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ABSTRACT

The amalgamation and coordination between computational processes and phys-

ical components represent the very basis of cyber-physical systems. A diverse range

of CPS challenges had been addressed through numerous workshops and conferences

over the past decade. Finding a common semantic among these diverse components

which promotes system synthesis, verification and monitoring is a significant challenge

in the cyber-physical research domain. Computational correctness, network timing

and frequency response are system aspects that conspire to impede design, verifica-

tion and monitoring. The objective of cyber-physical research is to unify these diverse

aspects by developing common semantics that span each aspect of a CPS.

The work of this thesis revolves around the design of a typical smart grid-type

system with three PV sources built with PSCAD R©1. A major amount of effort in this

thesis had been focused on studying the system behavior in terms of stability when

subjected to load fluctuations from the PV side. The stability had been primarily

reflected in the frequency of the generator of the system. The concept of droop control

had been analyzed and the parameterization of the droop constant in the shape of an

invariant forms an essential part of the thesis as it predicts system behavior and also

guides the system within its stable restraints.

As an extension of a relationship between stability and frequency, the present

study goes one step ahead in describing the sojourn of the system from stability to

instability by doing an analysis with the help of tools called Lyapunov-like functions.

Lyapunov-like functions are, for switched systems, a class of functions that are used

to measure the stability for non linear systems. The use of Lyapunov-like functions

to judge the stability of this system had been tested and discussed in detail in this

thesis and simulation results provided.

1PSCAD R© is a registered trademark of Manitoba HVDC Research Center Inc.
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1. INTRODUCTION

1.1. BACKGROUND

A Cyber-Physical System (CPS) is an engineered physical system which con-

sists of interacting distributed cyber and physical components. A CPS typically

consists of a multitude of interacting distributed components. CPSs are often de-

ployed in critical applications like advanced electric power systems, automated air-

craft systems, intelligent highway systems, automated factories and smart houses.

Unintended or misunderstood interactions among the CPS components might cause

unwanted/unpredictable behavior thereby leading to serious consequences. Therefore

it is imperative to develop approaches to ensure that both hardware and software

components can integrate their operations into the system without interference or

unanticipated interactions.

Often CPS failures occur when various subsystems are designed and tested in

isolation and then integrated. Each subsystem may have been designed to meet

the given specifications, but not to meet unforeseen circumstances arising from their

combination. A car is designed for speeds between 0 and 100 mph. We certainly

wouldn’t want the steering to lock up or the brakes to fail at speeds greater than 100

mph, or fail if the car goes backwards. Luckily, today’s automobiles have over one

hundred years of design experience, so failures in cars are uncommon. However, as

these systems become Cyber-Physical, they do not have such long histories. Modern

cars contain over 10 million lines of code often developed separately for individual

components [1]. This complexity can lead to unintended interactions. In 2005, CNN

reported on the Toyota Prius where it stalled without warning due to reaching an

ambiguous state between regions of operation. Avoiding situations such as this is

why it is important to overlay a system-level scientific approach to CPS integration.

The engineering life cycle represents the steps of constructing a system. The key

challenge in engineering a CPS is representing and merging fundamentally different

subsystem aspects along the engineering life cycle as illustrated in Figure 1.1.
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Figure 1.1. The Science behind the engineering of a CPS

1.2. LITERATURE REVIEW

The tight conjoining of and coordination between computational resources and

physical components represents the core of cyber-physical systems (CPS) research

[2]. A wide variety of CPS challenge problems have been identified through numer-

ous workshops over the last decade. Universally common to cyber-physical systems

are three principal functional components, a (distributed) cyber component, a net-

working/communications component, and an underlying physical infrastructure. So
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integration, correctness, and stability are significant challenges in creating the tight

conjoining of these three components.

For a CPS, cyber subsystems are naturally represented by discrete states and

the physical subsystems are represented by continuous functions. The work of this

thesis merges discrete events from the cyber subsystems with continuous events of

the physical subsystems described by Lyapunov functions [3].

The current design approaches focus on separate components of a system. For

example, a Lyapunov-based design of a closed loop controller for a physical sys-

tem typically assumes hard-real-time limits on communication and processing delay.

Again, the traditional real-time networks focus on providing service with fixed per-

formance limits, for example CAN, FlexRay.

However a complex, distributed system-of-systems, such as the power grid or an

electric vehicle, would challenge such traditional and standalone design approaches.

A large network with hundreds of devices would require significant over-engineering

to guarantee typical, conservative delays for a control loop. Traditional control-

theory based approaches assume uninterrupted communication in the loop with low

delays. Moreover, a typical Lyapunov-based stability analysis requires a monotonous

convergence towards a desired operating state. This is achieved by requiring a neg-

ative (definite) first difference of a Lyapunov function candidate. In general, that

means that the system will monotonically converge to the desired state. However,

often the physical system can accommodate a disruption, bounded in time and

magnitude, when a Lyapunov-like function may increase. Furthermore, controllers

are traditionally designed to accommodate the worst-case scenario, that is, largest

change/deviations/disturbance on all degrees-of-freedom. A proper design will always

involve a fail-proof approach to handle erroneous situations, such as a short-circuiting

of power lines.

For the physical aspect of a CPS, switched system analysis techniques can be

used [4]. Cyber-physical systems can be modeled with a variety of abstractions,

including hybrid automata and timed I/O automata [5]. Both of these automata

types capture the dual aspects of the systemdiscrete dynamics that reflect the cyber

changes and continuous dynamics to model the physical system. However, analysis

tools for these formulations are challenging to use or, for some systems, non-existent.
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Instead, a switched system models just the continuous dynamics, while allowing for

mode changes due to some external action. That is, the cyber aspect of the system is

modeled separately and only its impact on the physical system is incorporated. The

main advantage of this approach is the partitioning of the problem. Switched system

analysis, using Lyapunov or Lyapunov-like functions [6–8], can identify switching

sequences that are allowable and switching sequences that cause instability. The

switching sequences may be restricted in the state space or, for more generality, in

the time domain. Timing restrictions (both maximum and minimum) can then be

mapped into constraints for tools native to the cyber domain that determine whether

the cyber controller meets stability requirements.

A unifying framework for designing cyber-physical systems is desired; however,

the problem lies in the absence of any comprehensive tool to do so. The crucial point

missing is a semantically common method of relating cyber, network, and physical

actions and dynamics. However some work is path breaking in this direction. Acu-

men [9] bridges the gap between analytic models and simulation codes. Invariants

and predicate transformers on the state of CPS was explored for dynamical systems

in [10] and more recently in [11] which gives a formalism for invariant interaction

and incremental invariant composition. The interaction of invariants for purely cy-

ber processes, has its origins in [12] which affords composition of sequential proofs

governed by the property of noninterference.

An invariant, essentially, is a logical predicate on a system state that does not

change its truth value if satisfied by the system execution. An axiomatic basis for

the truth of invariants on cyber systems was first proposed by [13]. In this system,

program actions are related to logical truth through axioms and inference rules. In-

variants are widely used ranging from algorithm instruction [14] to never claims in

model checking. Invariants are well-understood for cyber processes, but extending

them into the network and physical domains requires some insight.

From the physical perspective, as described in [3], Lyapunov functions can be

applied to describe the dynamics of the physical system. Lyapunov functions can

describe the complex behavior of a power grid [15]. However, there are no definite

ways to find a Lyapunov function for nonlinear systems. In a switched system, a

substitute (proxy) of a true Lyapunov function can be found by using either the
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norm of the state vector or the energy of the system (the latter being used in the

present work). Under certain conditions, this may be termed a Lyapunov-like function

[6] and can verify the stability characteristics of the system.

Lyapunov functions have also been used to describe network stability [16–18].

Conceptually, Lyapunov-like functions can be constructed by modeling network traffic

as a control feedback problem and then bounding the number and timing of outstand-

ing messages and/or acknowledgements.

Authors in [19] have shown that advanced electric power grid is a complex real-

time with both cyber and physical components. The interaction between two oth-

erwise properly functioning individual components might result in an interference.

The main type of incorrectness discussed in this paper is in the frequency domain.

The authors used RT-PROMELA to construct the model and then checked it with

RT-SPIN. To reduce the problem of state explosion, the model was decomposed into

several other sub-models, each with a smaller state space that could be checked indi-

vidually.

An architecture for a future electric power distribution system had been dis-

cussed in [20] which is widely used for for plug-and play of distributed renewable

energy and distributed energy storage devices. The architecture described in this pa-

per was proposed by the NSF FREEDM Systems Center, Raleigh, NC, as a roadmap

for a future automated and flexible electric power distribution system. In the envi-

sioned BEnergy Internet, a system that enables flexible energy sharing is proposed

for consumers in a residential distribution system. The principal technologies needed

to promote this vision had been discussed by the authors of this paper in addition

with the FREEDM Systems Center.

An initiative to amalgamate the smart grid with Distributed Grid Intelligence

(DGI) to manage the distribution and storage of renewable energy had been under-

taken in [21]. This is also a work sponsored by the FREEDM systems center. DGI

uses distributed algorithms in a novel way to attain economically feasible utilization

and storage of alternative energy sources in a distributed fashion. These Intelligent

Energy Management (IEM) nodes coordinate among themselves to effectively and

economically manage their power generation, utility and storage. The authors of this

paper had discussed key aspects in the implemenation of such schemes and outlined
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preliminary results obtained by the integration of the proposed approach with a func-

tional SST model used in FREEDM. This paper basically shows the effect of “smart”

technology on a local grid and its advantages.

Authors in [22] presents proof rules as an extension of Hoare’s Communicat-

ing Sequential Processes [23]. The rules deal with total correctness; all programs

terminate in the absence of deadlock. The commands sent and received are treated

symmetrically, simplifying the rules and allowing send to appear in guards. The work

also discusses sufficient conditions for showing that a program is deadlock-free. The

usage of the technique had been demonstrated by an elaborate example.

The appropriateness behind the application of Lyapunov-like functions is par-

ticularly interesting while studying the dynamics of interconnected cyber-phyical sys-

tems. In the context of switched systems, the basic concept of vector Lyapunov func-

tions [24] can be considered,and also expanded to include Lyapunov-like functions.

Vector Lyapunov functions have been previoulsy used to analyze jump non-linear

systems [25], a class of systems with certain common fetaures with switched systems

where the switching is driven by a Markov random process.

Lyapunov-like functions can also be used to analyze discrete-time systems with

multiple time scales. These functions can be used to determine whether the updates

occur frequently enough, but not too frequently [26] so as to safeguard stability. But

then again single perturbation methods [27] allow the analysis of each time scale to

focus on a subset of the state variables.

Thus for a CPS, each controller usually has complete information about a small

portion of the complete physical system but limited information about the interface

between this small physical sub-system and the rest of the system, and infrequently-

updated information about other cyber-physical subsystems. Thus even if a particular

subsystem is stable, forming a true Lyapunov function is almost impossible especially

for a non-linear system.

Therefore the focus needs to be shifted towards Lyapunov-like functions along

with a proper understanding of Lyapunov and Lyapunov-like systems. This is why the

present study focuses on a Lyapunov-like approach and its justifiable implementaion

in the context of an interconnected system. The following subsection describes the

proposed approach that would be adopted to study a complex cyber-physical system
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with the aid of Lyapunov-like tools since as had been substantiated before, designing

Lyapunov-like functions for such a non linear system is virtually impossible.

1.3. PROPOSED APPROACH

Cyber-Physical Systems (CPS) consist of distributed computation intercon-

nected by computer networks that monitor and control switched physical entities

interconnected by physical infrastructures [2]. In the emerging smart grid, for exam-

ple, system state provides input into distributed computer algorithms that manage

power and energy via local computation with messaging passing over a computer

network collectively resulting in control signals to advanced power electronics. This

thesis seeks to unify the knowledge present in these diverse aspects through develop-

ing common semantics that span each aspect of a CPS. Specifically, a smart grid type

system had been considered. Power commands to various loads and alternative energy

sources are stepped in response to cyber controllers that are networked. This thesis

shows the development of a physical invariant, based on the theory of Lyapunov-like

functions, and a cyber invariant, that governs the correctness of a power dispatch

algorithm, and couples the two to develop an overall system stability invariant. The

invariant approach is tested with a set of simulations. The system stability had been

reflected in the generator frequency. The frequency variations in the switched system

in response to cyber commands had been captured. Also a non-interfering droop

law had been proposed to preserve the stability of the system. The Lyapunov-like

function that describes this behavior is derived from the error in the system energy.

This function also gives an estimate of the system stability which is also a major part

of this thesis. Simulations had been carried out to show the Lyapunov-like behavior

of the system and thus predict the overall system stability.

The present thesis is a follow up from the paper presented in the KASTLES

SOCA 2011 conference [2]. The author of this thesis is also one of the authors of

the aforementioned paper presented in the KASTLES conference. An introduction to

the dynamics of a switched system and the application of Lyapunov and Lyapunov-

like functions in such systems have been discussed in Section 2. The physical/power

electronic model of the experimental system have been described in Section 3 along

with its control strategy. Section 3 also describes the cyber control strategy adopted
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for this work which involves the “Intelligent” communication between the DGI s and

their power balancing algorithm. Power simulation experiments have been discussed

in Section 4 . Section 4 concludes with an introduction to the Droop Theory. This

had been taken up in Section 5 which discusses droop analysis and reports subse-

quent simulations conducted. Section 5 also covers the correlation between invariant

theory and droop analsyis. Experiments reported in this chapter primarily show the

successful amalgamation of invariant prediction and simulation results. This can be

described as the most important section of this thesis as the experimental results con-

vey the message of the author and substantiates the theoretical analysis. The final

section (Section 6) discusses the conclusions and the future work that can be done as

an extension of this present study.
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2. SWITCHED SYSTEM THEORY

2.1. INTRODUCTION

A switched system is a fundamentally continuous-time system with changes that

occur at discrete times [4]. The study of a bouncing ball provides a classic example to

describe the dynamics of a switched system: its dynamics are governed by gravity and

Newton’s laws of motion, and its velocity changes (instantaneously, as approximated)

direction when it hits a surface. In this particular ball example, the switching instants

are externally imposed but they might also be related to the system dynamics. A

switched system is distinguished from a hybrid system in that discrete state dynamics

are not modeled. Switched system analysis can identify switching sequences that are

permissible and switching sequences that cause instability. The switching sequences

may be restricted in the state space or in the time domain.

The continuous state of the system can be expressed as a vector of state variables

(x ∈ Rn) whose values describe the system at a given time, and whose time history

describe the system dynamics from the initial conditions to the current time. The

inputs, expressed as a vector u, may be external to the system or generated with

feedback of a combination of the state variables and outputs. The outputs, expressed

as the vector y, are the only measurable characteristics of the system. The state-

space formulation of a system, for some (possibly nonlinear) vector-valued functions

f(·) and g(·) and some initial condition x0 on x at time t0, is

dx

dt
= f(x,u), (1)

y = g(x,u), (2)

x (t0) = x0 (3)

2.2. LYAPUNOV AND LYAPUNOV-LIKE FUNCTIONS

A well-known tool for stability analysis of an autonomous continuous system

(that is, one with no external inputs u) is a Lyapunov function, V (x). A Lyapunov
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function has the following properties:

1. V (x) is positive definite, that is, V (x) > 0 ∀x 6= 0, V (0) = 0.

2. V (x) is radially unbounded.

3. dV
dt
≤ 0 along all trajectories (∂V

∂x
f(x) ≤ 0).

If dV
dt

is non-positive, the system is stable. If dV
dt

is strictly negative, the system is

asymptotically stable.

Unfortunately, while finding Lyapunov functions for low-order linear systems

is relatively straightforward, finding Lyapunov functions for higher order systems

pose enormous computational challenges and burden. As a matter of fact, there are

no general techniques for finding Lyapunov functions for non-linear systems. For

switched systems, another class of functions may be considered, namely Lyapunov-

like functions [6–8]. A Lyapunov-like function must be positive definite and radially

unbounded, just like a Lyapunov function. However, its derivative need not be neg-

ative at all times. Instead, we are only concerned with its value at isolated points.

Multiple Lyapunov-like functions may be used for different operating modes.

We can consider a switched system that may operate in several different modes,

enumerated by k. For each mode, it is possible to define a Lyapunov-like function

Vk(xk). If the system switches between modes, the only values of Vk(xk) that matter

are the values when the kth mode becomes active. If those values form a decreasing

or non-increasing series, and the same holds true for all admissible values of k, then

the switched system is stable. This concept is shown conceptually in Figure 2.1.

2.3. LYAPUNOV AND LYAPUNOV-LIKE FUNCTIONS IN A CPS

For switched discrete time linear systems, a switching law can be proposed which

is dependant on system state with a dwell time designed to ensure asymptotic stability

for the entire system [28]. A significant characteristic of Lyapunov-like functions is

that they may not be monotonically decreasing in both time as well as state driven

instants . Thus it made possible for the authors of [28] to come up with a stabilizing

switching law having a lower switching frequency in contrast with recent results. Also

it was shown that the proposed switching law ensured that a bounded perturbation
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Figure 2.1. Asymptotic stability using multiple Lyapunov functions (V1 and V2). (a)
Two true Lyapunov functions. (b) One Lyapunov function (V2), one Lyapunov-like
function (V1).

implied bounded states. Feedback principles can be also used in designing switching

laws. As in [29], a state feedback stabilizing switching law with dwell time had been

developed for switched discrete-time linear systems. When compared with switching

laws without time-driven switching laws, the former can reduce switching frequency.

Also [29] goes on to show that the system state is bounded under the proposed

switching laws if the given system is perturbed by a bounded perturbation.

The authors in [30] identify two types of stabilizability for switched systems:

the pointwise stabilizability and the consistent stabilizability. This paper depicts the

necessary conditions and sufficient conditions for both types in the context of switched

linear systems.

Authors in [31] had addressed the problem of switched state feedback stabi-

lization in switched linear systems with exponential uncertainties. Exponential un-

certainties involve terms like emr which is dependant on an unknown time varying

parameter r. The design for such exponentially uncertain models from the control

system point of view is pretty onerous. In the context of such an equivalent switched

model, the switching strategy and associated state feedback controllers had been de-

signed so that such switched model is asymptotical stabilization based on switched

Lyapunov function technology.

Lyapunov functions had also been adopted to sample discrete switching events

in cyber-physical systems. An event driven control methodology that employs Lya-

punov sampling had been applied by the authors of [32] to networked control systems.

A theoretical guideline had been presented to apply the Lyapunov sampling to a set of
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closed loop systems sharing a serial bus line. Emphasis had been laid on recognizing

requirements that need to be met to guarantee overall stability. An effective imple-

mentation approach had been presented for the controlled area network in addition

to addressing problems due to the implicit distributed architecture of the NCS [32].

Not enough emphasis can be stressed on the challenges posed on providing in-

tegrity, efficiency and satisfactory performance for evolving cyber-physical systems

[33]. Commendable work had been done in this paper by providing a Simplex Archi-

tecture which incorporates a supervisory controller that takes corrective measure only

when the system is in potential danger of violating an important invariant property.

The key factor in determining the switching control logic is that it should guarantee

safe/stable system operation at all possible operating instants without being unduely

conservative. Past work had involved composing Lyapunov functions for the under-

lying continuos dynamical system. For instance in order to verify a decision module

in a system with continuos dynamics, a Lyapunov function’s stability region can be

used to drive the decision module [34]. A Lyapunov function for a controller for a par-

ticular plant defines an n-dimensional ellipsoid within an n-dimensional state space

where, if the current system state is within the ellipsoid and the controller is used,

the system will converge to a setpoint. If a Lyapunov function exists for the safety

controller where the stability region is defined within the operational constraints with-

out containing property violation states, and we know the maximum gradient over

time for any controller within the Lyapunov stability region, it is possible to formally

derive the decision module switching rule. If the current system state is at least the

maximum gradient times the control iteration time away from the Lyapunov stability

region boundary, the complex controller can be used. In the worst case, the state

space will proceed at the maximum gradient towards the Lyapunov stability region

boundary, but will not cross it before the next control iteration. It is then possible to

switch to the safety controller which is guaranteed to converge to the setpoint without

leaving the Lyapunov stability region. Thus the property violation region is never

entered as had been explained in [33].

Thus Lyapunov-like functions are powerful tools for the analysis of a complex

CPS. The present scope of work seeks to use the energy of the error as a Lyapunov-like

function. It is important to note that the error should be measured with respect to a
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certain desired physical operating point. Thus for each operating mode of the physical

sub-system, a Lyapunov-like function can be defined, such as the energy in the error

in all the state variables [2]. Then, as the cyber system state evolves, the Lyapunov-

like functions can be checked. The derivative of the Lyapunov-like functions can be

monitored and used to determine minimum and maximum times between switching

instants. The study can be focused on a single scalar function of the state variables

instead of considering the various dynamics of those state variables.
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3. CYBER-PHYSICAL CONTROLS

3.1. PHYSICAL SYSTEM DESCRIPTION

The model described in this thesis is basically a “smart-grid” type system which

consists of a generator and three converters (all in three phase) and operating in a grid-

connected mode to absorb/inject power as governed by a cyber dispatch algorithm

from the external finite-inertia generator [2]. Thus the converters can function either

as rectifiers or as inverters. One of the aims of the present study is to operate

the system in a stable domain. The stable operation of the system depends on the

commanded power pulses and the dwell time between the perturbation instants.

The physical system was simulated in PSCAD R© as illustrated in Figure 3.1.

As can be seen, there are three converters ( all in three phase) interacting among

themseleves, connected by lines with reasonable impedance and eventually connected

to a generator by a transformer. Two of the converters inject power (source) into the

grid and thus behave as inverters. The third converter acts as a rectifier and deliver

power out of the grid (load). The switching strategy for the converter operation had

been framed according to the desired control strategy which is to produce as much

power as commanded by the cyber dispatch algorithm.

3.2. CONVERTER SWITCHING CONTROLS

The control strategy adopted for the converter switching action has been repre-

sented in the block diagram representation in Figure 3.2. The relationship between

the active and reactive power transfer in the simulated system can be expressed in

the d− q reference frame [35] as

P =
3

2
(VqIq + VdId) (4)

Q =
3

2
(VqId − VdIq) (5)

In (4)-(5), Vq and Iq are the q-axis voltages and currents while Vd and Id are the d-axis

voltages and currents. The converter a− b− c currents (Ia, Ib, Ic) are converted into
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Figure 3.1. Physical System Representation simulated in PSCAD R©.

their respective d and q counterparts. The cyber algorithm delivers the commanded

values of P and Q. Depending upon the commanded values of P ∗ and Q∗, it is

possible to calculate the ideal d and q axis currents for each converter as shown in

the following pair of equations.

I∗d = 2(P ∗Vd +Q∗Vq) (6)

I∗q = 2(P ∗Vq −Q∗Vd) (7)

In (6)-(7), P ∗ and Q∗ are the commanded values of active and reactive powers

from the cyber algorithm. In the present thesis, the commanded value of reactive

power is always zero for simplicity.

The ideal d and q axis currents are converted back to their respective a− b− c
counterparts. The control mechanism involved in this thesis is current regulated

control or Hysteresis control. Therefore delta modulation is imposed to control the
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Figure 3.2. Block diagram representation of the converter switching scheme algo-
rithm.

converter currents to the desired a−b−c current values. This generates the switching

signals for the converters.

Thus the ideal Ia, Ib, Ic can be converted back to their respective ideal d − q
counterparts. According to (4)-(5), these ideal currents will generate the commanded

values of active and reactive power at nominal operating system voltage and frequency

conditions. Not shown in Figure 3.2 is a phase-locked loop that determines the system

frequency to be used in the abc − dq conversion. Typically a phase lock loop (PLL)

is a control system that generates an output signal whose phase is related to the
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phase of an input reference signal. This is thus the switching strategy devised for the

present system which predominantly uses reference frame theory and current based

control scheme.

3.3. SYSTEM ARCHITECTURE

Let us consider the FREEDM architecture as discussed in [20] and illustrated in

Figure 3.3. FREEDM forms a microgrid of energy storage (DESD) energy resources

(DRER), and LOADs to share power for the good of the entire system. This can

be envisioned as a future smart distribution system. There are intelligent flow con-

trollers (Nodes) which contain physical actuators (Solid State Transformers (SSTs))

for controllingl power flow to and from a shared electrical bus, under direction of

cooperating Distributed Grid Intelligence Processes (DGIs).
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Figure 3.3. FREEDM Power Management Architecture [21]

It can be assumed that each Node is potentially owned and located in a house

or business. Within each Node, the DGI processes compute a power cost and use a

drafting process [36]. Drafting is a receiver-initiated load-balancing procedure; if a

Node (S) has available power generation capacity, it solicits bids from loaded Nodes

(L). This introduces a whole new concept of power migration which is bound to have
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some effect on the system dynamics. This interaction between power migration and

system dynamics is very important and will be the crux of our analysis in the next

subsection.

3.4. LYAPUNOV-LIKE ANALYSIS OF THE SYSTEM

The following section has an analytical approach towards the study of a simple

system where a pair of FREEDM nodes connected to a power grid are communicating

over a network. It is to be noted that the power flow on the grid is otherwise internally

balanced. The two nodes (S and L) communicate in such a way such that L requests

one quantum of power δ from S. Nothing happens if S fails to receive this message

from L. However in the possible event that S does receive its intended message, it

increases its power output by δ and sends an acknowledgment to L. After L receives

a valid acknowledgement, it increases its load by δ. Messages are then sent at a rate

of λ and received at a rate of µ (after accounting for transit time and queueing), for

an average delay time Rd as described below. During mode I, S is actively migrating

power and λ ≥ µ. For a brief time at the beginning of the communication process,

µ = 0 due to the transit time. The delay time and queueing may result in power

perturbations.

It is possible to model the dynamics of the average number of messages from S

to L that have been sent but not received, K, as per the equation shown below

dK

dt
= λ− µ (8)

where K ≥ 0 by definition. Therefore, the net error in power (i.e., the difference

between the source power and the load power) is Perror = δK. This net error will

tend to increase the grid frequency, which is governed by a simplified swing equation,

dω

dt
= − V1V2

JωX
sin(θ − θ0)−

D

J
(ω − ω0) +

Perr

Jω
− kP 2

Jω
(9)

where D is the natural damping due to frequency-sensitive loads and J is the effective

rotational inertia. Here V1 is the generator back emf, V2 is the bus voltage at the

generator terminals, θ− θ0 represents the torque angle, and k is power scaling factor

that encapsulates the voltage and resistance and scales the gross power in terms of
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power loss. If a large enough error persists, the frequency will become too high.

When this condition is detected, the system must switch to mode II, in which S

no longer migrates additional quanta but instead follows a droop law of the form

PS = Prequest−m(ω−ω0). During mode II, λ = 0 but µ ≥ 0 because L may continue

to process messages in its queue of received messages. After switching modes at tII ,

the net error in the power will be proportional to the number of messages that are

still outstanding K, less the droop effect, so Perror(t) = δK −m(ω − ω0).

The decision whether to switch from mode I to mode II may be determined

based on some metric of the system state. A potential Lyapunov-like function is a

quadratic in the two dynamic variables,

V (ω, θ) =
J

2
(ω − ω0)

2 +
V1V2
ωX

(1− cos(θ − θ0)). (10)

dV

dt
= J(ω − ω0)

dω

dt
+
V1V2
ωX

(sin(θ − θ0)
dθ

dt
(11)

Substituting (9) in (11)

dV

dt
= J(ω − ω0)[−

D

J
(ω − ω0) +

δK

Jω
− m

Jω
(ω − ω0)−

kP 2

Jω
]

This derivative must be negative for the function to be a Lyapunov-function.

Therefore,

{
IP1 : (ω − ω0)

2(Dω +m) + (ω − ω0)(kP
2) > (ω − ω0)(δK)

}
(12)

This parameterization of the droop constant gives us our invariant that guides the

system within its stable restraints. For all values of m obeying the above invariant,the

system must be stable. This equation can be solved further to obtain the droop

constant in the droop control in terms of the system parameters as expressed in

equation:

m >
δK − kP 2

ω − ω0

−Dω (13)
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The absence of θ − θ0 in the final invariant expression makes the proposed

approach invariant independent of a generator. Thus it was possible to derive an in-

variant which would guide the system behavior. The crucial challenge was integrating

the cyber controls and study the effects of the cyber controls on the invariant that has

been framed from the physical structure of the model. Experimental results reported

in the upcoming section will prove the accuracy of this invariant in terms of system

behavior and simulation results.

3.5. CYBER CONTROLS

This section is adopted from the work published in [2] to give the readers an

understanding of how the physical system gets governed by the cyber algorithm and

also the principle behind the mechanism of cyber physical controls. The author

of this thesis would like to thank his research group co-advisor Dr. Bruce McMillin,

Department of Computer Science, Missouri University of Science and Technology and

his research partner Thomas P. Roth, Department of Computer Science, Missouri

University of Science and Technology for thier invaluable contribution behind this

chapter. This section basically describes the conjoining of the physical model with

the cyber domain.

3.5.1. Cyber Algorithm. IP1 does not fully govern the overall stability of

the system. As the cyber algorithm PowerBalance’s [21] commands operate on the

power system electronics, its actions are asynchronous with respect to those of the

power electronics. Therfore it can be concluded that the power balancing algorithm

has the ability to interfere with the truth of the invariant IP1.

In the cyber power management algorithm each of n processes executes an

algorithm triggered by the state of the underlying power system, either high or low.

At all times the system should maintain the invariant {IC1 : nν+
∑n

l highl+
∑n

l lowl =

g} (where ν is the nominal load per Node, highl and lowl are the amount of variance

above and below the nominal load and g is a measure of the excess amount of draw or

supply to/from a grid-type connection). This algorithm approximates a distributed

solution to the fractional knapsack problem [21]. The fractional knapsack problem

requires the invariant {IC2 : ∃l,mmax highrl−max highr+1
m < 0, r = 0, ...., k−1} (where

highr indicates the rth decision made by the algorithm. The function migrate(δ, j)
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is a command to the underlying power system to provide/accept a quantum of power

to/from a Node j.

The invariant IC2 holds at termination of the algorithm, by the greedy choice

principle. Due to lack of strict synchronization between cyber processes, assignment

lowi = lowi + δ potentially interferes with the truth of the invariant IC1. Potentially,

k migrations are outstanding at any point in time. Thus, the invariant is relaxed to

I ′C1 until the migration has been received at process Pj:

{Q′C1/I
′
C1 : {nν +

∑n
l highl + kδ +

∑n
l lowl = g}

Since, in this model, when a rendezvous occurs at the select message, this mod-

ified invariant becomes true in the receiving process (by the rule of satisfaction [22]).

For the cyber-physical system under study, the conjunction of the cyber in-

variant and a logical statement related to the physical system stability gives the final

invariant. Analysis of the physical system can be done with a Lyapunov or Lyapunov-

like function. If we are concerned only with asymptotic stability, in this case, we must

remain in mode II at all times and use IP1 directly. Otherwise, V̇ may be positive.

If boundedness is sufficient, then the following invariant is appropriate:

{IP : IP1 ∨ (V (ω,K) < Vbound) ∨ (V (t) < V (tII))} (14)

where Vbound is the maximum allowable value of V , V (t) is the value of V (ω, Perror)

at the present time and V (tII) is its value at the most recent previous switch over to

mode II.

The Lyapunov invariant (12) provides a relationship between the amount of

frequency error and the number of pending/dropped migrations. To ensure that the

actions of the A1 : Pj!select and A2 : lowi = lowi + δ do not interfere with I ′C1.

{I ′C1 ∧ IP}A1{IP ∧ IN} holds as a theorem when k = K, thus, bounding the cyber

invariant by the Lyapunov invariant. To guarantee the CPS maintains the invariant,

the system invariant is added as a guard, I ′C1∧ IP ∧ IN , as a weakest precondition on

the communication. This can be shown in the form of a cyber algorithm [2] written

in a CSP-like language [23].

3.5.2. Integration of Physical and Cyber Systems. PSCAD R© talks

to the cyber algorithms through a C++ socket interface. Send and receive functions
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were written to handle the transfer of arrays with arbitrary but known lengths. These

functions were called through FORTRAN, the language embedded in PSCAD R©. The

send function allowed PSCAD R© to transfer merged data to an external controller

coded in C++, while the receive function probed for controller responses that could

be imported back into the PSCAD R© environment.

Two PSCAD R© components were designed to encapsulate the C socket code:

pscad_send and pscad_recv. The pscad_send component took an n-dimension

line as an input which was created through combining multiple data signals . Its

parameters specified the IP address of the external cyber control and a time offset Rd

of the delay between each transmission. During runtime, pscad_send transmitted the

current state of its associated signals to the given address once every Rd simulation

seconds.

The pscad_recv component provided an n-dimension line as an output which

was data tapped to access individual signals. Its output contained the most recent set

of signals obtained from an external program tasked with controlling the simulation.

During runtime, pscad_recv updates its output line with the most recent set of

received data. Figure 3.4 shows the actual implementation of these components in

the PSCAD R© environment, where the input of pscad_send corresponds to x(t) and

the output of pscad_recv corresponds to x(t+ 1).

 

Figure 3.4. Integration of cyber components in the PSCAD R© environment.

The basic experimental setup consisted of manipulated traces of the PowerBal-

ance C++ code resulting from sequences of inputs x(t) producing an output x(t+ 1)

as a vector of power migrations. PSCAD R© provided the input as the most recent
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snapshot of power settings for the three converters, specified as an array in the form

x(t) = {t, P1(t), Q1(t), P2(t), Q2(t), P3(t), Q3(t)}. These are parameterized by t

(time) representing the latency involved in the PowerBalance algorithm computa-

tion. The migrate power commands for the converters were dispatched to PSCAD R©

in the form x(t+ 1) = {P1C,Q1C,P2C,Q2C,P3C,Q3C}.
For experiments in the present study, the external controller mapped simulation

time to a set of power changes in the form m(t) = {1, dP1, dQ1, dP2, dQ2, dP3, dQ3}.
The basic architecture of the pscad_send and pscad_recv components is illustrated

in Figure 3.5.

 

Figure 3.5. Communicating Architecture of the PSCAD R© model with the external
environment.
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4. STABILITY ANALYSIS EXPERIMENTS

4.1. FREQUENCY MONITORING AND STABILITY ANALYSIS

The simulations have been carried out in PSCAD R©. The power pulses were

commanded by the cyber control at each converter end to emulate the power migration

discussed in Section 3.4.

In Fig. 4.1 a state of the system has been described when the system is forced

into an unusual state (one that does not satisfy the cyber invariant I ′C1 through

a series of switched system states that result in unbalanced power migrations. In

Table 4.1, the system is forced to remain in Mode I (only cyber commands control

the system) while contents of each row at 0.8 s and 0.9 s do not sum to zero causing a

variation in the frequency domain (Figure 4.1. Even at time 1.0 s, when I ′C1 becomes

satisfied (by guarding the migration to reduce excess power transfers), the combined

system invariant I ′C1 ∧ IP ∧ IN is still invalidated. The reason is that the proposed

Lyapunov-like function is not strong enough to recover from frequency instability

without switching to a different system mode. The error in energy for the system

is very important since it becomes the Lyapunov-like function and hence our tool to

ascertain stability.

The Lyapunov-like function that describes this behavior is derived from the

error in the system energy (15):

V = ∆E =
J

2
(ω − ω0)

2 +
V1V2
ωX

(1− cos(θ − θ0)). (15)

Table 4.1. Switched cyber system states resulting in unbalanced power migrations.

Time SST
1

SST
2

SST
3

0.0 0 0 0
0.8 10 0 0
0.9 10 -20 0
1.0 20 0 -20
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Figure 4.1. Frequency variations in switched system response with only cyber cor-
rection

where J is the inertia constant of the system. ω is the angular frequency at

which the system operates and ω0 is the nominal frequency of 60 Hz at steady state

level. V1 is the generator back emf, V2 is the bus voltage at the generator terminals,

θ − θ0 represents the torque angle and X is the line impedance.

Figure 4.2 shows another scenario where there are perturbations at time instants

0.2 s and 0.3 s. The first perturbation commanded a power pulse of 30 MW which was

beyond the stable operating level. The second perturbation was of a much smaller

magnitude, 12 MW, which also was above the stable operating range. The lower graph

is a plot of the energy function V , which is proposed as a Lyapunov-like function.

Whenever the power is commanded beyond the normal operating limits, the system

frequency will also shift and will no longer remain at the nominal operating point

of 60 Hz. Hence as per (15), deviation of the frequency from the nominal level will

cause an ensuing increase in the error of the energy function, which indicates potential

instability. Thus as can be seen from Figure 4.2, the energy function rises at those two
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Figure 4.2. Simulated microgrid performance in response to commanded power pulse
where system remains stable.

specific instants when the system is disturbed beyond its normal range of operation

but eventually goes back to zero, indicating that the system had regained stability.

Since the value of V at successive switching instants decreases, V is a Lyapunov-like

function and the system is stable.

The next scenario is illustrated by Figure 4.3. The perturbation instants are the

same as in the previous case and so is the magnitude of the first perturbation. However

in this case the second perturbation is much higher (60 MW). Such a high disturbance

does not allow the system to regain its stability which had been corroborated by the

energy function plot of Figure 4.3. Since the value of V at switching instants is not

decreasing, the system may be unstable, and in this case indeed diverges from the

desired operating point. The heavy red lines in Figures 4.2-4.3 indicate the increase

or decrease in the energy function at subsequent switching instants.

Lyapunov-like functions for the present model were thus framed from the error in

the energy function. It was seen that the behavior of Lyapunov-like functions for the
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Figure 4.3. Simulated microgrid performance in response to commanded power pulse
where system is unstable.

experimentally stable and unstable cases maintained conformity with the discussion

on Lyapunov theory in Section 2. However Lyapunov-like functions are only way of

determining the stability of a switched system.

The stability of the system can be captured in the frequency of the generator.

For a perfectly stable system,the operating frequency should be at the nominal margin

of 60 Hz or 376.8 rad/sec. However it will be interesting to study how the system

operating frequency deviates from the nominal level in the possible event of a power

imbalance. This opens up a whole new prospect of droop implemenation and invariant

analysis which shall be dealt in the upcoming sections.

4.2. INTRODUCTION TO DROOP AND INVARIANT STUDIES

Let us go back to Figure 4.1 once again. As can be seen from Table 4.1, the power

is balanced at the 1.0 second instant. Theoretically the system should go back to its

nominal frequency level since there are no power imbalances to make the operating
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frequency deviate from the nominal margin. However the graphical result shows that

the system crashes after the 1.0 second instant. This is because although the power

imbalance had been restored, there is factor missing which brings the system back

to its stable operating level. This missing factor is a droop constant. Thus there is

not enough droop in the system which explains why the system crashes even after

the power mismatches are restored. Thus we need to introduce a certain amount

of droop to the system so that the system returns back to its stable operating level

when the power mismatches are restored. The invariant equation (13) expresses this

minimum amount of droop needed to guarantee system stability. The accuracy of this

theoretical equation shall be tested by conducting actual simulations. An acceptable

conformity in results between this theoretical invariant prediction of system behavior

and system behavior as interpreted from experimental simulations will justify the

invariant equation. This has been studied in greater details in the next section
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5. INVARIANT AND DROOP ANALYSIS EXPERIMENTS

A question that keeps coming back is what exactly is the role of this droop.

The droop constant factor modifies P based on ω. It is a measure of stiffness of the

system. Thus too high values of droop will make the system stiffer and we will not

be able to observe anything interesting. However an insufficient droop will fail to

provide the system with the required amount of stiffness it needs. The result may be

a system crash similar to the one shown in Figure 4.1 which was a zero droop system.

From the invariant expression, it is possible to determine the critical value of

m, provided that we have the appropriate values for the individual parameters in the

expression. D and k are constants whose approximate values have been evaluated.

Conducting experimental test cases on system stability helps us to find values of

outstanding number of messages K, operating frequency ω and the gross power flow

in the system P to plug into the invariant expression. Thus with all known values, the

system critical droop constant have been theoretically evaluated as m=0.572. This

means for m values less than this, the system will not be able to maintain stability

even if there is no power imbalance.

In order to prove this theoretical assumption, an experimental test case was run

with no power imbalance but m=0.57 which is slightly less than 0.572. Figure 5.1

depicts the system behavior for such a case when m is 0.57 and K is 0. It shows

that the system is going unstable. Because of PSCAD R© memory restrictions, it is not

possible to run the simulation for more than 18 seconds which would have otherwise

shown the system crashing. But from what can be seen within the limited time range,

the system clearly shows tendencies of crashing. It can be safely concluded that in

the absence of enough droop, the system will eventually crash but will take a long

time to do so. If we want to see a case where the system does indeed crash within the

permissible simulation time frame, we have to run an experiment with droop constant

well below the critical droop constant value (say m=0.10). Figure 5.2 clearly shows

that the system is crashing in the absence of sufficient droop.

An interesting alternative approach can be adopted from the invariant expres-

sion pertaining to the number of outstanding messages K. If K value can be made
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Figure 5.1. System behavior when m=0.57 and K=0

negative for Figure 5.1 where the droop constant was 0.57, even lower values of m

might suffice to make the system stable as long as ω−ω0 remains non negative. This

is purely a theoretical line of reasoning since the invariant formulation suggests that

a negative value of K makes the entire right hand side expression negative (provided

that ω−ω0 =0) and hence any non negative value of droop must be able to keep the

system stable. With this theoretical hypothesis in mind, the experiment in Figure 5.1

was performed again with the same value of m but a different value of K (K=-5). The

graphical system behavior has been illustrated in Figure 5.3 . The system response

shows that the variation in K makes the system plunge lower than the earlier case

(when K was 0) at the time instant when the variation was enforced. However unlike

the earlier case, the same value of droop constant guides the system back to its stable

operating point.

As the simulations had been run to demonstrate system performance, the in-

variant was also tested. Table 5.1 can be formulated to show the relationship between

invariant prediction and system response.
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Figure 5.2. System behavior when m=0.10 and K=0
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Figure 5.3. System behavior when m=0.57 and K=-5
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Table 5.1. Relationship between Invariant Prediction and System Response for the
first set of experiments.

K m Invariant Prediction System Response
0 0.57 Unstable Unstable
0 0.10 Unstable Unstable
-5 0.57 Stable Stable

It is thus possible to play with the values of m and K and study the correlation

between invariant prediction and system response. The following set of experiments

deal with a constant negative value of K while m is varied.

5.1. INVARIANT AND SYSTEM RESPONSE FOR K=-10

This section explores cases when K had been kept constant at -10 and the droop

constant m varied. Figure 5.4 describes the system response when m =0.05 which is

minimal droop. The second case has a droop constant value of 0.10 which is illustrated

in Figure 5.5. Both these cases are instances of insufficient droop as a result of which

it can be seen that the system crashes. The third instance as shown in Figure 5.6

shows a stable behavior although the droop constant is 0.50 and is actually less than

the critical value of droop constant. But as can be recalled from earlier discussions,

sometimes a negative value of K has the power to make the system stable which is

exactly the situation here. The invariant readily agrees to this logic because with ω

being on the correct side of ω0, a negative K renders the entire expression negative

which is obviously less than the droop constant and hence adheres to the correct

prediction of the system response as per the invariant theory. The fourth case has a

droop constant value of 0.90 as shown in Figure 5.7. Figure 5.8 depicts the system

response when m=1.20. As expected, these high values of droop constant guides the

system back to stability as can be seen from the graphs.

Thus the experiments reported in this section with K=-10 and m varying were

in accordance with the invariant formulation. This can be shown in the form of

Table 5.2 which again sums up the relationship between the invariant prediction and

system response. The graphical plots and the table had also been shown.



33

0 2 4 6 8 10 12 14 16 18
100

150

200

250

300

350

400

Time(s)

G
en

er
at

o
r 

S
p
ee

d
 S

(r
ad

/s
ec

)

Figure 5.4. System behavior when m=0.01 and K=-10
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Figure 5.5. System behavior when m=0.10 and K=-10



34

0 2 4 6 8 10 12 14 16 18
374

374.5

375

375.5

376

376.5

377

377.5

378

Time(s)

G
en

er
at

o
r 

S
p
ee

d
 S

(r
ad

/s
ec

)

Figure 5.6. System behavior when m=0.50 and K=-10
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Figure 5.7. System behavior when m=0.90 and K=-10
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Figure 5.8. System behavior when m=1.20 and K=-10

Table 5.2. Relationship between Invariant Prediction and System Response for con-
stant negative K and varying m.

K m Invariant Prediction System Response
-10 0.01 Unstable Unstable
-10 0.10 Unstable Unstable
-10 0.50 Stable Stable
-10 0.90 Stable Stable
-10 1.20 Stable Stable

5.2. CORRELATION STUDIES AT CONSTANT DROOP

In the earlier section , we discussed the effect of a constant negative K on the

system while m was varied. This helped us kind of predict the range of m around
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which the system is stable. In this section we are going to show the reverse rela-

tionship. A number of experiments had been performed on the system at a constant

droop constant. However for all of these experiments reported in this section, K had

been varied to observe the effect on the system stability. It is imperative to note

what value of K keeps the stable. Technically speaking, the system can only sustain

a certain number of outstanding messages before going unstable. Thus this helps us

to estimate the range of K around which the system exhibits stable behavior.

5.2.1. When Droop Constant is 0.85. This section describes the system

behavior when m is maintained at 0.85. As mentioned above, the number of oustand-

ing messages K had been varied to study the system behavior. However for these

experiments, the variable values of K had always been chosen non-negative unlike

the earlier section.

As reported in the experiments below, the critical value of K that kept the

system stable for this value of droop was K=25. A total of four experiments were

conducted for this section out of which two were stable and two unstable. Special

emphasis has been given when the system transitions from stable to unstable domain

as the critical value of K is surpassed.

Figure 5.9 and Figure 5.10 shows stable system responses for values of K=20

and K=25. Figure 5.11 is marginally stable when the critical value of K had just been

violated at K=26. Figure 5.12 shows an unstable system response with the operating

frequency showing sustained oscillations around the nominal frequency mark when K

is maintained at 30. These sustained oscillations get bigger in magnitude as values of

K are increased further. The graphical plots had been illustrated to show the system

behavior. This clearly states that at that much amount of droop, the system can

maintain its stable operation for values of K no greater than 25.

Once again the invariant logic was applied to interpret system behavior and

check if they conformed to the graphical responses as obtained from simulation results.

Accordingly Table 5.3 shows the correlation between system behavior and invariant

prediction. This table shows that system response and invariant prediction were in

synchronism.

5.2.2. When Droop Constant is 1.00. This section studies the system

response for unity value of droop constant while K is varied. Again we need to keep a
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Figure 5.9. System behavior when m=0.85 and K=20
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Figure 5.10. System behavior when m=0.85 and K=25
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Figure 5.11. System behavior when m=0.85 and K=26
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Figure 5.12. System behavior when m=0.85 and K=30
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Table 5.3. Relationship between Invariant Prediction and System Response for
m=0.85 and variable K

K m Invariant Prediction System Response
20 0.85 Stable Stable
25 0.85 Stable Stable
26 0.85 Unstable Marginally Stable
30 0.85 Unstable Unstable

lookout for that value of K beyond which the system goes unstable. Like the previous

section, the system again went unstable when the number of outstanding messages

exceeded 25.

Figure 5.13 and Figure 5.14 are stable case scenarios. Figure 5.15 is again a

marginally stable condition when the critical value of K had just been passed. Fig-

ure 5.16 is an unstable condition as can be understood from the prominent oscillations.

The invariant was again tested for all these cases. The results obtained from invariant

prediction and actual system behavior has been compared in a tabular form as shown

in Table 5.4.

An interesting observation based from the earlier two sections is that there is

a significant change in system stability as the outstanding number of messages were

increased. The most significant change is capturing the transition of the system from

stable to unstable domain at the other side of K=25. An encouraging deduction

is that the system response corroborated the invariant predictions for all the cases

tested above. It is fascinating how the increase in K affects the system dynamics so

prominently.

Variation in droop constant values enable us to study very interesting dynamics

of the system. When m=0.85, the transients were much elastic as compared to m=1.0.

Thus it seems that increasing the droop constant value introduces an extra stiffness

to the system which is exactly the very essence of droop. In this light, it should be

mentioned that selecting too high values of droop is not advisable as it will make

the system so stiff that no interesting dynamics can be observed. Thus a justifiable

selection of the droop constant is important if we are to capture interesting results.
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Figure 5.13. System behavior when m=1 and K=20
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Figure 5.14. System behavior when m=1 and K=25
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Figure 5.15. System behavior when m=1 and K=26
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Figure 5.16. System behavior when m=1 and K=30
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Table 5.4. Relationship between Invariant Prediction and System Response for
m=1.00 and variable K

K m Invariant Prediction System Response
20 1 Stable Stable
25 1 Stable Stable
26 1 Unstable Marginally Stable
30 1 Unstable Unstable

5.3. ADDITIONAL CASES STUDIED

In addition to the cases shown, several other experiments were also conducted.

A summary of all the experimental test cases ran have been represented in Figure 5.17.

The blue circles denote stable operation and red crosses indicate unstable operation

as determined both by Invariant Prediction and Simulation Results.

5.4. ANALYSIS

This chapter primarily tests the accuracy of the invariant by running actual test

case simulations. However a few things need to be mentioned. In any of the cases if the

invariant predicts that the system is stable/unstable and the simulation responses also

show that the system is stable/unstable, it adds strength to the invariant formulation.

However if the invariant predicts that the system is unstable and the system turns

out to be stable, it proves that that the invariant is a little conservative but it is

acceptable nevertheless. But a weak invariant is not at all acceptable. This means a

condition where the invariant predicts that the system is stable but the system turns

out to be unstable.

In all the cases that had been reported, not a single event had been such that

pertains to the weak invariant and hence the bad condition case. Thus it can be said

that the invariant that we have developed is quite accurate in judging the system

dynamics. The experiments conducted in this chapter also proves that it is possible

to violate the invariant as well as the system stability by playing with the K and m
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Figure 5.17. Simulated system behavior and truth value of invariant. Blue circles
denote stable operation and red crosses indicate unstable operation as determined
both by Invariant Prediction and Simulation Results.

parameters. These are the only two parameters that can be controlled since all other

parameters are either constants or simulation dependant factors. Summing up, it

can be said that with no backlog in message delivery (K=0), a droop constant value

equal or higher than the critical droop constant value will maintain system stability.

Again in certain cases, a negative K assures stable system operation even though the

droop constant might be below the critical value. Also for a certain specified droop

but above the critical droop, the system remains stable upto a certain value of K. In

other words, this means that the system can sustain only so many number of delayed

power transactions before getting unstable at a certain droop. Thus it is possible to

chalk out a stable zone of operation of the system for different values of K and m by

conducting enough experiments on the system.
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6. CONCLUSION AND FUTURE WORK

This thesis seeks to unify the knowledge present in the diverse areas of power

and computing. The challenge is to provide a common semantic for these diverse

areas by a unified treatment of invariants and noninterference of actions. Invariants

are a natural fit to explain cyber systems. Lyapunov-like functions provide invariants

for physical and network systems and noninterference is the glue that ties all three

together.

A physical system was designed in the present study. A controllable Solid State

Transformer (SST) model was implemented to carry out the stressed power migra-

tions. Lyapunov-like functions were composed to describe the stability of the system.

Simulations were carried out to demonstrate the Lyapunov-like behavior of a stable

switched system and an unstable switched system. The system dynamics were stud-

ied and an invariant expression was proposed to describe the behavior of the system.

This expression can be called the physical invariant of the system. To validate this

invariant, simulations were carried out by varying the variable parameters in the in-

variant expression. Uniformity in theoretical analysis and simulation results proved

the credibility of the invariant expression to explain the system dynamics.

While invariants are a naturally occurring artifact of formal cyber system speci-

fication, with Lyapunov functions, there are no generic tools that would enable system

designers to find a Lyapunov-like function (V ) for a given non linear switched system.

The proposed approach used the energy of the error as the Lyapunov-like function

for the given system. To extend the concept, the dynamics of V need to be estimated

over short time scales to determine how much V changes between mode changes. Sin-

gular perturbation methods [37] enable the separation of the dynamics into “slow”

and “fast” time scales to simplify the analysis. Future work can be done on studying

the system behavior in response to switching values of K thereby studing a dynamic

response.

Correction of the system in the subsequent event of invariant violation is another

issue. Droop is one corrective action, message backlog reduction, or stopping the

power migration from one or more SSTs can improve the system stability. Further
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investigation is required to explore more integrated cyber-physical-network corrective

actions. The significant challenge is that any proposed correction must not interfere

with the correctness of the system invariant.
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