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ABSTRACT 

 

 

Preventive maintenance is an important tool that increases the reliability of the 

production system by reducing downtime due to failures. In the literature, maintenance 

and replacement policies for productions systems have been widely studied and modeled. 

Traditionally preventive maintenance has focused only on minimizing expected costs 

without considering variability in costs. Cost variability is also commonly known as risk. 

In a 2003 paper, Chen and Jin used variance of costs as a measure of risk for formulating 

preventive maintenance policies. The variance criterion that they used ignored the 

probability of costs exceeding monthly or yearly budgets provided to managers. The goal 

of the present work is to develop a performance metric for preventive maintenance that 

will not only consider long-run average cost but also minimize the chance that costs will 

exceed pre-specified budgets. Therefore the model introduced here uses a relatively less 

known risk metric called semivariance. The semivariance model developed here relies on 

an objective function that combines average cost with risk via the framework developed 

by Markowitz in 1952. It uses renewal theory and semi-Markov decision processes to 

develop mathematical expressions for the average cost and risk. These mathematical 

models are implemented within MATLAB, but they can also be implemented in 

spreadsheet software such as Microsoft Excel. We show via numerical experiments that 

the semivariance-penalized model outperforms cost-based and variance penalized 

models. 
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NOMENCLATURE 
 

Symbol  Description 

           𝜃 :  Risk-aversion factor 

           𝑇 :                     Time for maintenance 

           𝜏  :                     Target cost.



 
 

1. INTRODUCTION 

 

Total productive maintenance (TPM) is a management program that has been 

widely practiced in industry. It is a well-defined and time-tested concept that maximizes 

overall equipment effectiveness and reduces machinery downtime (Wang, 2002). Its 

overall goal is to avoid waste in the production environment and produce quality goods 

which increase the customer satisfaction rate. In the past, management has been known to 

overlook preventive maintenance (PM) that can lead to frequent machine breakdowns 

which increase lead time and variability in the system. TPM uses a proactive system that 

monitors and corrects root causes and emphasizes the importance of maintenance as a 

necessary activity in managing a production system. The advantage of productive 

maintenance is that it optimizes the life cycle cost of a production system by minimizing 

unexpected machine breakdowns that result in production losses, delays in meeting 

customer demands, and high manufacturing costs.  

An important tool of a TPM program is the underling statistical model, which 

helps determine the optimal schedule of machine maintenance (Askin and Goldberg, 

2002). The objective of any PM program is to maximize the value of machines and other 

equipment to ensure the optimal functioning of a production system at the minimum cost 

to management. PM can reduce the need for unpredicted repairs when the failure rate is 

increasing (Das and Sarkar, 1999).  

Traditional PM policies, such as age replacement and periodic replacement, have 

a critical drawback in that they only consider expected costs and overlook management 

risk due to variability in costs. In other words, with traditional PM policies the costs can 

become occasionally large. Such policies are called risk-neutral policies. Usually, the 

maintenance manager is provided with a budget. The risk associated with these policies 

can result in costs significantly exceeding the target maintenance budget. Additionally, 

risk-neutral PM policies lead to undesirable solutions with high variability in costs.   

Maintenance cost variability is often significant due to the unexpected nature of 

failures. Effective and efficient supervision of maintenance costs can significantly reduce 

variability and expected costs. These important considerations have compelled managers 

to employ risk-penalized PM policies that consider both expected costs and variance 
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(Chen and Jin, 2003; Gosavi, 2006; Shewade, 2006). Managers actually require a more 

sophisticated approach that quantifies risk and determines the optimal maintenance time. 

This work introduces a new approach that defines the long-run semivariance of costs to 

represent the management risk. An objective function that combines costs with risks 

(semivariance) to achieve an optimal cost-and-semivariance maintenance policy is used. 

A well-known approach to deal with cost-variability risk emerged from the Nobel 

Prize winning work of Markowitz (1952) on portfolio analysis. His work considered both 

expected value and the variance of the cost to solve problems of portfolio management. 

Many PM problems can be formulated based on the stochastic models that underlie TPM 

programs; these models include renewal reward theory (Kao, 1997) and Markov decision 

processes (MDPs) (Bertsekas, 1995). Detailed surveys and analyses of cost-variability in 

MDPs can be found in White (1988), Filar et al., (1989), and Sobel (1985, 1994). 

Renewal theory identifies a cyclical phenomenon in a stochastic system and determines 

the expected total cost and expected total time incurred in a single cycle. According to 

renewal theory principles, the ratio of the expected total costs to the expected total time is 

equal to the average cost per unit time in the system. The theory of MDPs uses Markov 

chains to model the behavior of stochastic systems. A reward structure is then provided to 

the Markov chains in order to generate a performance metric, e.g., average cost. The 

semi-Markov decision process (SMDP) is a more general version of the MDP. In the 

SMDP model, the time spent in any transition of the Markov chain is not necessarily 

unity; and the time spent for each transition could be either a deterministic or a random 

variable. This research uses the renewal process and the SMDP to model the PM problem 

of interest here. These tools, i.e., renewal processes and SMDPs, provide the necessary 

mathematical framework to adequately capture the complex dynamics of the machine 

maintenance system of interest to us. 

Computer programs to generate solutions are written in MATLAB software. 

MATLAB is a high-performance language developed by the Math Works for technical 

computing. It integrates computation, visualization, and programming in an easy-to-use 

environment where problems and solutions are expressed in familiar mathematical 

notation. Typical uses include math and computation, algorithm development, modeling, 

simulation, prototyping, data analysis, exploration, and visualization. 
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The concept of semivariance is discussed here as a measure of risk and emphasize 

its applicability to risk-sensitive PM. As stated above, much of the research in risk-

sensitive PM focuses on using variance of costs as a measure of management risk. 

However, the variance of cost is not always the best measure of risk. Its most significant 

limitation is that it fails to distinguish between upside and downside risk. Risk-sensitive 

PM policies that consider the variance as a measure of risk penalize instances of cost 

below the mean. However, realizations of cost below the mean are favorable to the 

decision maker and therefore must not be considered as risk. To overcome these 

drawbacks, semivariance can be used as a more suitable measure of risk. 

The objective here is to determine the optimal time to perform PM on a 

production system using the semivariance criterion. A new risk-sensitive framework was 

developed to measure risk via the semivariance of cost per unit time. The semivariance of 

the cost earned in the n
th

 instance of renewal process is defined as, 

𝑆𝑣𝑎𝑟  𝑅𝑛 =   𝑅𝑛 − 𝜏 × 𝐿𝑛  +
2  

where Rn denotes the expected cost of a given policy in the n
th

 instance, 𝜏 denotes the 

target PM cost established by a manager, and Ln denotes the length of the n
th

 instance. 

Clearly, semivariance considers deviations above the target 𝜏, to calculate variability, and 

therefore is a much more accurate measure of risk. The PM optimization problem 

calculates the optimal time for PM. Let T denote the age of the unit or system when PM 

is performed. The age T is the time elapsed since the last repair or preventive 

maintenance. The assumptions which we considered for our model are: First, the unit or 

equipment is as good as new when it is repaired or PM is performed. Second, when the 

machine is out of order, the unit is considered not to age. 

Then our objective is to 

Minimize    𝑔 𝑇 = 𝜇𝐶 + 𝜃𝜍𝑆𝑣𝑎𝑟
2   𝑤𝑖𝑡𝑕 𝜃 > 0, 

where 𝜇𝐶  and 𝜍𝑆𝑣𝑎𝑟
2  denote the long-run mean cost per unit time and the long-run 

semivariance of the cost per unit time respectively, and 𝜃  is the risk-aversion factor. 

Usually, 𝜃 assumes small values, e.g., 0.1. The value of 𝜃 depends on how risk-averse the 

manager is.  
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The advantages of using the above in optimization are as follows. First, the above 

model captures cost and risk in one metric. Secondly, it leads one to solutions in which 

the cost is sacrificed to a certain degree in order to accommodate a lower value for the 

risk.  

This research incorporates the semivariance metric into PM models that employ 

both renewal theory and Markov chains. Renewal theory is used for PM of smaller units, 

e.g., pumps, generators, fork-lift trucks, whereas the Markov-chain model is used to 

formulate PM policies for larger units, such as production lines. As applied here, the 

Markov-chain model uses an SMDP and determines a solution by implementing a 

mathematical program using software like CPLEX or MATLAB.   

The remainder of the thesis is organized as follows. Section 2 provides a brief 

overview of the literature on various preventive maintenance approaches. Section 3 

explains the renewal theory model and its underlying framework. Section 4 discusses in 

detail the SMDP model. Section 5 presents the numerical results of a preventive 

maintenance problem based on the renewal theory and semi-Markov models. Section 6 

offers some conclusions and future research.  
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2. LITERATURE REVIEW 

 

 

This research focused on implementing renewal processes and Markov chains in a 

semivariance-penalized PM problem. Ross (1997) provides an introduction to the 

application of renewal reward theory and Markov chains in stochastic processes. Most of 

the work published on this topic evaluates PM policies based on the expected cost 

criteria. Barlow and Proschan (1965) have done some of the seminal work in this area. In 

the 1960s and 1970s, traditional PM policies similar to the Barlow and Proschan model 

were developed by many researchers like Fox (1966), Glasser (1967), Nakagawa and 

Osaki (1974). These traditional PM policies for a production system, such as age 

replacement and periodic replacement, focused only on minimizing the expected cost 

without considering management risk.  

The renewal process and the Markov decision processes are frequently used as the 

underlying stochastic models in a TPM program. The ultimate goal of implementing 

TPM in production systems is to reduce unexpected machine breakdowns and optimize 

productivity. TPM establishes a PM system for the entire life span of the equipment. 

Pomorski (2004) provides a comprehensive review of TPM concepts. Although TPM is 

historically equipment-focused, its effective implementation needs a continuous 

improvement methodology for increasing overall manufacturing productivity. PM is 

regularly performed at specific intervals on devices that are operated continuously to 

reduce or eliminate deterioration (Endrenyi and Anders, 2004). PM is worthwhile when 

the cost incurred by an equipment failure is greater than the cost of maintenance.  

Generally, there are two types of PM schemes, condition-based and time-based 

(Billinton and Allan, 1996). In condition-based PM, the action taken after each inspection 

is dependent on the state of the system. In time-based PM, however, PM is carried out at 

predetermined intervals (Chen and Trivedi, 2004). Numerous maintenance and 

replacement models have been developed in the past several decades. However, each 

model falls into some category of maintenance policies, such as age replacement, repair 

cost limit, failure limit, reference time, and so on. Wang (2002) presents a survey of these 
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maintenance policies for both single-unit and multi-unit systems. Each kind of policy has 

distinct characteristics, advantages, and disadvantages. 

The growing importance of maintenance has generated an increasing interest in 

the development and implementation of optimal maintenance strategies for improving 

system reliability. Wang (2002) developed a classification scheme for maintenance 

models so that a decision maker can recognize the model that best fits a specific problem. 

If PM policies are not designed properly, frequent machine breakdowns occur, causing 

losses that can exceed millions of dollars annually. These unexpected breakdowns make 

it difficult to transition from make-to-stock to make-to-order (Suri, 1998), thereby 

making the system inflexible. They also increase inventory-holding costs by requiring the 

storage of safety stocks (Askin and Goldberg, 2002). 

Das and Sarkar (1999) address the problem of optimal PM in a production-

inventory system. This work models the PM problem as a semi-regenerative process and 

uses the expected cost benefit as the system performance measure. They developed a PM 

model for a production-inventory system using information on system conditions and 

continuous probability distributions for the machine failure process. They considered a 

model similar to that of Srinivasan and Lee (1996) in which the decision to perform PM 

depends on the inventory level and the number of items produced since the last repair or 

maintenance. Both Srinivasan and Lee (1996) and Das and Sarkar (1999) considered a 

single operating state production facility. In such a facility, the production rate does not 

change with equipment use, and repair costs are independent of the age of a facility. The 

machine replacement problem has been widely studied, and it is an important topic in 

operations research (Gertsbakh, 2000). 

Markowitz’s (1952) portfolio analysis is the best known approach for dealing 

with cost-variability risk. His framework uses both expected cost and variance of cost to 

characterize the system rewards and variability. Some recent research results on risk-

penalized MDPs are presented by Filar et al., (1984) and Sobel (1985, 1994), in which 

some of Markowitz’s principles are applied in the MDP context. A review of the 

literature indicates that MDPs are now used for variability-sensitive or risk-sensitive 

decision making (White, 1988). 
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In the real world, risk occurs due to cost variability. PM policies that neglect risk 

result in inappropriate maintenance budget allocations and financial crises. Risk-sensitive 

managers have used variance per unit time as a measure of risk in strategic decision 

making (Ruefli, et al., 1999). Chen and Jin (2003) for the first time proposed a method 

for formulating PM policies that considered the effects of both expected cost and cost 

variability. They modeled maintenance management risk using a long-run variance of the 

cost in the renewal process. They developed optimal cost-variability-sensitive 

maintenance policies by altering the objective function. The Chen and Jin model 

significantly reduced the maintenance management risk with only a small increase in the 

expected cost. Gosavi (2006) proposed an alternate approach to measure the long-run 

variance. His approach is based on MDPs and for renewal processes in which the cycle 

time is not necessarily one. Shewade (2006) develops an MDP model for semivariance, 

but his renewal reward model for semivariance does not take time into consideration. 

Quirk and Saposnik (1962) offer a theoretical analysis of semivariance. Bawa 

(1975) defines a family of risk measures called lower partial moments, which further 

modify target semivariance. Porter (1974) provided an early analysis similar to that of 

Bawa. Nawrocki (1999) presents a brief history of downside risk measures and 

semivariance concepts and applications. To date, semivariance has not been used as a 

measure of risk in PM policies. 

MDPs and SMDPs can be solved via classical dynamic programming (DP) 

methods (Tijms, 2003). Two well-known approaches in DP are policy iteration and value 

iteration (Bertsekas, 1995). The policy iteration technique uses an iterative approach to 

solve a linear system of equations developed by Bellman (1954), whereas the value 

iteration approach uses Bellman transformation to compute an optimal value function 

iteratively. DP methods require exact computation and storage of transition probability 

matrices. This research uses the linear programming technique to solve SMDPs.  
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3. A RENEWAL THEORY MODEL 

 

3.1. INTRODUCTION 

Renewal theory is an important paradigm that has been used successfully in 

reliability applications and very frequently in TPM programs. The model known as age-

replacement is also based on renewal theory and has strong mathematical roots, providing 

robust heuristics. The present work uses renewal theory to formulate a problem to 

determine the optimal replacement time for a machine or unit. The renewal process 

assumes that the life cycle is complete when the unit either fails or requires maintenance. 

The renewal reward theorem (RRT) is a classical result that provides an expression for 

the expected reward or cost per unit time in a renewal process. Renewal-reward processes 

are very useful for computation of important performance measures, such as long-run 

costs and reward rates. Chen and Jin (2003) extended the concept to determine the 

variance in the rewards of the renewal process. This section models the PM problem as a 

renewal reward process, and the results can be used to calculate the long-run 

semivariance of the cost per unit time.  

This approach addresses the need of managers in local industry for a means to 

measure risk, and it is particularly helpful to senior management. The unit of risk it uses 

is dollar
2
/hour or Euro

2
/hour. In the real world, many strategic managers use variance to 

measure risk (Ruefli et al., 1999); this research shows that semivariance is also a useful 

approach to determine risk. This thesis demonstrates how renewal theory can be applied 

in modeling the risk-penalized machine replacement problem. The model assumes that 

the unit or machine is as good as new after repair or maintenance; that is, its age is zero 

after each repair or maintenance. The machine ages only when it is in operation. The 

following section discusses the notation and basic definitions involved in the renewal 

process. A recursive computational
 
procedure is presented which can be used to obtain 

the optimal
 
replacement policy and the expected average cost. 
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3.2. NOTATION  

This section uses the following variables:  

𝑋 ∶        Random variable denoting the time between system failures 

𝑇 ∶       The age of the unit at which PM is performed 

𝐹 ∙ ∶    The cumulative distribution function of X 

𝑓 ∙  ∶   The probability density function of X 

𝐶𝑟 ∶       The expected cost of one repair 

𝐶𝑚 :        The expected cost of one PM activity 

𝑡𝑟 ∶         The expected time of one repair       

𝑡𝑚 ∶        The expected time of one PM activity 

 

3.3. DEFINITIONS 

3.3.1. Renewal Reward Process. Consider a counting process,  𝑵 𝒕 , 𝒕 ≥ 𝟎 , and 

let  𝑳𝒏  denote the time between the (𝒏 − 𝟏)𝒕𝒉  and the nth event in this process with 

𝒏 ≥ 𝟏. A counting process is a stochastic process if 𝑵 𝒕  represents the total number of 

events that have occurred in [𝟎, 𝒕]. This process must satisfy two conditions i.e.  𝑵 𝒕 ≥

𝟎  and  𝑵 𝒕   is an integer for all t. If  𝑳𝟏, 𝑳𝟐, … . .   denotes a sequence of non-negative 

random variables that are independent and identically distributed, then the counting 

process is called a renewal process. When an event is triggered, a renewal is said to have 

taken place. In the context of the PM problem, every failure or maintenance of the system 

constitutes a renewal. The time between the successive failures or PM activities 

represents a sequence of non-negative random variables, which for a given system can be 

assumed to be independent and identically distributed. When a reward is associated with 

each renewal event, the above counting process is known as a renewal reward process. 

The reward could be the net revenues associated with the event. 
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3.3.2. Expected Reward. Let 𝑹𝒏  be the reward earned at the time of the nth 

renewal process. The total reward 𝑹 𝒕  earned by time t can then be expressed as: 

     𝑅 𝑡 =  𝑅𝑛  .
𝑁(𝑡)
𝑛=1     (3.1) 

This above expression calculates the sum of the individual rewards earned by time 

t. The total reward squared earned by time t can be represented as: 

     𝑅2 𝑡 =  (𝑅𝑛)2  .
𝑁(𝑡)
𝑛=1     (3.2) 

 This expression denotes the sum of the square of the individual rewards earned by 

time t. Further, let us consider  𝐸 𝑅 = 𝐸[𝑅𝑛 ]  , 𝐸 𝑅2 = 𝐸  𝑅𝑛 2  and  𝐸 𝐿 = 𝐸[𝐿𝑛 ] 

where E denotes the expectation operator. The elementary renewal theorem as stated and 

proved by Ross (1997) and which defines the rate of the renewal process is given as: 

Theorem 3.3.2.1. The elementary reward theorem with probability 1, 

lim
𝑡→∞

𝑁(𝑡)

𝑡
=

1

𝐸[𝐿]
     . 

  The renewal reward theorem (see e.g., Ross, 1997, Proposition 7.3, p. 417) for the 

expected reward per unit time is shown below. 

Theorem 3.3.2.2. If  𝐸 𝑅 < ∞ ,  𝐸 𝐿 < ∞ , then with probability 1, 

μ
R ≡

 lim
            𝑡→∞

𝑅(𝑡)

𝑡
=

𝐸[𝑅]

 𝐸 𝐿    
     . 

The above expression states that the long-run expected reward per unit time is 

equal to the expected reward earned in a renewal cycle divided by the expected length of 

the renewal cycle. Hence if C denotes the cost in one cycle, then  

  

μ
C=

𝐸 𝐶 

𝐸 𝐿 
  . 

(3.3) 

(3.4) 

(3.5) 
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3.3.3 Long-run Variance. The following definition for the long-run variance, 

which measures a time average of the total variance in infinite renewals, was first 

presented by Gosavi, (2006). 

Theorem 3.3.3.1. Variance 1 model (Gosavi, 2006)   

 If 𝐸 𝑅 < ∞ ,  𝐸 𝐿 < ∞ , 𝐸  𝑅 2 < ∞ , then with probability 1, 

𝜍2 = lim
𝑡→∞

𝑉(𝑡)

𝑡
=

 𝐸  𝑅 2 − (𝐸 𝑅 )2

𝐸 𝐿 
  , 

where  𝑉 𝑡 =  (𝑅𝑛 −  𝐸[𝑅])2𝑁(𝑡)
𝑛=1   and 𝜍2 represents the sum of the squared deviations 

of the renewal cycle from their means divided by the total duration of the cycle over the 

infinite number of renewals. 

Theorem 3.3.3.2. Variance 2 model (Gosavi, 2008)  

If 𝐸 𝑅 < ∞ ,  𝐸 𝐿 < ∞ , 𝐸  𝑅 2 < ∞ , then with probability 1, 

 

𝜍2 =
 𝐸 𝑅 

𝐸 𝐿 
− 2 × 𝜌 × 𝐸 𝐿 + 𝜌2 ×

𝐸 𝐿2 

𝐸[𝐿]
  , 

where  

𝜌 =
 𝐸 𝑅 

𝐸 𝐿 
  . 

3.3.4 Long-run Semivariance. This section now proposes a result for the long-

run semivariance and explains the proof in detail. The target rate 𝝉 is used to measure the 

average semivariance over an infinite number of renewal cycles. 

Theorem 3.3.4.1. If 𝐸 𝐿 < ∞ and 𝜏 is the target reward(cost) per renewal cycle, then 

with probability 1, the mean long-run semivariance of the rewards of the renewal cycle 

will be: 

  𝜌𝑇 =
𝑆𝑣𝑎𝑟  𝑅,𝐿 

𝐸[𝐿]
 = 

𝐸[𝑆𝑣𝑎𝑟 (𝑅,𝐿)]

𝐸[𝐿]
 , 

where, 𝐸[𝑆𝑣𝑎𝑟  𝑅, 𝐿 ] is the expected semivariance in one renewal cycle. 

(3.9) 

       

(3.6) 

(3.7) 

(3.8) 
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Proof: 

The semivariance of the reward earned in the nth renewal cycle will be defined as 

𝑆𝑣𝑎𝑟  𝑅𝑛  =   𝑅𝑛 − 𝜏 × 𝐿𝑛  +
2   . 

The total semivariance of the reward measured over an infinite number of 

renewals is given as: 

 

𝜌𝑇 = lim
𝑙→∞

𝑆𝑣𝑎𝑟  𝑅, 𝐿 

𝐸[𝐿]
    , 

where, 𝑆𝑣𝑎𝑟  𝑅, 𝐿  is the semivariance of the reward earned by time t, which is represented 

as, 

 

𝑆𝑣𝑎𝑟  𝑅𝑛  =    𝑅𝑛 − 𝜏 × 𝐿𝑛  +
2   .

𝑁(𝑡)

𝑛=1

 

Therefore, 

𝜌𝑇 = lim
𝑡→∞

𝑆𝑣𝑎𝑟 (𝑡)

𝑡
= lim

𝑡→∞
 
𝑆𝑣𝑎𝑟 (𝑡)

𝑁(𝑡)
  

𝑁(𝑡)

𝑡
  

     = lim
𝑡→∞

 
   𝑅𝑛 − 𝜏 × 𝐿𝑛  +

2𝑁(𝑡)
𝑛=1

𝑁(𝑡)
  

𝑁(𝑡)

𝑡
  

     = 
 𝐸[𝑆𝑣𝑎𝑟 (𝑅,𝐿)]

𝐸[𝐿]
 . 

This equality follows from the strong law of large numbers.∎ 

Theorem 3.3.4.1 proves that the long-run total semivariance per unit time is equal 

to the expected semivariance of the reward in one renewal cycle divided by the expected 

length of cycle. In the next section, an expression for calculating the expected 

semivariance of the cost, of a given PM policy, in one renewal cycle is presented. 

(3.10) 

 (3.11) 

(3.12) 
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3.4. OBJECTIVE FUNCTION 

A general objective function or cost function using the Markowitz criterion with T 

denoted as the age of PM is represented as shown below: 

Minimize    𝑔 𝑇 = 𝜇𝐶 + 𝜃𝜍2   𝑤𝑖𝑡𝑕 𝜃 > 0, 

where 𝜇𝐶  and 𝜍2denotes the long-run mean and the long-run variance of the net cost per 

unit time incurred from PM, respectively. 

An alternate way of representing the objective function in terms of rewards and in 

which the function is maximized is expressed as 

Maximize    𝑔 𝑇 = 𝜇𝑅 − 𝜃𝜍2   𝑤𝑖𝑡𝑕 𝜃 > 0, 

where 𝜇𝐶  and 𝜍2denotes the long-run mean and the long-run variance of the net reward 

per unit time incurred from PM, respectively. 

Risk-neutral (RN) statistical models for PM have the objective function which is 

equal to the expected cost because 𝜃 = 0 . Generally the value of 𝜃, i.e., risk-aversion 

factor, is selected by the manager through experimentation. Value of 𝜃 plays an important 

role for managers. When the value of 𝜃 is very low the model does not include risks and 

when the value of 𝜃 is very high, it results in low variability but high cost. 

Using the definitions and the theorems presented in Section 3.1 above, the 

objective function for evaluating the performance of a known PM policy can be 

developed as follows. Each renewal event results in a failure or PM of the system, and the 

associated cost is the expected cost of the failure or PM. As a result, if T is the time 

required to perform PM, the expected cost in a renewal cycle is given as 

𝐸 𝐶 = 𝐶𝑟𝑃 𝑋 < 𝑇 +  𝐶𝑚𝑃 𝑋 ≥ 𝑇 = 𝐶𝑟𝐹 𝑇 +  𝐶𝑚  1 − 𝐹 𝑇  . 

Similarly, the expected semivariance of the cost in a renewal cycle is given as 

𝐸 𝑆𝑣𝑎𝑟 (𝑅, 𝐿) =   𝐶𝑟 − 𝜏 𝑥 + 𝑡𝑟  +
2 𝑓 𝑥 𝑑𝑥 +  1 − 𝐹 𝑡   𝐶𝑚 − 𝜏 𝑇 + 𝑡𝑚  +.

2𝑇

0
 

 

(3.13) 

(3.14) 

(3.15) 

  (3.16) 
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Also, the expected length of the renewal cycle is given as 

𝐸 𝐿 =   𝑥 + 𝑡𝑟 𝑓 𝑥 𝑑𝑥 + (𝑇 + 𝑡𝑚

𝑇

0

)  1 − 𝐹 𝑇  . 

and expected length square is given as 

𝐸 𝐿2 =   𝑥 + 𝑡𝑟 
2𝑓 𝑥 𝑑𝑥 + (𝑇 + 𝑡𝑚 )2

𝑇

0

  1 − 𝐹 𝑇  . 

Finally, using the Markowitz criterion as stated in Equation (3.9) and the results 

of Equations (3.11), (3.12), and (3.13) the following expression for the objective function 

can be used as the objective function. 

𝑔 𝑇 =
𝐸[𝐶]

𝐸[𝐿]
+ 𝜃

𝐸[𝑆𝑣𝑎𝑟 (𝑅, 𝐿)]

𝐸[𝐿]
 . 

This expression can be optimized with respect to T to determine the optimal time, 𝑇∗ for 

performing PM. The overall objective function of renewal theory model can then be 

shown to be: 

 

𝑔 𝑆𝑣𝑎𝑟 =
𝐶𝑟𝐹 𝑇 +  𝐶𝑚  1 − 𝐹 𝑇  

  𝑥 + 𝑡𝑟 𝑓 𝑥 𝑑𝑥 + (𝑇 + 𝑡𝑚
𝑇

0
) [1 − 𝐹(𝑇)]

+ 

 

𝜃
  𝐶𝑟 − 𝜏 𝑥 + 𝑡𝑟  +

2 𝐹 𝑥 𝑑𝑥 +  1 − 𝐹 𝑡   𝐶𝑚 − 𝜏 𝑇 + 𝑡𝑚  +
2𝑇

0

  𝑥 + 𝑡𝑟 𝑓 𝑥 𝑑𝑥 + (𝑇 + 𝑡𝑚
𝑇

0
) [1 − 𝐹(𝑇)]

  . 

 

 

 

 

 

(3.17) 

(3.19) 

(3.20) 

(3.18) 
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4. SEMI-MARKOV DECISION PROCESS 

 

4.1 MARKOV PROCESSES 

The Markov process is widely used to study real-life systems in engineering. In a 

Markov process, the transition among states is a probabilistic phenomenon, that is, a 

random affair. To optimize real life systems using Markov processes, we often define a 

performance metric for the system. This research uses the expected cost per unit time 

plus 𝜃 times risk as the performance metric.  

The Markov process is distinguished by its memoryless property. This property 

states that when a system in state i, whether it goes to state j after one transition does not 

depend on states visited by system before coming to i. The Markov process is governed 

by the following law: 

𝑃𝑟𝑜𝑏 𝑋 𝑡 + 1 = 𝑗 𝑋 𝑡 = 𝑖 = 𝑝 𝑖, 𝑗  , 

where 𝑝(𝑖, 𝑗) is the probability that the next state is j given that current state is i and 

𝑝(𝑖, 𝑗) is a constant for a set of given i and j values. 

A non-Markovian process of three states can be represented by the following law: 

𝑃𝑟𝑜𝑏 𝑋 𝑡 + 1 = 𝑗 𝑋 𝑡 = 𝑖, 𝑋 𝑡 − 1 = 𝑘 = 𝑝 𝑖, 𝑘, 𝑗  . 

This equation assumes that the system is at i when time is t, and at time t-1 the 

system is at state k. The equation implies that the probability that it goes to j from i also 

depends on where the system was at time t-1. This is an example of non-Markovian 

process. For a Markov process, the transition probability depends on the present state and 

the next state. However, in the non-Markov process, the transition probability depends on 

the next state, the current state and one or more of the previous states. In each state of a 

Markov chain, an action can be selected by the decision maker. The Markov decision 

process (MDP) is a problem of control optimization in which one seeks the optimal 

action in each state.  

(4.1) 

(4.2) 
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The following sections address a variant of the MDP, introducing commonly used 

notation and definitions. It also describes two methods used to derive an optimal policy 

under various criteria: exhaustive enumeration and linear programming. 

4.2 SEMI-MARKOV PROCESSES 

The semi-Markov decision process (SMDP) is a tool for analyzing a sequential 

decision process with random decision epochs in which the transition time is a random 

variable. This research develops an SMDP to optimize the maintenance policy for a 

production system.  

The SMDP is a more general version of the MDP. An important assumption with 

the MDP is that the transition of a system to a new state or to the current state happens 

after unit time. In an SMDP, the time spent in each transition of the Markov process can 

be a deterministic quantity or a random variable. The only difference between the SMDP 

and the MDP lies in the time taken in transitions between states of a system. SMDPs 

generalize MDPs by allowing the decision maker to choose actions whenever the system 

state is changed. In the SMDP, the time spent in any transition of the Markov process 

varies, and is in fact a random variable. That the time spent in the MDP is unity implies 

that the expected cost per unit time for an MDP is the same as the expected cost per 

transition, where as in SMDP this is not usually true.  

 SMDPs model the system evolution in continuous time and allow the time spent 

in a particular state to follow an arbitrary probability distribution. If the time spent in any 

transition in an SMDP model is a deterministic quantity, then it is referred to as 

deterministic time Markov decision problem. If the transition times of SMDP model are 

exponentially distributed, then it is referred as continuous time Markov decision problem. 

In SMDPs, there are two stochastic processes associated with the Markov process: the 

natural process (NP) and the decision making process (DMP). 

The natural process keeps a record of every state change in the system. During 

NP, the system does not return to itself in a single transition. To explain in detail, every 

natural process remains in a state for a particular time and then jumps to different state. 

However, the decision-making process has a different approach. DMP is similar to NP 

but it records those states in which action needs to be selected by a decision-maker. In 

DMP the system can return to itself in a single transition.  
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In this section, the problem of finding the optimal policy for performing PM of a 

production machine is modeled as an SMDP. The SMDP model, developed in this 

research, uses the transition probability matrix, transition cost matrix (TCM), and 

transition time matrix (TTM) and is solved using the linear programming approach or the 

exhaustive enumeration technique. The next section presents the notations and an 

explanation of elements used to model the objective function. Basic concepts such as the 

state space, the action space, the transition probability matrix, the transition reward or 

cost matrix, the transition time matrix and the long run average cost are also reviewed. 

4.3 NOTATION 

𝑆               ∶ Set of states of SMDP 

𝐴 𝑖            : The set of actions permitted in state i 

𝑝 𝑖, 𝑎, 𝑗   : Transition probability matrix of going from state i, to state j under the 

condition that action a 

𝑐 𝑖, 𝑎, 𝑗    : The cost incurred due to transition from state i, to state j under the influence 

of action a 

𝑡(𝑖, 𝑎, 𝑗)   :  Time spent in going from state i, to state j under the condition that action a 

𝑣(𝑖, 𝑎, 𝑗)   : Long-run semivariance 

𝑐  𝑖, 𝑎       : Expected cost incurred in state i where action a belongs to 𝐴 𝑖  is chosen 

𝑡  𝑖, 𝑎       : Average time spent in a transition from state i, under the influence of action a 

𝑣 (𝑖, 𝑎)     : Expected long-run semivariance 

𝜋(𝑗)        : Limiting probability of state j. 

 

4.4 DEFINITIONS 

This subsection defines the state space, the policy space, the action spaces and 

other critical elements of the SMDP framework. 



18 
 

4.4.1. State Space. Throughout this thesis, state space is defined as the number of 

days elapsed since the last repair or PM of a machine. The transition time is one day, and 

the state is recorded at the beginning of each day. A finite state space is considered, since 

typically, for large production machines, PM is eventually performed after a finite time 

period. As mentioned before, the state of the machine is assumed to be zero after a repair 

or PM.  

4.4.2. PM Policy and Action Space. At the beginning of each day, the decision 

maker has to select an action which defines the PM policy. At each decision making 

epoch, the following two actions are available: continue production (p) and perform 

maintenance (m). 

4.4.3. Transition Probability Matrix. As stated above, the distribution of the 

time between failures is used to calculate the transition probabilities. Let i be the state of 

the machine at time t. Then, the one step transition probability matrix for a PM policy 

which recommends T as the time for maintenance is calculated as follows. For 𝟎 < 𝒊 <

𝑻 , the action taken is state i will be 𝒂 ∈ 𝑨(𝒊), therefore at time t+1, the machine will 

transition to state i+1 with probability 𝒑(𝒊, 𝒂, 𝒊 + 𝟏) and state 0 with probability 𝟏 −

𝒑(𝒊, 𝒂, 𝒊 + 𝟏). The probability 𝒑(𝒊, 𝒂, 𝒊 + 𝟏) can be calculated as 𝑷 𝑿 >  𝒊 + 𝟏 𝒅  𝑿 >

𝒊𝒅), where d is a constant denoting the number of time units that machine is functional 

per day. However, for i=T, the action taken will be a∈ 𝑨(𝒊), and the machine will 

transition to state 0 with probability 1. The resulting matrix is irreducible and the limiting 

probabilities exist for any given policy. 

4.4.4. Transition Cost Matrix. For 𝟎 < 𝒊 < 𝑻 , the each transition of the machine 

from i to i+1 will result in a profit equivalent to a day’s worth of production. In the 

transition cost matrix, this profit will be expressed as a negative cost associated with the 

successful functioning of the machine. If the machine fails, the cost associated with the 

transition from i will be the average cost of failure, And for i=T, the cost associated will 

be the average cost of maintenance. 
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4.4.5 Transition Time Matrix. This matrix is similar to the TPM and the TCM 

and for action a, its element in the i
th

 row and j
th

 column is represented by 𝒕(𝒊, 𝒂, 𝒋). When 

the transition times are random variables in a system, the values of 𝒕(𝒊, 𝒂, 𝒋) contain the 

expected values. 

4.5 OBJECTIVE FUNCTION 

 To identify the optimal policy in a system, we need a performance metric or 

objective function. In our production problem, we consider expected cost per unit time 

plus a constant (𝜃) times the risk per unit time. The objective function or cost function for 

a PM policy that considers T as the time for PM can be expressed as: 

Minimize    𝑔 𝑇 = 𝜇𝐶 + 𝜃𝜍𝑆𝑣𝑎𝑟
2   𝑤𝑖𝑡𝑕 𝜃 > 0, 

where 𝜇𝐶  and 𝜍𝑆𝑣𝑎𝑟
2 denotes the long-run mean and the long-run variance of the net cost 

per unit time incurred from PM, respectively. 

4.5.1. Expected Immediate Cost and Immediate Time. The expected 

immediate cost, which is the average cost in one transition, can be represented as below: 

 

𝑐  𝑖, 𝑎 =  𝑝 𝑖, 𝑎, 𝑗 𝑐(𝑖, 𝑎, 𝑗)

𝑗∈𝑆

 . 

The expected immediate cost 𝑐  𝑖, 𝑎  associated with respective state i and with 

action a is shown in equation 4.3. Similar to immediate expected cost we can calculate 

expected immediate time in transition for an SMDP model as shown below: 

 

𝑡  𝑖, 𝑎 =  𝑝 𝑖, 𝑎, 𝑗 𝑡(𝑖, 𝑎, 𝑗)

𝑗∈𝑆

    . 

4.5.2. Semivariance of the Immediate Cost. For a given target cost of the PM, 

which is represented as 𝜏 , the semivariance of the immediate cost in the state i when 

action a is selected can be expressed as: 

𝑣 𝑖, 𝑎, 𝑗 =  𝑐 𝑖, 𝑎, 𝑗 − 𝜏 × 𝑡(𝑖, 𝑎, 𝑗) +
2      . 

(4.3) 

(4.5) 

(4.4) 
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The expected semivariance of the immediate cost is then given as, 

𝑣  𝑖, 𝑎 =  𝑝 𝑖, 𝑎, 𝑗 𝑣(𝑖, 𝑎, 𝑗)

𝑗∈𝑆

   . 

4.6. EXHAUSTIVE ENUMERATION APPROACH 

Exhaustive enumeration is conceptually one of the simplest discrete optimization 

techniques. It is easy to understand and implemented on small problems in the real world. 

In this method, one enumerates every policy selected and evaluates the performance 

metric associated with each policy. The policy which produces the best value for 

performance metric is the optimal policy. By using exhaustive enumeration we can 

determine the long-run expected cost per transition and the long-run semivariance of the 

cost. Clearly exhaustive enumeration may not work for very large systems. 

 The long run expected cost per transition(𝜙), for a given policy 𝜇 , is defined as 

follows: 

 

𝜙𝜇   =  𝜋𝜇    𝑖 𝑐 (𝑖, 𝑎)

|𝑆|

𝑖=1

  , 

where 𝜋𝜇    𝑖  is the limiting probability (steady-state probability) of state i if policy 𝜇  is 

pursued. The above is a well-known expression in MDP theory. 

Long-run semivariance of the cost of the given PM policy can be calculated as: 

𝜍𝑆𝑣𝑎𝑟
2 =  𝜋𝜇   

 𝑆 
𝑖=1  𝑖 𝑣  𝑖, 𝑎   . 

The objective function for the SMDP model can be formulated using the above 

equations as: 

𝑔 𝜇  = 𝜙𝜇   + 𝜃 𝜍𝑆𝑣𝑎𝑟
2   . 

Substituting the equations of long-run expected cost and semivariance in the 

above objective function 

 

(4.9) 

(4.6) 

(4.7) 

(4.8) 

(4.8) 
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𝑔 𝜇  =  𝜋𝜇    𝑖 𝑐 (𝑖, 𝑎)

|𝑆|

𝑖=1

+ 𝜃  𝜋𝜇   

 𝑆 

𝑖=1

 𝑖 𝑣  𝑖, 𝑎   . 

  An exhaustive enumeration algorithm can then be used to evaluate the above 

objective function over a set of allowable PM policies. The algorithm helps to find the 

optimum policy 𝜇∗      , which minimizes the cost function. 

4.7. LINEAR PROGRAMMING 

Linear programming (LP) is the most commonly applied form of constrained 

optimization when the objective function is a linear function. The constraints are also 

linear. LP is a useful technique that is computationally superior to exhaustive 

enumeration for classical risk-neutral MDPs (Bertsekas, 1995). In this thesis, LP has 

hence been used as the main optimization tool. It turns out that the semivariance 

penalized problem can be setup as an LP. The main elements in an LP are the decision 

variables, the objective function and the constraints. The decision variables are the 

unknowns during the start of the problem, which needs to be determined. The goal is to 

find the values of these variables that provide the best value of the objective function. In 

our problem, the objective function is to minimize the semivariance penalized expected 

cost per unit time.  

 The objective function for the problem under consideration for a production 

system using the LP is (Tijms, 2003): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑐  𝑖, 𝑎 𝑥(𝑖, 𝑎)𝑎∈𝐴(𝑖)𝑖∈𝑆 + 𝜃   𝑣  𝑖, 𝑎 𝑥 𝑖, 𝑎         𝑤𝑖𝑡𝑕 𝜃 ≥ 0𝑎∈𝐴(𝑖)𝑖∈𝑆  , 

subject to 

 

 𝑥 𝑗, 𝑎 −

𝑎∈𝐴(𝑗 )

  𝑝 𝑖, 𝑎, 𝑗 𝑥 𝑖, 𝑎 = 0       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝑆,

𝑎∈𝐴(𝑖)𝑖∈𝑆

 

 

  𝑥 𝑖, 𝑎 𝑡  𝑖, 𝑎 = 1       𝑎𝑛𝑑 𝑥 𝑖, 𝑎 ≥ 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆  𝑎𝑛𝑑 𝑎 ∈ 𝐴(𝑖)

𝑎∈𝐴(𝑖)𝑖∈𝑆

. 

 

 

(4.10) 

(4.11) 

(4.12) 

(4.13) 



22 
 

5. NUMERICAL RESULTS AND DISCUSSION 

 

  This section presents the numerical results for PM models developed in this 

research. The first subsection focuses on the renewal reward theory (RRT) model and the 

second section focuses on the SMDP model. Both models show encouraging numerical 

performance. The goal of this exercise is to test whether the models developed in 

previous section produce results that can be implemented and generated within a 

reasonable period of computer time. 

  The models developed in this thesis can be used by real world managers for 

scheduling preventive maintenance activities. In order for a real world manager to use 

these models, he/she must have (or collect) data related to the following: 

 The mean repair time and maintenance time. 

 The cost of one repair and that of one maintenance activity. 

For the RRT model, the manager also needs the distribution of the failure times, and for 

the SMDP model transition probabilities are required. The cost of repair can be typically 

found by multiplying the average labor cost of the repair/maintenance personnel by the 

mean time of repair plus the costs of spares/defective items. The cost of maintaining is 

similarly computed. Generally, the maintenance cost is much lower than the repair cost. 

Unless this is true, it does not make sense to preventively maintain a machine. Once the 

inputs are gathered, the models presented in previous sections can be used to determine 

the optimal time for maintenance. 

5.1 RENEWAL REWARD THEORY MODEL 

  This section describes the experiments and results of the RRT model. In the RRT 

model developed for this research, we used the gamma distribution for modeling the time 

to failure. The gamma distribution is a suitable choice since it has an increasing failure 

rate (Lewis, 1994). The results also apply data collected from a manufacturing plant by 

Shewade (2006). The input parameters and output results are described in Table 5.1 and 

Table 5.2, respectively. Several experiments were performed using the RRT model to 

determine the optimal times (𝜏 ) for maintenance under risk-sensitive (RS) and risk-
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neutral (RN) conditions.  The objective function in Equation (3.20) was evaluated over a 

suitable time range and optimization is performed using exhaustive enumeration. The 

computer programs were written in MATLAB for the exhaustive enumeration algorithm 

technique.  

 For the results to be meaningful, the following condition must hold true:                   

             

𝐶𝑚

𝑡𝑚
< 𝜏 <

𝐶𝑟

𝑡𝑟
  . 

   Without this condition, the target semivariance term will not appear in any of our 

calculations. In the PM problem, we determine: (i) the optimal time for performing PM 

under semivariance (𝑇∗
𝑆𝑣𝑎𝑟 ), risk-sensitive variance (𝑇∗

𝑉𝑎𝑟 ), and risk-neutral (𝑇∗
𝑅𝑁

) 

criteria. (ii) The optimal objective function or cost function value associated with each 

criterion. Table 5.3 shows objective functions when using the semivariance, risk-neutral 

and the variance 1 and variance 2 criteria for the renewal theory model. Table 5.3 also 

shows the improvement factor (in percent), obtained from pursuing the Svar criterion. 

The plot for the objective function of risk-sensitive semivariance (Svar) criterion in cases 

1 through 4 is presented in Figure 5.1. Also, the plot presented in Figure 5.2 shows the 

objective function for case 1, under the RN, variance and semivariance criteria. The 

improvement obtained from using Svar criterion in comparison to using RN is defined as 

follows: 

      

𝑔𝑆𝑣𝑎𝑟 (𝑇∗
𝑅𝑁

)  −  𝑔𝑆𝑣𝑎𝑟 (𝑇∗
𝑆𝑣𝑎𝑟 )

𝑔𝑆𝑣𝑎𝑟 (𝑇∗
𝑅𝑁

)
 × 100  , 

Similarly, the percentage improvement obtained from using Svar criterion compared to 

variance is defined as: 

     

𝑔𝑆𝑣𝑎𝑟 (𝑇∗
𝑉𝑎𝑟

)  −  𝑔𝑆𝑣𝑎𝑟 (𝑇∗
𝑆𝑣𝑎𝑟 )

𝑔𝑆𝑣𝑎𝑟 (𝑇∗
𝑉𝑎𝑟

)
 × 100   , 

(5.2) 

(5.3) 

(5.1) 
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where 𝑔𝑆𝑣𝑎𝑟  is the objective function of semivariance criterion defined in Equation 

(3.20). In this objective function, when 𝜃 = 0 we get the expected cost for RN criterion.  

  Figure 5.3 provides a graphical representation of the improvement in the objective 

function for case 1. From the results in Table 5.3, we observe that the percentage 

improvement depends on the value of target cost 𝜏  selected. Table 5.4 denotes the 

optimal time and objective function of variance 1 and variance 2 respectively. Through 

our research we found that for both the variance models, the cost function values are 

almost the same. This is an interesting finding. The variance 2 model measures the 

asymptotic variance, where as variance 1 measures the cyclical variance. Variance 2 is 

much more numerically intensive since it needs the second moment of cycle time where 

as variance 1 does not need it. It appears that variance 1 does not need it. It appears that 

variance 1 may be a sufficiently accurate surrogate for variance 2, which is the 

mathematically more appropriate measure of variability in the renewal reward process. 

Table 5.5 shows the optimal time and objective function of the risk-neutral model. 

Table 5.1 Input parameters for experiments with the risk-sensitive RRT model. 

 

Case Gamma(𝒏, 𝝀) Cr($) Cm($) 𝝉 ($/hr) tr(hr) tm(hr) 𝜽 

1 (6,12.5) 33 2 0.3 25 7.5 0.2 

2 (8,12.5) 83 2 0.45 50 15 0.2 

3 (4,12.5) 83 5 1.8 25 7.5 0.3 

4 (12,8.3333) 83 5 0.7 50 15 0.3 

5 (6,12.5) 33 2 0.5 25 7.5 0.3 

6 (9,10) 33 2 0.16 50 15 0.3 

7 (10,11.1111) 83 5 0.7 25 7.5 0.2 

8 (11,6.66667) 83 5 0.65 50 15 0.2 

9 (10,10) 33 2 0.3 25 7.5 0.3 
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Table 5.2 Optimal times (in hours) of maintenance for various criterions in RRT model. 

 

 

 

Table 5.3 Objective functions when using the semivariance, risk-neutral and the variance 

1 and 2 criteria for the renewal theory model. 

 

 

 

 

            Case 

 

         T*(Svar) 

 

T*(RN) 

 

T*(var1) 

 

T*(var2) 

1 17 24 15 15 

2 21 30 18 18 

3 8 12 4 4 

4 37 43 28 28 

5 20 24 14 14 

6 25 34 23 23 

7 35 46 30 30 

8 24 30 20 20 

9 34 41 28 28 

 

Case 

 

g(T*(Svar)) 

 

g(T*(RN)) 

 

g(T*(var1)) 

 

g(T*(var2)) 

 

IMP% 

RN 

 

IMP% 

VAR 

1 0.0953 0.1103 0.0972 0.0972 13.59 1.95 

2 0.0618 0.0858 0.0631 0.0631 27.97 2.06 

3 0.4009 0.4375 0.4461 0.4461 8.36 10.13 

4 0.107 0.1116 0.1179 0.1179 4.12 9.24 

5 0.0892 0.0919 0.0977 0.0977 2.93 8.70 

6 0.0548 0.0667 0.0555 0.0555 17.84 1.26 

7 0.1348 0.1616 0.1402 0.1402 16.58 3.85 

8 0.1394 0.155 0.146 0.146 10.06 4.52 

9 0.0555 0.0602 0.0587 0.0587 7.80 5.45 
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Figure 5.1 Comparison of risk-sensitive (Svar and Var1, Var2) and the risk-neutral  

      objective functions for case 1, for RRT model. 

 

 

Figure 5.2 Plot of RS semivariance objective function of case 1, for RRT model. 
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Table 5.4 Optimal times (in hours) and objective functions of variance 1 and variance 2 

models.  

 

 

Table 5.5 Optimal times and objective function of Risk-Neutral model. 

 

 

Case T*(RN) g(T*(RN)) 

1 24 0.0767 

2 30 0.0503 

3 12 0.3189 

4 43 0.0952 

5 24 0.0767 

6 34 0.0458 

7 46 0.108 

8 30 0.1221 

9 41 0.0472 

 

 

Case 

 

T*(var1) 

 

T*(var2) 

 

gVar1(Tvar1) 

 

gVar2(Tvar2) 

1 15 15 0.1036 0.1037 

2 18 18 0.066 0.066 

3 4 4 0.4906 0.491 

4 28 28 0.1252 0.1252 

5 14 14 0.1087 0.1087 

6 23 23 0.058 0.058 

7 30 30 0.1506 0.1506 

8 20 20 0.1536 0.1537 

9 28 28 0.0623 0.0623 
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5.2 SEMI-MARKOV DECISION PROCESS MODEL 

This section presents the numerical results of the SMDP model. Performance 

metrics of semivariance, and risk-neutral criteria were determined using linear 

programming. For variance, we use exhaustive enumeration, but we could also use 

quadratic programming. This research used the linear programming approach to find the 

objective function and optimal policy for the semivariance and risk-neutral criteria. The 

exhaustive enumeration approach was used to determine the objective function and 

optimal policy for the variance 1 criterion. Testing of the production system problem 

considered various TPMs, cost parameters, and 𝜃  values. The set of transition 

probabilities in our experiments were generated using the law mentioned below as: 

𝑝 𝑖, 𝑝𝑟𝑜𝑑𝑢𝑐𝑒, 𝑗 = 𝜓𝑑where i is the current state and j is the next state for the d values 

are 0, 1, 2,…., |S|-2 and if 𝑝 |𝑆 − 1|, 𝑝𝑟𝑜𝑑𝑢𝑐𝑒, 0 = 1. Here the unit of d is days. In our 

experiments we have used different values of 𝜓. The time for each production cycle is 

assumed to be tp. The repair time is assumed to be M1* tp and the maintenance is M2* tp. 

M1 and M2 are repair and maintenance factors which are constants. The LP used in our 

model is more generalized one, even though the TPMs were generated in the above 
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Figure 5.3 RRT model displaying the improvement of the objective function, with  

      semivariance criterion for case1. 
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mentioned style for experimentation. The computer programs for the SMDP model is 

also written in MATLAB and tested to determine the optimal policy. The codes are 

presented in the appendix section of this thesis. The condition developed in equation 5.1 

should be valid for the SMDP model as well. Table 5.6 shows the input parameters for 

the experiments done with the SMDP linear program and exhaustive enumeration. Table 

5.7 displays the optimized policy for semivariance, variance and risk-neutral criteria of 

the SMDP model using linear programming technique for semivariance, variance and 

risk-neutral and exhaustive enumeration for variance. The policy prescribes the number 

of days which PM should be performed.. Table 5.8 denotes the optimized objective 

function values of semivariance, variance and risk-neutral criteria. Figure 5.4 shows a 

plot which describes the objective function of case 1 input data for various criterions 

mentioned in our research of SMDP model. Figure 5.5 shows the graph for improvement 

of the objective function of Svar criterion of case 1, for the semivariance model. Figure 

5.6 shows a bar graph of all optimized policies of all input cases for the semivariance, 

variance and risk-neutral criteria. 

Table 5.6 Input parameters for experiments with the SMDP model tp=15/24 days. 

 

Case Psi Cr($) Cm($) Theta 

1 0.94 5 2 0.2 

2 0.92 6 4 0.2 

3 0.91 7 5 0.1 

4 0.88 8 5 0.3 

5 0.93 6 2 0.2 

6 0.92 7 5 0.2 

7 0.89 6 4 0.3 

8 0.96 6 2 0.2 

9 0.9 5 2 0.2 

10 0.95 10 7 0.1 
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Table 5.7 Optimized policies for Svar, Var and RN criteria for the SMDP model using 

linear programming for Svar and RN and exhaustive enumeration for variance. 

 

 

 

Table 5.8 Optimized objective function of Svar, Var and RN criteria for SMDP.  

Case Policy_Var(days) Policy_Svar(days) Policy_Rn(days) 

1 3 4 5 

2 5 6 9 

3 7 8 10 

4 1 3 6 

5 2 3 4 

6 6 7 10 

7 4 5 7 

8 3 4 5 

9 2 3 4 

10 8 9 12 

Case g( 𝝁𝑺𝒗𝒂𝒓) g(𝝁Var) g(𝝁RN) 

1 0.0559 0.0775 0.0568 

2 0.097 0.1077 0.0976 

3 0.1123 0.1141 0.1124 

4 0.2109 0.7472 0.2199 

5 0.0694 0.1394 0.0725 

6 0.1277 0.1363 0.128 

7 0.1211 0.141 0.1221 

8 0.0564 0.103 0.0579 

9 0.0676 0.1018 0.0691 

10 0.1529 0.1613 0.1538 
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Figure 5.4. A plot of comparing the objective functions of Svar, Var and RN criteria for 

case1 for the SMDP model. 
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Figure 5.5 Plot of improvement in the objective function of the Svar criterion of case 1 

for the SMDP model. 
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6. CONCLUSIONS AND FUTURE RESEARCH 

 

  This work developed two mathematical models for risk-sensitive PM based on 

renewal reward theory and SMDPs. In this research, we found the optimal times for 

performing PM on a production system under the semivariance criterion. The results 

show the practical superiority of using semivariance over existing risk-neutral and 

variance-based models. Most published work addresses semivariance in the field of 

portfolio selection. This work introduced the use of semivariance to model the risk-

sensitive objective function of a PM problem.  

  Shewade (2006) was the first to use semivariance in PM; however his work used 

an MDP model (as opposed to our SMDP model) and an RRT theory model in which 

time was assumed to be unity. The RRT model is used generally for PM of smaller and 

simpler systems e.g., pumps, AGVs, and conveyers. The SMDP model is useful in 

formulating PM policies for larger systems e.g., production lines. Our RRT model 

required evaluation of integrals numerically while the SMDP model hinged on linear 

programming. 

  Both RRT and the theory of SMDP are frequently applied in other real-world 

problems. In the RRT model one uses the elementary reward theorem to determine the 

expected cost. The distinguishing feature of the objective function in the RRT model 

presented here is that it uses the Markowitz framework with semivariance as a measure of 

risk. In SMDP model provided here, linear programming is employed for optimization. 

The computational results clearly show the effectiveness of using semivariance-sensitive 

PM policies over traditional approaches. In all the experiments we performed, the 

semivariance model produced optimal policies that recommended maintenance earlier 

than the risk-neutral model, but later than the variance model. Variance 1 and variance 2 

models in the RRT framework have numerically the same objective function value (and 

optimal times), which is an interesting finding.  

Future Research: 

 A useful direction for future research would be to compare semivariance to other 

measures of downside risk in the RRT model. This aspect of the study could also be 
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considered for the SMDP model. Another area of future research is to use dynamic 

programming and develop solutions for value iteration and policy iteration under the 

semivariance criterion. 
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APPENDIX 

 

RENEWAL REWARD THEORY MATLAB CODES 

Main.m 

************************************************************************ 

% Author: Venkata Manojramam Tirumalasetty 

% Model : Renewal Reward Theory  

% To find the optimal time for Preventive Maintenance (PM) for a given % problem - 

Renewal theory model 

% Inputs: 

% Maximum time (max_T)  

% Target cost (tau)  

% Cost of Repair (Cr) 

% Cost of maintenance (Cm)  

% Time to repair (tr) 

% Time to maintain (tm) 

% Value of theta - small value between 0 and 1(P) 

% Value of shape parameter (n) 

% Value of scale parameter (lambda); mean n*lambda;  

% lambda of the paper is 1/lambda of this code. 

*********************************************************************** 

  

global Cr Cm tr tm theta n lambda tau  

  

max_T=100; 

Cr=33; 

Cm=2; 

tr=25; 

tm=7.5; 

theta=0.2; 

n=6; 

lambda=12.5; 

tau=0.3; 

  

% Exaustive enumeration through for loop 

for i=1:max_T 

    S(i)=evaluator(i); 

    RN(i)=risk_neutral_eval(i); 

    VAR1(i)=variance_eval(i); 

    VAR2(i)=variance_new_eval(i); 

    T(i)=i; 

end; 
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%Plot the objective function  

plot(T,S,'ro-', T,RN,'g*-', T,VAR1,'b+-', T,VAR2, 'kd-') 

xlabel('Time to Maintain: T'); 

ylabel('Objective Function'); 

legend('Semi Variance','Risk Neutral','Variance1','Variance2'); 

  

% Find the optimal time for maintenance 

Opt_maint_cost_Svar=min(S); 

Opt_maint_cost_Rn=min(RN); 

Opt_maint_cost_Var1=min(VAR1); 

Opt_maint_cost_Var2=min(VAR2); 

for j = 1:max_T 

    if S(j)==Opt_maint_cost_Svar 

        Opt_maint_time_Svar=j 

    end 

    if RN(j)==Opt_maint_cost_Rn 

        Opt_maint_time_Rn=j 

    end 

    if VAR1(j)==Opt_maint_cost_Var1 

        Opt_maint_time_Var1=j 

    end 

    if VAR2(j)==Opt_maint_cost_Var2 

        Opt_maint_time_Var2=j 

    end 

end 

 

Opt_maint_time_Svar 

Opt_maint_time_Rn 

Opt_maint_time_Var1 

Opt_maint_time_Var2 

  

% Here the Objective function g is for Semi variance model 

gTSVAR=evaluator(Opt_maint_time_Svar); 

gTRN=evaluator(Opt_maint_time_Rn); 

gTVAR1=evaluator(Opt_maint_time_Var1); 

gTVAR2=evaluator(Opt_maint_time_Var2); 

  

figure 

for i=1:max_T 

    S(i)=evaluator(i); 

     T(i)=i; 

end; 

x1=T(5:30); 

y1=S(5:30); 

plot(x1,y1,'b+-') 

xlabel('Time to Maintain:T') 
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ylabel('Objective Function - Svar Criterion') 

figure 

plot(T,S,'ro-') 

xlabel('Time to Maintain: T'); 

ylabel('Objective Function - Svar criterion'); 

  

%Here the Objective function g is for Variance 1 and 2 model 

  

gVAR1=variance_eval(Opt_maint_time_Var1); 

gVAR2=variance_new_eval(Opt_maint_time_Var2); 

  

%Here the Objective function g is for RN Model 

gRN=risk_neutral_eval(Opt_maint_time_Rn); 

  

gTSVAR 

gTRN 

gTVAR1 

gTVAR2 

gVAR1 

gVAR2 

gRN 

  

Evaluator.m 

 

function obj_fun = evaluator(T) 

  

global Cr Cm tr tm theta n lambda tau  

% Evaluate the objective function, for Svar criterion for a given value of T 

% First, calculate expected cost and the expected renewal time 

 

% Expected cost 

R = Cr*gamcdf(T,n,lambda) + Cm*(1-gamcdf(T,n,lambda)); 

% Expected time 

L = quadl(@fun,0,T)+ (T+tm)*(1-gamcdf(T,n,lambda)); 

% Semivariance 

SV = quadl(@fun_sv,0,T)+ (1-gamcdf(T,n,lambda))*max(0,(Cm-tau*(T+tm)))^2; 

 

% Calculate the objective function 

obj_fun = (R/L) + theta*(SV/L); 

************************************************************************ 

Risk_neutral_eval.m 

 

function [obj_fun_rn] = risk_neutral_eval(T) 

 

% Evaluate objective function, of RN criterion for a given value of T 
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global Cr Cm tr tm theta n lambda tau  

  

% Calculate expected cost and the expected renewal time 

R = Cr*gamcdf(T,n,lambda) + Cm*(1-gamcdf(T,n,lambda)); 

L = quadl(@fun,0,T)+ (T+tm)*(1-gamcdf(T,n,lambda)); 

  

% Calculate the objective function 

obj_fun_rn = R/L; 

 

************************************************************************ 

Variance_eval.m 

 

function obj_fun = variance_eval(T) 

  

global Cr Cm tr tm theta n lambda tau  

% Calculate expected cost, expected cyce l length, expected squared  

% cycle length and expected squared cost 

  

R = Cr*gamcdf(T,n,lambda) + Cm*(1-gamcdf(T,n,lambda)); 

L = quadl(@fun,0,T)+ (T+tm)*(1-gamcdf(T,n,lambda)); 

R2 = (Cr^2)*gamcdf(T,n,lambda)+(Cm^2)*(1-gamcdf(T,n,lambda)); 

W=(R2-R^2)/L; 

obj_fun = (R/L) + theta*(W); 

 

************************************************************************ 

Variance_new_eval.m 

 

function obj_fun = variance_new_eval(T) 

  

global Cr Cm tr tm theta n lambda tau  

  

% Calculate expected cost, expected cycel length, expected squared  

% cycle length and expected squared cost 

  

R = Cr*gamcdf(T,n,lambda) + Cm*(1-gamcdf(T,n,lambda)); 

L = quadl(@fun,0,T)+ (T+tm)*(1-gamcdf(T,n,lambda)); 

R2 = (Cr^2)*gamcdf(T,n,lambda)+(Cm^2)*(1-gamcdf(T,n,lambda)); 

L2=quadl(@fun_var,0,T)+(T+tm)^2*(1-gamcdf(T,n,lambda)); 

rho=R/L; 

  

%Calculate the objective function 

  

W=R2/L-(2*rho^2*L)+(rho^2*L2/L); 

obj_fun = (R/L) + theta*(W); 

************************************************************************ 

fun.m 
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function y = fun(x) 

  

global Cr Cm tr tm theta n lambda  

  

y = (x+tr).*gampdf(x ,n,lambda); 

 

fun_var.m 

 

function y = fun_var(x) 

  

global Cr Cm tr tm theta n lambda  

  

y = (x+tr).^2.*gampdf(x ,n,lambda); 

 

fun_sv.m 

 

function y = fun_sv(x) 

  

global Cr Cm tr tm theta n lambda tau  

  

y=max(0,Cr-(tau*(x+tr))).^2.*gampdf(x ,n,lambda); 

     

************************************************************************ 

 

SEMI-MARKOV DECISION PROCESS 

 

LINEAR PROGRAMMING (LP) APPROACH MATLAB CODES 

 

Main.m 

 

% we will assume in our model that when a machine fails it is repaired 

% after approximately M1*T time units since the start of the production 

% cycle; also when the machine is maintained, the maintenance is  

% complete 

% after approximately M2*T time units since the decision to maintain is 

% made. T is the fixed time for one production. Also, M1 is much   

% greater 

% than M2. 

  

global NS T PSI CR CM  M1 M2 TAU THETA na 

 

% Declaration of variables 

NS=30; % number of states 

T=15; % time of one production 

PSI =0.94; % TPM variable 
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CR=5; % cost of one repair 

CM=2; % cost of one maintenance 

M1=2; % Repair time factor 

M2=1.25; % Maint time factor 

TAU=0.15; %Target value  

THETA=0.2; %For Risk Neutral put the theta value to 0 

na=2; % number of actions in our model: one for production and the other for 

maintenance 

  

[tpm,twm,ttm]=matrix_generator(na); 

X=lin_prog(tpm,twm,ttm); 

 

************************************************************************ 

Matrix_generator.m 

 

function [tpm,twm,ttm]=matrix_generator(na) 

  

global NS T PSI CR CM CP M1 M2 TAU THETA na 

  

% Generate the TPM 

tpm = zeros(NS,NS,na) ; 

for state=1:NS 

    tpm(state,1,2)=1; 

end 

for state=1:NS-1     

    tpm(state,state+1,1)=PSI^state  ;    

    tpm(state,1,1)=1-tpm(state,state+1,1); 

end 

tpm(NS,1,1)=1; 

  

% generate the TCM 

tcm=zeros(NS,na); 

 for state=1:NS 

    tcm(state,1,1)=CR; 

    if state <= (NS-1) 

         tcm(state,state+1,1)=0; 

    end 

    tcm(state,1,2)=CM; 

end 

 

% generate the TTM 

ttm=zeros(NS,na); 

for state=1:NS 

    ttm(state,1)= (tpm(state,1,1)*M1*T)+(1-tpm(state,1,1))*T; 

    ttm(state,2)=M2*T; 

end 
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%To calculate v(i,a,j) 

v=zeros(NS,NS,na); 

for a=1:2 

    for i=1:NS 

    for j=1:NS 

        L=max(0,(tcm(i,j,a)-(TAU)*(ttm(i,a)))); 

        v(i,j,a)=L^2; 

    end 

    end 

end 

  

% To calculate w(i,j,a) 

twm=zeros(NS,NS,na); 

   for a=1:2 

        for i=1:NS 

            for j=1:NS 

         twm(i,j,a)=tcm(i,j,a)+(THETA)*v(i,j,a); 

          

            end 

        end 

   end 

************************************************************************ 

lin_prog.m 

 

function [X]=lin_prog(tpm,twm,ttm) 

 

global NS T PSI CR CM CP M1 M2 TAU THETA na 

  

 %Calculate expected wbar 

   wbar=zeros(NS,na); 

   for a=1:2 

    for i=1:NS 

    sum=0; 

       for j=1:NS 

            sum=sum+tpm(i,j,a)*twm(i,j,a); 

       end 

       wbar(i,a)=sum; 

    end 

end  

   

% To convert Wbar into 1 D vector 

obj_func = zeros(1,NS*na); 

l=0; 

for i=1:NS 

    for j=1:na 
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        l=l+1; 

        obj_func(1,l)=wbar(i,j); 

    end 

end 

 

%To calculate ttm_mod - 1D vector of ttm 

 

ttm_mod = zeros(1,NS*na); 

l=0; 

for i=1:NS 

    for j=1:na 

        l=l+1; 

        ttm_mod(1,l)=ttm(i,j); 

    end 

end 

  

% To calculate first half of A Constarint 

  

I_matrix=zeros(NS,NS*na); 

for i=1:NS  

  I_matrix(i,(i-1)* na+1 : i * na)= ones(1,na); 

    end 

I_matrix 

  

% To calculate second half of A 

 

for j=1:NS 

    k=1; 

    for i=1:NS 

        for a=1:2 

            ACP(j,k)=tpm(i,j,a); 

            k=k+1; 

        end 

    end 

end 

Aeq=I_matrix-ACP 

Aeq= [Aeq; ttm_mod] 

 

%To calculate Beq right side of the constraint 

 

Beq=zeros(NS+1,1); 

Beq(NS+1)=1 

f=obj_func 

for i = 1:NS*na 

    LB(i)=0; 

end 
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X=linprog(f,[] ,[] ,Aeq,Beq,LB) 

  

X_mod=X.'; 

X_mod 

  

val=f*X; 

val  

 

 

%Objective function 

  

Y=zeros(NS,na); 

l=0; 

for i=1:NS 

    for j=1:na 

    l=l+1; 

    Y(i,j)= X_mod(1,l); 

end 

end 

% To find the optimized policy 

  

q=zeros(NS,na); 

for i=1:NS 

for a=1:na 

    sum=0; 

    for j=1:na 

        sum=sum+Y(i,j); 

    end 

    q(i,a) = Y(i,a)/sum; 

end 

end 

************************************************************************  
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