected the sulfate imbalance of this system.

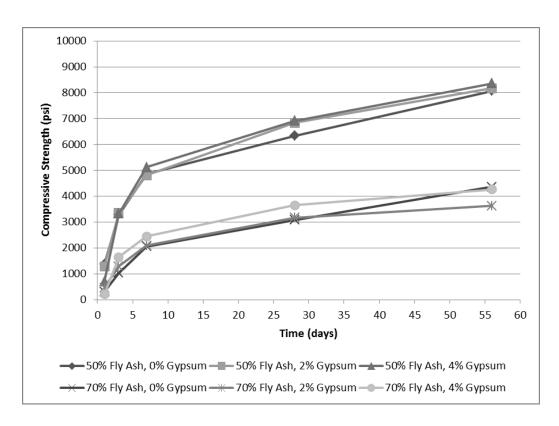



Figure 4.27. Effect of Gypsum Addition on Strength Gain for Combination 4-1

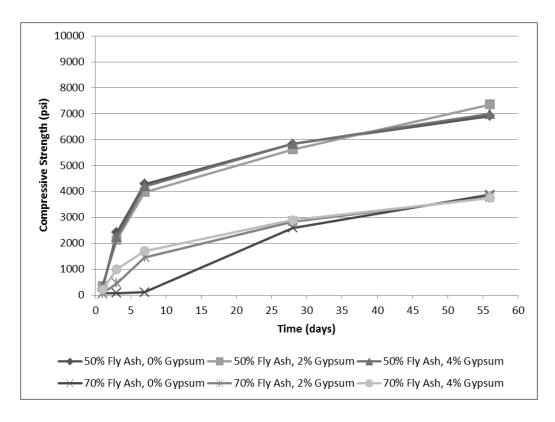



Figure 4.28. Effect of Gypsum Addition on Strength Gain for Combination 1-3

The calorimetry results for the mixtures containing additional gypsum are shown in Table 4.39, along with corresponding mixtures without additional gypsum. Plots of the curves can be found in Appendix D. The curves shapes were not significantly affected by the addition of gypsum, except for Combination 1-3 with 70 percent fly ash. Here, the changes in curve shape with increased gypsum additions may be indicative of less severe sulfate depletion. An asterisk was placed next to the letter C for Combination 1-3 with 50 percent fly ash and 4 percent gypsum. This is because the curve shape for the mixture was similar to Type C except that the small bump occurred after the curve had reached the peak temperature. According to ASTM C 1679, this indicates that sulfate depletion occurred at a later time than it did for the zero and two percent gypsum mixtures. For the

Combination 4-1 mixtures, the predicted final set time increased with increasing gypsum levels. For Combination 1-3, with increasing gypsum levels, the predicted final set time for the 50 percent fly ash mixture decreased with 2 percent gypsum and then increased with 4 percent gypsum. The predicted final set time for the 70 percent fly ash mixture increased with 2 percent gypsum and then decreased with 4 percent gypsum. Figure 4.29 shows a series of thermal curves with increasing gypsum additions. As can be seen, the overall curve shape is not significantly changed, but the positions of the curves are slightly delayed.

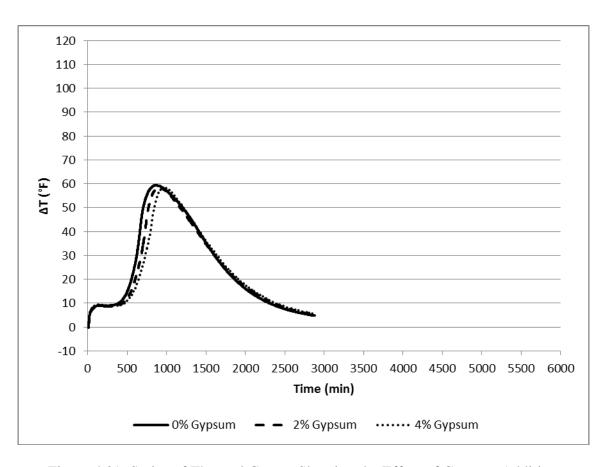



Figure 4.29. Series of Thermal Curves Showing the Effect of Gypsum Addition

Table 4.39. Calorimetry Results for Mixtures with Increasing Gypsum Additions

|             |        |         | Nominal | Proportio | ns   |              |       |                  | Time at                 |         | Se          | tting Time | Prediction  | ns        |
|-------------|--------|---------|---------|-----------|------|--------------|-------|------------------|-------------------------|---------|-------------|------------|-------------|-----------|
| Combination | Coment | Fly Ach | Cymaum  | Lime      | RSC  | WR           | Curve | $\Delta T_{max}$ | $\Delta T_{\text{max}}$ | M (°F)  | Percentag   | e Method   | Deriva      | atives    |
| Combination | (%)    | (%)     | (%)     | (%)       | (%)  | (fl.oz./cwt) | Type  | (° <b>F</b> )    |                         | WI (II) | Initial Set | Final Set  | Initial Set | Final Set |
|             | (70)   | (70)    | (70)    | (70)      | (70) | (II.OZ./CWt) |       |                  | (min)                   |         | (min)       | (min)      | (min)       | (min)     |
| 4-1         | 50     | 50      | 0       | 0         | 0    | 2.75         | Α     | 59.37            | 846                     | 50.66   | 543         | 639        | 642         | 663       |
| 4-1         | 50     | 50      | 2       | 0         | 0    | 2.75         | Α     | 58.36            | 908                     | 49.79   | 588         | 697        | 713         | 736       |
| 4-1         | 50     | 50      | 4       | 0         | 0    | 2.75         | Α     | 58.34            | 962                     | 49.42   | 630         | 756        | 788         | 813       |
| 4-1         | 30     | 70      | 0       | 0         | 0    | 2.75         | В     | 28.98            | 964                     | 20.25   | 680         | 796        | 833         | 851       |
| 4-1         | 30     | 70      | 2       | 0         | 0    | 2.75         | В     | 33.32            | 995                     | 25.76   | 684         | 812        | 852         | 872       |
| 4-1         | 30     | 70      | 4       | 0         | 0    | 2.75         | В     | 34.39            | 1148                    | 27.14   | 787         | 947        | 1015        | 1034      |
| 1-3         | 50     | 50      | 0       | 0         | 0    | 2.75         | C     | 34.69            | 1245                    | 23.07   | 493         | 778        | 335         | 498       |
| 1-3         | 50     | 50      | 2       | 0         | 0    | 2.75         | C     | 33.35            | 1130                    | 22.69   | 590         | 686        | 672         | 704       |
| 1-3         | 50     | 50      | 4       | 0         | 0    | 2.75         | C*    | 39.27            | 993                     | 28.70   | 644         | 756        | 777         | 802       |
| 1-3         | 30     | 70      | 0       | 0         | 0    | 2.75         | F     | 19.85            | 92                      | 12.13   | 27          | 36         | 32          | 36        |
| 1-3         | 30     | 70      | 2       | 0         | 0    | 2.75         | G     | 18.41            | 209                     | 10.76   | 26          | 44         | 55          | 56        |
| 1-3         | 30     | 70      | 4       | 0         | 0    | 2.75         | В     | 15.62            | 126                     | 7.52    | 25          | 37         | 50          | 51        |

The miniature slump testing results for mixtures with added gypsum are shown in Table 4.40, below. Plots of these results can be found in Appendix E. These results show that for both combinations the addition of gypsum had little effect on the flow of the paste with 50 percent fly ash. With 70 percent fly ash, Combination 4-1 was not significantly affect by the 2 percent addition of gypsum, but maintained greater flow over time with 4 percent gypsum addition. For Combination 1-3 with 70 percent fly ash, the addition of gypsum appeared to have little effect at early ages. Beyond fifteen minutes, the miniature slump test was not able to be performed on this mixture without the addition of gypsum. This indicates that the paste stiffened less over time with the gypsum additions. All of the mixtures in the table below had early stiffening indices which were less than the 0.85 criteria. This indicates that all of the mixtures had early stiffening tendencies, though these were generally lessened with the addition of gypsum.

The Vicat setting time results are shown below in Table 4.41. For Combination 4-1, at both fly ash replacement levels, the 2 percent gypsum addition increased initial set. The addition of 4 percent gypsum resulted in an initial set time less than at 2 percent gypsum but greater than at zero percent gypsum. For Combination 1-3, both gypsum additions increased initial set time for the 50 percent fly ash mixtures. The 70 percent fly ash mixture had an initial set time decreased by two minutes with the 2 percent addition, but increased with the 4 percent addition. The addition of gypsum increased final set times, except for Combination 4-1 with 70 percent fly ash. The final set time for this mixture decreased by 15 minutes with the addition of 2 percent gypsum, but increased with the 4 percent addition. The water required for normal consistency was not affected by more than 0.5 percent with the addition of gypsum.

Table 4.40. Miniature Slump Results for Mixtures with Increasing Gypsum Additions

|             |        |         | Nominal l | Proportio | ns  |              |       | Miniatur | e Slump A | rea (in²) |        | Early Stiffening |
|-------------|--------|---------|-----------|-----------|-----|--------------|-------|----------|-----------|-----------|--------|------------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | 2-min | 5-min    | 15-min    | 30-min    | 45-min | Index            |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test  | Test     | Test      | Test      | Test   | (30-min/5-min)   |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 2.75         | 21.1  | 18.0     | 16.4      | 13.7      | 12.0   | 0.76             |
| 4-1         | 50     | 50      | 2         | 0         | 0   | 2.75         | 20.2  | 19.6     | 15.5      | 13.9      | 11.8   | 0.71             |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 20.1  | 18.3     | 15.0      | 13.2      | 12.3   | 0.72             |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 2.75         | 24.4  | 20.1     | 12.3      | 9.6       | 8.9    | 0.48             |
| 4-1         | 30     | 70      | 2         | 0         | 0   | 2.75         | 24.0  | 20.1     | 12.2      | 9.3       | 8.7    | 0.46             |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 24.2  | 21.1     | 15.2      | 12.8      | 11.6   | 0.61             |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 10.8  | 6.7      | 4.4       | 3.2       | 3.4    | 0.47             |
| 1-3         | 50     | 50      | 2         | 0         | 0   | 2.75         | 9.8   | 7.6      | 4.8       | 4.0       | 4.0    | 0.53             |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 10.4  | 7.1      | 4.7       | 4.0       | 3.6    | 0.56             |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 12.2  | 6.2      | 2.8       |           |        |                  |
| 1-3         | 30     | 70      | 2         | 0         | 0   | 2.75         | 12.8  | 6.0      | 3.2       | 2.3       | 2.4    | 0.39             |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 14.5  | 6.0      | 3.1       | 2.5       | 2.3    | 0.42             |

|             |        |         | Nominal l | Proportio | ns  |              | Water for Normal | Vicat I     | Results   |
|-------------|--------|---------|-----------|-----------|-----|--------------|------------------|-------------|-----------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | Consistency      | Initial Set | Final Set |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | (0.5%)           | (min)       | (min)     |
| 4-1         | 50     | 50      | 0         | 0         | 0   | 2.75         | 20.0             | 87          | 345       |
| 4-1         | 50     | 50      | 2         | 0         | 0   | 2.75         | 20.0             | 136         | 405       |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 20.0             | 123         | 540       |
| 4-1         | 30     | 70      | 0         | 0         | 0   | 2.75         | 19.0             | 18          | 420       |
| 4-1         | 30     | 70      | 2         | 0         | 0   | 2.75         | 19.0             | 48          | 405       |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 18.5             | 39          | 450       |
| 1-3         | 50     | 50      | 0         | 0         | 0   | 2.75         | 21.5             | 65          | 495       |
| 1-3         | 50     | 50      | 2         | 0         | 0   | 2.75         | 21.0             | 77          | 570       |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 21.5             | 83          | 675       |
| 1-3         | 30     | 70      | 0         | 0         | 0   | 2.75         | 20.0             | 17          | 135       |
| 1-3         | 30     | 70      | 2         | 0         | 0   | 2.75         | 20.5             | 15          | 240       |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 20.5             | 24          | 300       |

Table 4.41. Vicat Results for Mixtures with Increasing Gypsum Additions

**4.2.4. Effects of Calcium Hydroxide-Gypsum Addition.** The effects of the addition of calcium hydroxide were evaluated for both combinations at the 50 and 70 percent fly ash replacement levels. The two levels of calcium hydroxide addition were five and 10 percent, nominally.

The effects of calcium hydroxide addition on the strength gain of both combinations can be seen below in Figures 4.30 and 4.31. These mixtures all include a four percent nominal addition of gypsum. Combination 4-1 mixtures generally showed decreasing strengths with increasing calcium hydroxide additions, except at one day where slightly higher strengths were achieved. For Combination 1-3 with 50 percent fly ash, the addition of lime slightly increased early strengths, though at 56 days the addition of lime lead to decreased strengths. With 70 percent fly ash replacement, the addition of calcium hydroxide decreased strengths at all ages, except at one day, where slight increases in strength were obtained. The increases in early strengths and decreased later age strengths agree with the findings of Bentz (2010) on calcium hydroxide additions.

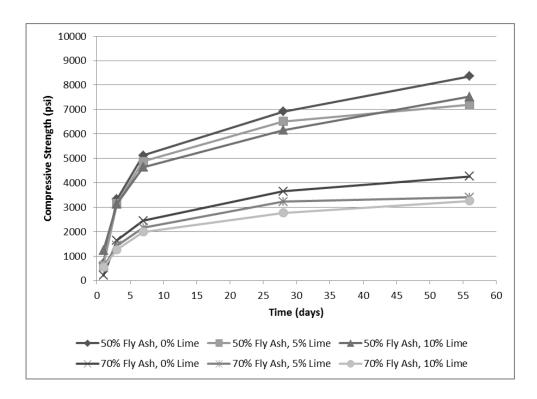



Figure 4.30. Effect of Lime on Combination 4-1 Mixtures with Four Percent Gypsum

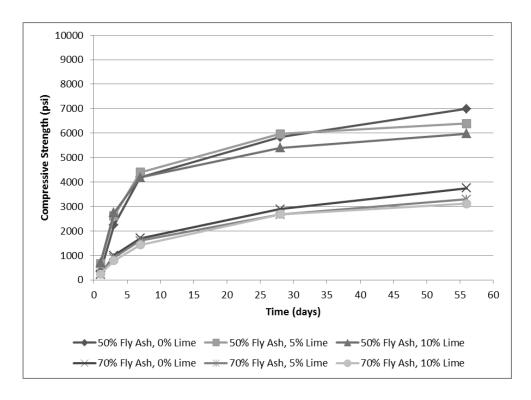



Figure 4.31. Effect of Lime on Combination 1-3 Mixtures with Four Percent Gypsum

The results of the semi-adiabatic calorimetry testing are shown below in Table 4.42 for mixtures with calcium hydroxide and gypsum. The thermal curves for these mixtures can be found in Appendix D. These mixtures all include a nominal four percent addition of gypsum. The curve shapes were not affected by the addition of calcium hydroxide, expect for Combination 1-3 with 50 percent fly ash. Without calcium hydroxide this mixture had a Type C curve with sulfate depletion occurring after the main peak. With both calcium hydroxide additions, this mixture had Type A curves, which are indicative of a normally hydrating mixture. This indicates that the increase in available calcium may have accelerated the silicate hydration. The main hydration response rise (M) changed by less than two degrees for all mixtures with the addition of calcium hydroxide, indicating that the calcium hydroxide had little effect on the amount of heat produced by the system. The predicted final set time by the Percentage Method generally decreased for all mixtures as lime was added to the system, indicating that hydration was accelerated. A typical series of thermal curves with increasing calcium hydroxide additions is shown in Figure 4.32, below. This example shows that the curve shape and magnitude of the main peak are relatively unchanged, while the position of the curve is shifted to earlier times with calcium hydroxide addition.

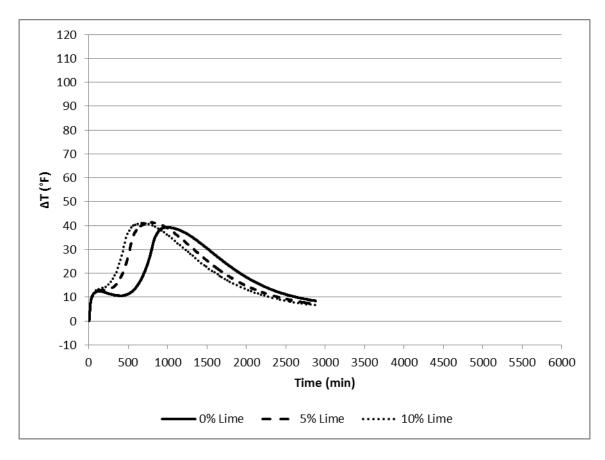



Figure 4.32. Series of Thermal Curves Showing the Effect of Calcium Hydroxide

Addition

The miniature slump results for the mixtures containing calcium hydroxide and gypsum are shown, below, in Table 4.43. Plots of these results are given in Appendix E. For all mixtures at all test times, the miniature slump area decreased with increasing calcium hydroxide addition, which may have been caused by an increased water demand from the addition. The change in pat areas over time was similar for all calcium hydroxide addition levels for all mixtures, including those with no calcium hydroxide. For Combination 1-3 with 70 percent fly ash, the mixture with 10 percent calcium hydroxide addition was too stiff to be tested after 15 minutes.

Table 4.42. Calorimetry Results for Mixtures with Increasing Calcium Hydroxide Additions and Four Percent Gypsum

|             |        |          | Nominal | Proportio | ns  |              |       |                  | Time at                 |         | Se                 | tting Time | Prediction         | ns        |
|-------------|--------|----------|---------|-----------|-----|--------------|-------|------------------|-------------------------|---------|--------------------|------------|--------------------|-----------|
| Combination | Coment | Elv. Aab | Crmanm  | Lime      | RSC | WR           | Curve | $\Delta T_{max}$ |                         | M (°F)  | Percentag          | e Method   | Deriva             | atives    |
| Combination | (%)    |          | • -     | (%)       | (%) |              | Type  | (° <b>F</b> )    | $\Delta T_{\text{max}}$ | MI ( F) | <b>Initial Set</b> | Final Set  | <b>Initial Set</b> | Final Set |
|             | (%)    | (%)      | (%)     | (70)      | (%) | (fl.oz./cwt) |       |                  | (min)                   |         | (min)              | (min)      | (min)              | (min)     |
| 4-1         | 50     | 50       | 4       | 0         | 0   | 2.75         | Α     | 58.34            | 962                     | 49.42   | 630                | 756        | 788                | 813       |
| 4-1         | 50     | 50       | 4       | 5         | 0   | 2.75         | Α     | 56.58            | 885                     | 48.06   | 534                | 678        | 723                | 745       |
| 4-1         | 50     | 50       | 4       | 10        | 0   | 2.75         | Α     | 59.37            | 631                     | 49.42   | 325                | 444        | 478                | 494       |
| 4-1         | 30     | 70       | 4       | 0         | 0   | 2.75         | В     | 34.39            | 1148                    | 27.14   | 787                | 947        | 1015               | 1034      |
| 4-1         | 30     | 70       | 4       | 5         | 0   | 2.75         | В     | 37.37            | 720                     | 28.69   | 394                | 547        | 610                | 627       |
| 4-1         | 30     | 70       | 4       | 10        | 0   | 2.75         | В     | 36.38            | 613                     | 27.54   | 286                | 441        | 514                | 527       |
| 1-3         | 50     | 50       | 4       | 0         | 0   | 2.75         | C*    | 39.27            | 993                     | 28.70   | 644                | 756        | 777                | 802       |
| 1-3         | 50     | 50       | 4       | 5         | 0   | 2.75         | Α     | 41.25            | 792                     | 28.62   | 406                | 497        | 496                | 523       |
| 1-3         | 50     | 50       | 4       | 10        | 0   | 2.75         | Α     | 41.02            | 702                     | 28.17   | 317                | 414        | 420                | 444       |
| 1-3         | 30     | 70       | 4       | 0         | 0   | 2.75         | В     | 15.62            | 126                     | 7.52    | 25                 | 37         | 50                 | 51        |
| 1-3         | 30     | 70       | 4       | 5         | 0   | 2.75         | В     | 21.69            | 620                     | 6.55    | 439                | 508        | 520                | 541       |
| 1-3         | 30     | 70       | 4       | 10        | 0   | 2.75         | В     | 23.83            | 483                     | 7.29    | 289                | 372        | 191                | 405       |

Table 4.43. Miniature Slump Results for Mixtures with Increasing Lime Addition and Four Percent Gypsum

|             |        |         | Nominal l | Proportio | ns  |              |       | Miniatur | e Slump A | rea (in²) |        | Early Stiffening |
|-------------|--------|---------|-----------|-----------|-----|--------------|-------|----------|-----------|-----------|--------|------------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | 2-min | 5-min    | 15-min    | 30-min    | 45-min | Index            |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test  | Test     | Test      | Test      | Test   | (30-min/5-min)   |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 20.1  | 18.3     | 15.0      | 13.2      | 12.3   | 0.72             |
| 4-1         | 50     | 50      | 4         | 5         | 0   | 2.75         | 15.5  | 13.8     | 13.1      | 11.5      | 10.6   | 0.84             |
| 4-1         | 50     | 50      | 4         | 10        | 0   | 2.75         | 12.2  | 10.6     | 8.5       | 6.5       | 5.6    | 0.61             |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 24.2  | 21.1     | 15.2      | 12.8      | 11.6   | 0.61             |
| 4-1         | 30     | 70      | 4         | 5         | 0   | 2.75         | 16.5  | 14.4     | 10.2      | 7.6       | 6.8    | 0.53             |
| 4-1         | 30     | 70      | 4         | 10        | 0   | 2.75         | 12.2  | 9.0      | 6.9       | 5.5       | 4.9    | 0.62             |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 10.4  | 7.1      | 4.7       | 4.0       | 3.6    | 0.56             |
| 1-3         | 50     | 50      | 4         | 5         | 0   | 2.75         | 7.6   | 4.1      | 2.8       | 2.4       | 2.3    | 0.59             |
| 1-3         | 50     | 50      | 4         | 10        | 0   | 2.75         | 6.8   | 3.7      | 2.4       | 2.2       | 2.2    | 0.59             |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 14.5  | 6.0      | 3.1       | 2.5       | 2.3    | 0.42             |
| 1-3         | 30     | 70      | 4         | 5         | 0   | 2.75         | 9.8   | 4.4      | 2.3       | 2.0       | 2.1    | 0.45             |
| 1-3         | 30     | 70      | 4         | 10        | 0   | 2.75         | 6.4   | 3.0      | 2.0       |           |        |                  |

The Vicat setting time results for mixtures with increasing calcium hydroxide additions are shown below in Table 4.44. The initial set time generally decreased with increased calcium hydroxide content, except for Combination 4-1 with 70 percent fly ash, which increased with increasing calcium hydroxide content. Also, the initial set time for Combination 1-3 with 70 percent fly ash increased by one minute with the addition of five percent calcium hydroxide. Final set time also generally decreased with additional calcium hydroxide, except for Combination 4-1 with 70 percent fly ash which had the same final set time for both addition levels. The general decrease in setting times with increasing calcium hydroxide contents indicates that the hydration reactions are being accelerated. For all mixtures, an increase in calcium hydroxide content led to an increase in the water required for normal consistency. This correlates with the decreased pat areas of the miniature slump test discussed previously, which indicated that the addition of the calcium hydroxide increased the water demand of the system.

Table 4.44. Vicat Results for Mixtures with Increasing Lime Additions

|             |        |         | Nominal l | Proportio | ns  |              | Water for Normal | Vicat F     | Results   |
|-------------|--------|---------|-----------|-----------|-----|--------------|------------------|-------------|-----------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | Consistency      | Initial Set | Final Set |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | (0.5%)           | (min)       | (min)     |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 20.0             | 123         | 540       |
| 4-1         | 50     | 50      | 4         | 5         | 0   | 2.75         | 21.0             | 111         | 360       |
| 4-1         | 50     | 50      | 4         | 10        | 0   | 2.75         | 21.5             | 101         | 315       |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 18.5             | 39          | 450       |
| 4-1         | 30     | 70      | 4         | 5         | 0   | 2.75         | 20.5             | 80          | 345       |
| 4-1         | 30     | 70      | 4         | 10        | 0   | 2.75         | 21.0             | 92          | 345       |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 21.5             | 83          | 675       |
| 1-3         | 50     | 50      | 4         | 5         | 0   | 2.75         | 22.5             | 63          | 465       |
| 1-3         | 50     | 50      | 4         | 10        | 0   | 2.75         | 23.0             | 46          | 360       |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 20.5             | 24          | 300       |
| 1-3         | 30     | 70      | 4         | 5         | 0   | 2.75         | 21.5             | 25          | 285       |
| 1-3         | 30     | 70      | 4         | 10        | 0   | 2.75         | 23.0             | 14          | 195       |

**4.2.5. Effects of Rapid Set Cement-Gypsum Addition.** The effects of the addition of rapid set cement (RSC) were evaluated for both combinations at the 50 and 70 percent fly ash replacement levels. The two levels of rapid set cement addition were nominally 10 and 20 percent.

The results of the cube compressive strength testing for Combination 4-1 with rapid set cement are shown below in Figure 4.33. The results of the cube compressive strength testing for Combination 1-3 with rapid set cement are shown below in Figure 4.34. All of these mixtures include a nominal four percent gypsum addition. For Combination 4-1 with 50 percent fly ash, an increase in RSC content generally led to an increase in strength, except at 56 days where RSC addition resulted in decreased strengths. With 70 percent fly ash, this combination had increased strengths at all ages with increased RSC additions. For Combination 1-3, increasing RSC additions generally led to increased strengths at all ages. An exception to this is the 70 percent fly ash mixture with 20 percent RSC, which gained very little strength from one to three days and had a lower compressive strength than the 0 and 10 percent RSC mixtures at three days.

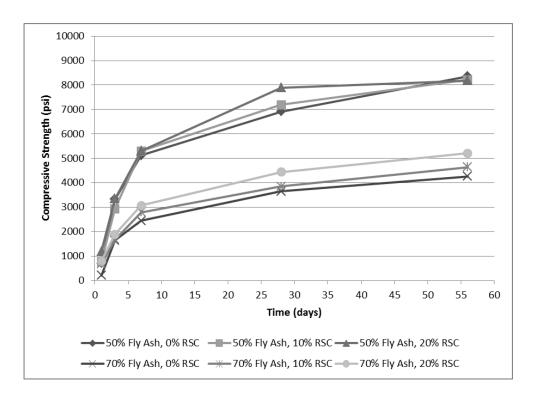



Figure 4.33. Effect of RSC on Combination 4-1 Mixtures with Four Percent Gypsum

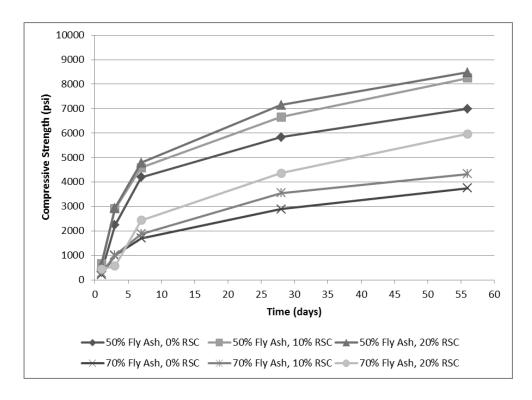



Figure 4.34. Effect of RSC on Combination 1-3 Mixtures with Four Percent Gypsum

The semi-adiabatic calorimetry results for mixtures containing RSC are shown in Table 4.45, below. These mixtures all contain a nominal four percent gypsum addition. Plots of the thermal curves for these mixtures can be found in Appendix D. For Combination 4-1 with 50 percent fly ash, the overall curve shape did not change with the addition of RSC. For the other mixtures, the addition of RSC resulted in changes in curve shape. These changes in shape with increasing RSC contents may indicate increasingly severe sulfate imbalances. This can be seen as the sulfate depletion peak occurs earlier and the silicate peak occurs later, relative to each other. For both combinations with 50 percent fly ash, the addition of RSC decreased the main hydration response rise. With 70 percent fly ash, the addition of RSC increased the main hydration response rise, except for Combination 4-1 with 10 percent RSC, which decreased. For both combinations, increases in RSC generally led to a decrease in the predicted final set time by the Percentage Method. An exception to this was Combination 1-3 with 70 percent fly ash, which had increased predicted final set times for both mixtures containing RSC, when compared to the mixture with no RSC. Figure 4.35, below, shows the thermal curves for a 70 percent fly ash mixture with increasing RSC contents. As can be seen, the curve shape is changed, the peak height is increased, and the peak occurs at earlier times.

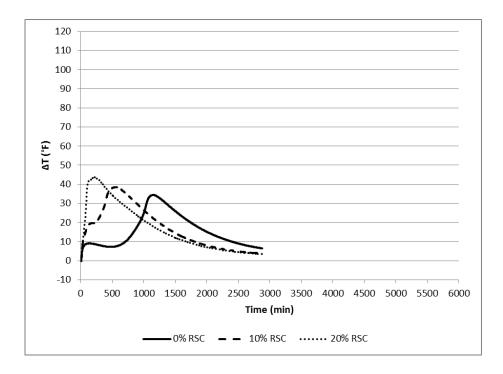



Figure 4.35. Series of Thermal Curves Showing the Effect of RSC Addition

The miniature slump results for mixtures with increasing RSC additions are shown below in Table 4.46. Plots of these results can be found in Appendix E. These mixtures all contain a nominal four percent gypsum addition. The addition of RSC gave results similar to those seen with the addition of calcium hydroxide. However, the cause here may be the accelerated rates of hydration for these systems. For all mixtures, increasing RSC contents led to decreased pat areas at all times. Also, the change in pat areas over time was similar to those for the corresponding mixtures which did not contain RSC. The miniature slump test could not be performed for Combination 1-3 with 70 percent fly ash and 20 percent RSC after 15 minutes due to the stiffness of the paste. With increasing RSC additions, the early stiffening indices decreased for all mixtures, indicating that these mixtures have increased early stiffening tendencies. Also, the early stiffening indices for all mixtures were below 0.85.

Table 4.45. Calorimetry Results for Mixtures with Increasing RSC Additions and Four Percent Gypsum

|             |        |          | Nominal 1 | Proportio | ns   |              |       |                  | Time at                 |        | Se          | tting Time | Prediction  | ns        |
|-------------|--------|----------|-----------|-----------|------|--------------|-------|------------------|-------------------------|--------|-------------|------------|-------------|-----------|
| Combination | Coment | Elv. Aab | Crmanm    | Lime      | RSC  | WR           | Curve | $\Delta T_{max}$ | $\Delta T_{\text{max}}$ | M (°F) | Percentag   | e Method   | Deriva      | atives    |
| Combination | (%)    | (%)      | (%)       | (%)       | (%)  | (fl.oz./cwt) | Type  | (° <b>F</b> )    |                         | WI (I) | Initial Set | Final Set  | Initial Set | Final Set |
|             | (70)   | (70)     | (70)      | (70)      | (70) | (II.OZ./CWt) |       |                  | (min)                   |        | (min)       | (min)      | (min)       | (min)     |
| 4-1         | 50     | 50       | 4         | 0         | 0    | 2.75         | Α     | 58.34            | 962                     | 49.42  | 630         | 756        | 788         | 813       |
| 4-1         | 50     | 50       | 4         | 0         | 10   | 2.75         | Α     | 54.61            | 726                     | 37.64  | 433         | 534        | 556         | 576       |
| 4-1         | 50     | 50       | 4         | 0         | 20   | 2.75         | Α     | 54.13            | 520                     | 29.46  | 251         | 318        | 313         | 330       |
| 4-1         | 30     | 70       | 4         | 0         | 0    | 2.75         | В     | 34.39            | 1148                    | 27.14  | 787         | 947        | 1015        | 1034      |
| 4-1         | 30     | 70       | 4         | 0         | 10   | 2.75         | F     | 38.50            | 544                     | 19.25  | 303         | 378        | 392         | 405       |
| 4-1         | 30     | 70       | 4         | 0         | 20   | 2.75         | F     | 43.67            | 210                     | 33.44  | 56          | 81         | 78          | 87        |
| 1-3         | 50     | 50       | 4         | 0         | 0    | 2.75         | C*    | 39.27            | 993                     | 28.70  | 644         | 756        | 777         | 802       |
| 1-3         | 50     | 50       | 4         | 0         | 10   | 2.75         | С     | 42.30            | 852                     | 23.98  | 394         | 473        | 411         | 440       |
| 1-3         | 50     | 50       | 4         | 0         | 20   | 2.75         | D     | 32.86            | 171                     | 22.63  | 55          | 100        | 111         | 119       |
| 1-3         | 30     | 70       | 4         | 0         | 0    | 2.75         | В     | 15.62            | 126                     | 7.52   | 25          | 37         | 50          | 51        |
| 1-3         | 30     | 70       | 4         | 0         | 10   | 2.75         | G     | 30.32            | 162                     | 18.51  | 50          | 84         | 42          | 102       |
| 1-3         | 30     | 70       | 4         | 0         | 20   | 2.75         | F     | 38.42            | 149                     | 30.08  | 39          | 71         | 72          | 78        |

Table 4.46. Miniature Slump Results for Mixtures with Increasing RSC Addition and Four Percent Gypsum

|             |        |         | Nominal l | Proportio | ns  |              |       | Miniatur | e Slump A | rea (in²) |        | Early Stiffening |
|-------------|--------|---------|-----------|-----------|-----|--------------|-------|----------|-----------|-----------|--------|------------------|
| Combination | Cement | Fly Ash | Gypsum    | Lime      | RSC | WR           | 2-min | 5-min    | 15-min    | 30-min    | 45-min | Index            |
|             | (%)    | (%)     | (%)       | (%)       | (%) | (fl.oz./cwt) | Test  | Test     | Test      | Test      | Test   | (30-min/5-min)   |
| 4-1         | 50     | 50      | 4         | 0         | 0   | 2.75         | 20.1  | 18.3     | 15.0      | 13.2      | 12.3   | 0.72             |
| 4-1         | 50     | 50      | 4         | 0         | 10  | 2.75         | 15.1  | 14.5     | 11.6      | 8.5       | 7.1    | 0.59             |
| 4-1         | 50     | 50      | 4         | 0         | 20  | 2.75         | 11.9  | 9.6      | 7.3       | 4.0       | 3.1    | 0.42             |
| 4-1         | 30     | 70      | 4         | 0         | 0   | 2.75         | 24.2  | 21.1     | 15.2      | 12.8      | 11.6   | 0.61             |
| 4-1         | 30     | 70      | 4         | 0         | 10  | 2.75         | 17.0  | 14.0     | 6.9       | 4.0       | 2.9    | 0.29             |
| 4-1         | 30     | 70      | 4         | 0         | 20  | 2.75         | 14.9  | 13.0     | 6.0       | 2.6       | 2.1    | 0.20             |
| 1-3         | 50     | 50      | 4         | 0         | 0   | 2.75         | 10.4  | 7.1      | 4.7       | 4.0       | 3.6    | 0.56             |
| 1-3         | 50     | 50      | 4         | 0         | 10  | 2.75         | 8.3   | 5.9      | 3.3       | 2.5       | 2.2    | 0.42             |
| 1-3         | 50     | 50      | 4         | 0         | 20  | 2.75         | 7.9   | 5.8      | 3.0       | 2.1       | 2.1    | 0.37             |
| 1-3         | 30     | 70      | 4         | 0         | 0   | 2.75         | 14.5  | 6.0      | 3.1       | 2.5       | 2.3    | 0.42             |
| 1-3         | 30     | 70      | 4         | 0         | 10  | 2.75         | 9.8   | 5.4      | 2.5       | 2.1       | 2.0    | 0.38             |
| 1-3         | 30     | 70      | 4         | 0         | 20  | 2.75         | 9.8   | 6.0      | 2.4       |           |        |                  |

Table 4.47, below, summarizes the results of the Vicat setting time testing for mixtures containing RSC. As expected, the initial and final set times for all mixtures decreased with increasing RSC additions. Also, an increase in RSC content led to an increase in the water required to achieve normal consistency.

Table 4.47. Vicat Results for Mixtures with Increasing RSC Additions

|             |            |                | Nominal I  | Proportio   | ns         |                    | Water for Normal | Vicat I              | Results         |
|-------------|------------|----------------|------------|-------------|------------|--------------------|------------------|----------------------|-----------------|
| Combination | Cement (%) | Fly Ash<br>(%) | Gypsum (%) | Lime<br>(%) | RSC<br>(%) | WR<br>(fl.oz./cwt) |                  | Initial Set<br>(min) | Final Set (min) |
| 4-1         | 50         | 50             | 4          | 0           | 0          | 2.75               | 20.0             | 123                  | 540             |
| 4-1         | 50         | 50             | 4          | 0           | 10         | 2.75               | 20.5             | 15                   | 360             |
| 4-1         | 50         | 50             | 4          | 0           | 20         | 2.75               | 21.0             | 13                   | 180             |
| 4-1         | 30         | 70             | 4          | 0           | 0          | 2.75               | 18.5             | 39                   | 450             |
| 4-1         | 30         | 70             | 4          | 0           | 10         | 2.75               | 19.0             | 12                   | 135             |
| 4-1         | 30         | 70             | 4          | 0           | 20         | 2.75               | 20.0             | 12                   | 90              |
| 1-3         | 50         | 50             | 4          | 0           | 0          | 2.75               | 21.5             | 83                   | 675             |
| 1-3         | 50         | 50             | 4          | 0           | 10         | 2.75               | 22.0             | 44                   | 450             |
| 1-3         | 50         | 50             | 4          | 0           | 20         | 2.75               | 22.5             | 31                   | 165             |
| 1-3         | 30         | 70             | 4          | 0           | 0          | 2.75               | 20.5             | 24                   | 300             |
| 1-3         | 30         | 70             | 4          | 0           | 10         | 2.75               | 21.0             | 12                   | 120             |
| 1-3         | 30         | 70             | 4          | 0           | 20         | 2.75               | 22.0             | 12                   | 75              |

#### 4.3 CORRELATIONS

Sandberg and Liberman (2007) evaluated the use of thermal curves from semi-adiabatic calorimetry to predict initial and final setting times as determined by ASTM C 403. Using the Derivatives and Fractions (or Percentage) Methods, described previously in the Laboratory Investigation, they were able to find a strong correlation between the results of the two methods. Cost (2009) also discusses the used of semi-adiabatic calorimetry results for determining predicted set times, though he emphasizes their use for comparative, rather than quantitative, purposes. It should be noted that in both cases, the researchers were comparing the results of concrete testing for both the semi-adiabatic and setting time tests.

In this study, correlations between predicted set times, as described by Sandberg and Liberman, and Vicat setting times, according to ASTM C 191, were evaluated. For the Percentage Method, 20 percent of the main hydration response was taken as initial set and 50 percent of the main hydration response was taken as final set. Linear correlations were first evaluated for the results of all mixtures from both the Screening and Main Studies. This involved the initial and final set times, by each prediction method, being correlated with the Vicat initial and final set times, respectively and individually. The best correlation was found between the Vicat final setting time and the predicted final set by the Percentage Method. This correlation is shown below in Figure 4.36.

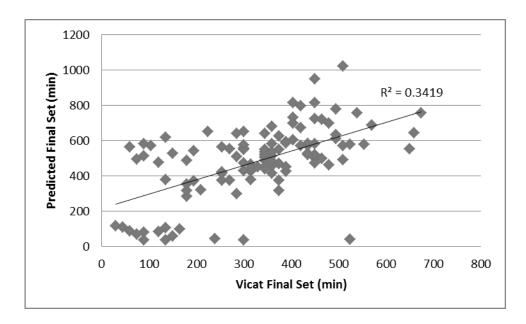



Figure 4.36. Correlation of Percentage Method Final Set Times for All Mixtures

It was thought that, because many of the mixtures were found to be affected by sulfate imbalances, a better correlation would exist for those mixtures which showed hydration characteristics typical of a portland cement. Therefore, the correlation was evaluated only for mixtures with Type A thermal curve shapes, as determined from the semi-adiabatic calorimetry testing. The results of this evaluation are shown below in Figure 4.37.

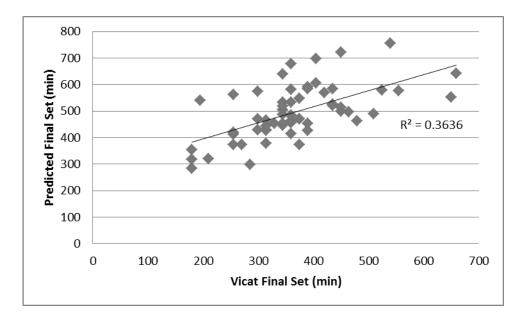



Figure 4.37. Correlation of Percentage Method Final Set Times for Type A Mixtures

As can be seen from the results above, the correlation between the two methods of evaluating setting times is poor with R-squared values less than 0.4. This may be the result of various factors including differences in water-cementitious materials ratios and differences in the curing conditions of the pastes for each test method. The differences in the w/cm occur because all of the paste mixtures used for the calorimetry testing were mixed with a w/cm of 0.40, while the paste used in the Vicat procedure was prepared at a water content that resulted in a paste with normal consistency, according to ASTM C 187. This resulted in different water-cementitious materials ratios for each paste mixture used in the Vicat procedure. The differences in curing conditions occur because the paste used for the calorimetry testing was sealed in plastic cylinders and placed in the calorimeter, while the paste in the Vicat procedure was placed in the moist cure room for the duration of the test. This resulted in differences in the temperature and relative humidity at which the pastes for the two procedures were hydrating.

#### 5. SUMMARY AND CONCLUSIONS

#### **5.1 SUMMARY**

As part of a larger study on high volume fly ash (HVFA) concrete, paste mixtures were tested to evaluate the effects of Class C fly ash on cementitious systems and to determine possible solutions for common problems associated with mixtures high in Class C fly ash content. These problems include extreme delays in setting and slow strength development.

The first part of the study, the Screening Study, evaluated five Type I or Type I/II portland cements in combination with five Class C fly ashes. The materials were chosen to be representative of those commonly used in the state of Missouri. The effects of each fly ash were evaluated at replacement levels of 0, 25, 50, and 70 percent by mass for each of the cements. Testing in the Screening Study included cube compressive strength at one day, cube compressive strength at 28 days, semi-adiabatic calorimetry, miniature slump, and Vicat setting time.

The second part of the study, the Main Study, evaluated the use of powder additions for correcting the negative effects seen with the use of high amounts of Class C fly ash replacement. Here, the most and least reactive cement-fly ash combinations from the Screening Study were used for further evaluation. The powder additions were each evaluated at two addition levels for mixtures with 50 and 70 percent fly ash and included gypsum, calcium hydroxide, and rapid set cement. The effects of a water reducer were also evaluated for mixtures with 0, 25, 50, and 70 percent fly ash. Testing in the Main Study included cube compressive strength, semi-adiabatic calorimetry, miniature slump,

and Vicat setting time. Compressive strength testing was performed at 1, 3, 7, 28, and 56 days.

#### 5.2 CONCLUSIONS

From the results of the Screening Study, it was apparent that the replacement of portland cement with Class C fly ash had varied results on the properties of the paste mixtures. Generally, increasing fly ash contents led to decreased strengths at one and 28 days. The calorimetry results generally showed that the peak temperature was decreased and the silicate hydration was delayed by increasing the fly ash content. However, it was also seen that with 50 and 70 percent replacements with fly ash, the hydration curve was severely affected. The miniature slump results illustrated that as fly ash contents increased, the fluidity of the paste increased at very early ages, though it was accompanied by a more severe loss of fluidity over time, which may have been the result of rapid aluminate hydration, due to a sulfate imbalance. From the results of the Vicat setting time tests, it was observed that, up to a point, increasing fly ash contents delayed setting times, after which setting times were significantly shortened. From review of the literature and previous research, it was determined that many of the inconsistencies observed in the results of the Screening Study could be attributed to sulfate imbalances in the cementitious systems. This would explain the significantly changed hydration curves, severe fluidity loss, and accelerated setting times experienced by many of the 50 and 70 percent fly ash mixtures.

The results of the Main Study showed the effects of powder additions and a water reducer on the paste mixtures. Generally, the addition of the water reducer decreased the one day strengths of the mixtures containing fly ash, showed similar or increased strengths at 56 days, had little effect on the shapes of the thermal curves, led to delays in the main hydration curve, and increased fluidity of the paste at all times. The addition of gypsum was found to at least partially correct the sulfate imbalances experienced by some of the mixtures. It was seen that the addition of gypsum significantly improved the strength gain characteristics of the Combination 1-3 mixture with 70 percent fly ash at early ages. Also, some of the thermal curves indicated that the sulfate depletion point was being delayed and suppressed or that silicate hydration was accelerated by increasing gypsum contents. The calcium hydroxide showed improvements in one day strengths and appeared to partially mitigate some problems seen in the thermal curves. However, strengths past one day were found to decrease with increased lime contents. Bentz (2010) found similar effects from the use of calcium hydroxide and suggested that other sources of calcium ions be investigated. The use of rapid set cement generally increased compressive strengths at all ages and accelerated the occurrence of the silicate hydration peak. However, some of the thermal curves indicated that the rapid set cement might have worsened any sulfate imbalance in the system. The changes in miniature slump and Vicat setting time results were similar for both the use of calcium hydroxide and rapid set cement. The miniature slump results were shown to decrease at all ages for increased contents of both powders. However, the loss of fluidity over time was not significantly affected. The Vicat setting times were generally found to decrease with both powders, indicating that the hydration reactions were accelerated. As with the results of the

Screening Study, many of the inconsistencies experienced in the results of the Main Study can be explained by sulfate imbalances. Though gypsum was added as a source of additional sulfate, this may not have been sufficient for the increased aluminate levels of the mixtures with 50 or 70 percent fly ash. It should also be noted that this sulfate imbalance would adversely affect the hydration of the silicates by decreasing the amounts of available sulfate and calcium.

#### **5.3 FUTURE RESEARCH**

As an extension of the study presented here, further testing should be performed on the materials to more fully characterize the portland cements, fly ashes, and powder additions which were utilized. This would provide further insight into the test results that have been presented, because it is known, for example, that the mineralogical characteristics of a fly ash plays an important role in the reactivity of the material. Also, more information about the particle size distributions of the materials would assist in determining what effect they may have on the fluidity of the paste mixtures.

Bentz (2010) suggested that a source of calcium, other than calcium hydroxide, should be explored to ensure sufficient calcium is available for hydration of the silicates without adversely affecting compressive strengths at later ages. Also, the addition of another sulfate source, such as hemihydrate, should be investigated which would go into solution more quickly to control the increased aluminate reactions of the HVFA mixtures.

A standardized mixing procedure, which allowed early data collection for calorimetric or rheological testing, would allow better interlaboratory comparison of the

results from paste studies. Many researchers have utilized procedures that achieve sufficient mixing in under 2 minutes with handheld mixers or high-shear blenders. This has been done to characterize paste mixtures at ages earlier than would be allowed using the mixing procedure outlined in ASTM C 305.

#### APPENDIX A

**TESTING PROCEDURES** 

## Compressive Strength of Cement Cubes (ASTM C 109 and ASTM C 305) (Revised 6-19-2012)

#### **Equipment**

- Black and Decker 250-Watt Hand Mixer (Model MX217) with egg beater paddles
- 2. 20-quart Hobart mixing bowl
- 3. Plastic ladle
- 4. Hamilton 1-mL Adjustable Volume SoftGrip Pipette, (readable to 0.01 mL)
- 5. 3-quart or larger white plastic bowl with spout
- 6. Metal spoon
- 7. Small stainless steel spatula
- 8. Form oil and brush
- 9. 2" cube molds, tamper, and trowel
- 10. Analog thermometer with 5-inch probe
- 11. Sandpaper (Grit #60)
- 12. Digital calipers
- 13. Spherically seated circular upper bearing block with a diameter of 3.5 inches
- 14. Square lower bearing block with a diagonal of 3.5 inches
- 15. Sper Scientific Humidity/Temperature Monitor (Model 800016)
- 16.4x8 in. plastic cylinder mold with lid
- 17.12-kg Denver Instrument balance

#### **Procedure**

- Apply a coating of vacuum grease to seal the surfaces where the halves of the mold join. Tighten the halves together and remove any extruded grease with a cloth.
- Apply a small amount of vacuum grease to the surfaces of the mold that will be in contact with the base plate. Clamp the mold down to the base plate and wipe/scrape away any excess sealant, especially in the corners to avoid rounded cube edges
- 3. Apply a thin, even coating of form oil to the interior faces of the mold using a brush and wipe off any excess oil.
- 4. Verify that the air temperature is 23.0±3.0°C (68.0-78.8°F), mixing water temperature is 23.0±2°C (69.8-77.0°F), and that the relative humidity of the air is not less than 50%. Record these parameters.
- 5. Using the predetermined mix design, mix the paste using the following procedure:
  - a. To blend the dry constituents of the mix: Place about 1000 grams of the dry materials into a 4"x8" cylinder mold in the same proportions to be used in the paste mixture, hold the cylinder horizontally with one hand on each end of the cylinder, and then shake the cylinder 25 cycles using a 6" throw.
  - b. To dissolve admixtures into the mix water: Place all of the deionized water into the plastic bowl, use the 1-mL syringe to add the desired amount of admixture to the water, and use the small spatula to gently stir the water until all of the admixture is dissolved.
  - c. Add the premixed cementitious materials to the mixing bowl, forming a donut shape.
  - d. Add all of the mix water to the mixing bowl, start the timer, and record the time (Start Time).
  - e. Wait 10 seconds to allow the cement to absorb the water.
  - f. Mix at Speed 2 (440 RPM) for 20 seconds. Rotate the bowl 90° every 5 seconds.

- g. Mix at Speed 6 (670 RPM) for 60 seconds. Rotate the bowl 90° every 15 seconds and occasionally run the mixing paddles along the side of the bowl.
- h. At the end of the initial mixing, record the temperature of the paste.
- i. At 4 minutes, remix the paste at Speed 2 for 30 seconds.
- j. At 13 minutes, remix the paste at Speed 2 for 30 seconds.
- 6. Molding the specimens must begin within 2 minutes and 30 seconds after completion of mixing or remixing.
- 7. Place a layer of paste in each of the cube compartments of 1 inch (about half the depth of the mold).
- 8. Tamp the paste in each compartment 32 times in about 10 seconds, in 4 rounds. Each round consists of 8 adjoining strokes and should be at right angles to the other rounds. The tamping pressure should be just enough to ensure uniform filling of the mold.
- 9. Fill the remaining portion of the molds and repeat the tamping procedure used on the first layer. Bring in paste that is forced out onto the tops of the molds during tamping.
- 10. Draw the flat side of the trowel, with the leading edge slightly raised, once across the top of each cube at right angles to the length of mold.
- 11. Draw the flat side of the trowel, with the leading edge slightly raised, lightly once along the length of the mold.
- 12. Using the straight edge of the trowel, held perpendicular to the surface of the mold andwith a sawing motion along the length of the mold, cut the paste flush with the mold.
- 13. Immediately, place the specimens in the moist cure room. Protect the specimens from dripping water by using an arched sheet of thin plastic to cover the molds.
- 14. In the case of specimens to be tested for 1-day strengths, remove the specimens from the molds after 24 hours and proceed to step 15. For all other cases, remove the specimens from the molds after 72 hours, label each specimen with the Mix ID and age of testing using a China marker,

and place them in buckets of water saturated with hydrated lime (not aglime) in the moist cure room until they are needed for testing. Then proceed to step 15. Specimen age at the time of testing and at mold removal times shall be within the tolerances given below in Table 1. Cubes tested at 56 days shall have the same age tolerance as cubes tested at 28 days.

Table 1: Specimen age tolerances

| Test Age | Permissible Tolerance |
|----------|-----------------------|
| 24 hours | ±½ hour               |
| 3 days   | ± 1 hour              |
| 7 days   | ± 3 hours             |
| 28 days  | ± 12 hours            |

- 15. Transport specimens from the moist room in a saturated towel and keep the specimens covered with the saturated towel until the time of testing.
- 16. Use a damp towel to wipe the specimens to a surface-dry condition, and remove any loose particles.
- 17. Secure the sandpaper on a flat surface and lightly sand each face of the specimens to provide plane loading surfaces and remove any fins from the edges of the specimens.
- 18. Use a straightedge to check that the faces are plane.
- 19. Use electronic calipers to measure the width, depth, and height of the specimens. The width and depth will be used to find the area of the specimen face perpendicular to the direction of loading. Measurements should be made across the middle of the specimen.
- 20. Verify that the spherically seated block is free to tilt.
- 21. Place a specimen in the testing machine below the center of the upper bearing block. The specimen should be turned on its side, so that the load is applied to molded faces.

- 22. Bring the block into uniform contact with the surface of the specimen.
- 23. Apply the load to the specimen at a rate of 200 lb/s. This rate should be obtained during the first half of the anticipated maximum load and no adjustment should be made during the latter half.
- 24. Record the total maximum load and calculate the compressive strength as follows:

```
f_m = P/A
```

#### where:

 $f_m$  = compressive strength (psi)

P = total maximum load (lbf)

A = area of loaded surface  $(in^2)$ 

#### Cube Compressive Strength Data Sheet

#### High Volume Fly Ash Cement Paste Study

|               |                    |      |       |                   |                                          |         |                   |         |                  |                |                |                |                 | Date:                    |                                   |
|---------------|--------------------|------|-------|-------------------|------------------------------------------|---------|-------------------|---------|------------------|----------------|----------------|----------------|-----------------|--------------------------|-----------------------------------|
|               |                    |      |       |                   |                                          |         |                   |         |                  |                |                |                | Tech            | nician:                  |                                   |
| Miss IDs      |                    |      |       |                   |                                          |         |                   |         |                  |                |                |                |                 |                          |                                   |
| IVIIA ID.     |                    |      |       |                   |                                          |         |                   |         |                  |                |                |                |                 |                          |                                   |
| Cem           | nent:              |      | % F   | ∃y Ash:           |                                          |         | % G               | yps um: |                  | %              |                |                |                 |                          |                                   |
|               | CH:                |      | % R   | S Cem:            |                                          |         | %                 | Admix:  |                  |                | w/cm:          |                |                 | -                        |                                   |
| Ceme          | ent Source:        |      |       |                   |                                          |         |                   |         | Fly As           | sh Source:     |                |                |                 |                          |                                   |
| Start T       | ime:               |      |       | _ Mc              | oist Room                                | n Time: |                   |         |                  |                | -              |                |                 |                          |                                   |
| Age<br>(days) | Specimen<br>Number | Mo   | lding |                   | Removal<br>n Mold                        |         | Removal<br>n Mold |         | esting<br>e/Time | V/idth<br>(in) | Length<br>(in) | Height<br>(in) | Maximum<br>Load | Compressiv<br>e Strength | Average<br>Compressiv<br>Strength |
| ,,            |                    | Date | Time  | Date              | Time                                     | Date    | Time              | Date    | Time             |                | Ç,             | V7             | (lbs)           | (psi)                    | (psi)                             |
|               | 1                  |      |       |                   |                                          | X       | $\times$          |         |                  |                |                |                |                 |                          |                                   |
| 1             | 2                  |      |       |                   |                                          | $\geq$  | $\geq$            |         |                  |                |                |                |                 |                          |                                   |
|               | 3                  |      |       |                   |                                          | $\geq$  | $\geq$            |         |                  |                |                |                |                 |                          |                                   |
|               | 1                  |      |       | $\boxtimes$       | $\geq$                                   |         |                   |         |                  |                |                |                |                 |                          |                                   |
| 3             | 2                  |      |       | X                 | $\geq$                                   |         |                   |         |                  |                |                |                |                 |                          |                                   |
|               | 3                  |      |       | $\boxtimes$       | $\geq$                                   |         |                   |         |                  |                |                |                |                 |                          |                                   |
|               | 1                  |      |       | $\boxtimes$       | $\geq$                                   |         |                   |         |                  |                |                |                |                 |                          |                                   |
| 7             | 2                  |      |       | X                 | $\geq$                                   |         |                   |         |                  |                |                |                |                 |                          |                                   |
|               | 3                  |      |       | $\boxtimes$       | $\geq$                                   |         |                   |         |                  |                |                |                |                 |                          |                                   |
|               | 1                  |      |       | $\boxtimes$       | $\geq$                                   |         |                   |         |                  |                |                |                |                 |                          |                                   |
| 28            | 2                  |      |       | $\bowtie$         | $\stackrel{\textstyle >}{\sim}$          |         |                   |         |                  |                |                |                |                 |                          |                                   |
|               | 3                  |      |       | $\bowtie$         | $\stackrel{\sim}{\sim}$                  |         |                   |         |                  |                |                |                |                 |                          |                                   |
|               | 1                  |      |       | $\bowtie$         | $\stackrel{\textstyle >}{\sim}$          |         |                   |         |                  |                |                |                |                 |                          | -                                 |
| 56            | 2                  |      |       | $\langle \rangle$ | $\stackrel{\times}{\longleftrightarrow}$ |         |                   |         |                  |                |                |                |                 |                          |                                   |
|               | 3                  |      |       | X                 | $\sim$                                   |         |                   |         |                  |                |                |                |                 |                          |                                   |
|               |                    |      |       |                   |                                          |         |                   |         |                  |                |                |                |                 |                          |                                   |
| Notes/D       | eviations:         |      |       |                   |                                          |         |                   |         |                  |                |                |                |                 |                          |                                   |

#### Using the F-Cal 4000 & CalCommander Software for Testing Cement Paste

### (Calmetrix F-Cal 4000/8000 User Manual, CalCommander Software v1.3 User Manual, and ASTM C 305)

#### (Revised 6-19-2012)

#### **Equipment and Materials**

- 18. F-Cal 4000, USB cable, and CalCommander Software v1.3.
- 19. Black and Decker 250-Watt Hand Mixer (Model MX217) with egg beater paddles
- 20.20-quart Hobart mixing bowl
- 21. Plastic ladle
- 22. Hamilton 1-mL Adjustable Volume SoftGrip Pipette (readable to 0.01 mL)
- 23.3-quart or larger white plastic bowl with spout
- 24. Metal spoon
- 25. Small stainless steel spatula
- 26. Four, clean 4"x8" plastic cylinder molds and caps per mix
- 27. Sper Scientific Humidity/Temperature Monitor (Model 800016)
- 28. Analog thermometer with 5-inch probe
- 29. High silica sand obtained from U.S. Silica, Pacific, MO
- 30.12-kg Denver Instrument balance
- 31. Space heater
- 32. Microsoft Excel and TableCurve 2D software

#### **Procedure**

 At least 1 hour before inserting the first specimen: connect the F-Cal to the computer using the USB cable, open the CalCommander program, click on the "F-Cal Logger" tab at the top of the window, and click on "Start Logging" at the right side of the window.

- 2. To enter information about the mix: click "Read Configuration from Logger", click on the tab in the bottom portion of the window which corresponds to the slot in which the specimen will be placed in the F-Cal; enter the Mix ID, Water/Cement Ratio, Cement Source, Cement Content (lbs/cy), and any SCMs (Type, Percent, and Source); and click "Update Configuration File" on the right side of the window. Also, make sure the Sensor Enabled box is checked.
- Prepare a clean mold with a 1250 gram inert specimen. The inert specimen consists of high silica sand and deionized water. The proportion of water to oven-dried sand should reflect the proportion of water to cementitious materials used in the mixture being tested.
- 4. Verify that the air temperature is 23.0±3.0°C (68.0-78.8°F), mixing water temperature is 23.0±2°C (69.8-77.0°F), and that the relative humidity of the air is not less than 50%. Record these parameters.
- 5. To blend the dry constituents of the mix: Place about 1000 grams of the dry materials into a 4"x8" cylinder mold in the same proportions to be used in the paste mixture, hold the cylinder horizontally with one hand on each end of the cylinder, and then shake the cylinder 25 cycles using a 6" throw.
- To dissolve admixtures into the mix water: Place all of the deionized water into the plastic bowl, use the 1-mL syringe to add the desired amount of admixture to the water, and use the small spatula to gently stir the water until all of the admixture is dissolved.
- Add the pre-mixed cementitious materials to the mixing bowl, forming a donut shape.
- 8. Add all of the mix water to the mixing bowl, start the timer, and record the time (Start Time).
- 9. Wait 10 seconds to allow the cement to absorb the water.
- 10. Mix at Speed 2 (440 RPM) for 20 seconds. Rotate the bowl 90° every 5 seconds.

- 11. Mix at Speed 6 (670 RPM) for 60 seconds. Rotate the bowl 90° every 15 seconds and occasionally run the mixing paddles along the side of the bowl.
- 12. At the end of the initial mixing, record the temperature of the paste.
- 13. At 4 minutes, remix the paste at Speed 2 for 30 seconds.
- 14. After remixing, pour 1250 grams of paste into each of the three remaining 4"x8" cylinder molds. Tap each cylinder with an open hand 10 times to remove entrapped air.
- 15. Quickly cap the molds, ensure that the outsides of the molds are clear of paste or other debris, and place the molds into the appropriate slots in the F-Cal (including the mold with the control sand). This should be done within 10 minutes after the Start Time.
- 16. Enter the "Mix Date/Time" (noted in step #8) and "Mix Temperature" (noted in step #12) into the software under the mix information tabs and click "Update Configuration File".
- 17. Disconnect the USB cable from the computer and F-Cal, close and latch the F-Cal lid, and leave the specimens for at least 48 hours. Note: shorter logging times may be used depending on the amount of information desired and prior knowledge of the materials being tested. (CAUTION: DO NOT MOVE THE F-CAL WHILE TESTING IS IN PROGRESS)
- 18. After 48 hours, open the F-Cal lid, reconnect the USB cable, open the CalCommander software, click the "F-Cal Logger" tab, and click "Read Data from Logger" at the right side of the window. If it is decided that logging should cease, click "Stop Logging".
- 19. Save the log data by clicking "Read Data from Logger" and then selecting "Save Log Data to File".
- 20. Remove the specimens from the F-Cal.

- 21. To export data: click on "F-Cal Reports" at the top of the CalCommander software window, click "Add Logs" in the bottom right corner of the screen, select the appropriate file(s), select "Accept" in the "Add F-Cal/AdiaCal Logs" window, select the tab corresponding to the channel from which data is needed, click on "Save Selected Log as Text File" in the bottom right corner of the screen, input desired file name, and click "Save".
- 22. To import data into Microsoft Excel: Open Microsoft Excel, select "Data" at the top of the screen, go to "Import External Data", click "Import Data...", double-click on the desired text file, click the "Next >" button two times in the "Text Import Wizard" window, click "Finish", and then select "OK" in the "Import Data" window.
- 23. Record the Signal-to-Noise Ratio for each specimen. The Signal is the difference between the highest and lowest temperatures recorded for the sample being tested. The Noise is the difference between the highest and lowest temperatures recorded for the inert specimen. To calculate the Signal-to-Noise Ratios:
  - a. Import the data for each specimen into Excel.
  - b. Determine the difference between the time logging began and the time water was added to the cementitious materials (Start Time). This will be used to determine the log time that corresponds to the Start Time.
  - c. For each specimen log, find the maximum temperature by using the MAX function for the range of specimen temperatures starting with the log time that corresponds to the Start Time and ending at the end of the logging period. To find the minimum temperature, follow a similar procedure using the MIN function for the same range.
  - d. Calculate the Signal for each specimen by subtracting the minimum specimen temperature from the maximum specimen temperature.
  - e. Calculate the Noise by subtracting the minimum temperature of the inert specimen from the maximum temperature of the inert specimen.
  - f. Divide the Signal for each specimen by the Noise to determine the Signal-to-Noise ratio for each specimen.

- 24. To estimate set times using the Percentage Method:
  - a. Import the data for each specimen into Excel.
  - b. Determine the difference between the time logging began and the time water was added to the cementitious materials (Start Time). This will be used to determine the log time that corresponds to the Start Time.
  - c. Remove all log data prior to the log time corresponding to the Start Time.
  - d. Find the average temperature log for the specimens by averaging the temperatures of the three specimens at every minute for the duration of the logging.
  - e. Subtract the inert specimen temperature log from the average temperature log to determine the corrected average temperature log.
  - f. Plot the corrected average hydration curve by plotting the corrected average temperatures against time.
  - g. Visually examine the curve to determine a time window that encompasses the dormant period and the peak of the hydration curve. There will be an initial rise in the temperature near time zero that indicates the initial rise in temperature of the thermistors from the ambient temperature to the specimen temperature. This area should not be considered to be part of the dormant period.
  - h. Use the MAX and MIN functions, within the time range chosen above, to determine the maximum and minimum temperatures ( $\Delta T_{max}$  and  $\Delta T_{min}$ ) of the hydration curve.
  - i. Using the values from Step 25.h., calculate the main hydration response rise (M =  $\Delta T_{max}$   $\Delta T_{min}$ ), twenty percent of the main hydration response rise (M<sub>20%</sub> = 0.2M), and fifty percent of the main hydration response rise (M<sub>50%</sub> = 0.5M).
  - j. Initial Set is taken as the time when 20% of the main hydration response rise ( $M_{20\%}+\Delta T_{min}$ ) occurs.
  - k. Final Set is taken as the time when 50% of the main hydration response rise ( $M_{50\%}+\Delta T_{min}$ ) occurs.

- 25. To estimate set times using the Derivatives Method:
  - a. Copy and paste the time log and corrected average temperature log from Step 25, above, into a new Excel file.
  - b. In TableCurve 2D, click "Import" in the upper left corner of the window and "Open" the Excel file.
  - c. In the "Select Columns for X-Y Data Table" window, select "(1)Sheet1!A" for the X Column, select "(1)Sheet1!B" for the Y Column, and then select "OK".
  - d. In the "Data Description and Variable Names" window, enter a title for the plot, enter titles for the axes, and select "OK".
  - e. Select "Data" at the top of the window, choose "Section Data...", select a time range from the dormant period to the peak of the main hydration curve, click the green checkmark box in the upper left corner, and select "Yes" in the "Update Data Table" window.
  - f. Select "Process" at the top of the window, choose "Curve-Fit All Equations", and select "Graph Start" after fitting has ceased. The curve-fit automatically applied has the highest R-squared value and should not be changed.
  - g. On the left side of the screen, select "Numeric". Look toward the bottom of the "Numeric Summary" screen to find the "1st Deriv max" and the "2nd Deriv max" with corresponding X-Values.
  - h. The time for Initial Set is the x-value corresponding to the maximum second derivative (2nd Deriv max).
  - i. The time for Final Set is the x-value corresponding to the maximum first derivative (1st Deriv max).

### Calorimeter Data Sheet High Volume Fly Ash Cement Paste Study

|                                             |                                                              |                  |          |                | Date:                                                             |      |
|---------------------------------------------|--------------------------------------------------------------|------------------|----------|----------------|-------------------------------------------------------------------|------|
|                                             |                                                              |                  |          |                | Technician:                                                       |      |
| ix ID:                                      |                                                              |                  |          |                |                                                                   |      |
| Cement:% CH:%                               | Fly Ash:                                                     | %                | Gypsum:  | %              |                                                                   |      |
| CH: %                                       | RS Cem:                                                      | %                |          |                | w/cm:                                                             |      |
| Cement Source:                              |                                                              |                  |          |                | :                                                                 |      |
|                                             |                                                              |                  |          |                |                                                                   |      |
| Thermal Measurement                         |                                                              |                  | Specimer | Containers     | s:                                                                |      |
| Materia                                     | I Type:                                                      |                  |          |                |                                                                   |      |
| Inert Specime                               | n Preparation                                                |                  |          |                | Mixing and Sample Preparation                                     |      |
|                                             |                                                              |                  |          |                | Air Temperature (°F):                                             |      |
| Total Desi                                  | gn Mass, m <sub>i,T</sub> (g):                               |                  |          |                | Water Temperature (°F):                                           |      |
| Proportion of Water to Sa                   | nd, w/s [=w/cm]:                                             |                  |          |                | Relative Humidity (%):                                            |      |
| Design Mass of Sand, m <sub>i,S</sub> (g    | ) [=(m <sub>i,T</sub> )/(1+w/s)]:                            |                  |          |                | Start Time:                                                       |      |
| Design Mass of Water, m <sub>i, N</sub>     | (g) [=m <sub>i,T</sub> - m <sub>i,S</sub> ]:                 |                  |          |                | Admix Addition Time:                                              |      |
|                                             |                                                              |                  |          | Pas            | ste Temp. at End of Mixing (°F):                                  |      |
| Actual                                      | Mass of Sand (g):                                            |                  |          |                | Sample 1 Mass (g):                                                |      |
| Actual N                                    | lass of Water (g):                                           |                  |          |                | Sample 2 Mass (g):                                                |      |
| Total Actual Mass of Inc                    | ert Specimen (g):                                            |                  |          |                | Sample 3 Mass (g):                                                |      |
|                                             |                                                              |                  |          |                |                                                                   |      |
| Signal-to-N<br>(Raw                         |                                                              |                  |          |                | Thermal Setting Times<br>(Corrected Average Data)                 |      |
|                                             |                                                              |                  |          |                | Percentage Method                                                 |      |
| Inert Sp                                    | ecimen                                                       |                  |          | Max.           | Temp. of Main Hydration Curve, ΔT <sub>max</sub> (°               | F):  |
| Max. Temperature of Inert                   | Specimen, T <sub>i,max</sub> (                               | °F):             |          |                | Time when ΔT <sub>max</sub> Occurs (mi                            | n):  |
| Min. Temperature of Inert                   | Specimen, T <sub>i,min</sub> (                               | °F):             |          | Mir            | n. Temp. During Dormant Period, ΔT <sub>min</sub> (°              | F):  |
| Sam                                         | ple 1                                                        |                  |          | Main Hydra     | ation Response Rise, M (°F) [=ΔT <sub>max</sub> - ΔΤ <sub>m</sub> | ր]։  |
| Max. Temperature o                          | of Sample, T <sub>s,max</sub> (                              | °F):             |          | 0% of Main     | Hydration Response Rise, M <sub>20%</sub> (°F) [=0.21             | /l]: |
| Min. Temperature o                          | of Sample, T <sub>s,min</sub> (                              | °F):             |          |                | M <sub>20%</sub> +ΔT <sub>min</sub> (°                            | F):  |
| Signal-to-Noise Ratio [=(T <sub>s,max</sub> | -T <sub>s,min</sub> )/(T <sub>i,max</sub> -T <sub>i,mi</sub> | n)]:             |          | Initial Set (ı | min) [=Time when M <sub>20%</sub> +ΔT <sub>min</sub> First Occu   | _    |
| Sam                                         | ple 2                                                        |                  |          | 0% of Main     | Hydration Response Rise, M <sub>50%</sub> (°F) [=0.5              | /l]: |
| Max. Temperature o                          | of Sample, T <sub>s,max</sub> (                              | °F):             |          |                | M <sub>50%</sub> +ΔT <sub>min</sub> (°                            | F):  |
| Min. Temperature o                          | of Sample, T <sub>s,min</sub> (                              | °F):             |          | Final Set (    | min) [=Time when M <sub>50%</sub> +ΔT <sub>min</sub> First Occu   |      |
| Signal-to-Noise Ratio [=(T <sub>s,max</sub> | -T <sub>s,min</sub> )/(T <sub>i,max</sub> -T <sub>i,mi</sub> | <sub>n</sub> )]: |          |                | Derivatives Method                                                |      |
| Sam                                         |                                                              |                  |          |                | Maximum 2 <sup>nd</sup> Derivative (from Tablecurv                | e):  |
| Max. Temperature o                          | of Sample, T <sub>s,max</sub> (                              | °F):             | Init     | ial Set (min   | n) [=Time when Max. 2 <sup>nd</sup> Derivative Occui              | s]:  |
| Min. Temperature o                          | of Sample, T <sub>s,min</sub> (                              | °F):             |          |                | Maximum 1st Derivative (from Tablecury                            | e):  |
|                                             |                                                              | n)]:             |          | nal Set (mi    |                                                                   | -    |

# Miniature Slump Cone (Kantro (1980) and Bhattacharja & Tang (2001)) (Revised 6-19-2012)

#### **Equipment**

 Black and Decker 250-Watt Hand Mixer (Model MX217) with egg beater paddles



- 2. 20-quart Hobart mixing bowl
- 3. Plastic ladle
- 4. Hamilton 1-mL Adjustable Volume SoftGrip Pipette, (readable to 0.01 mL)
- 5. 3-quart or larger white plastic bowl with spout
- 6. Metal spoon
- 7. Analog thermometer with 5-inch probe
- 8. Stopwatch
- 9. Small stainless steel spatula (0.625 in. wide and 4 in. long)

#### 10.2 mini-slump cones



- 11. Lucite sheet (0.2 inches thick). Label the area of the sheet where each test will be performed with the time the cone will be lifted (2, 5, 15, 30, 45 minutes)
- 12. Plastic wrap
- 13.5 thin plastic discs (2 in. diameter) cut from Zip-lock bags
- 14.12-kg Denver Instrument balance
- 15. Sper Scientific Humidity/Temperature Monitor (Model 800016)

#### Procedure

- 1. Place the 5 plastic discs on the board 8 inches apart on center and at least 3 inches away from any edge of the board.
- 2. Place each of the two mini-slump cones on a plastic disc.
- 3. Verify that the air temperature is 23.0±3.0°C (68.0-78.8°F), mixing water temperature is 23.0±2°C (69.8-77.0°F), and that the relative humidity of the air is not less than 50%. Record these parameters.
- 4. To blend the dry constituents of the mix: Place about 1000 grams of the dry materials into a plastic 4"x8" cylinder mold in the same proportions to be used in the paste mixture, hold the cylinder horizontally with one hand on each end of the cylinder, and then shake the cylinder 25 cycles using a 6" throw.

- 5. To dissolve admixtures into the mix water: Place all of the deionized water into the plastic bowl, use the 1-mL syringe to add the desired amount of admixture to the water, and use the small spatula to gently stir the water until all of the admixture is dissolved.
- 6. Add all cementitious materials to the mixing bowl, forming a donut shape.
- 7. Add all of the water to the mixing bowl, start the timer, and record the time (Start Time).
- 8. Wait 10 seconds to allow the cement to absorb the water.
- 9. Mix at Speed 2 (440 RPM) for 20 seconds. Rotate the bowl 90° every 5 seconds.
- 10. Mix at Speed 6 (670 RPM) for 60 seconds. Rotate the bowl 90° every 15 seconds and occasionally run the mixing paddles along the side of the bowl.
- 11. Record the temperature of the paste.
- 12. At the completion of mixing (1.5 minutes after the Start Time), fill the first mini-slump cone until a slight hump is formed above the top of the cone.
- 13. Use the spatula with a rodding motion at a slight angle to remove entrapped air. The paste should be "rodded" 5 to 10 times.
- 14. If the paste is depressed below the top of the cone after removing the entrapped air, use paste spilled on the rim to fill the cone.
- 15. Use the spatula to strike off the top surface of the cone.
- 16. At 2 minutes after the Start Time, lift the cone within a few tenths of a second. The lifting motion should be rapid enough for the bottom of the cone to be free of the flowing paste, but slow enough to avoid imparting an upward momentum to the paste as it is flowing from the cone.
- 17. At 4 minutes after the Start Time, remix the paste remaining in the bowl at Speed 2 for 30 seconds.
- 18. Pour the paste into the second cone and remove entrapped air with the same procedure used above.
- 19. At 5 minutes after the Start Time, lift the cone.
- 20. Cover the remaining paste in the mixing bowl using plastic wrap.

- 21. At 13 minutes after the Start Time, uncover the paste and remix the paste at Speed 2 for 30 seconds.
- 22. Pour the paste into a clean, dry cone and remove entrapped air with the same procedure used above.
- 23. At 15 minutes after the Start Time, lift the cone.
- 24. Repeat the procedure in Steps 21-23 for slumps at 30 and 45 minutes after the Start Time. See the table, below, which summarizes the mixing, pausing, and testing times
- 25. At 1 hour after the Start Time, measure and record the diameter of each of the paste pats 4 times using digital calipers. The measurements should each be rotated 45°.
- 26. Calculate the average diameter of each pat and use the average diameter to calculate the area of the pat. Record this area in square inches.

| Elapsed Time | Action                                                                        |
|--------------|-------------------------------------------------------------------------------|
| (mm:ss)      |                                                                               |
| 0:00         | Add water to mixing bowl with cementitious materials Record Time (Start Time) |
| 0:10         | Start mixing at Speed 2                                                       |
| 0:30         | Start mixing at Speed 6                                                       |
| 1:30         | Stop Mixing Record Temperature of Paste Prepare mini-slump test               |
| 2:00         | Lift mini-slump cone                                                          |
| 4:00         | Remix paste at Speed 2                                                        |
| 4:30         | Prepare mini-slump test                                                       |
| 5:00         | Lift mini-slump cone                                                          |
| 13:00        | Remix paste at Speed 2                                                        |
| 13:30        | Prepare mini-slump test                                                       |
| 15:00        | Lift mini-slump cone                                                          |
| 28:00        | Remix paste at Speed 2                                                        |
| 28:30        | Prepare mini-slump test                                                       |
| 30:00        | Lift mini-slump cone                                                          |
| 43:00        | Remix paste at Speed 2                                                        |
| 43:30        | Prepare mini-slump test                                                       |
| 45:00        | Lift mini-slump cone                                                          |
| 60:00        | Measure and record mini-slump diameters                                       |

#### Miniature Slump Data Sheet

#### High Volume Fly Ash Cement Paste Study

|                     |    |                     |              | Тес                               | Date:             |
|---------------------|----|---------------------|--------------|-----------------------------------|-------------------|
| ID:                 |    |                     |              |                                   |                   |
| Cement:             | _% | Fly Ash:            | %            | Gypsum:                           | %                 |
| CH:                 | _% | RS Cem:             | %            | Admix:                            | w/cm:             |
| Cement Source       | :  |                     | F            | ly Ash Source:                    |                   |
|                     |    |                     |              |                                   |                   |
| ir Temperature (°F) | :  | Water T             | emperature ( | °F): Relativ                      | e Humidity (%): _ |
| rrt Time:           |    | Paste Temperature a | t Completion | of Mixing (°F):  Average Diameter | Area              |
| rt Time:            |    | Paste Temperature a | t Completion | of Mixing (°F):                   |                   |
| Test Time (min)     |    | Paste Temperature a | t Completion | of Mixing (°F):  Average Diameter | Area              |
| Test Time (min)     |    | Paste Temperature a | t Completion | of Mixing (°F):  Average Diameter | Area              |
| Test Time (min) 2 5 |    | Paste Temperature a | t Completion | of Mixing (°F):  Average Diameter | Area              |

# Time of Setting by Vicat Needle (ASTM C 187, ASTM C 191, and ASTM C 305) (Revised 6-19-2012)

## **Equipment**

- 33.5-quart Hobart mixer (Model N50), bowl, and paddle
- 34. Bowl scraper with semi-rigid rubber blade
- 35. Rubber gloves
- 36. Vicat Apparatus, glass plate, and conical ring
- 37. Flat trowel
- 38. Stopwatch
- 39. Analog thermometer with 5-inch probe
- 40.12-kg Denver Instrument balance
- 41. Sper Scientific Humidity/Temperature Monitor (Model 800016)

#### Procedure

# A. Mixing

- 26. Verify that the air temperature is 23.0±3.0°C (68.0-78.8°F), mixing water temperature is 23.0±2°C (69.8-77.0°F), and that the relative humidity of the air is not less than 50%. Record these parameters.
- 27. Obtain 650 grams of the cementitious materials and the desired amount of deionized water to be used. (To blend the dry constituents of the mix: Place about 1000 grams of the dry materials into a 4"x8" cylinder mold in the same proportions to be used in the paste mixture, hold the cylinder horizontally with one hand on each end of the cylinder, and then shake the cylinder 25 cycles using a 6" throw.)
- 28. Wet the paddle and the inside of the mixing bowl.
- 29. Place all of the mixing water in the bowl. (To dissolve admixtures into the mix water: Place all of the deionized water into the plastic bowl, use the 1-mL syringe to add the desired amount of admixture to the water, and use

- the small spatula to gently stir the water until all of the admixture is dissolved.)
- 30. Add the cementitious materials to the water and wait 30 seconds for the absorption of water. While waiting, make note of the time the cement was added (Start Time), attach the bowl and paddle in the Hobart mixer, secure the latches on the bowl, and then turn the lever on the right side of the mixer counter-clockwise to lift the bowl into the mixing position.
- 31. On the left side of the mixer, set the speed to 1.
- 32. Start the mixer and mix at slow speed for 30 seconds.
- 33. Stop the mixer for 15 seconds and use the bowl scraper to scrape paste from the sides of the bowl down into the batch.
- 34. Set the mixing speed to setting 2.
- 35. Start the mixer and mix at medium speed for 60 seconds.
- 36. Stop the mixer and remove the paddle.

### B. Normal Consistency

- 37. Put on rubber gloves and immediately form a portion of the cement paste into a ball and toss the ball from one hand to the other six times (hands should be about 6 inches apart).
- 38. Place the ball in the palm of one hand and press the ball into the larger end of the ring until the ring is filled with paste.
- 39. Use a single sweeping motion of the palm of the hand to remove excess paste at the larger end of the ring and place the large end of the ring onto the plate.
- 40. Remove excess paste at the top (smaller end) of the ring using a single oblique stroke of the trowel held at a slight angle with the top of the ring. If necessary, smooth the top with no more than two light touches of the pointed end of the trowel.
- 41. Center the paste under the **10 mm** end of the rod, bring the end of the rod into contact with the surface of the paste, and tighten the set-screw.

- 42. Set the indicator to zero and release the rod quickly. This must be done within 30 seconds after mixing is completed.
- 43. After 30 seconds, read and record the depth of penetration. If this depth is 10±1 mm continue to step 19. If the depth is outside of this range, repeat steps 2-18, with fresh cement and a different percentage of water, until a depth of 10±1 mm is obtained.
- 44. Calculate the amount of water required to the nearest 0.1% and record it to the nearest 0.5% of the weight of the dry cement.

## C. Setting Time

- 45. Using 650 grams of the cementitious materials and the percentage of water determined in step 19, repeat steps 3-15 and then continue with step 21. (Note: The paste remaining from the normal consistency test may also be used.)
- 46. Place the specimen in the moist room and do not disturb it for 30 minutes. Protect the specimen from dripping water by using an arched sheet of thin plastic to cover the specimen.
- 47. After the 30 minutes and at 15 minute intervals thereafter until a penetration of 25 mm or less is obtained, determine the penetration using the following procedure:
  - a. Lower the 1 mm diameter needle until it rests on the surface of the paste.
  - b. Tighten the setscrew to secure the rod and set the indicator to zero at the top of the scale.
  - Release the setscrew quickly and let the needle settle for 30 seconds.
  - d. At the end of the 30 seconds, take the penetration reading.
     (Note: Each penetration test should be at least 5 mm from any previous test and at least 10 mm away from the edge of the specimen)

48. Interpolate to determine the time when a penetration of 25 mm would be obtained. This elapsed time is the Vicat initial time of setting. Calculate the initial set time, in minutes, as follows:

Initial Set Time = 
$$[(H-E)x(C-25)/(C-D)]+E$$

where: H = time of first penetration less than 25 mm (min)

E = time of last penetration greater than 25 mm (min)

C = penetration reading at time E (mm)

D = penetration reading at time H (mm)

- 49. Repeat the procedure described in steps 22a-22d, at 15 minute intervals, until the needle does not leave a complete circular impression. This elapsed time is the Vicat final time of setting.
- 50. Within 90 seconds, perform two additional tests on different areas of the specimen to verify the final set time.

#### Normal Consistency Data Sheet

#### High Volume Fly Ash Cement Paste Study

|                        |                    |                     |                | Date:            |            |
|------------------------|--------------------|---------------------|----------------|------------------|------------|
|                        |                    |                     |                | Technician:      |            |
| Mix ID:                |                    |                     |                |                  |            |
| Cement                 | . F                | Fly Ash:            | %              | Gypsum:          | <b>%</b>   |
| CH:                    | . R                | S Cem:              | <u></u> %      | Admix:           | w/cm:      |
| Cement Source:         |                    |                     | Fly A          | sh Source:       |            |
| Air Temperature (°F):  |                    |                     | Mixer Type:    |                  |            |
| ater Temperature (°F): |                    |                     | -              |                  |            |
| Relative Humidity (%): |                    |                     | -              |                  |            |
| Trial                  | Cement Mass<br>(g) | Fly Ash Mass<br>(g) | Water Mass (g) | Penetration (mm) | Start Time |
| 1                      |                    |                     |                |                  |            |
| 2                      |                    |                     |                |                  |            |
| 3                      |                    |                     |                |                  |            |
| 4                      |                    |                     |                |                  |            |
| 5                      |                    |                     |                |                  |            |
| 6                      |                    |                     |                |                  |            |
| 7                      |                    |                     |                |                  |            |
| 8                      |                    |                     |                |                  |            |
|                        |                    |                     |                |                  |            |
| 9                      |                    |                     |                |                  | 1          |

## Vicat Time of Setting (Method A) Data Sheet High Volume Fly Ash Cement Paste Study

|                         |              |                   |             | Date:       |                  | _        |
|-------------------------|--------------|-------------------|-------------|-------------|------------------|----------|
|                         |              |                   |             | Technician: |                  | _        |
| Mix ID:                 |              |                   |             |             |                  | _        |
| Cement:                 | %            | Fly Ash:          |             | %           | Gypsum:          | %        |
| CH:                     | _%           | RS Cem:           |             | %           | Admix:           | _        |
|                         |              |                   |             |             | w/cm:            | _        |
| Cement Source:          |              |                   | Fly         | Ash Source: |                  |          |
| Air Temperature (°F):   |              |                   |             |             |                  |          |
| Water Temperature (°F): |              |                   | Time into   | Moist Room: |                  | _        |
| Relative Humidity (%):  |              |                   |             | •           |                  |          |
| Elapsed Time (hh:mm)    | Pene         | tration (mm)      | Elapsed Tir | ne (hh:mm)  | Penetration (mm) |          |
|                         |              |                   |             |             |                  | 4        |
|                         |              |                   |             |             |                  | -        |
|                         |              |                   |             |             |                  | $\dashv$ |
|                         |              |                   |             |             |                  | +        |
|                         |              |                   |             |             |                  |          |
|                         |              |                   |             |             |                  |          |
|                         |              |                   |             |             |                  | 4        |
|                         |              |                   |             |             |                  | 4        |
|                         |              |                   |             |             |                  | $\dashv$ |
|                         |              |                   |             |             |                  | +        |
|                         |              |                   |             |             |                  |          |
|                         |              |                   |             |             |                  |          |
|                         |              |                   |             |             |                  | 4        |
|                         |              |                   |             |             |                  | 4        |
|                         |              |                   |             |             |                  | $\dashv$ |
|                         |              |                   |             |             |                  | $\dashv$ |
|                         |              |                   |             |             |                  |          |
| Time of Last Pen        | etration >   | 25 mm, E (min):   |             | Notes       | / Deviations:    |          |
| Time of First Pen       | etration <   | 25 mm, H (min):   |             |             |                  |          |
| Penetration R           | eading at    | Time E, C (min):  |             |             |                  | _        |
| Penetration R           | eading at    | Time H, D (min):  |             |             |                  |          |
|                         |              |                   |             |             |                  | _        |
| Initial Set Time (min   | n), [=((H-E) | (C-25)/(C-D))+E]: |             | •           |                  | _        |
|                         |              |                   |             |             |                  | _        |
|                         | Final        | Set Time (min):   |             | •           |                  | _        |

# APPENDIX B

OUTLIER ANALYSIS FOR CALORIMETRY DATA

Table B.1. Outlier Analysis of Calorimetry Data for Cement 1 Combinations in the Screening Study

|             | Propo      | rtions         |                    |                    |                    |       |      |   | Calo  | rime te r | Outlie     | r Analys         | sis       |                          |                          |          |
|-------------|------------|----------------|--------------------|--------------------|--------------------|-------|------|---|-------|-----------|------------|------------------|-----------|--------------------------|--------------------------|----------|
| Combination | Cement (%) | Fly Ash<br>(%) | (S/N) <sub>1</sub> | (S/N) <sub>2</sub> | (S/N) <sub>3</sub> | Avg.  | σ    | n | Max.  | Min.      | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | New Avg. |
| Baseline 1  | 100        | 0              | 14.23              | 14.49              | 14.46              | 14.39 | 0.14 | 3 | 14.49 | 14.23     | 1.153      | 0.686            | 1.147     | NO                       | NO                       | 14.39    |
| 1-1         | 75         | 25             | 18.22              | 19.08              | 18.33              | 18.54 | 0.47 | 3 | 19.08 | 18.22     | 1.153      | 1.147            | 0.687     | NO                       | NO                       | 18.54    |
| 1-1         | 50         | 50             | 16.04              | 16.52              | 16.06              | 16.20 | 0.27 | 3 | 16.52 | 16.04     | 1.153      | 1.154            | 0.616     | YES                      | NO                       | 16.20    |
| 1-1         | 30         | 70             | 3.85               | 3.90               | 3.83               | 3.86  | 0.04 | 3 | 3.90  | 3.83      | 1.153      | 1.132            | 0.763     | NO                       | NO                       | 3.86     |
| 1-2         | 75         | 25             | 7.05               | 7.42               | 7.22               | 7.23  | 0.19 | 3 | 7.42  | 7.05      | 1.153      | 1.033            | 0.963     | NO                       | NO                       | 7.23     |
| 1-2         | 50         | 50             | 6.21               | 6.54               | 6.35               | 6.36  | 0.17 | 3 | 6.54  | 6.21      | 1.153      | 1.049            | 0.942     | NO                       | NO                       | 6.36     |
| 1-2         | 30         | 70             | 4.25               | 4.32               | 4.20               | 4.26  | 0.06 | 3 | 4.32  | 4.20      | 1.153      | 1.044            | 0.949     | NO                       | NO                       | 4.26     |
| 1-3         | 75         | 25             | 10.42              | 10.88              | 10.66              | 10.65 | 0.23 | 3 | 10.88 | 10.42     | 1.153      | 0.976            | 1.022     | NO                       | NO                       | 10.65    |
| 1-3         | 50         | 50             | 12.12              | 12.89              | 12.73              | 12.58 | 0.41 | 3 | 12.89 | 12.12     | 1.153      | 0.763            | 1.132     | NO                       | NO                       | 12.58    |
| 1-3         | 30         | 70             | 4.20               | 4.19               | 4.18               | 4.19  | 0.01 | 3 | 4.20  | 4.18      | 1.153      | 0.844            | 1.104     | NO                       | NO                       | 4.19     |
| 1-4         | 75         | 25             | 12.77              | 13.34              | 12.84              | 12.98 | 0.31 | 3 | 13.34 | 12.77     | 1.153      | 1.146            | 0.693     | NO                       | NO                       | 12.98    |
| 1-4         | 50         | 50             | 9.44               | 10.17              | 9.77               | 9.80  | 0.37 | 3 | 10.17 | 9.44      | 1.153      | 1.030            | 0.967     | NO                       | NO                       | 9.80     |
| 1-4         | 30         | 70             | 10.24              | 10.46              | 10.52              | 10.41 | 0.15 | 3 | 10.52 | 10.24     | 1.153      | 0.769            | 1.131     | NO                       | NO                       | 10.41    |
| 1-5         | 75         | 25             | 10.75              | 11.40              | 11.08              | 11.08 | 0.32 | 3 | 11.40 | 10.75     | 1.153      | 0.995            | 1.004     | NO                       | NO                       | 11.08    |
| 1-5         | 50         | 50             | 11.79              | 12.61              | 12.14              | 12.18 | 0.41 | 3 | 12.61 | 11.79     | 1.153      | 1.046            | 0.946     | NO                       | NO                       | 12.18    |
| 1-5         | 30         | 70             |                    | 27.19              |                    | 27.19 |      |   |       |           |            |                  |           |                          |                          | 27.19    |

Table B.2. Outlier Analysis of Calorimetry Data for Cement 2 Combinations in the Screening Study

|             | Propo      | rtions         |                    |                    |                    |       |      |   | Calo  | rime te r | Outlie     | r Analys         | sis       |                          |                          |          |
|-------------|------------|----------------|--------------------|--------------------|--------------------|-------|------|---|-------|-----------|------------|------------------|-----------|--------------------------|--------------------------|----------|
| Combination | Cement (%) | Fly Ash<br>(%) | (S/N) <sub>1</sub> | (S/N) <sub>2</sub> | (S/N) <sub>3</sub> | Avg.  | σ    | n | Max.  | Min.      | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | New Avg. |
| Baseline 2  | 100        | 0              | 14.39              | 14.53              | 14.43              | 14.45 | 0.07 | 3 | 14.53 | 14.39     | 1.153      | 1.097            | 0.860     | NO                       | NO                       | 14.45    |
| 2-1         | 75         | 25             | 13.97              | 14.45              | 14.41              | 14.28 | 0.26 | 3 | 14.45 | 13.97     | 1.153      | 0.637            | 1.153     | NO                       | NO                       | 14.28    |
| 2-1         | 50         | 50             | 13.61              | 14.10              | 13.96              | 13.89 | 0.25 | 3 | 14.10 | 13.61     | 1.153      | 0.846            | 1.104     | NO                       | NO                       | 13.89    |
| 2-1         | 30         | 70             | 14.83              | 15.17              | 14.81              | 14.94 | 0.20 | 3 | 15.17 | 14.81     | 1.153      | 1.153            | 0.638     | NO                       | NO                       | 14.94    |
| 2-2         | 75         | 25             | 11.50              | 12.08              | 11.92              | 11.83 | 0.30 | 3 | 12.08 | 11.50     | 1.153      | 0.827            | 1.111     | NO                       | NO                       | 11.83    |
| 2-2         | 50         | 50             | 7.12               | 7.43               | 7.20               | 7.25  | 0.16 | 3 | 7.43  | 7.12      | 1.153      | 1.127            | 0.783     | NO                       | NO                       | 7.25     |
| 2-2         | 30         | 70             | 9.33               | 9.52               | 9.36               | 9.41  | 0.10 | 3 | 9.52  | 9.33      | 1.153      | 1.145            | 0.704     | NO                       | NO                       | 9.41     |
| 2-3         | 75         | 25             | 14.65              | 15.21              | 14.93              | 14.93 | 0.28 | 3 | 15.21 | 14.65     | 1.153      | 0.998            | 1.002     | NO                       | NO                       | 14.93    |
| 2-3         | 50         | 50             | 15.64              | 16.23              | 15.80              | 15.89 | 0.31 | 3 | 16.23 | 15.64     | 1.153      | 1.114            | 0.820     | NO                       | NO                       | 15.89    |
| 2-3         | 30         | 70             | 15.11              | 15.83              | 15.26              | 15.40 | 0.38 | 3 | 15.83 | 15.11     | 1.153      | 1.133            | 0.759     | NO                       | NO                       | 15.40    |
| 2-4         | 75         | 25             | 12.18              | 12.69              | 12.49              | 12.46 | 0.26 | 3 | 12.69 | 12.18     | 1.153      | 0.924            | 1.062     | NO                       | NO                       | 12.46    |
| 2-4         | 50         | 50             | 12.44              | 13.10              | 12.65              | 12.73 | 0.34 | 3 | 13.10 | 12.44     | 1.153      | 1.098            | 0.858     | NO                       | NO                       | 12.73    |
| 2-4         | 30         | 70             | 5.94               | 6.13               | 6.05               | 6.04  | 0.09 | 3 | 6.13  | 5.94      | 1.153      | 0.949            | 1.044     | NO                       | NO                       | 6.04     |
| 2-5         | 75         | 25             | 12.87              | 13.33              | 13.18              | 13.13 | 0.24 | 3 | 13.33 | 12.87     | 1.153      | 0.853            | 1.100     | NO                       | NO                       | 13.13    |
| 2-5         | 50         | 50             | 10.18              | 10.70              | 10.31              | 10.40 | 0.27 | 3 | 10.70 | 10.18     | 1.153      | 1.125            | 0.789     | NO                       | NO                       | 10.40    |
| 2-5         | 30         | 70             |                    |                    |                    |       |      |   |       |           |            |                  |           |                          |                          |          |

Table B.3. Outlier Analysis of Calorimetry Data for Cement 3 Combinations in the Screening Study

|             | Propo      | rtions         |                    |                    |                    |       |      |   | Calo  | rime te r | Outlie     | r Analys         | sis       |                          |                          |          |
|-------------|------------|----------------|--------------------|--------------------|--------------------|-------|------|---|-------|-----------|------------|------------------|-----------|--------------------------|--------------------------|----------|
| Combination | Cement (%) | Fly Ash<br>(%) | (S/N) <sub>1</sub> | (S/N) <sub>2</sub> | (S/N) <sub>3</sub> | Avg.  | σ    | n | Max.  | Min.      | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | New Avg. |
| Baseline 3  | 100        | 0              | 13.22              | 13.48              | 13.20              | 13.30 | 0.15 | 3 | 13.48 | 13.20     | 1.153      | 1.152            | 0.640     | NO                       | NO                       | 13.30    |
| 3-1         | 75         | 25             | 13.83              | 14.27              | 13.86              | 13.99 | 0.25 | 3 | 14.27 | 13.83     | 1.153      | 1.152            | 0.649     | NO                       | NO                       | 13.99    |
| 3-1         | 50         | 50             | 12.54              | 13.38              | 13.14              | 13.02 | 0.43 | 3 | 13.38 | 12.54     | 1.153      | 0.831            | 1.110     | NO                       | NO                       | 13.02    |
| 3-1         | 30         | 70             | 10.87              | 11.14              | 10.94              | 10.98 | 0.14 | 3 | 11.14 | 10.87     | 1.153      | 1.109            | 0.834     | NO                       | NO                       | 10.98    |
| 3-2         | 75         | 25             | 14.92              | 15.43              | 15.24              | 15.20 | 0.26 | 3 | 15.43 | 14.92     | 1.153      | 0.908            | 1.071     | NO                       | NO                       | 15.20    |
| 3-2         | 50         | 50             | 14.67              | 15.45              | 14.86              | 14.99 | 0.41 | 3 | 15.45 | 14.67     | 1.153      | 1.125            | 0.788     | NO                       | NO                       | 14.99    |
| 3-2         | 30         | 70             | 1.70               | 1.70               | 1.71               | 1.70  | 0.01 | 3 | 1.71  | 1.70      | 1.153      | 1.125            | 0.788     | NO                       | NO                       | 1.70     |
| 3-3         | 75         | 25             | 15.65              | 15.95              | 15.75              | 15.78 | 0.16 | 3 | 15.95 | 15.65     | 1.153      | 1.093            | 0.870     | NO                       | NO                       | 15.78    |
| 3-3         | 50         | 50             | 12.67              | 13.39              | 12.96              | 13.01 | 0.36 | 3 | 13.39 | 12.67     | 1.153      | 1.055            | 0.933     | NO                       | NO                       | 13.01    |
| 3-3         | 30         | 70             | 7.78               | 8.03               | 7.81               | 7.87  | 0.13 | 3 | 8.03  | 7.78      | 1.153      | 1.146            | 0.697     | NO                       | NO                       | 7.87     |
| 3-4         | 75         | 25             | 12.13              | 12.49              | 12.36              | 12.33 | 0.18 | 3 | 12.49 | 12.13     | 1.153      | 0.899            | 1.077     | NO                       | NO                       | 12.33    |
| 3-4         | 50         | 50             | 10.74              | 11.44              | 10.94              | 11.04 | 0.36 | 3 | 11.44 | 10.74     | 1.153      | 1.110            | 0.832     | NO                       | NO                       | 11.04    |
| 3-4         | 30         | 70             | 8.41               | 8.46               | 8.40               | 8.43  | 0.03 | 3 | 8.46  | 8.40      | 1.153      | 1.146            | 0.696     | NO                       | NO                       | 8.43     |
| 3-5         | 75         | 25             | 15.72              | 16.14              | 15.80              | 15.88 | 0.23 | 3 | 16.14 | 15.72     | 1.153      | 1.137            | 0.745     | NO                       | NO                       | 15.88    |
| 3-5         | 50         | 50             | 9.31               | 9.89               | 9.43               | 9.54  | 0.31 | 3 | 9.89  | 9.31      | 1.153      | 1.130            | 0.769     | NO                       | NO                       | 9.54     |
| 3-5         | 30         | 70             | 8.96               | 9.10               | 9.05               | 9.04  | 0.07 | 3 | 9.10  | 8.96      | 1.153      | 0.865            | 1.095     | NO                       | NO                       | 9.04     |

Table B.4. Outlier Analysis of Calorimetry Data for Cement 4 Combinations in the Screening Study

|             | Propo      | rtions         |                    |                    |                    |       |      |   | Calo  | rime te r | Outlie     | r Analys         | sis       |                          |                          |          |
|-------------|------------|----------------|--------------------|--------------------|--------------------|-------|------|---|-------|-----------|------------|------------------|-----------|--------------------------|--------------------------|----------|
| Combination | Cement (%) | Fly Ash<br>(%) | (S/N) <sub>1</sub> | (S/N) <sub>2</sub> | (S/N) <sub>3</sub> | Avg.  | σ    | n | Max.  | Min.      | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | New Avg. |
| Baseline 4  | 100        | 0              | 14.41              | 14.55              | 14.47              | 14.47 | 0.07 | 3 | 14.55 | 14.41     | 1.153      | 1.052            | 0.938     | NO                       | NO                       | 14.47    |
| 4-1         | 75         | 25             | 11.74              | 12.25              | 11.87              | 11.95 | 0.27 | 3 | 12.25 | 11.74     | 1.153      | 1.119            | 0.806     | NO                       | NO                       | 11.95    |
| 4-1         | 50         | 50             | 11.91              | 12.26              | 12.04              | 12.07 | 0.18 | 3 | 12.26 | 11.91     | 1.153      | 1.076            | 0.901     | NO                       | NO                       | 12.07    |
| 4-1         | 30         | 70             | 8.96               | 9.10               | 8.23               | 8.77  | 0.47 | 3 | 9.10  | 8.23      | 1.153      | 0.724            | 1.141     | NO                       | NO                       | 8.77     |
| 4-2         | 75         | 25             | 17.00              | 17.89              | 17.42              | 17.44 | 0.44 | 3 | 17.89 | 17.00     | 1.153      | 1.016            | 0.984     | NO                       | NO                       | 17.44    |
| 4-2         | 50         | 50             | 13.37              | 13.72              | 13.58              | 13.56 | 0.18 | 3 | 13.72 | 13.37     | 1.153      | 0.937            | 1.053     | NO                       | NO                       | 13.56    |
| 4-2         | 30         | 70             | 2.66               | 2.70               | 2.65               | 2.67  | 0.03 | 3 | 2.70  | 2.65      | 1.153      | 1.146            | 0.696     | NO                       | NO                       | 2.67     |
| 4-3         | 75         | 25             | 12.52              | 12.94              | 12.89              | 12.79 | 0.23 | 3 | 12.94 | 12.52     | 1.153      | 0.681            | 1.148     | NO                       | NO                       | 12.79    |
| 4-3         | 50         | 50             | 10.32              | 10.71              | 10.50              | 10.51 | 0.20 | 3 | 10.71 | 10.32     | 1.153      | 1.013            | 0.987     | NO                       | NO                       | 10.51    |
| 4-3         | 30         | 70             | 5.68               | 6.00               | 5.81               | 5.83  | 0.16 | 3 | 6.00  | 5.68      | 1.153      | 1.064            | 0.921     | NO                       | NO                       | 5.83     |
| 4-4         | 75         | 25             | 11.97              | 12.25              | 12.06              | 12.09 | 0.14 | 3 | 12.25 | 11.97     | 1.153      | 1.096            | 0.863     | NO                       | NO                       | 12.09    |
| 4-4         | 50         | 50             | 12.13              | 13.01              | 12.63              | 12.59 | 0.44 | 3 | 13.01 | 12.13     | 1.153      | 0.952            | 1.042     | NO                       | NO                       | 12.59    |
| 4-4         | 30         | 70             | 5.11               | 5.45               | 5.32               | 5.29  | 0.17 | 3 | 5.45  | 5.11      | 1.153      | 0.913            | 1.069     | NO                       | NO                       | 5.29     |
| 4-5         | 75         | 25             | 16.88              | 17.08              | 17.11              | 17.03 | 0.13 | 3 | 17.11 | 16.88     | 1.153      | 0.693            | 1.146     | NO                       | NO                       | 17.03    |
| 4-5         | 50         | 50             | 11.05              | 11.74              | 11.51              | 11.43 | 0.35 | 3 | 11.74 | 11.05     | 1.153      | 0.873            | 1.091     | NO                       | NO                       | 11.43    |
| 4-5         | 30         | 70             | 20.67              | 21.35              | 20.57              | 20.86 | 0.42 | 3 | 21.35 | 20.57     | 1.153      | 1.147            | 0.690     | NO                       | NO                       | 20.86    |

Table B.5. Outlier Analysis of Calorimetry Data for Cement 5 Combinations in the Screening Study

|             | Propo      | rtions         |                    |                    |                    |       |      |   | Calo  | rime te r | Outlie     | r Analys         | sis       |                          |                          |          |
|-------------|------------|----------------|--------------------|--------------------|--------------------|-------|------|---|-------|-----------|------------|------------------|-----------|--------------------------|--------------------------|----------|
| Combination | Cement (%) | Fly Ash<br>(%) | (S/N) <sub>1</sub> | (S/N) <sub>2</sub> | (S/N) <sub>3</sub> | Avg.  | σ    | n | Max.  | Min.      | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | New Avg. |
| Baseline 5  | 100        | 0              | 13.92              | 14.23              | 14.14              | 14.10 | 0.16 | 3 | 14.23 | 13.92     | 1.153      | 0.824            | 1.112     | NO                       | NO                       | 14.10    |
| 5-1         | 75         | 25             | 15.14              | 15.44              | 15.34              | 15.31 | 0.15 | 3 | 15.44 | 15.14     | 1.153      | 0.879            | 1.088     | NO                       | NO                       | 15.31    |
| 5-1         | 50         | 50             | 16.22              | 16.97              | 16.42              | 16.54 | 0.39 | 3 | 16.97 | 16.22     | 1.153      | 1.113            | 0.823     | NO                       | NO                       | 16.54    |
| 5-1         | 30         | 70             | 16.21              | 16.62              | 16.50              | 16.44 | 0.21 | 3 | 16.62 | 16.21     | 1.153      | 0.839            | 1.107     | NO                       | NO                       | 16.44    |
| 5-2         | 75         | 25             | 12.66              | 13.15              | 12.93              | 12.91 | 0.24 | 3 | 13.15 | 12.66     | 1.153      | 0.964            | 1.033     | NO                       | NO                       | 12.91    |
| 5-2         | 50         | 50             | 13.16              | 13.82              | 13.32              | 13.43 | 0.34 | 3 | 13.82 | 13.16     | 1.153      | 1.124            | 0.790     | NO                       | NO                       | 13.43    |
| 5-2         | 30         | 70             | 3.15               | 3.17               | 3.12               | 3.14  | 0.03 | 3 | 3.17  | 3.12      | 1.153      | 0.818            | 1.115     | NO                       | NO                       | 3.14     |
| 5-3         | 75         | 25             | 13.41              | 13.96              | 13.60              | 13.66 | 0.28 | 3 | 13.96 | 13.41     | 1.153      | 1.082            | 0.890     | NO                       | NO                       | 13.66    |
| 5-3         | 50         | 50             | 11.31              | 11.70              | 11.40              | 11.47 | 0.20 | 3 | 11.70 | 11.31     | 1.153      | 1.128            | 0.779     | NO                       | NO                       | 11.47    |
| 5-3         | 30         | 70             | 12.09              | 11.99              | 11.62              | 11.90 | 0.25 | 3 | 12.09 | 11.62     | 1.153      | 0.779            | 1.128     | NO                       | NO                       | 11.90    |
| 5-4         | 75         | 25             | 11.10              | 11.58              | 11.46              | 11.38 | 0.25 | 3 | 11.58 | 11.10     | 1.153      | 0.794            | 1.123     | NO                       | NO                       | 11.38    |
| 5-4         | 50         | 50             | 8.13               | 8.66               | 8.54               | 8.44  | 0.28 | 3 | 8.66  | 8.13      | 1.153      | 0.773            | 1.129     | NO                       | NO                       | 8.44     |
| 5-4         | 30         | 70             | 4.14               | 4.27               | 4.13               | 4.18  | 0.08 | 3 | 4.27  | 4.13      | 1.153      | 1.154            | 0.613     | YES                      | NO                       | 4.18     |
| 5-5         | 75         | 25             | 18.10              | 18.83              | 18.14              | 18.36 | 0.41 | 3 | 18.83 | 18.10     | 1.153      | 1.153            | 0.622     | YES                      | NO                       | 18.36    |
| 5-5         | 50         | 50             | 8.32               | 8.78               | 8.44               | 8.51  | 0.24 | 3 | 8.78  | 8.32      | 1.153      | 1.113            | 0.823     | NO                       | NO                       | 8.51     |
| 5-5         | 30         | 70             |                    |                    |                    |       |      |   |       |           |            |                  |           |                          |                          |          |

Table B.6. Outlier Analysis of Calorimetry Data for Combination 4-1 Mixtures in the Main Study

|             |            |                | Nominal I     | Proportio   | ns         |                    |                    |                    |                    |       |      |   | Calo  | rime te r | Outlier    | Analys           | is        |                          |                          |          |
|-------------|------------|----------------|---------------|-------------|------------|--------------------|--------------------|--------------------|--------------------|-------|------|---|-------|-----------|------------|------------------|-----------|--------------------------|--------------------------|----------|
| Combination | Cement (%) | Fly Ash<br>(%) | Gypsum<br>(%) | Lime<br>(%) | RSC<br>(%) | WR<br>(fl.oz./cwt) | (S/N) <sub>1</sub> | (S/N) <sub>2</sub> | (S/N) <sub>3</sub> | Avg.  | σ    | n | Max.  | Min.      | $t_{CRIT}$ | t <sub>MAX</sub> | $t_{MIN}$ | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | New Avg. |
| 4-1         | 100        | 0              | 0             | 0           | 0          | 0.00               | 14.41              | 14.55              | 14.47              | 14.47 | 0.07 | 3 | 14.55 | 14.41     | 1.153      | 1.052            | 0.938     | NO                       | NO                       | 14.47    |
| 4-1         | 100        | 0              | 0             | 0           | 0          | 2.75               | 14.56              | 15.05              | 14.83              | 14.81 | 0.24 | 3 | 15.05 | 14.56     | 1.153      | 0.953            | 1.041     | NO                       | NO                       | 14.81    |
| 4-1         | 100        | 0              | 0             | 0           | 0          | 5.00               | 17.02              | 17.48              | 17.31              | 17.27 | 0.23 | 3 | 17.48 | 17.02     | 1.153      | 0.911            | 1.070     | NO                       | NO                       | 17.27    |
| 4-1         | 75         | 25             | 0             | 0           | 0          | 0.00               | 11.74              | 12.25              | 11.87              | 11.95 | 0.27 | 3 | 12.25 | 11.74     | 1.153      | 1.119            | 0.806     | NO                       | NO                       | 11.95    |
| 4-1         | 75         | 25             | 0             | 0           | 0          | 2.75               | 11.81              | 12.03              | 11.85              | 11.89 | 0.12 | 3 | 12.03 | 11.81     | 1.153      | 1.134            | 0.754     | NO                       | NO                       | 11.89    |
| 4-1         | 75         | 25             | 0             | 0           | 0          | 5.00               | 12.23              | 12.61              | 12.58              | 12.47 | 0.21 | 3 | 12.61 | 12.23     | 1.153      | 0.634            | 1.153     | NO                       | NO                       | 12.47    |
| 4-1         | 50         | 50             | 0             | 0           | 0          | 0.00               | 11.91              | 12.26              | 12.04              | 12.07 | 0.18 | 3 | 12.26 | 11.91     | 1.153      | 1.076            | 0.901     | NO                       | NO                       | 12.07    |
| 4-1         | 50         | 50             | 0             | 0           | 0          | 2.75               | 11.01              | 11.70              | 11.31              | 11.34 | 0.35 | 3 | 11.70 | 11.01     | 1.153      | 1.041            | 0.954     | NO                       | NO                       | 11.34    |
| 4-1         | 50         | 50             | 0             | 0           | 0          | 5.00               | 10.67              | 11.10              | 10.85              | 10.87 | 0.22 | 3 | 11.10 | 10.67     | 1.153      | 1.056            | 0.932     | NO                       | NO                       | 10.87    |
| 4-1         | 50         | 50             | 2             | 0           | 0          | 2.75               | 11.63              | 12.04              | 11.90              | 11.86 | 0.21 | 3 | 12.04 | 11.63     | 1.153      | 0.877            | 1.089     | NO                       | NO                       | 11.86    |
| 4-1         | 50         | 50             | 4             | 0           | 0          | 2.75               | 11.21              | 11.70              | 11.47              | 11.46 | 0.24 | 3 | 11.70 | 11.21     | 1.153      | 0.973            | 1.025     | NO                       | NO                       | 11.46    |
| 4-1         | 50         | 50             | 4             | 5           | 0          | 2.75               | 8.88               | 9.15               | 9.08               | 9.04  | 0.14 | 3 | 9.15  | 8.88      | 1.153      | 0.793            | 1.123     | NO                       | NO                       | 9.04     |
| 4-1         | 50         | 50             | 4             | 10          | 0          | 2.75               | 6.44               | 6.57               | 6.50               | 6.50  | 0.07 | 3 | 6.57  | 6.44      | 1.153      | 1.047            | 0.946     | NO                       | NO                       | 6.50     |
| 4-1         | 50         | 50             | 4             | 0           | 10         | 2.75               | 10.37              | 10.81              | 10.57              | 10.58 | 0.22 | 3 | 10.81 | 10.37     | 1.153      | 1.036            | 0.960     | NO                       | NO                       | 10.58    |
| 4-1         | 50         | 50             | 4             | 0           | 20         | 2.75               | 17.11              | 17.67              | 17.36              | 17.38 | 0.28 | 3 | 17.67 | 17.11     | 1.153      | 1.032            | 0.965     | NO                       | NO                       | 17.38    |
| 4-1         | 30         | 70             | 0             | 0           | 0          | 0.00               | 8.96               | 9.10               | 8.23               | 8.77  | 0.47 | 3 | 9.10  | 8.23      | 1.153      | 0.724            | 1.141     | NO                       | NO                       | 8.77     |
| 4-1         | 30         | 70             | 0             | 0           | 0          | 2.75               | 4.27               | 4.40               | 4.32               | 4.33  | 0.07 | 3 | 4.40  | 4.27      | 1.153      | 1.082            | 0.890     | NO                       | NO                       | 4.33     |
| 4-1         | 30         | 70             | 0             | 0           | 0          | 5.00               | 9.86               | 10.00              | 9.82               | 9.89  | 0.10 | 3 | 10.00 | 9.82      | 1.153      | 1.129            | 0.774     | NO                       | NO                       | 9.89     |
| 4-1         | 30         | 70             | 2             | 0           | 0          | 2.75               | 11.75              | 12.01              | 11.89              | 11.88 | 0.13 | 3 | 12.01 | 11.75     | 1.153      | 0.972            | 1.026     | NO                       | NO                       | 11.88    |
| 4-1         | 30         | 70             | 4             | 0           | 0          | 2.75               | 7.33               | 7.65               | 7.43               | 7.47  | 0.16 | 3 | 7.65  | 7.33      | 1.153      | 1.089            | 0.877     | NO                       | NO                       | 7.47     |
| 4-1         | 30         | 70             | 4             | 5           | 0          | 2.75               | 16.97              | 17.51              | 17.28              | 17.25 | 0.27 | 3 | 17.51 | 16.97     | 1.153      | 0.951            | 1.043     | NO                       | NO                       | 17.25    |
| 4-1         | 30         | 70             | 4             | 10          | 0          | 2.75               | 14.12              | 14.40              | 14.27              | 14.26 | 0.14 | 3 | 14.40 | 14.12     | 1.153      | 0.980            | 1.018     | NO                       | NO                       | 14.26    |
| 4-1         | 30         | 70             | 4             | 0           | 10         | 2.75               | 13.38              | 13.77              | 13.64              | 13.60 | 0.20 | 3 | 13.77 | 13.38     | 1.153      | 0.860            | 1.097     | NO                       | NO                       | 13.60    |
| 4-1         | 30         | 70             | 4             | 0           | 20         | 2.75               | 12.68              | 12.95              | 12.75              | 12.79 | 0.14 | 3 | 12.95 | 12.68     | 1.153      | 1.121            | 0.801     | NO                       | NO                       | 12.79    |

Table B.7. Outlier Analysis of Calorimetry Data for Combination 1-3 Mixtures in the Main Study

|             |            |                | Nominal I     | Proportion  | ns         |                    |                    |                    |                    |       |      |   | Calo  | rime te r | Outlier           | Analys           | is               |                          |                          |          |
|-------------|------------|----------------|---------------|-------------|------------|--------------------|--------------------|--------------------|--------------------|-------|------|---|-------|-----------|-------------------|------------------|------------------|--------------------------|--------------------------|----------|
| Combination | Cement (%) | Fly Ash<br>(%) | Gypsum<br>(%) | Lime<br>(%) | RSC<br>(%) | WR<br>(fl.oz./cwt) | (S/N) <sub>1</sub> | (S/N) <sub>2</sub> | (S/N) <sub>3</sub> | Avg.  | σ    | n | Max.  | Min.      | t <sub>CRIT</sub> | t <sub>MAX</sub> | t <sub>MIN</sub> | Outlier <sub>MAX</sub> ? | Outlier <sub>MIN</sub> ? | New Avg. |
| 1-3         | 100        | 0              | 0             | 0           | 0          | 0.00               | 14.23              | 14.49              | 14.46              | 14.39 | 0.14 | 3 | 14.49 | 14.23     | 1.153             | 0.686            | 1.147            | NO                       | NO                       | 14.39    |
| 1-3         | 100        | 0              | 0             | 0           | 0          | 2.75               | 8.63               | 8.85               | 8.83               | 8.77  | 0.12 | 3 | 8.85  | 8.63      | 1.153             | 0.666            | 1.150            | NO                       | NO                       | 8.77     |
| 1-3         | 100        | 0              | 0             | 0           | 0          | 5.00               | 12.91              | 13.14              | 13.10              | 13.05 | 0.12 | 3 | 13.14 | 12.91     | 1.153             | 0.756            | 1.134            | NO                       | NO                       | 13.05    |
| 1-3         | 75         | 25             | 0             | 0           | 0          | 0.00               | 10.42              | 10.88              | 10.66              | 10.65 | 0.23 | 3 | 10.88 | 10.42     | 1.153             | 0.976            | 1.022            | NO                       | NO                       | 10.65    |
| 1-3         | 75         | 25             | 0             | 0           | 0          | 2.75               | 7.96               | 8.46               | 8.11               | 8.18  | 0.25 | 3 | 8.46  | 7.96      | 1.153             | 1.109            | 0.834            | NO                       | NO                       | 8.18     |
| 1-3         | 75         | 25             | 0             | 0           | 0          | 5.00               | 10.15              | 10.61              | 10.34              | 10.37 | 0.23 | 3 | 10.61 | 10.15     | 1.153             | 1.046            | 0.947            | NO                       | NO                       | 10.37    |
| 1-3         | 50         | 50             | 0             | 0           | 0          | 0.00               | 12.12              | 12.89              | 12.73              | 12.58 | 0.41 | 3 | 12.89 | 12.12     | 1.153             | 0.763            | 1.132            | NO                       | NO                       | 12.58    |
| 1-3         | 50         | 50             | 0             | 0           | 0          | 2.75               | 11.82              | 12.54              | 12.10              | 12.15 | 0.36 | 3 | 12.54 | 11.82     | 1.153             | 1.063            | 0.922            | NO                       | NO                       | 12.15    |
| 1-3         | 50         | 50             | 0             | 0           | 0          | 5.00               | 9.24               | 9.91               | 9.55               | 9.57  | 0.34 | 3 | 9.91  | 9.24      | 1.153             | 1.023            | 0.975            | NO                       | NO                       | 9.57     |
| 1-3         | 50         | 50             | 2             | 0           | 0          | 2.75               | 12.11              | 12.77              | 12.47              | 12.45 | 0.33 | 3 | 12.77 | 12.11     | 1.153             | 0.971            | 1.026            | NO                       | NO                       | 12.45    |
| 1-3         | 50         | 50             | 4             | 0           | 0          | 2.75               | 7.23               | 7.57               | 7.40               | 7.40  | 0.17 | 3 | 7.57  | 7.23      | 1.153             | 0.998            | 1.002            | NO                       | NO                       | 7.40     |
| 1-3         | 50         | 50             | 4             | 5           | 0          | 2.75               | 7.28               | 7.72               | 7.51               | 7.50  | 0.22 | 3 | 7.72  | 7.28      | 1.153             | 0.990            | 1.009            | NO                       | NO                       | 7.50     |
| 1-3         | 50         | 50             | 4             | 10          | 0          | 2.75               | 7.23               | 7.57               | 7.38               | 7.39  | 0.17 | 3 | 7.57  | 7.23      | 1.153             | 1.036            | 0.960            | NO                       | NO                       | 7.39     |
| 1-3         | 50         | 50             | 4             | 0           | 10         | 2.75               | 8.44               | 8.99               | 8.80               | 8.74  | 0.28 | 3 | 8.99  | 8.44      | 1.153             | 0.878            | 1.089            | NO                       | NO                       | 8.74     |
| 1-3         | 50         | 50             | 4             | 0           | 20         | 2.75               | 10.57              | 11.34              | 11.04              | 10.99 | 0.39 | 3 | 11.34 | 10.57     | 1.153             | 0.923            | 1.062            | NO                       | NO                       | 10.99    |
| 1-3         | 30         | 70             | 0             | 0           | 0          | 0.00               | 4.20               | 4.19               | 4.18               | 4.19  | 0.01 | 3 | 4.20  | 4.18      | 1.153             | 0.844            | 1.104            | NO                       | NO                       | 4.19     |
| 1-3         | 30         | 70             | 0             | 0           | 0          | 2.75               | 9.06               | 9.07               | 9.10               | 9.08  | 0.02 | 3 | 9.10  | 9.06      | 1.153             | 1.129            | 0.776            | NO                       | NO                       | 9.08     |
| 1-3         | 30         | 70             | 0             | 0           | 0          | 5.00               | 6.51               | 6.55               | 6.58               | 6.55  | 0.03 | 3 | 6.58  | 6.51      | 1.153             | 0.984            | 1.015            | NO                       | NO                       | 6.55     |
| 1-3         | 30         | 70             | 2             | 0           | 0          | 2.75               | 13.72              | 14.08              | 13.77              | 13.86 | 0.20 | 3 | 14.08 | 13.72     | 1.153             | 1.147            | 0.688            | NO                       | NO                       | 13.86    |
| 1-3         | 30         | 70             | 4             | 0           | 0          | 2.75               | 10.94              | 11.41              | 11.08              | 11.14 | 0.24 | 3 | 11.41 | 10.94     | 1.153             | 1.102            | 0.850            | NO                       | NO                       | 11.14    |
| 1-3         | 30         | 70             | 4             | 5           | 0          | 2.75               | 13.27              | 14.11              | 13.73              | 13.70 | 0.42 | 3 | 14.11 | 13.27     | 1.153             | 0.969            | 1.028            | NO                       | NO                       | 13.70    |
| 1-3         | 30         | 70             | 4             | 10          | 0          | 2.75               | 11.34              | 11.62              | 11.42              | 11.46 | 0.14 | 3 | 11.62 | 11.34     | 1.153             | 1.114            | 0.821            | NO                       | NO                       | 11.46    |
| 1-3         | 30         | 70             | 4             | 0           | 10         | 2.75               | 9.24               | 9.32               | 9.43               | 9.33  | 0.10 | 3 | 9.43  | 9.24      | 1.153             | 1.031            | 0.966            | NO                       | NO                       | 9.33     |
| 1-3         | 30         | 70             | 4             | 0           | 20         | 2.75               | 8.69               | 8.67               | 8.75               | 8.70  | 0.04 | 3 | 8.75  | 8.67      | 1.153             | 1.123            | 0.794            | NO                       | NO                       | 8.70     |

# APPENDIX C

SCREENING STUDY THERMAL CURVES

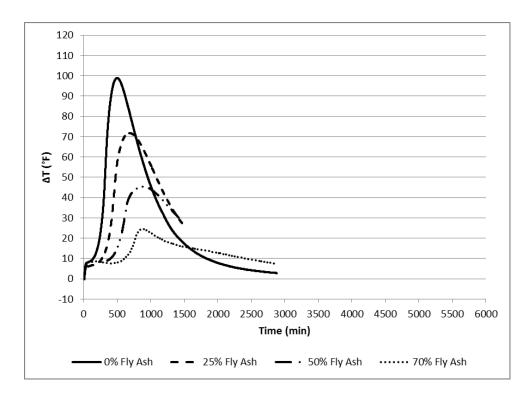



Figure C.1. Thermal Curve Plots for Combination 1-1

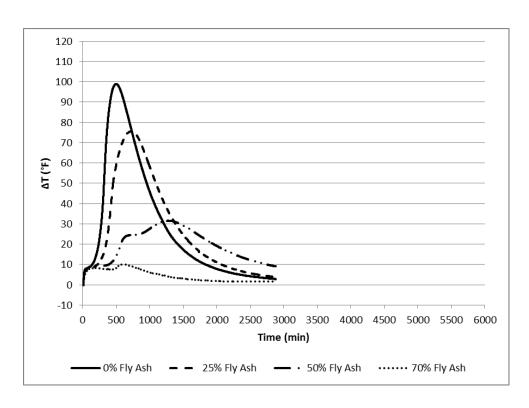



Figure C.2. Thermal Curve Plots for Combination 1-2

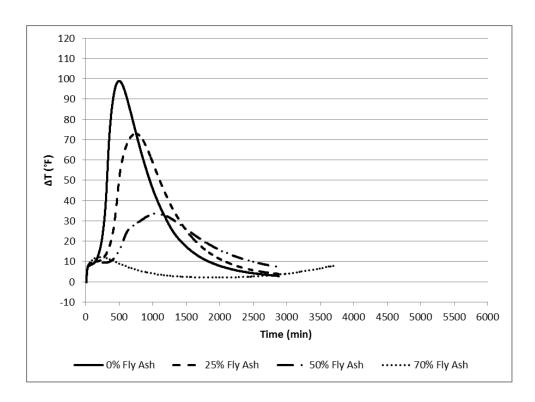



Figure C.3. Thermal Curve Plots for Combination 1-3

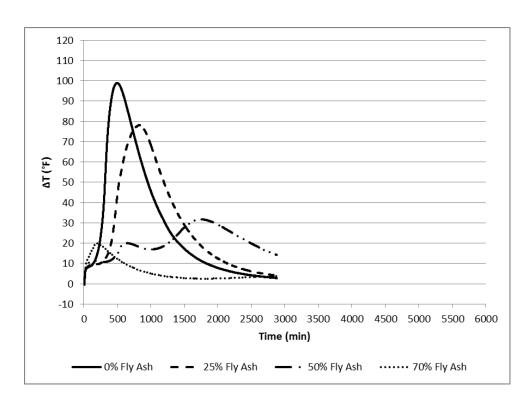



Figure C.4. Thermal Curve Plots for Combination 1-4

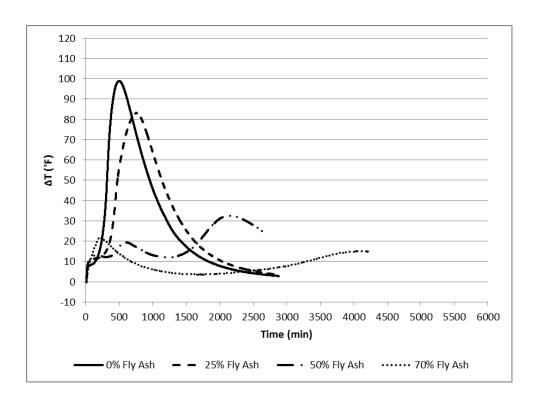



Figure C.5. Thermal Curve Plots for Combination 1-5

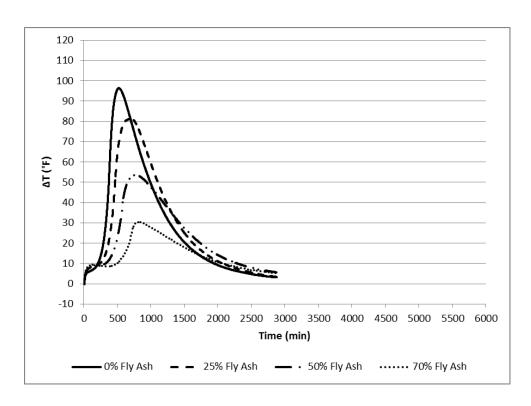



Figure C.6. Thermal Curve Plots for Combination 2-1

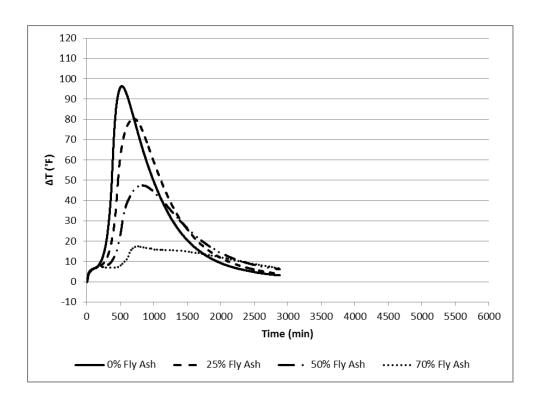



Figure C.7. Thermal Curve Plots for Combination 2-2

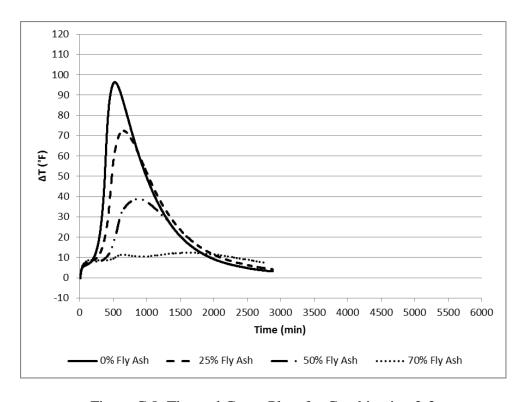



Figure C.8. Thermal Curve Plots for Combination 2-3



Figure C.9. Thermal Curve Plots for Combination 2-4

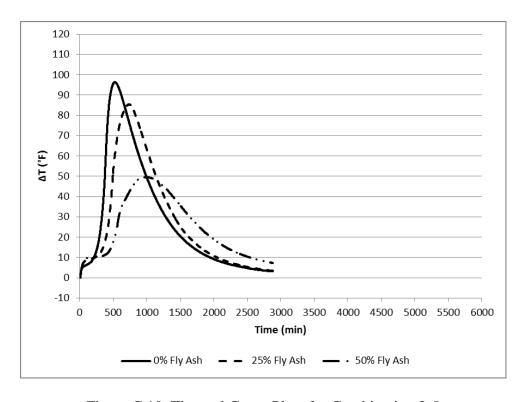



Figure C.10. Thermal Curve Plots for Combination 2-5

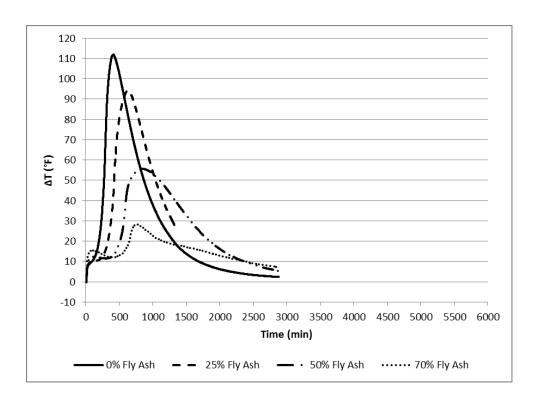



Figure C.11. Thermal Curve Plots for Combination 3-1




Figure C.12. Thermal Curve Plots for Combination 3-2

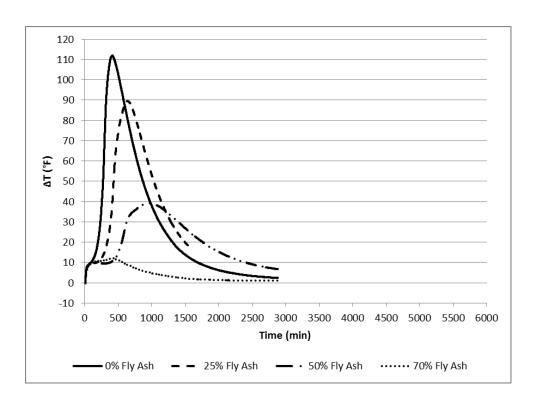



Figure C.13. Thermal Curve Plots for Combination 3-3

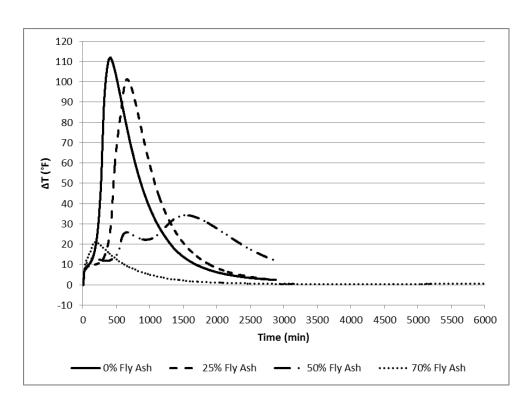



Figure C.14. Thermal Curve Plots for Combination 3-4

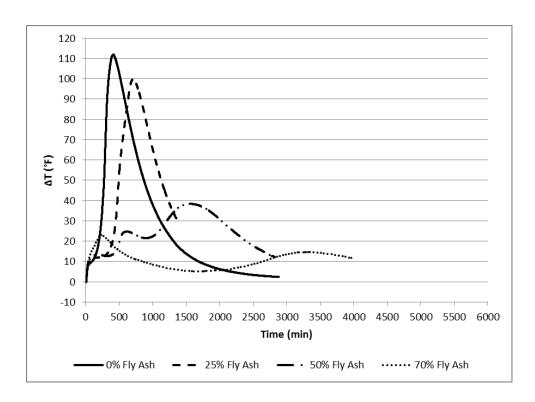



Figure C.15. Thermal Curve Plots for Combination 3-5

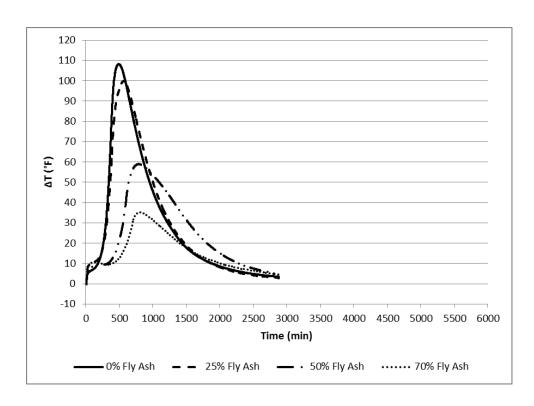



Figure C.16. Thermal Curve Plots for Combination 4-1

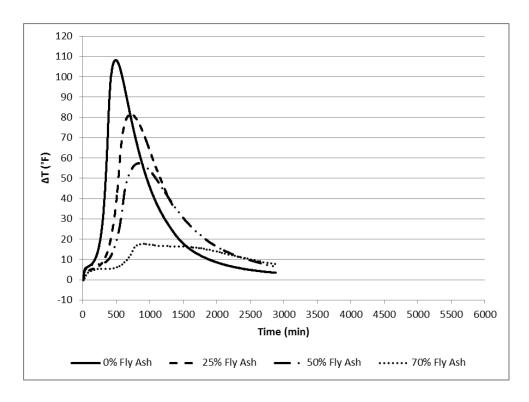



Figure C.17. Thermal Curve Plots for Combination 4-2

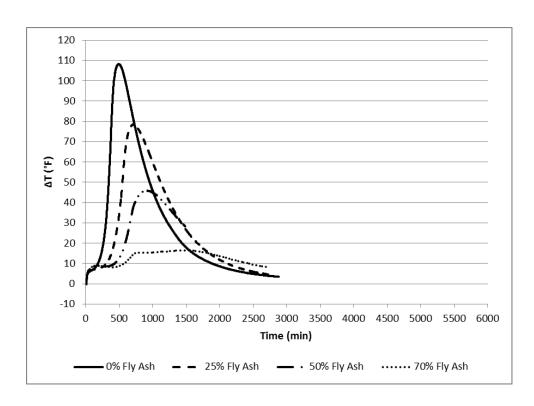



Figure C.18. Thermal Curve Plots for Combination 4-3

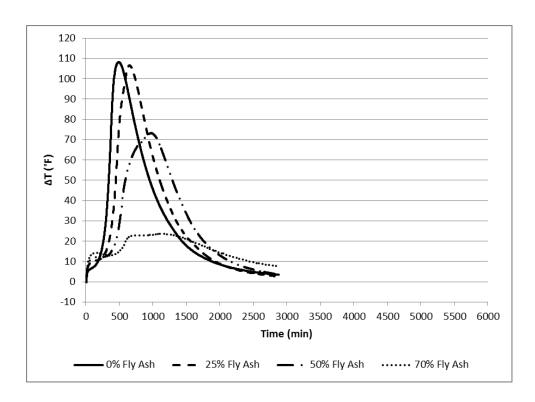



Figure C.19. Thermal Curve Plots for Combination 4-4

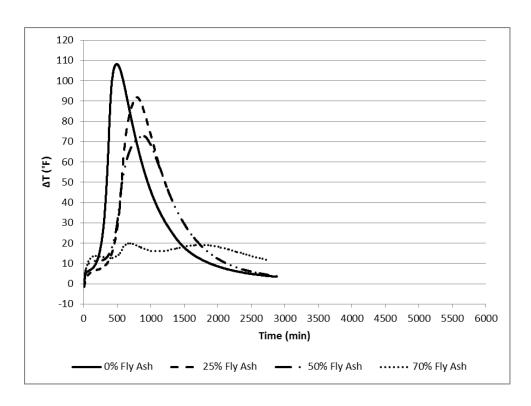



Figure C.20. Thermal Curve Plots for Combination 4-5

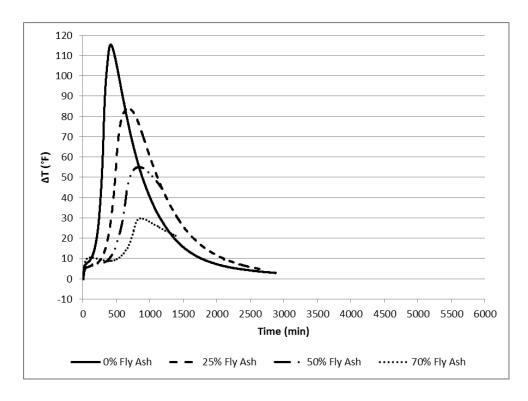



Figure C.21. Thermal Curve Plots for Combination 5-1

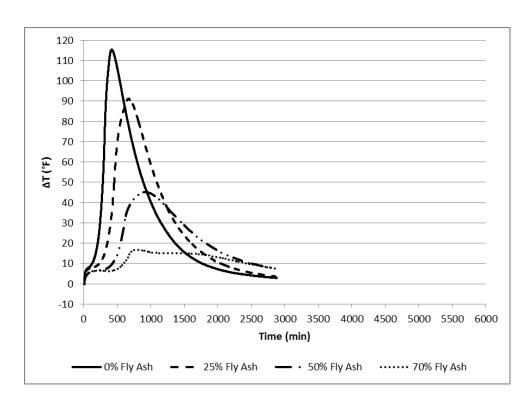



Figure C.22. Thermal Curve Plots for Combination 5-2

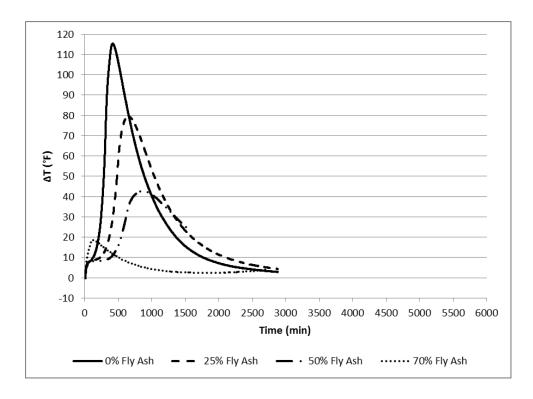



Figure C.23. Thermal Curve Plots for Combination 5-3

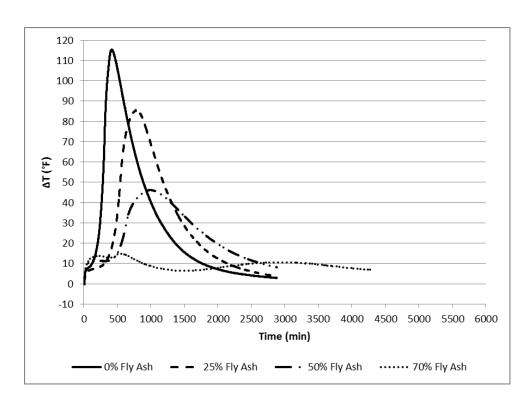



Figure C.24. Thermal Curve Plots for Combination 5-4

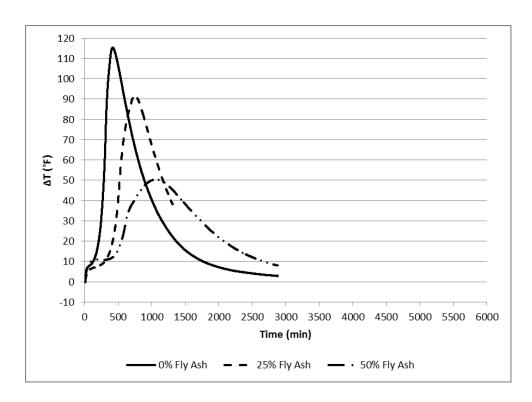



Figure C.25. Thermal Curve Plots for Combination 5-5

# APPENDIX D

MAIN STUDY THERMAL CURVES

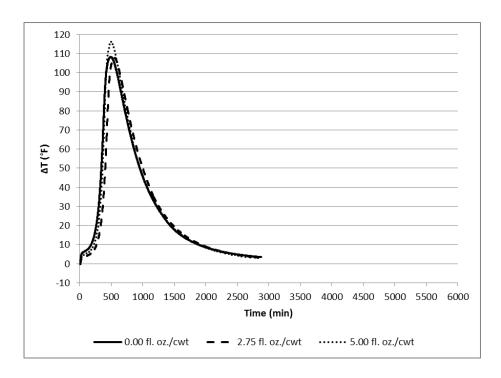



Figure D.1. Effect of Water Reducer on Combination 4-1 with 0% Fly Ash

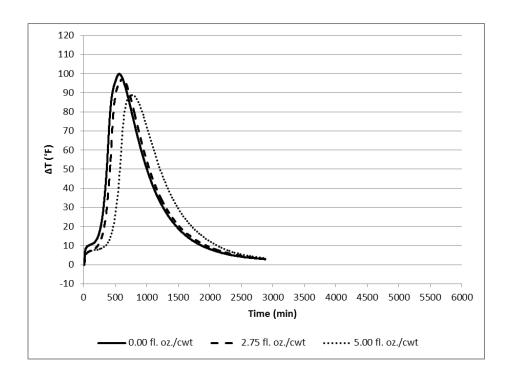



Figure D.2. Effect of Water Reducer on Combination 4-1 with 25% Fly Ash

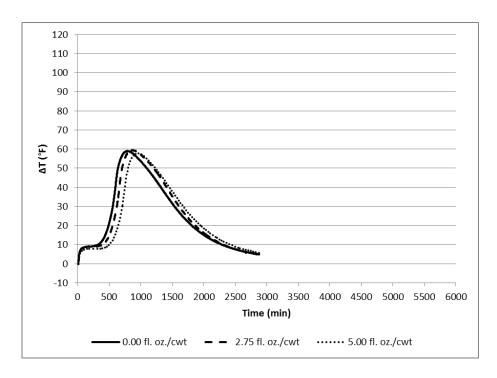



Figure D.3. Effect of Water Reducer on Combination 4-1 with 50% Fly Ash

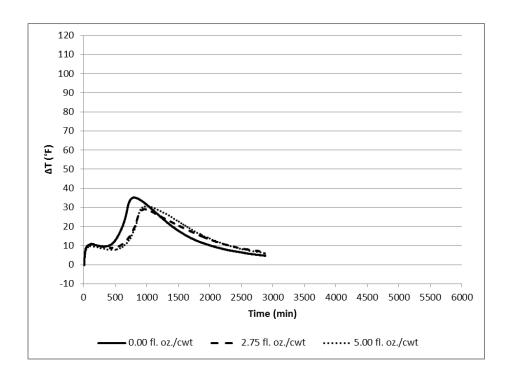



Figure D.4. Effect of Water Reducer on Combination 4-1 with 70% Fly Ash

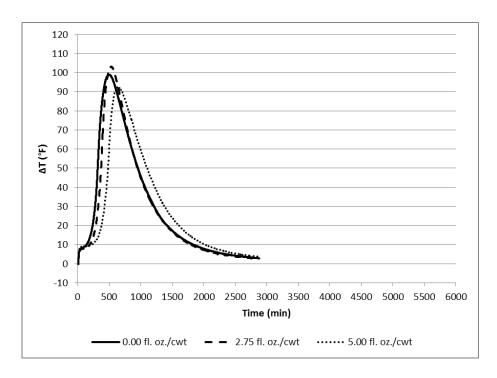



Figure D.5. Effect of Water Reducer on Combination 1-3 with 0% Fly Ash

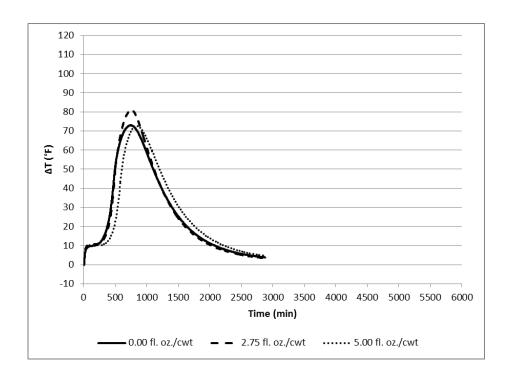



Figure D.6. Effect of Water Reducer on Combination 1-3 with 25% Fly Ash

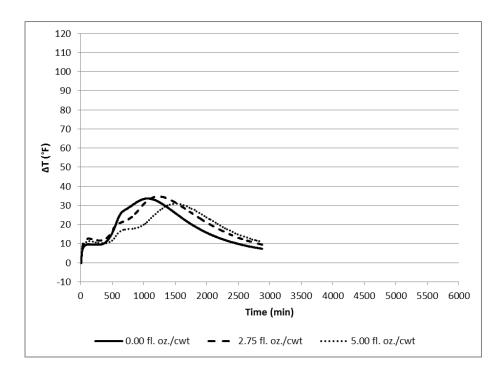



Figure D.7. Effect of Water Reducer on Combination 1-3 with 50% Fly Ash

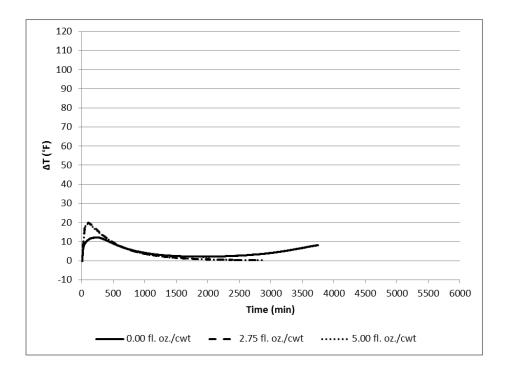



Figure D.8. Effect of Water Reducer on Combination 1-3 with 70% Fly Ash

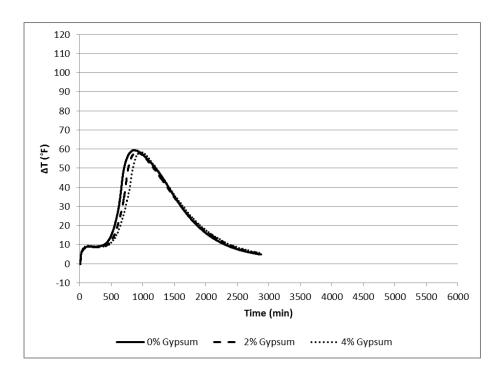



Figure D.9. Effects of Gypsum on Combination 4-1 with 50% Fly Ash and Low Dosage of Water Reducer

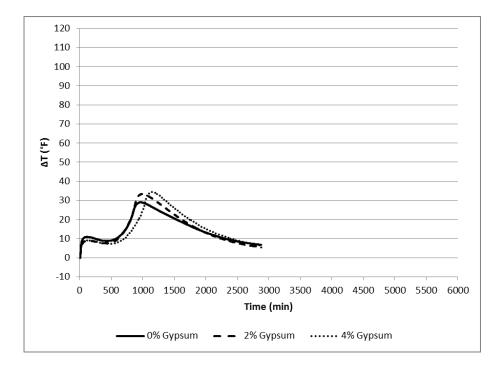



Figure D.10. Effects of Gypsum on Combination 4-1 with 70% Fly Ash and Low Dosage of Water Reducer

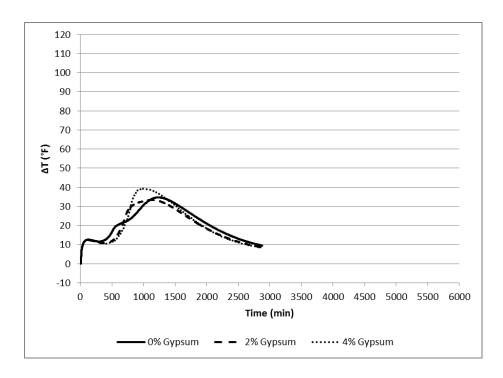



Figure D.11. Effects of Gypsum on Combination 1-3 with 50% Fly Ash and Low Dosage of Water Reducer

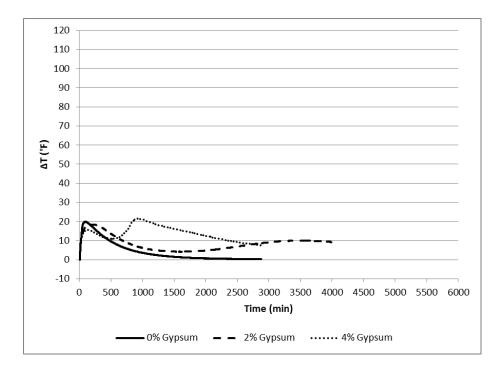



Figure D.12. Effects of Gypsum on Combination 1-3 with 70% Fly Ash and Low Dosage of Water Reducer

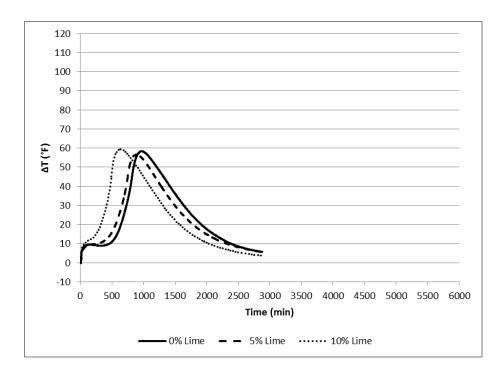



Figure D.13. Effects of Lime on Combination 4-1 with 50% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer




Figure D.14. Effects of Lime on Combination 4-1 with 70% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

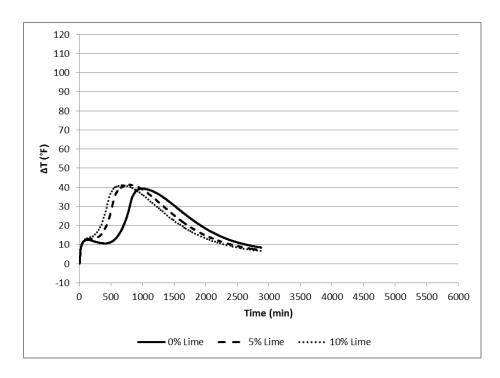



Figure D.15. Effects of Lime on Combination 1-3 with 50% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

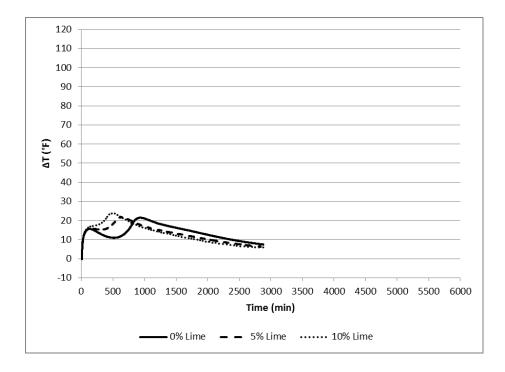



Figure D.16. Effects of Lime on Combination 1-3 with 70% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

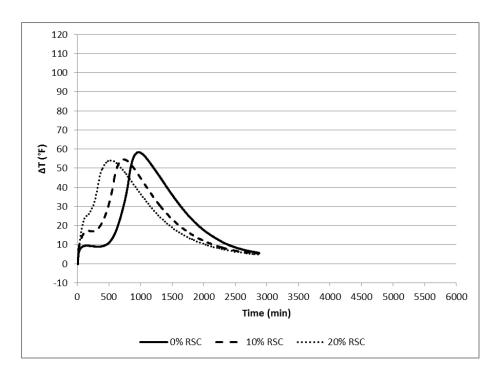



Figure D.17. Effects of Rapid Set Cement on Combination 4-1 with 50% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

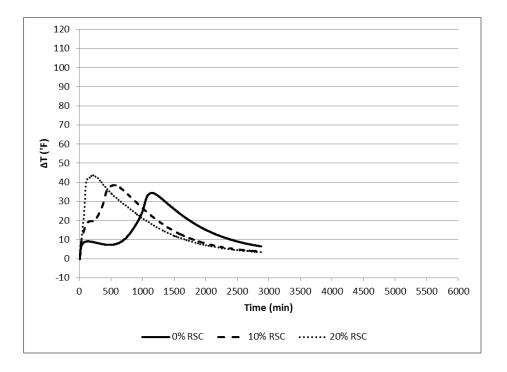



Figure D.18. Effects of Rapid Set Cement on Combination 4-1 with 70% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

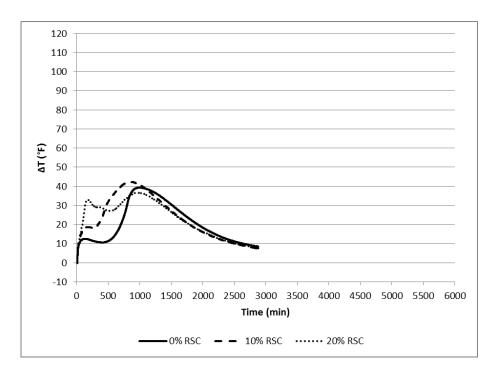



Figure D.19. Effects of Rapid Set Cement on Combination 1-3 with 50% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

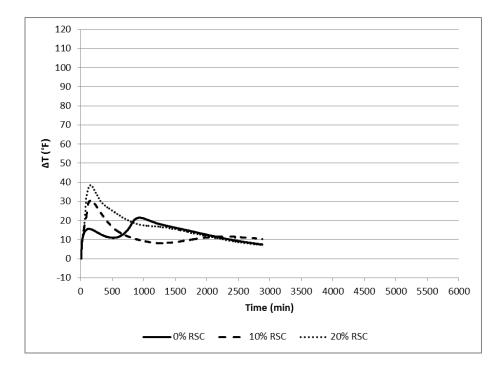



Figure D.20. Effects of Rapid Set Cement on Combination 1-3 with 70% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

## APPENDIX E

SCREENING STUDY MINIATURE SLUMP PLOTS

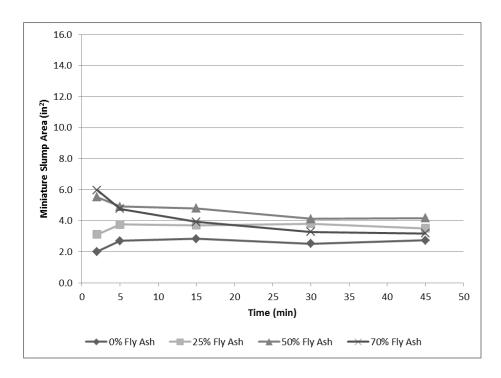



Figure E.1. Miniature Slump Plots for Combination 1-1

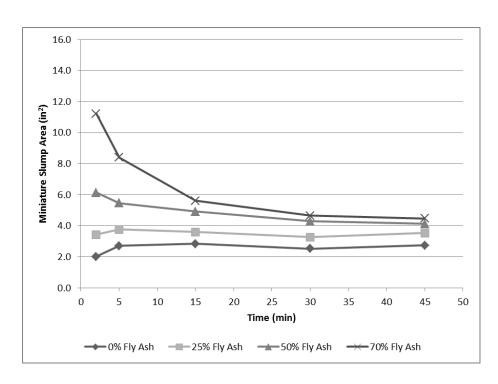



Figure E.2. Miniature Slump Plots for Combination 1-2

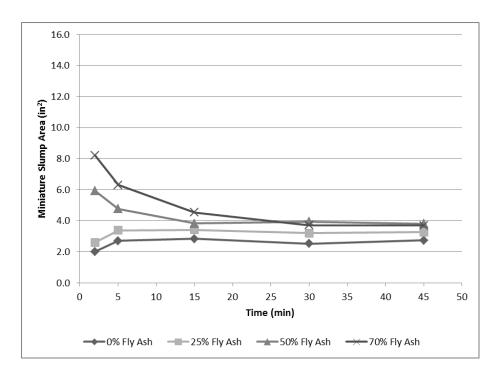



Figure E.3. Miniature Slump Plots for Combination 1-3

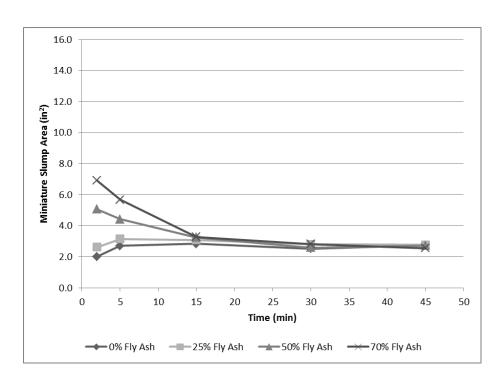



Figure E.4. Miniature Slump Plots for Combination 1-4

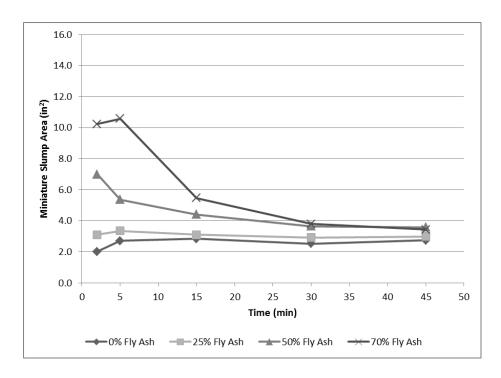



Figure E.5. Miniature Slump Plots for Combination 1-5

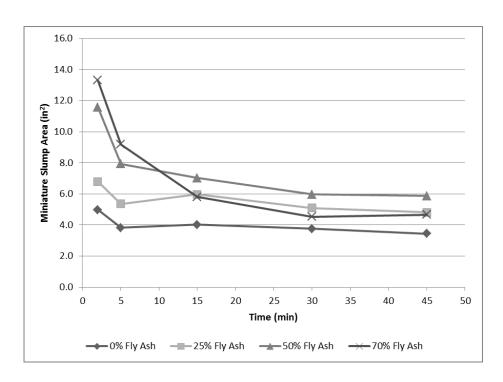



Figure E.6. Miniature Slump Plots for Combination 2-1

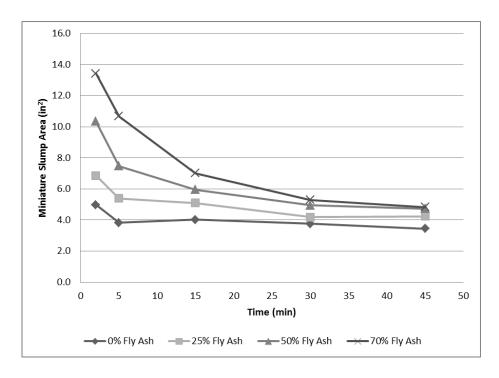



Figure E.7. Miniature Slump Plots for Combination 2-2

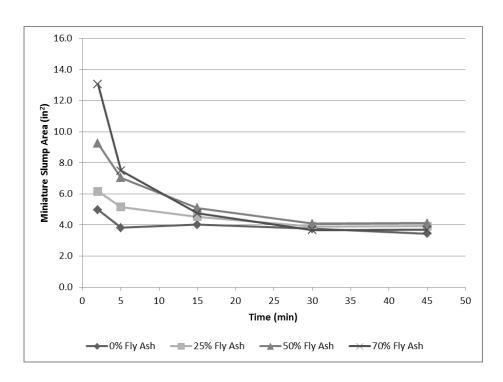



Figure E.8. Miniature Slump Plots for Combination 2-3

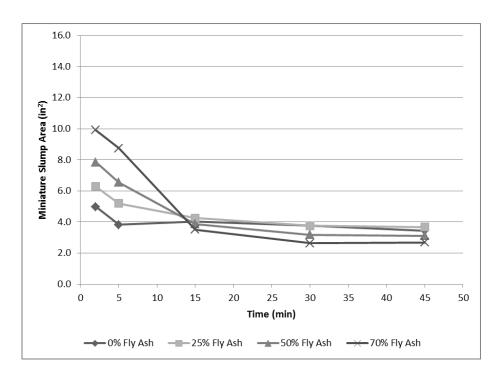



Figure E.9. Miniature Slump Plots for Combination 2-4

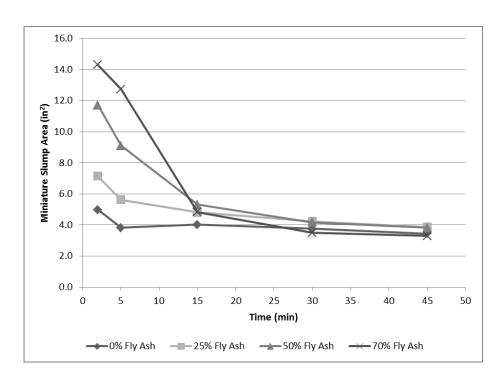



Figure E.10. Miniature Slump Plots for Combination 2-5

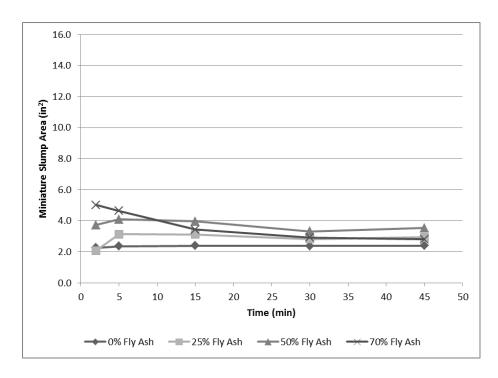



Figure E.11. Miniature Slump Plots for Combination 3-1

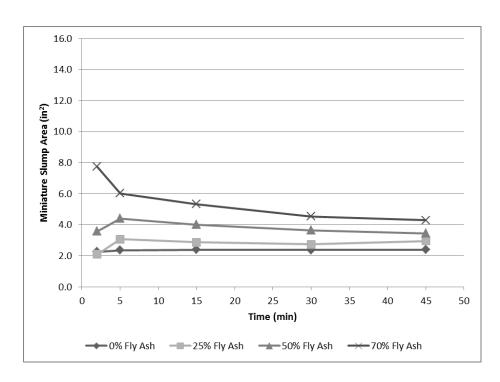



Figure E.12. Miniature Slump Plots for Combination 3-2

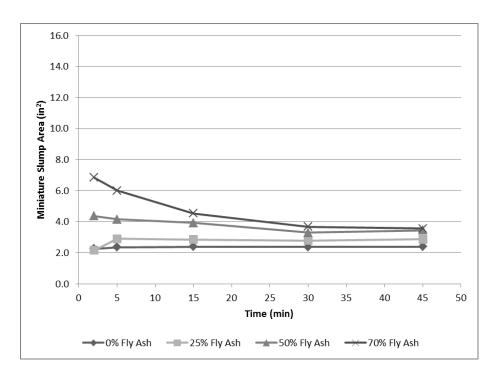



Figure E.13. Miniature Slump Plots for Combination 3-3

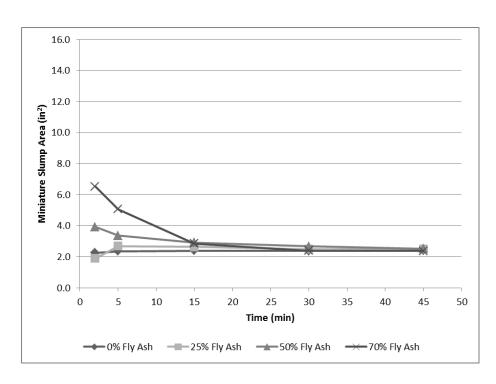



Figure E.14. Miniature Slump Plots for Combination 3-4

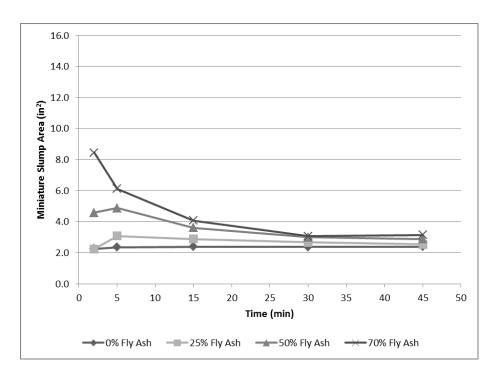



Figure E.15. Miniature Slump Plots for Combination 3-5

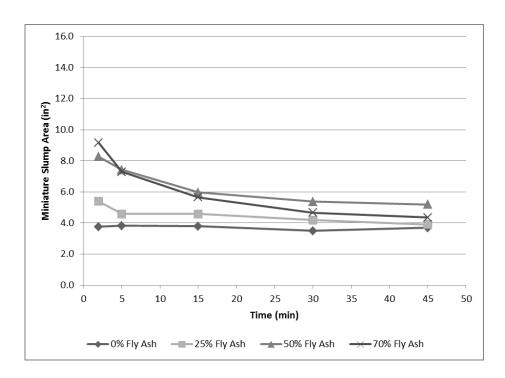



Figure E.16. Miniature Slump Plots for Combination 4-1

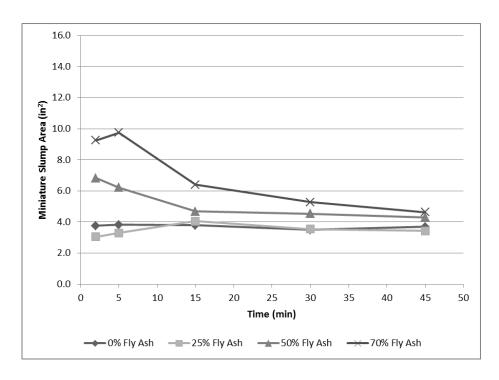



Figure E.17. Miniature Slump Plots for Combination 4-2

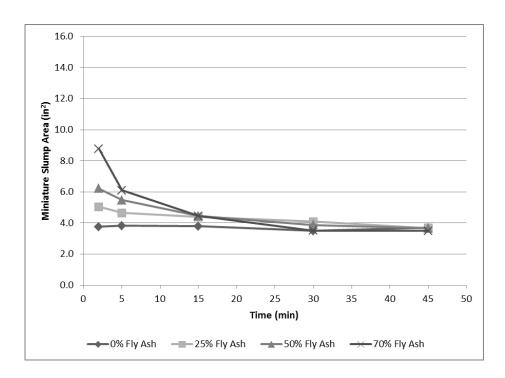



Figure E.18. Miniature Slump Plots for Combination 4-3

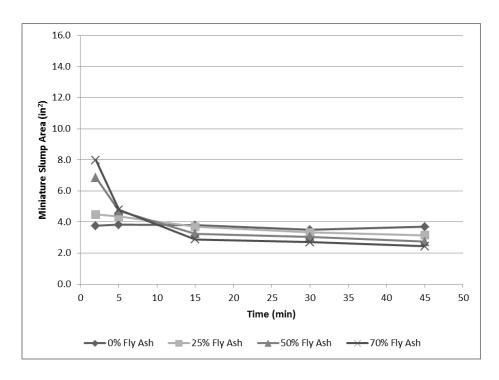



Figure E.19. Miniature Slump Plots for Combination 4-4

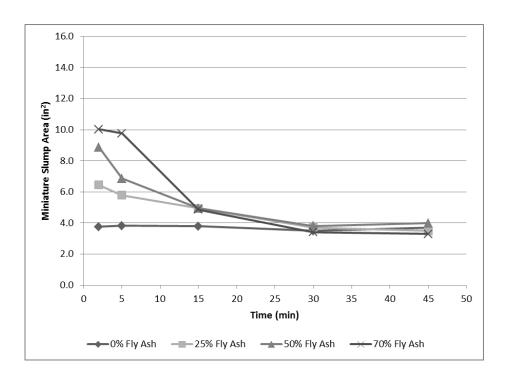



Figure E.20. Miniature Slump Plots for Combination 4-5

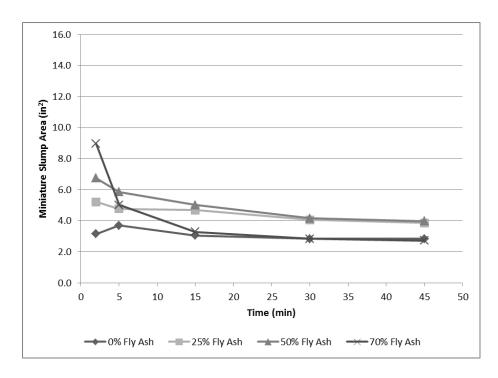



Figure E.21. Miniature Slump Plots for Combination 5-1

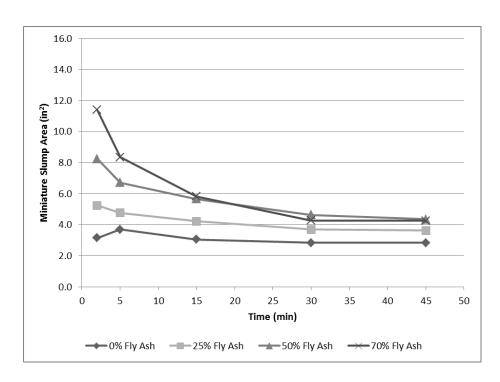



Figure E.22. Miniature Slump Plots for Combination 5-2

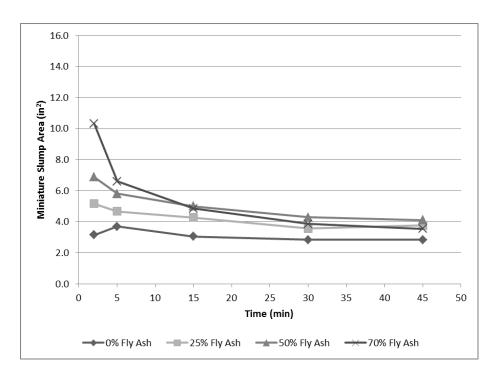



Figure E.23. Miniature Slump Plots for Combination 5-3

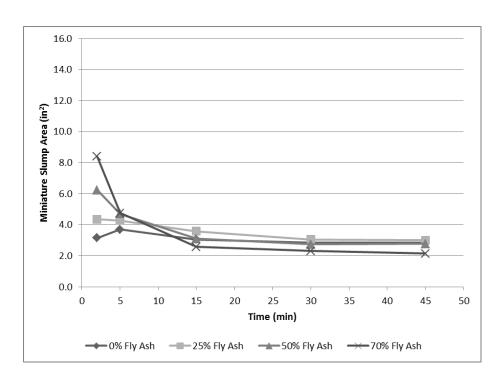



Figure E.24. Miniature Slump Plots for Combination 5-4

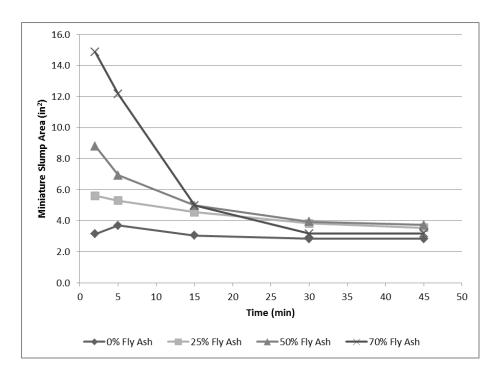



Figure E.25. Miniature Slump Plots for Combination 5-5

## APPENDIX F

MAIN STUDY MINIATURE SLUMP PLOTS

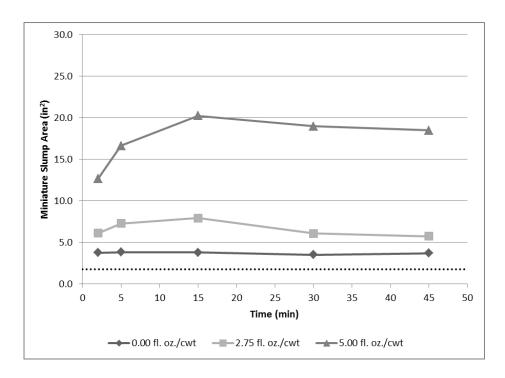



Figure F.1. Effect of Water Reducer on Combination 4-1 with 0% Fly Ash



Figure F.2. Effect of Water Reducer on Combination 4-1 with 25% Fly Ash

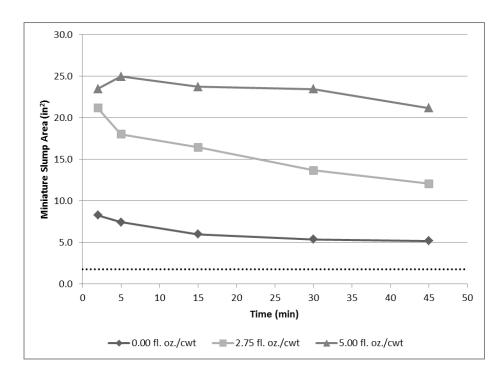



Figure F.3. Effect of Water Reducer on Combination 4-1 with 50% Fly Ash

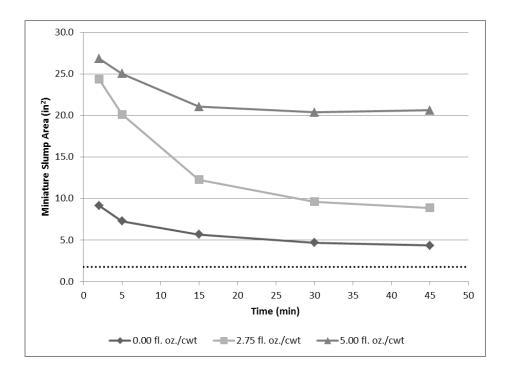



Figure F.4. Effect of Water Reducer on Combination 4-1 with 70% Fly Ash

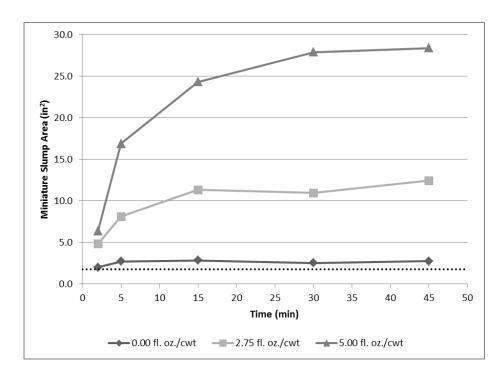



Figure F.5. Effect of Water Reducer on Combination 1-3 with 0% Fly Ash

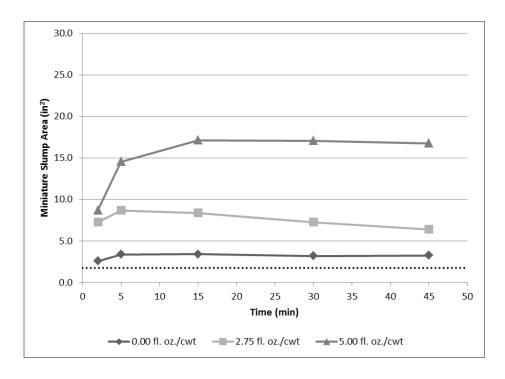



Figure F.6. Effect of Water Reducer on Combination 1-3 with 25% Fly Ash

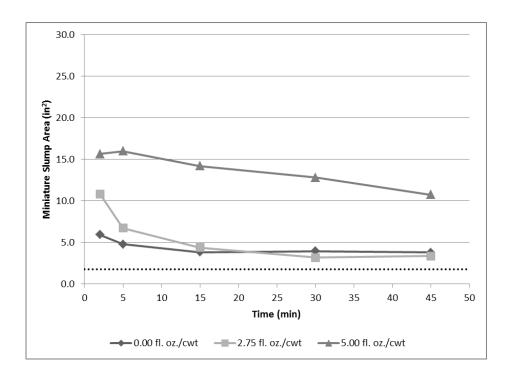



Figure F.7. Effect of Water Reducer on Combination 1-3 with 50% Fly Ash

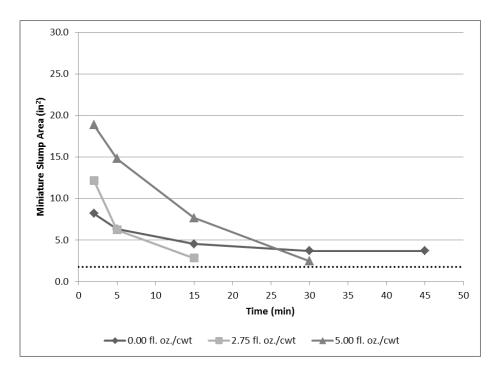



Figure F.8. Effect of Water Reducer on Combination 1-3 with 70% Fly Ash

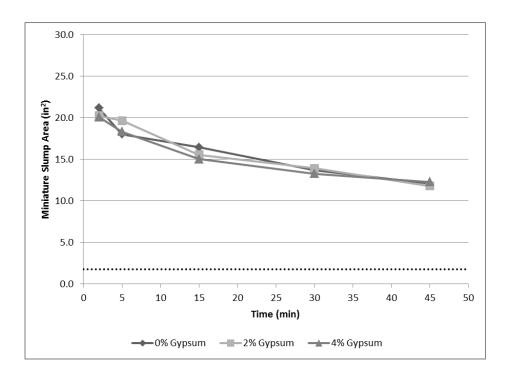



Figure F.9. Effects of Gypsum on Combination 4-1 with 50% Fly Ash and Low Dosage of Water Reducer

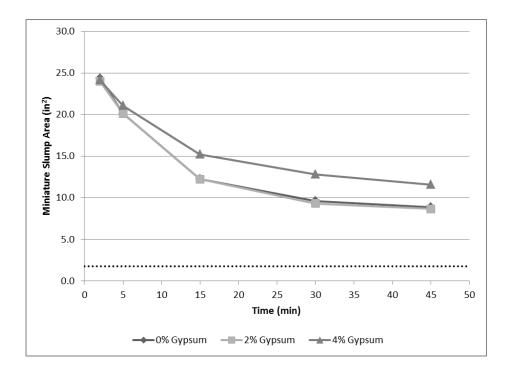



Figure F.10. Effects of Gypsum on Combination 4-1 with 70% Fly Ash and Low Dosage of Water Reducer

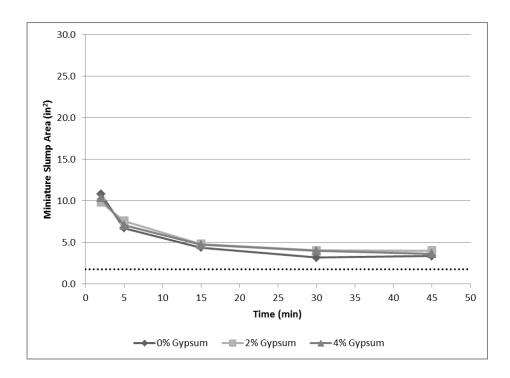



Figure F.11. Effects of Gypsum on Combination 1-3 with 50% Fly Ash and Low Dosage of Water Reducer

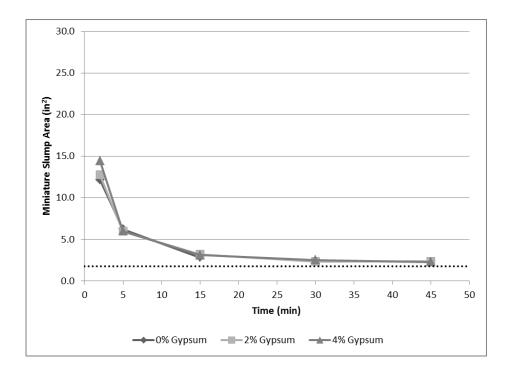



Figure F.12. Effects of Gypsum on Combination 1-3 with 70% Fly Ash and Low Dosage of Water Reducer

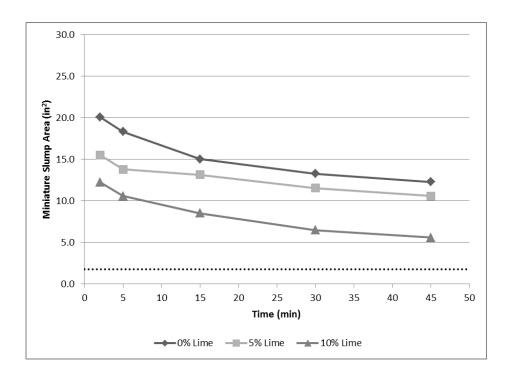



Figure F.13. Effects of Lime on Combination 4-1 with 50% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

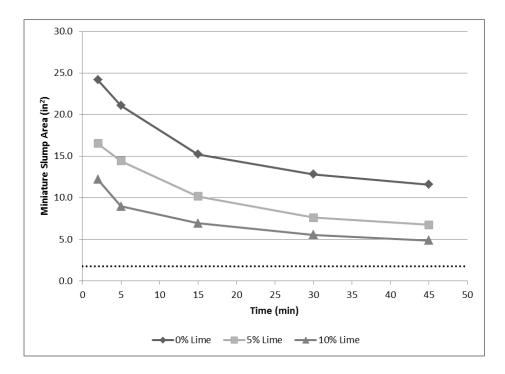



Figure F.14. Effects of Lime on Combination 4-1 with 70% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

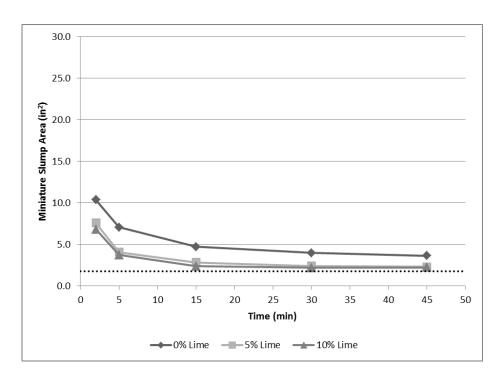



Figure F.15. Effects of Lime on Combination 1-3 with 50% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

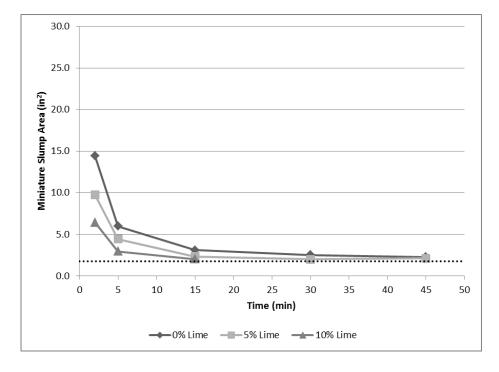



Figure F.16. Effects of Lime on Combination 1-3 with 70% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

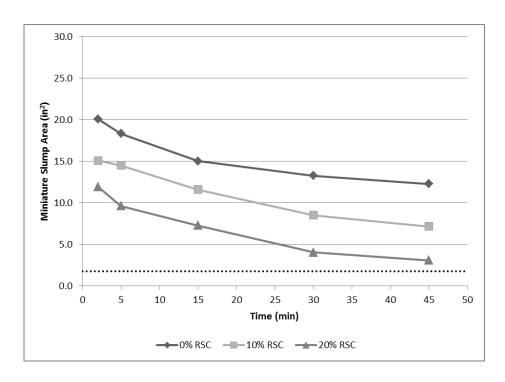



Figure F.17. Effects of Rapid Set Cement on Combination 4-1 with 50% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

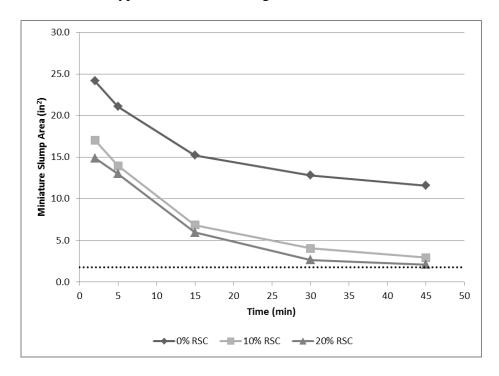



Figure F.18. Effects of Rapid Set Cement on Combination 4-1 with 70% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

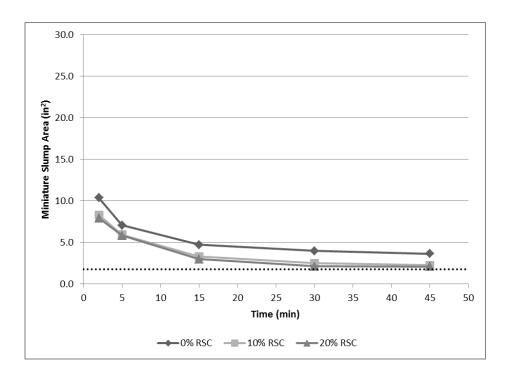



Figure F.19. Effects of Rapid Set Cement on Combination 1-3 with 50% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

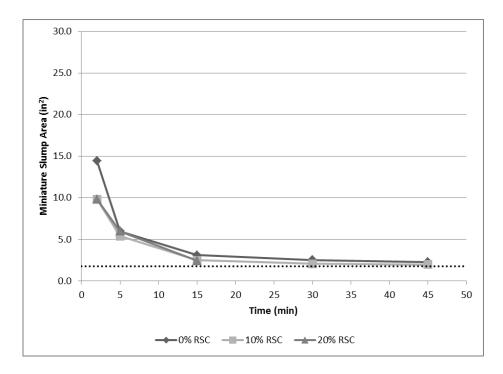



Figure F.20. Effects of Rapid Set Cement on Combination 1-3 with 70% Fly Ash, 4% Gypsum, and Low Dosage of Water Reducer

## REFERENCES

- ACI Committee 232. (2003). *Use of Fly Ash in Concrete*. Detroit, MI: American Concrete Institute.
- ASTM C 109. (2008). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken, PA: ASTM International.
- ASTM C 143. (2010). Standard Test Methods for Slump of Hydraulic Cement Concrete. West Conshohocken, PA: ASTM International.
- ASTM C 1679. (2009). Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry. West Conshohocken, PA: ASTM International.
- ASTM C 186. (2005). Standard Test Method for Heat of Hydration of Hydraulic Cement. West Conshohocken, PA: ASTM International.
- ASTM C 187. (2010). Standard Test Method for Normal Consistency of Hydraulic Cement. West Conshohocken, PA: ASTM International.
- ASTM C 191. (2008). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. West Conshohocken, PA: ASTM International.
- ASTM C 305. (2006). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. West Conshohocken, PA: ASTM International.
- ASTM WK23967. (2011, March 13). Standard Practice for Evaluating Hydration of Hydraulic Cementitious Mixtures Using Thermal Measurements (Draft). West Conshohocken, PA: ASTM International.
- Bentz, D. P. (2010). Powder Additions to Mitigate Retardation in High-Volume Fly Ash Mixtures. *ACI Materials Journal*, 107(5), 508-514.
- Bentz, D. P., & Ferraris, C. F. (2010). Rheology and Setting of High Volume Fly Ash Mixtures. *Cement and Concrete Composites*, 1-12.
- Bentz, D. P., Ferreris, C. F., De la Varga, I., Peltz, M. A., & Winpigler, J. A. (2010). Mixture Proportioning Options for Improving High Volume Fly Ash Concretes. *International Journal of Pavement Research and Technology*, *3*(5), 234-240.
- Bhattacharja, S., & Tang, F. J. (2001). Rheology of Cement Paste in Concrete with Different Mix Designs and Interlaboratory Evaluation of the Mini-Slump Cone Test. Skokie, Illinois: Portland Cement Association.
- Calmetrix. (2010). CalCommander Software v1.3 User Manual. Calmetrix, Inc.

- Calmetrix. (2010). F-Cal 4000/8000 User Manual. Calmetrix, Inc.
- Cost, T. (2009). *Thermal Measurements of Hydrating Concrete Mixtures*. Silver Spring, Maryland: National Ready Mixed Concrete Association.
- Cost, V. T., & Knight, G. (2007). Use of Thermal Measurements to Detect Potential Incompatibilities of Common Concrete Materials. *ACI Special Publication 241*, 39-58.
- Detwiler, R. J., Bhatty, J. I., & Bhattacharja, S. (1996). Supplementary Cementing Materials for Use in Blended Cements. Skokie, Illinois: Portland Cement Association.
- Gibbon, G. J. (n.d.). Gibbon, G. J., Ballim, Y., and Grieve, G. R. H. (1997). "A low-cost, computer-controlled adiabatic calorimeter for determining the heat of hydration of concrete." *Journal of Testing and Evaluation*, 25(2), 261-266?
- Hubert, C., Wieker, W., & Heidemann, D. (2001). Investigations of Hydration Products in High-Volume Fly Ash Binders. *ACI Special Publication* 199, 83-98.
- Jiang, L., Lin, B., & Cai, Y. (1999). Studies on Hydration in High-Volume Fly Ash Concrete Binders. *ACI Materials Journal*, *96*(6), 703-706.
- Kantro, D. L. (1980). Influence of Water-Reducing Admixtures on Properties of Cement Paste A Miniature Slump Test. *Cement, Concrete, and Aggregates, 2*(2), 95-102.
- Kosmatka, S. H., Kerkhoff, B., & Panarese, W. C. (2003). *Design and Control of Concrete Mixtures* (14th ed.). Skokie, Illinois: Portland Cement Association.
- Lerch, W. (1946). The Influence of Gypsum on the Hydration and Properties of Portland Cement Pastes. Chicago: Portland Cement Association.
- Malhotra, V. M., & Mehta, P. K. (1996). *Pozzolanic and Cementitious Materials* (Vol. 1). Amsterdam, The Netherlands: Gordan and Breach.
- Mehta, P. K., & Monteiro, P. J. (1993). *Concrete: Microstructure, Properties, and Materials* (2nd ed.). New York: McGraw-Hill.
- Mindess, S., Young, J. F., & Darwin, D. (2003). *Concrete* (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
- Roberts, L. R., & Taylor, P. C. (2007, January). Understanding Cement-SCM-Admixture Interaction Issues. *Concrete International*, 29(1), 33-41.
- Sandberg, J. P., & Liberman, S. (2007). Monitoring and Evaluation of Cement Hydration by Semi-Adiabatic Field Calorimetry. *ACI Special Publication* 241, 13-23.
- Schindler, A. K., & Folliard, K. J. (2003). Influence of Supplementary Cementing Materials on the Heat of Hydration of Concrete. *Proc. of Advances in Cement and Concrete IX Conference*. Copper Mountain Conference Resort, Colorado.

- Wang, H., Qi, C., Farzam, H., & Turici, J. (2006, April). Interaction of Materials Used in Concrete. *Concrete International*, 28(4), pp. 47-52.
- Wang, K. (2006). Monitoring Heat Evolution of Concrete Mixtures. National Concrete Pavement Technology Center.

## **VITA**

Karl Wehking Beckemeier was born in North Kansas City, Missouri on April 27, 1987, to Kurt and Cynthia Beckemeier. He has one brother, Eric Beckemeier. Karl was raised in Hardin, Missouri and attended school in Norborne, Missouri, where he graduated in 2005. He then attended the Missouri University of Science and Technology and earned his Bachelors of Science degrees in Architectural Engineering and Civil Engineering. In December of 2012, he earned his Masters of Science degree in Civil Engineering from the Missouri University of Science and Technology.

While attending the Missouri University of Science and Technology, Karl was a member of Chi Epsilon, a civil engineering honor society, and Phi Kappa Phi, an honor society. He also was a Graduate Teaching Assistant for a construction materials course for four semesters, worked as a Research Assistant during his undergraduate and graduate studies, and held three summer internships with the Missouri Department of Transportation.

In June of 2010, Karl married Nickol Marie Enss. At the time of this writing, they reside in Louisville, Kentucky, where Karl is employed as a quality control engineer for a company that handles coal combustion products.