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INTRODUCTION

The object of this thesis is to study the method of
geomstric mean distances as applisd in the calculation of
inductances of transmission 1line conductors and of multi-
circuit transmission lines.

The thesis will consist of: (a) the derivation of some
of the basic theorems and equations to be used, (b) the use
of these theorems and equations in calculating the geometric
mean distances of different transmigsion line conductors,
and (c) practical application of geometric mean distances
applied in the caleulation of equlvalent inductance of multi-
circuiﬁ transmission lines.

The method of geometric mean distances as applied to
individual conductors of single circuit lines is widely used
on a well established basis. Methods and rules for appli-
cation to multicircuit lines of wvarious types are not so
well formulated. It 1s hoped that these latter rules may

be better developed in this thesis.



CHAPTER I
DERIVATIONS

The inductance of a transmission line depends upon the
material, dimensions, and configurations of the wires them-
selves, along with the spacing between them; the calculation
of the inductance is based on the following fundamental

1/

definitions and equations.~

l. Definitions. The coefficient of inductance of s

circuit of one single turn may be defined with the aid of

the fundamental equation of induced voltage,

: di : ﬁx L K 2K B BN AR AU B B NN B OBE N OBY B BN N B N N ONE WY A B BR N J
e * Lg% (1)

where e is the voltage of self induction and L is the induc-
tance in henries. The symbol for flux linkages is A and
is‘defined as the summation of all the elements of flux
multiplied by the fraction of the total current linked by
each, and (i) is the current in amperes. An ampere is the
constant current which, maintained in two straight conduc-
tors of infinite length separated by a distance of one meter

produces between the conductors a force of 2 x 10-7 Joules

1
2/ Throughout this thesis the "rationalized™ meter, kilogram,

sedond system oy "Giorgi" system of units will be used. %n
this syestem space permeability will be equal to 47 x 107

which in turn will make the unit of magnetomative force F
simply equal to the ampere-turn instead of ampere~turn divided
by&ﬂ’ .




per meter of length. Solving eguation (1) for L and re-
arranging, the equation becomes

L= _%%.._%g_ - -%%— henri@S.ccescccccocscccceel()

L, the inductance, is defined as the rate of change of flux
linkages with current, or when there is no extraneous flux
set up by other means than the circuit itself, the inductance
in henries is defined as equal to the total mumber of flux

linkagses divided by the current.

2. Magnetic Fleld around a Long Cylindrical Conductor.

It may be shown experimentally with iron filings and by use

of a compass needle that in a long cylindrical wire of radius
{(a) carrying a steady current of I amperes, which is assumed
unifomly distributed over its cross section;/, there are

sét up lines of flux arranged in concentric circles around the
wire and also within the wire. Figure 1 represents the concem-
tric lines of flux of thickness dx at & distance x from the
center, both inside and outside of the wire. From the above it
follows that at any fixed radius from the center of the wire to
a point outside the wire the flux density B and magnetizing

forece H are uniform. Along the elementary flux path outside

L/ one agsumption of uniform current density, although not
absolutely correct, is satisfactory for overhead power circuits.




Figure I.

Flux Linkages.

1>



of the conductor of radius x meters and thickness dx the
magnetic field intensity H is equal to the total magneto~
motive force (mmf) F (in ampere~turns) divided by the length
of path, which is 2 77 X.

, F
H = 3 Y ampere~turns per meter.

Taking into consideration one turm of flux, F ® I ampere-

turns. Therefore,

H = 2—%91 anpere-turns per mMeter.icececccocccadld)

The magnetic flux density B along this path, which is in free
space, is equal to the magnetic field intensity times space
permeability My Space permeability M is numerically
equal to the ratio between flux density B and field intensity
H in free space and is 4 71077 = 1.257 x 1078 l/. By defi-

nition of flux density,

- . ' I
B= wB=47ml0 5%

or the magnetic flux density outside the conductor is

-7
B = Edé%g__l webers per s8quare mMmeberecccccccecss(4)

i/ See Footnote 1, page 2.



Consider now a tube of flux of infinitesimal thick-
ness dx within the cylindrical conductor as shown in Figure
I. The area contained inside this tube is 7X>. The cur-
rantzwhich flows within this area is Ix and iz equal to

1/

I %2 assuming uniform current iensity =" wheres I is the
total current which flows in the total area wa’ and (a)
is the radius of the cylindrical conductor. Therefore, by
analogy to equation (3)

I
H= 2—;2— ampere-turns per meter

and since Ix = <2

therefore, H = ;—I;% ampere~-turns per meter.,
a

The magnetic flux density in this case is equal to uH where
M is the actual permeability of the conductor and for non-
magnetic material is practically constant, but for magnetic
materials varies with the type of metal, heat treatment,
temperature, etc. In treating the latter analytically it

is common tc assume an average value of permeability, under
average conditions, for the whole wire. Relative permeability
is equal to 4 or is the ratio of actual permeability and

Mo
that of free space. Therefors, for the flux density

-7
- Mo _4nl0IX  _wu
B= pHi, = zZmas i,

!'-/See Footnote 1, page 9.



-7
B = 2"’“%02 IX 1 relative permeability
a
2. %10~ Ix
or B ® == S webera per square meter..c.cccseeqf5)
a

which takes care of the flux density within the wire itself.
Referring back to Figure 1, the flux outside of the
conductor links with all the current flowing in the conductor,

or in other words there is total flux linkages or extornal

flux linkages. The flux within the conductor itself does not

link with all of the total current; thus this flux forms
partial flux linkages or internal flux linkages.

In calculating the inductance it is necessary to deter-
mine the external flux linksges and also an equivalent value
for the partial flux linkages.

3. Internal Flux Linkages. From equation (5) the flux
density due to the flux within the wire is

B = 2}{10:7 IX webers per square meter,

al

TPhe flux within the elementary tube of radius x for a unit

meter length of the coanductor is

dA = Bax = 2E£L . yx 107 ax

Since this flux links with the current only in a portion of
2 ,

the total coanductor area (-%2-), the equivalent partial flux

linkage Ae in:a differential increment of the radius dx is:



) -7
an, = 4 ZX10T IX x? ax
Mo 32 az
2.:x10°7 1x°
s &X A _ dx 1linkages per meter
4 22

The total equivalent partial flux linkages would be the sum-
mation or integral of all the flux linkages between the limits
X®0 %0 X=as Thus,

4. External Flux Linkages. From equation (4) the mag-

netic flux density due to the total flux linkages outside
the cylindrical conductor of unit relative permeability and
radius (a) meters is

as 2X1077 1

webers per square meter
The total external magnetic flux linkages from (a) %o a dis-
tance (D) outside the conductor per meter length of conductor

is

r.D
e 10-T
A = Bax =/ &XNII“‘ = 2.X10"?1n-2-u-('7)
a

5. Inductange in Any Cylindrical Wire. Total flux

linkages are equal to total equivalent partial flux linkages



plus total external linkages. Therefore, combining equations

(6) and (7)
N T oo 0T 4 5107711 D
t /uo 2 ) x a
- -7 D ‘ 1 ,Ll) ..............(8)
A-t_; - le I (2 111 a “" 2 o

Inductance is eqnai to flux linkages divided by the total

current by our previous definition. Hence

L = 1077 (2 1n —g—-+——%—- —ﬁ%) henries per meter..(9)

Looking at equation (9) 1t is seen that the inductance
is the sum of two terms; the term (2 1ln —g—) depends upon
the size and spacing of the wires, and the sscond term de-
pends upon the permeability of the wires. In ordinary over-
head transmission line conductors, the second term is amall
compared to the first, except in the case when the conductors
are made of iron or steel. Therefore, great importance can
be placed on proper spacing and size of wires to obtain the

least amount of inductance with minimum cost.

6. Conversion to the CGS System. The classic inductance

formula is equation (9) which is

L= 10°7(21n 2 + ; -ﬁ%# henries per mater
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based on the MKS system of unita where ( is the actual
permeability of the material and ., is the space permeability
which is equal to 4 77 10"7 in the MKS syatem of units.-l-/ Rela-
tive permeability as previously defined is ';% « In changing
to the CGS aystem space permeability ., is equal to unity;

thersfore, equation (9) becomes
D 2
L = 2 1n ry + -5 abhenries per cm per conductor
or

L 2 (2 1n 2 + -%-) 10~8 henries per cm per
e conductor

7. Inductance of a Single Wire in Terms of Geometric

Mean Radius. Taking the so0lid cylindrical wire ahown in

Figure 1 and replacing it by an infinitisimally thin tube so
that there are no internal flux linksges, we have a conductor

whose radius (a) is known as the Geometric Mean Radius (GMR).

This conductor has the same internal inductance, the relative
permeability of which will be 10~ in the MKS system or
unity in cgs and practical system. Starting with equation

{(9) in this form

L ¥ 1077 (21nD + 2 1n '%7- + -%—- —/é;—-)henriea/meta'

?=/ See Footnote 1, page 2.



1l

and applying the GMR principle, where by definition the GMR
of a conductor is the radius of an infinitisimaslly thin tude

with the same internal inductance as the conductor, the equa-

tion becomes
= 10”7 1 |
I = 10 (2 1nD + 2 1ln 7gy) henries per meter

where the first term. is the inductance due to the flux from
the radius (a) out to s distance D, and the second term is
the inductance due to &1l the flux within the radius (a).

The above squation can be written in the following form:
1 = 2)(10-7 {1n uﬁg) henries per metereececec.o(ll)

Equation (11) is important because assuming uniform current
Qensityrl/ it can be used for calculating the inductance of
any type of an overhead conducter, such as a stranded conductor,

merely by using the proper valune of GMR,

c Den n
G —G nx
CcX
Dac Dbn
ax
N . X
a Dab b

Figure 2. HN-Parallel Wires Carrying Current.
17 See Footnote 1, page 3.
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8. Flux Linkages of N-Parallel Wires. In Figure 2

a grbup of N-parallel wires is represented so that they carry
~all of the current of the complete circuit. X is any point
whose distance from a is greater than the distance from a
to any other conductor in this system. Let it be required
to develop an equation for the total flux linkages of N-parallel
wirea.

Calling the current Ij in conductor (a), and with the
aid of GMR, the flux linkage about conductor (a) due to its
own current I, is from equation (11)

Ag = 2§<10'7 in gﬁ% I, linkages per meter.s....(12)

where Dax is the distance from conductor (a) to point X.

Now the flux linkages in conductor (a), due to the cur-
rent in any other one (k) of the remaining wires b, ¢, and &
and produced by lines of flux between a and x, are from egua-

tion (7) for external flux linkages

kX 1 e
)\GK - / 2.X 10 - k &

Dka
&X10-7 Ik ln }?ﬁ .0..06.0..00.0.00CQOOOC(ls)

where k stands for conductors b, ¢, d, ¢cece....No
This equation assumes that the diameters of the conductors
are very small compared with the spacing of the wires in the

circult since the equation ignores the partial flux linkage
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effect. There is obviously very little error introduced by

this assumption.

The total flux linkages about conductor (a) are there-

fore
Aae = 2%107 (g nE&Fm + [, hpee + I, nB&+
------- + 1, IngRX ) o (14)

Since it was agaumed that the N conductors carry all of the

current,

IN = 'Ia - Ib - Ic -oooocl"In-l‘oaa.oooooooooo(ls)

Substituting the value for Iy in equation 14 and combining
the logarithms the equation becomes

-7 Dna Dax n Dbx
Aay = 2%107 (I, IngRids B T I N3 pRc +

Dn . Dnx
--------- + L., nBRda BRX )

Now let X approach infinity so that DeX, dbX and DnX will
approach infinity, thus the fractions involving X will then
approach unity 2s a limit. Therefore the actual total number

of linkages about conductor (a) is equal %o

Moo = 2 x107(1, InEB + 1, InBa&+ .+ 1 InBES%)
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or,

Nag = 2 x107[[lIngpes ~ Ingha ) + [, (Inghz — In5ka)

e e + I, (lnfyﬁga-ﬂnfjkg)]

and then applying equation (15) based on Kirchkoff's Iaw,

the above equation becomes finally

Agt = &% 10*7(Ia lnéMjRa t Iy In 'Dtiwa + I¢ In cha +

e ‘”—D—r%é_’ linkages per meter .. (16]

The above equation is an important one because it forms

the basis from which 1t is possible to determine the total

inductance of any system of parallel conductors and is the

important step in the develdpment of the widely used method

of inductance calculation by Geomstric Mean Distances.

9. Geometric Mean Distances. Figure 3 represents an

1 Dia 3
D
Di2 0‘5'1\] < *N
O c
2 D2y 3
b b
Z

Figure 3. Two Cylindrical Non-Magnetic Parallel Conductors
of Irreguler Sections.
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irregular cross section of cylindrical non-magnetic conduc-
tors X and Z. Let the cross sections of both X and Z be
divided into an infinite number of infinitisimally small
parts respectively so that each part carries equal current
and, assuming uniform current density, is equal in size.

Let the current in X be I and the current in Z be -~I so that
X and Z conductors make up a complete circuit. The current
in each small element of X will be-é-and of Z will be ;%e .
The elements in X will be numbered 1, 2, 3,eccescececele

Now applying equation (16) just as if the various elements

were cross sections of independent conductors, the number of

linkages about conducter 1 isg

S S
+ In Sa1 +

- -z 1 1
A= 22107 lngpg + InBa

ek Inge )= fr (Inphr + It o+ Inpip)

The first part of the above term includes the contribution
of the elements in X and the second set of terms is from all
the elements in conductor Z. The above equation by combin~

ing terms can be written

N
A, = 2x107Lyy /Dat - Dot - Det - - --- Dn
- N GMR:- Dzt - Ds

Similar expressions may be wfitten for the flux linkages abou
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elements 2, 8, 4,e0000ec00.0 0f irregular conductors or

N
\/ ak - Dok - Dek -+ - Dnk
\N/GMRK * Dik - D2k

/\tk = 2 x 101‘NL }n

where K is any one of the elements in conductor X.

Now the sum of all the linkages about all the elements
from l‘to N of conductor X will be equal to the number of
linkages about the entire conductor. However, it must be
remembered that one linkage about one of N equal elements
contributes only —%— of the linkage around the entire con-
ductor. Therefore, summing up all of the equations for N
linkages and dividing that sum by the number of elements (N),

the equation becomes

A I [ :/Daa' Dot - Der--- Dny \N/Dez - Dbz - Dez---Dnz
tave

= 2 x 1077 In J
N V/GMR} - Des - Dt +in JGMRz- Dz - D3z

\N/Dan - Den - Den

+. ..... + ln
/BMRn - Din - Dan

j)'..‘......(l’?)

which can be written in the form

2
ns/(Dal ‘Dot + -+ On1)(Daz - Dwz - - - Dnz)( Dan- Dobh - -- Dnn)
yGMﬁx-z-‘-h Dzt D31 Dnt - " Dre D3z -+ +- Dne

Atave = ZXIO"I[I
Now let the number of elements into which each conductor
ig divided approach infinity, which in furn lets the numer-

ator of the eguation approach the geometric mean distance
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from one conductor to another. The denominator approaches
the geometric mean distance of conductor X to itself or
therefore eguation (17) can be written

A= 2x107 I 1n, —]])r‘:— linkages/meter........(18)

where Dm equals to the geometric mean distance between con-
ductors and where geometric mean is the nﬁg root of an n-fold
product. Dg eguals the geometric mean radius or self GMD.

of a single conductor or a group of parallel conductors such
a8 stranded conductors.

Solving equation (18) for L

L = _é;. = 2 x 10”7 1lng .gs_ henries/meter....(19)

or since there are 1609.4 meters in a mile, the equation can

be written as

Dy
L = 0,000%22 lng —y— henries per MilBeeesceaa(20)
* e s
or,
D
L = 0.000741 lﬂgiO'Tﬂ;' henries per milG..eess..(20a)

Now, X = 27tL, where X; is the reactance in ohms, and f is
the freguency. Since the frequency for most power itransmission

lines is 60 cycles per second, equation {20a) becomes in
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termg of the inductive reactance

« D
X, %2 7w £ 0.000741 10310 —'5-8—

- Dm
= 0.004657T log,, T ohms/mile per phase...(21)
Thua, at 60 cycles

XL = 0.,2794 loglo % ohma/mile per phaS@...eses..{2la)
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CHAPTER II

SELF GEOMETRIC MEAN DISTANCE OF COMMON
TRANSMISSION LINE CONDUCTORS

1/

l. Theorems to be Used.= The following well estab-
lished theorems will be used in the calculation of the self
geometric mean distance of s0lid stranded conductorse.

I. Self geometric mean distances (Dg) of a circular

3

area ig re” * where r is the radius and e is 2.718.

-3

Ds : re N ‘..0...O.......0...-....0..0..0..'.'(22)

II. Geometric mean distance of a circular line to any

point, line or area wholly enclosed by the circular line is

equal to the radius of the circular line.

D =r '....'.....‘...Q.‘....‘..'.‘..........(23)

m

III. Geometric mean distance between two circular areas
external to each other is equal to the distance bhetween their

centers.

D ID 0..‘0...0...O.‘.........QQ....0.“.0.'(24)

m

IV. If a circular line of radius r has on its periphery

n equally spaced points the geometric mean distance between

them is rn.l\/ﬁ. This igs Guye's Theorsem.

l7$ee the appendix of this theéis for proofs of this theorem.
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Dm:rn-lﬁ .‘......’O."OQ....‘..I.'..Q....(zs)

The two following theorems will be used for anmlar
area conductors.
V. The self geometric mean distance of an annular

area has its natural logayithm as follows:

Gt 2 2 4,3 T
InDg = Inp, - 2 -Te L+ raCHing) g
(r, —r;)?

where rl and ro are the outer and inner radius respectively.
Vi. The geometric mean distance of any point, line or
area wholly within the annular area has for its natural

logarithm the following expression:

InDm = rolan ~r2lnrn
ri - r;

cee. . (BT)

Nj—

whers r, and r, are the outer and inner radius respectively.
VII. The gself geometric mean distance of a rectangular
grea of width X and length Y is

Ds =O.2255 (X+Y) '..'...........‘...’0..'..(28)

2. Common Conductors. The most common conductors used

for high-voltage power transmission lines are stranded copper

conductors, stranded sluminum cable - steel reinforced com-

monly called A.C.S.R. (see Figure 4) and hollow copper



6 Al./1 St.

6 Al./7 St.

30 Al /19 St.

34 Al./19 St.

ALUMINUM CABLE — STEEL REINFORCED
Some Types of A. C. §. R. Stranding

12 Al./7 St.

8 Al./7 St.

15 AL /19 St.

18 Al./19 St.

Figure 4.
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conductors. Copper covered steel {(known as Copperweld),
Copperweld copper, and steel conductors, are occasionally
used in transmission and distribution lines.

The stranded cables are made of concentric strands with
all strands usually made of the same size as shown in Figure
5. Successive layers are spiraled in opposite directions
to prevent one layer tending to settle into the interstices

of the one underneath.

Figure 5. A Typical Stranded Conductor
(bare copper)

For the first layer of strands around a central straight
strand six strands would be required to fill the annular
space. A second layer would reguire twelve more strands;

a third eighteen more; a fourth would require 4 x 6 or 24
more; and s0 on, adding n x 6 for each increase in the num-
ber of layers. In other words the total nmumber of strands
in such cables whether homogeneous or not would be 7, 37,
61, 91, 127, etc.

Since most common transmission lines are built with these
stranded comductors, it is necessary to develop methods of
handling the calculation of inductance of such conductors.

This is done by replacing the actual conductors by an
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equivalent cylindrical wire of equal geometric mean radius.
Stranded conductors are made up of a number of such parallel
wires. Then it is only necessary to obtain the proper geo-
metric mean radius or distance for the whole conductor.

The self geometric mean distance will be called dg
when referring to the one conductor,and later in calculating
inductance of multicircuit lines, the self geometric mean
di stance of the entire phase will be called Ds' The self
geometric mean distance ds is calculated in terms of the out-
side radius of the conductor or in tefms of the area of the
cable in circular mils where the area is equal to n (2a)2
where n is the number of strands and a is the radius of the

individual strands. The first case will be used here.

3, Geometric Mean Distance of Different Stranded Homo-

geneous Conductors. The most common of the homogeneous

atranded conductors are made of copper, but occasionally
homogeneous aluminum or steel cables are used.

(a) Concentric Cable of Seven Strands. Referring to
Figure 6, there is a conductor made up of seven gtrands,
esch strand of radius (a), or a total radius for the whole

conductor of (3a). Assuming uniform current density there

+a =radius of each
strand

Figure 6. Seven~8traﬂa Conductor.
(a in inches)
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are seven equal currents in the seven strands and remember-
ing that by definition the geometric mean is the niB oot
of an n-fold product, the gelf geometric mean distance of
the entire comductor is the 4938 root of the 49 individual
geometric mean distances among the seven strands, or

N

a; = vrrl rz...rn)(Dzl Dal""jnf(gn DZn..J

Listing the actual terms involved in this case by appli-

cation of the theorems which have previously been proved,

(a) ae-%=0.77883 ...'.....Q.Q.I.Q..Q....? terms
(b) za L 2R B B I B K N B IE BN X L R BE K BE BE BE B Y BN BK BE N B BN AR B AR Y AN AR J 12 terms

5
(C) 2&% $ 000000000 s000s R CEOEROBRIETRTE 6 X 5 terms
49 terms

In the above expressions (a) is the self geometric mean
distance of each of the seven strands as stated by theorem
I. The term (b) represents the mutual distance between pairs
of astrands each one of the outer row with the center making
8 pair.’,The mutual distance is equal to their distancs
between centers or 2a by theorem III. Thers are twelve
such terms because both directions must be taken into con-

sideration. The last term is the geometric mean distance

among the six outer strands as given by Guye's theorem or

theorem IV. There are 6 x 5 such terms as each strand in
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the outer layer must be taken with respect to the other five.
The product of them is equal to the ZOEQ power of the geometric.
Putting these terms in an equation for the self geometric

mean distance

a3
6xd
dg = V(0.7788a)7 (2a)1% 2a }/6°"

dg = 2.180a
In terms of the outer radius R which in this case is equal

to 3a
ds =O.726R inChes ....'...'...'..C..OQ.C..Q..('ZQ)

The self geometric mean distance in terms of the area
A in circular measure, where A is equal to 7 (2a)? = 28aZ®,

is
a_ = .4114 VE 10CHOE ccevesscoscnccscssccassl292)

b. Homogeneous Concentric Cable of 37 Strands., All
gstrands are the same size and carry the same current as they
are all made of the same material whether copper, aluminum
or steel. The strands are arranged in circular layers of
6, 12, and 18 strands sbout the central strand. Letting (a)
be the radius of each individual strand, the radii of circles

drawn through the centers of successive layers will be 2a,

48, and 6a reapectiﬁely. The self geometric mean distance of
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the entire homogeneousg area to itself will include the

following termss:

(a) 0.7788a ............l.............37 terms

(b) 2a cessscesecscccsssecess 2 X 6 terms
(c) 4a eeevacesresseisseaed X 2 x ¥ terms
(d) 6a cvesacesescsess. 18 x 2 x 19 terms
(e) 23\5/3 teceecececcrssscsssass 6 X 5 torms

1
() 4a \]/‘IE tecsevesveencscsese 12 x 11 terms

7
(g) 6/& lm LI N N O B R I B A N N 3 I Y l8x17 terms
Total (37)2= 1360 terms

In this case (a) is the melf geometric mean distance of each
of the 37 strands as shown by theorem I. The parts (D),
(c), and (d) are all based upon theorem III, which states
that the geometric mean distance between two circular areas
external to each other is equal to the distance between
their centers. %The @hf in part (c) is the geometric mesan
distance of the twelve outer strands of radius 4a to the
seven strands within this radius. The(éa%g in part {(d)
is the geometric mean distance of the 18 outer strands of
radius 6a to the 19 strands within this radius. The two
above $erms are based on theorem II.

The parts (e), (£), and (g) come from IV, which takes
each strand in the layers of radius 28, 4a and 6a with the

renaining strands of the same layer. KHence,
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‘372 37 12 12X2X7 36x19
dg = {(0.7?88) (2a)* (2a)"* Ga)

(2a g/é—)SxS (4—3 1\1/—1—2-‘ )!1){12 (68 ){/1—-é )18x17}

a = (5.375) (a)

in terms of the outer radius R, which is equal to 7a
dB = 0.7679 R inches o....-...............l.o.(30)
or in terms of «/X where A = 37 (2&)2

a, = e4419 VA INCHOGB eeececccccccccscsscssscsssldOn)

where A is in circular inches.

(¢c) Homogeneous Cable of Three Strands. Assume that a
homogeneous cable is made up of three equal strands placed
in such a manner that they are tangent to each other exter-
nally and that lines drawn connecting their centers form an
equilateral triangle. Obviously, there is no center strand
and the cable cannbt be considered as a concentric cable.

It is, however, easily seen that value of dg is

32

dg =\/(2a)® (0.7788a)°

aimplified,

d's SSJ(vza)z (007788) a inche‘ 000000000000000(31)

where 2a is the distance between centers taken in both direc~-

tions end {0.7788a) is the self geometric mean distance of

the strands.
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4. 3Self Geometric Mean Distance of Ansconda Hollow

Conductors. Ansconda hollow conductors are msde up of strands

of copper wire wound on & twisted copper I-beam as a core,
the I-beam being twisted in a direction opposite to that of

the inner layer of strands (see Figure 7). Hollow conduc-

Figure 7. A Typical Ansconda Hollow
Copper Conductor

tors have been developed for the purpose of reducing skin
effects, corona formatioﬁs, and inductance. The first
layer of strands 1s spiraled in the opposite direction of
the twist in the center I-beam, the second layer is twisted
oppoaite to the first layer. This same patitern is carried
throughout the different layers. There are several standard
designs in use today with different size I-beams and differ-
ent layers of strands. For example, design No. 378 ig made
up of two layers of strands wound around an I-beam which has
a width equal to the diameter of three strands. The first
layer wound on this beam consists of 12 strands, and the
layer has an equivalent radius equal to 4a where a is the

radius of each strand. The second layer is made up of 18



29

1/

has an outside diameter of 0.742 inches and an area of 0.2796

strands and has a radius equal to éa. Design No. 378

square inches. Each strand has a diameter of 0.1060 inches.
The entire conductor, I-beam and strands, is made of copper.
The geometric distance of this conductor is calculated as

followsa:

Area of the 30 strands is 30 -Z- (. 1060) = 0.26476 8q. ine.
Total ares = 0.2796 sg. in.

Ares of core = .,0148 sq. in.

Area of one strand = (.1060)2 -%F.= .00883 sq. in.

Core is therefore equal to 0.0148/.00883 = 1.6761 strands

The width of the core is the diameter of thres conduc-
tors or 0,318 inches and assuming the core to be a rectangle
the thickness would be the area/width or 0.0469 inches,
which is equal to the area of 1.676) strands. The total
area is the equivalent of 31.676 atrands. The value of self

geometric mean distance is composed of the following terms:

(a) (0Q7788 6‘)30 = (0024766) sescsessccsssesssdD tLarms
(1.676) 2

(b) (0.2235 [x+F]) Z 0,08156 oeces 2,809 terms

(c) (63) 8x2x 13.6763 0.318 ceeoesee 492,336 terma

(4) (ga) 2 X2 X 16765 5 518 teeveeee. 40,224 torms
17 x 18

17

(e) (68.\/‘]3) = 00,3769 csessccscne 06,0 termas
(£) (4a \}—-)11 X 1% 2 0,26574 oveveeses 132.0 terms
Total terms » (1,676)° = 1003.369 terms

1/Woodruff L. ¥,, Electric Power Transmission, Second Ed.,
Table VI, p. 16 (19%8].
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The parts in order are: (a) the gelf geometric mean distance
of the 30 strands to themselves; (b) the geometric mean
distance from the core to itself based upon theorem VII

for rectangular conductors; (c) the geometric mean distance
from the outer layer to the inner layer and core, and return
based on theoremsg II and III; (4) the geometric mean distance
from the inner layer to the core, and return based on theor-
em8 II and III; (e) the geometric mean distance among the
outer layer; (f) the geometric mean distance among the inner
layer. Parts (o) and (£) are based upon Buye's theorem.

The gelf geometric mean distance ds will be equal to the
(31.676) % root of the product of the above six parts which
glves a self geometric mean distance equal to 0.31199 inches

compared to 0.310 inches as given in the table.l/

5. BSelf Geometric Mean Distance of a General Cable

Type H H Conductor. Hollow tubular conductors are being

used increasingly for transmissioa line conductors. They
have the advantage of small skin effect-resistance ratio,,
diminished inductance and lower corona losgss due to a de-
creased dielectric gradient as compared to solid conductors
of the same area of metal. Tubular conductors have a better
current distribution than any other shape of conductor of

gimilar cross-sectional area, but have a relatively small

1/
See Footnote 1, page 29.




R

surface area for dissipating heat losses. Tubular conduc-
tors are usually made of copper but somebimes aluminum
tubes are used.

For sake of illustration of calculation of tubular
conductors, the self geometric mean distance of s General
Gable type H H hollow copper conductor will be caléulated

(see Figure 8), taking a standard H H copper conductor;/

Figure 8. A Typical General Cable Type
H H Conductor

of ares 400,000 circular mils, with an outside diameter of
1.103 inches and uniform thickness of 0.1l00 inches. In

the cages where the thickness is not uniform, an average
value for the thickness should be taken. This conductor

has an approximate current capacity of 838 amperes. The
geometric mean radius is given as 0.0428 feet found by exper-
iment. It can be calculated from theorem V, equation (26)
wnich states that the self geometric distance of an annular

area has as its natural logarithm

5t 2 2 4,3 ll)
Ind, = lnr, - 2 -0 G+ (g ting
2

(rg-r;)

i/ffestingh.ouse Electric Company, Electrical Transmission and
Distribution Reference Book, Third Ed., Table 3-B, page 33,

11944)




where Ty and Ty are the outer and inner radii respectively.
The outside.diameter is equal to 1.103 inches, the inside

diameter is equal to 0.903 inches. Therefore,

Inds = 1n0.5515 -

b

4
10.9515)" — (05515) (0.4515)+(04515)* (075 + 1n 99212 )

[(05515)%—(0.4515)*

9.40488 - 10 - 0.0602778

9.34460 - 10

0.5192 inches .....Q.....C...'Q'....0.00...(52)

o
1

The eiperimental geometric mean distance of this coanductor
was previously given as 0.0428 feet or 0.5136 inches. The
difference between the measured value and the calculated
value is .0056 inches or an error of a 1little less than
1.1%. Since the experimental value is obtained by measure-
ment of the inductance when the conductor has skin effect,

corona loss, etc., this error is within expected limits.

6. Self Geometric Distance of Aluminum Cable-Steel

Reinforced Conductors. On account of the relatively low

tensile strength of all~aluminum conductors, it is necessary
to use a composite cable combining the electrical conduc-
tance of aluminum with the tensile strangth of steel. (See
Figure @) Aluminum cable-steel reinforced (A.C.S.R.) is

& concentric cable conaisting of a central core (of one or



Figure 9. A Typical A.C.5.R. Cable
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more galvanized high-strength steel wires) around which one
or more layers of hard-drawn aluminum wires are stranded.
A.C.S.R. i made with different proportions of steel depend-
ing upon various loading requirements.

The inductance of A.C.S.R. is reduced by the presence
of a steel core because the current does not flow readily
in the latter due to the poor conductivity of steel compared
to aluminum; thereby giving the conductor the effect of a
tube. With one layer of conducting strands, the solenoid
action slightly more than counterbalances the tube sffect.
With two or more layers, however, the inductance is less
than that for a solid non-magnetic conductor of the same
overall diameter.

Consider a standard 30 x 7 strand A.C.S.R. cable which
is made up of two layers of aluminum 12 and 18 strands
respectively wound or spiraled on & steel core of seven
gstrands; calculation of the self geometric mean distance
would involve the following parts:

(8) 0e77888 cossecccscccsscccssccns 20 terms
(p) 6a cececsscsvesecscse-sd® x 12 x 2 terms
(c) 4a %&Iﬁ teesesssssecccassssssss 11 x 12 terms

(d) 63 l&i_g MR EEEEREE RN E RN N NNE SRS S 18117 tems
Total (30)2 = 900 terms

Since the major part of the total current flows in
the aluminum, both because of its larger area and its greater
conductivity, it is permisaible %o calculate the inductance

from the geometric mean distance of this part alone and %o
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apply to the effect of the steel reinforcement as a small
correction of the inductance later. However, it is common
practice to neglect the correction due to the steel core
since it is very small, as will be shown later.

Part (a) above is the self geometric mean distance of
the 30 individual strands of radius a. Part (b) is the geo-
metric mean distance between the strands of the first and
second layers taken both directions based upon theorems II
“and III. Part (c) is the geometric mean distance between
the strands in the outside layer and part (d) is the geometric
megn Gistance between strands in the inside layer, both parts
being based upon Guye's theorem. In the above parts, a
is the radius of the individual strands.

Applying the definition for geometric mean distance,

2 - :
e =a (ONo.7788)0(6) 202(5,014) T05(7.1118) 00

da 5.7845a

or in terms of the outer radius R-= 6a

dg = 0.964093R inches cecsecsecccscsscccscassel(3B)

or in terms of area in circular measure

da 0.52805& 0'..0.1...0..0.0'....0...‘..0(33&)

where A in this design is 30 (2e)2

¥. Effect of the Steel Core in A.C.S.R. upon the

Inductance. The effect of the asteel core is to increase
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the number of linkages over what the cable would have if

it were merely hollow, hoth because of linkages in the core
itself, and because the shifting of part of the current
toward the center results in greater flux density through-
cut the aluminum portion. The boundary comdition control-
ling the determination of the relative currents in the alum-
inum and steel portions is that at the surface of contact
the current densities of the two metals are in direct pro-
portion to their conductivities. At regular power trans-
mission frequency, skin effect is very small and can be neglec-
ted as far as the inductance calculations are concerned.

At 60 cycles per second the skin effect-resistance ratio is
1.007 at 10 amperes and 1.013 at 20 amperes for Siemens
Martin steel, which is commonly used as the core in A.C.S.R.
Obviously, this indicates that there is, for all practical
purposes, uniform current density throughout the gteel.

Wé can then say the currents in the two metals will be in-
versely proportional to their d-c resistances., The resis-
tivity of steel is about 110 ohms per mil foot compared to
sbout 17.0 ohms per mil foot for aluminum, both measured at
20 degrees centigrade. Therefore, the aluminum of a 30

+ 7 A.C.S.R. cable will cerry —o— X "11%%6' = 27.7 times

as much current as steel. In other words, the sieel would

1 100 or 3.48% of the current.
carry unifommly about mp—t——p X %

This would have the effect of removing &.48% of the current
in the aluminum and its flow in the steel would obviously
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have no effect upon the external magneitic flux of the cable.
It will, however, increase the flux density in the alumi-
mam region by an amount which varies from zero at the out-
gside to & maximum at the point of contact between the
aluminum and the steel. Alsc, the value of flux density
in the steel is increased, because previously the core
current was assumed to be zero. For example, a standard
556,500¢circular mil, 30 + 7 strand, 4.C.5.R. cable will be
considered. If the aluminum is considered as a tube with
inside diameter of 6a or .4086 inch and outside diameter of
l4s or 0.9534 inches, (a) being the radius of the individual
strands or equal to 0.06455 inches, the increase in flux
linkages per meter length due to the increased flux in the

aluminum is equal to

0.4767 “2

x*~(02043)

£ul dx
(0.4767)*-(0.2.043)*

X

107 1 [00348+0965z

0.2043

2
carer 4ﬂ-[ X?*-(0.2043)" }d
)2

2ax| (04767)" —(0.20453
0.2043

er

10~71(0.376-0.5358)

>,
o
n

2.0 x 10~%I 1linkages per meter

"

where I is expressed in gggores.l/ Since there are 1609.4

1/ n of Aluminum Cable Steel Rein-
=/wWoodruff, L. F. Inductance
fogced,“ 1EE Traﬁgactiona, Vol. 54, page 299 (1935) «

]
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meters per mile, the increase of inductance per mile would

be

Lz-4-=1609.4x2x 107% = 5.219 x 107 henries/nile
cor .00322 millihenries per mile of one conductor. Also,
in addition to the increase in inductance due to the alumi-
num we have an increase owlng to the linkages between the
steel core current and core flux. Experimental results on
seven strand steel cores of this size and type indicate an
internal inductance that varies slightly with the curreant, but
an average value of 1.50 millihenries may be used. In order
to make use of this datum for A.C.S.R., it must be multiplied
by the square of that fraction of the current carried by the
steel core or (.0348)2 x 1.50 = 00400182 millihenries per
mile per conductor. Therefore, the total contribution to
the inductance due to the presense of the seven strand steel
core in the center instead of a non-conductor would be the sum
of the 0.00322 millihenry due to the effect of the core on
the aluminum and the 00400182 millihenry due to the core it~
self or 0.005804 millihénry per mile of conductor. The same
increase would apply teo other A.C.S.R. cablea of different
alze provided they are geometrically similar; that is, com-
posed of 30 + 7 strands of aluminum and steel. Obviously
these corrections are negligible but by applying them to the
inductance as calculated from the dg found by neglecting the

core the calculated value and the value obtained experimentally
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as explained in the succeeding paragraph, will give for

all practical purposes the same value.

8. Calculation of Inductance from Self Geomeiric Mean

Radius and Vice Versa. Going back to equations (20), (20a)
and (2la) which were derived in chapter 1, it is seen that
the inductance and the inductive reactance can be calculated

if the self geometric mean distance ds of the conductor is
known, along with the mutual geomeitric mean distance or

equivalent spacing. Starting with equation (20a},
D
L = 0.000741 log;, —y— henries/mile
s

and letting the equivalent spacing be one foot, a table could

be made for the inductance as

o_n.‘_g.._f_o_gt—_w TR EEXEEXN] 4

or from equation (21a) at 60 cycles the inductive reactance

is
= 2 fL = 0.2794 logy, 2B§-T300-8RRClNZ, ... .(35)
Fp T EWER T O 10 &5 in fee ohms /mile

A table could be made in terma‘of the 60 cycle reactance.
Phe self geometric mean distance from a tabulated or

experimental reactance may be obtained from the following
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equation:

a = in ft.

8 antilogy, reactance withoong foot gpacing 60 cycles

....o..-..........(56)

If the reactance is now known to a one foot spacing but is
a value corresponding to a spacing equal to the conductor

diameter it is commenly called the internal resctance and

a = physical radius in feet in £t
8 internal reactance (60 cycles) *
2794

ant110g10

00.0000'00000000..(57)

Now going back to the 556,500 circular-mil 30 + 7 strand
A.S.C.R. cable used in paragraph 8 and actually comparing
the difference between the calculated valus and the experi-
mental value of inductance or reactance at one foot apacings,

the inductance, neglecting the steel core from our calcula-

tion of d8 ig as follows:

dg = 0.5280 VI = 0.5280 V556,500 x 1072 = 0.394 in.

:OT.zgr‘ = 0.0528 :t. oooo.-c.;.o.o.oo...cooooc.O(ZS)

From equation (34)

, 12
L = 0.000741 logyo 2Re-fogt Bacliz « 0,000741 log), yrgsz

% 1,0994 mh/mile cececesssccssscsssssasenses(BD)
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Adding to this value the 0.00504 increase due to the steel

7 strand core we have 1.1044 mh/mile. It can resdily be seen
that the effect of the steel core on the inductance is very
small, or .00504 mh compared to 1.0994 found when neglecting
the core. TFor the sake of comparing the calculated value
with the experimental velue(which is given as 0.415 ohms

at 60 cycles at one foot spacings, by Aluminum Company of

/

1
America's tables on Characteristics of A.C.S.R.})™ the

reactance for one foot spacings is calculated as follows:

= 1.1044 mh/mile
IL = 27fL = 0.001104 x 27 x 60 ohms per mile
X; = 0.4161 ohms /mile

......‘..0.......‘(40)

The reaults are well within the accuracy of calculation

or measgurenment.
Since the experimental values also include skin effect

and proximity effect it can be assumed, as has been previously

stated, that these effects are negligible.

l/Westinghause Electric Company, Electrical Transmission and
Distribution Reference Book, 3rd ed., Table 2, page 32, (1944)
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CHAPTER IIT

APPLICATION OF GEOMETRIC MEAN DISTANCE IN THE CALCULATION
OF EQUIVALENT INDUCTANCE OF MULTICIRCUIT LINES

1. General Inductance Formula. In sections 8 and 9,

chapter 1, the equation for the total flux linkages betwesn
two conductors made up of N-parallel wires was found to be

from equation (18)
A =m2x10°71 lng D linkages per met@reeccee..(4l)
dg

where Dy was equal to the geometric mean distance between
conductors and dg was equal to the geometric mean radius
of a group of N-parallel wires of one conductor. From this,

the above equation for the inductance by definition is
I = 2 2x 10 1ln henries/meter.....(42)
T e “I;'
or at 60 cycles, the inductive resctance is
X. : 002,’94 10810 _?ﬁ—OMS/mileottooc00010000(428)
L 8

Polyphase transmission lines can be considered as merely a
special case of the general K~-conductor line and can be

treated as such by using the formula as

L=2x 107" lng -%";- evsesesseacsasrssncesss(4d)
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where Dy here represents the mutual geometric mean distance
between all of the conductors of one phsse with all of the
conductors of the other phases. Ds iz the self geometric
mean distance of one phase, which can be made up of any
number of individual conductora, each of which may or may not
be stranded but has a self geometric mean distance ds‘ Dy
then takes into account the individual self geometric mean
distance dg of each conductor of a phase along with the
mutual geometric mean distance of these conductors making

up this phase. Obviously, equation (43) can be used to cale
culate the inductance of any type of transmission line made
up of any number of phases and any number of conductors per
phase as long as the proper values of Dy and Dy are used,
providing the line is properly transposed.

Theorem III or equation (24}, which states_the geometric
mean distance between two circular areas external to each
other and in a common plane is equal to the distance between
their centers, is used to find the D, and Dy in equation (43).
This theorem was proved in the appendix and will be used
throughout the rest of this chapter in finding D, and Dy

A limitation to equation (43) is that conditions must
remain so that uniform eurrent density over all of each con-
ductor is maintained (or else non-uniformity within a single
conductor is taken into account by the use of the corrsect

value of equivalent self geometric mean distance d4). This

is taken care of by transposition, which/will be fully ex-

plained later.
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2. Induectance of a Single Phagse Line. Taking a single

phase line made up of two conductors of geometric mean
radius dsa and dsb separated from each other by a distance
D and calculating the inductance,

L=zgx 10"

lne'E_"QE-“ henries per meter

The terms dgy and dgy are the self geometric mean distances
of conductors a and b calculated as was shown in chapter 2,
where conductor a carries I current and b carries the re-
turn current or -I. If the two conductors making up the
complete circuit were the same size and of the mame material,
which is generally the case, the equation would reduce to

D
L=2x10 lng —— henriea per Meterecsesf44)
e I

whers D, is the mutual geometric mean distance based on

theorem III or equation(24).

3. Symmetrical Three-Phase Single Circuit Line. The

simplest three-phase arrangement, and the only one which

does not require transposition to balance the inductive
reactance drop per phase is the equilateral triangle ar-
rangement. Here is found one conductor for each phase placed
at each vertix of an equilateral triangle at some distance

D from each other or where D is the length of the sides of
the equilateral triangle. Using the same type and size of
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conductor for each phase, the inductance would be

%)DS

L=2x 107 1n,
dg, dg; dg;

or which reduces to

D

Dg

L=2x10"" 1n

henries per meter........(45)
or at 60 cyecles, the inductive reactance is
Xy = 0.2794 logyg -%;— ohmg per mile per phase...{4ba)

It is seen from the above equation that with the same spac-
ing D and the same conductor size that the inductance per
unit length of a three-phase line is the same as that of a
single phase line which is given by equation (42).

4. Symmetrical Single-Phase Double-Gircuit Line. From

Figure 10 it can be seen that in this case conductors 1 and

(g2 £ : b

T
o ¢
T 2
1 O 2 -1 5 !

Figure 10. Symmetrical Ringle-~Phase
Double~Circuit Line.
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1' are in parallel and carry together the line current I,
and conductors 2 and 2' in parallel together carry the re-
turn current -I. It will be assumed that all of the con-
ductors are similar in size, material and design or in
other words all conductors have the same ds and will carry
equal currents uniformly distributed. It can be seen from
the gsymmetry of the arrangement that there will be no un-
balanced voltages introduced in conductor 1 and 1' due to
currents in conductors 2 and 2'. Therefore, the currents
in 1 and 1" will be equal. Applying the fundamental induc-
tance formula we have, letting X represent lines 1 and 1°
and Y represent lines 2 and 2°',

Dy

L=2x 1077 ln, —5 henries/meter
s

D, 1s the geometric mean distance from lines X to Y and would
be equal to by definition the fourth root of the lengths

of the four lines joining the ceatera of conductors 1 and

1' with the centers of 2 and 2' or D, would equal to the
fourth root of A%C%, or D, = VET . Dy is the self geomstric
mean distance of line X or line Y, as previously stated, and
is equal to the square root of the product of the distances
betwesn the two conductors making up lines X and Y, times

the self geomstric mean distance dg of the conductor, there

fore,
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Thus,

L=g2x 1077 1ng % henries per meter....(46)

In looking at this equation for this type of line and
realizing that & minimum of inductance is desirable in order
to improve voltage regulations, increase the power limit,
and improve the power factor, etc., it is seen that best
results would be obtained by keeping the individual con-
ductors of a phase as far apart as practical while at the
same time keeping the distance between lines X and Y as
small as practical. Therefore, in designing a line of this
type, the above considerations along with cost should be

taken into account.

5. Unbalanced Single-Conductor Three~-Phase Line. So
far in this chapter all of the lines taken into considera-

tion have been balanced and did not need transposition. In
the case of an unbeslanced line(and by this is meamba line
deaigned so that without tranaposition unequal inductance
occurs in the different phases becauae of the effect of any
one phase inducing a field on a sscond phase but not on

& third) all phases do not affect each other equally. This
in turn often causes unequal currents to flow in the indi-
vidual conductors making up that phase. This condition is
taken care of by transposition. Take for exmmple a three-
phase line with one conduetor carrying the current in each

phase. Calling the three conductors a, b, and c, azsume



48

they are arranged in a triangle such as is shown in Figure IT.

Figure II. Cross Section Figare IJa. Three-Phagse Line
of a Three-Phase Unsymmet- Transposed.
rical Line.

The inductance would be

L=2x 107 1n-T-Dm = 2 x 10
g e/dsé

2 x :LO"7 1ln f!i:%:EL. henries /meter.eeeasees.(47)
s

Offhand, 1t might seem that this design is impractical
in the sense that if only one conductor per phase was used
the conductors would be placed in an equilateral triangle ar-
rangement as was shown in paragraph 3. This is not true gince
unsymmetrical lines are often used because of more convenient
mounting on poles or towéfs, or for the purpose of keeping
the average height of the conductors above the ground as low
as practical to prevent as much as possible lightning hazards.
Sometimes bacause of inductance interference effect of parallel
communication circults, symmetrical lines become unbalanced;

this would be eliminsted by transposition in the absence of

zero aequence currents.
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6. Unsymmetrical Single Phage Multi-Circuit Line.

Take for an example the case where the conductors of the
single-phase line in Figure 10 are arranged to form a line as

shown in Figure 12a. Without transposition unequal currents

G—E o3 o b o @
1 1 2 2
X 1
I T X
(o)
.
e X T

Figure 12. Unsymmetrical Double-Circuit Single-Phase
Line and Transposition Cycle.

would flow in the two individual conductors of line X and line
Y, bacause the curreants of line Y would cause more linkages

in line 1'of line X than in the outer conductor 1, and vice
verse.. This effect is eliminated by proper transposition as
shown in Figure 12b. The mutual geometric mean distaunce

(Dn) in this case would be

D, = Y@ (2a+10)2 (a+2b)

and

Therefore, the inductance would be
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L= 2 x 1077 1n \/é (2 +b)* (a +2b)
Vb dg

henries 16r meterec..cesceecceel d8)

7. Three-Phase Double-Circuit Symmetrical Line. Assume

& three-phase line composed of six equal conductors arranged
g0 that lines drawn connecting the ceanters of the adjacent con-
ductors would form a regular hexagon with each side equal to

a distance D. PFor this three-phase symmetrical arrangement
there are two conductors per phase. In order to increase the
gself geometric mean distasnce, thereby decreasing the induc-
tance, the two conductors of each phase are placed ag far

spart as possible (as shown in Figure 13). Obviously, it

1

3’ (o)

Figure 13. A Three-Fhase Double-Circuit
Symmetrical Line.

will not be necessary to transpose this line owing to the
Pact that the flux linkages about each of the two conductors
. of a phase,produced by the currents of the other two phases,
will be equel. The current @ensity over the entire cross-

section of each phase made up of tWwo conductors will be
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uniform (or else, if there is non-uniformity within a single
conductor, it is taken into account by using the correct
equivalent self geometric mean distance dg as was shown in
chapter 2.)

The mutual geometric mean distance Dy in this case then

is applying equation (24) from theorem III,

i 23?1)\/53\/5313)6 = 2\4/1312 /3 D)2

Wb vEm©6 = p Ne® = s

>
"

In finding Dy 1% is necessary actually to take the dis-
tance from the center of each conductor of each phase to the
center of the four other conductors making up the other two
phases. In other words, the first term in the radical
(DVZ DVZD D) is the product of the distance from conductor
1 of phase 1 to conductors 2', &, 2 and 3' respectively and
there will be five more such products for the other five
conductors. The mutual geometric mean distance is then the
24th root of all such products from six conductors.

The gself geometric mean distance of the entire phase

will be
T . 2
Dy = V(2D)? 4g% =VED dg

whoreyzD ia the distance betwean the centers of the two con-

ductors making up & phase and dg is the self geometric mean
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digstance of easech individual conductor calculated ag was

shown in chapter 2 or else found from tables. Therefore,

2x10“71n-§.hli-82x10"71n%
s 2D dgq

-7 D
107" 1n ng;:—- henries/meter /phase...essess(49)

l
]

or at 60 cycles, the inductive reactance is

- . D
X.LI - 0.1347 loglo '%8_‘ .........o..........o.(498,)

8. [Three-Phage Double-Circuit Unsymmetrical Line.
Sometimes it is necessary to use a line in which the conduc~
tors are not arranged aymmetrically and have to be tranaposed,
as has been previéusly explained. . Reasonsg for this are as
follows: (a) to bring about more convenient mounting on
poles, (b) to keep the average height above the ground as
low as practicable in order to minimize hazards due to light-
ning, (c)to reduce the effect of parallel communication cir-
cuits, Take for an example & line similar to the one dis=-
cussed in paragraph 7, except in this case the conductors are
arranged as shown in Figure l4.

The mutual geomeiric mean distance D, is composed of the
following terms, taking each conductor with the four other con-

ductors of the other two phases in a counter-clockwise direc-~

tion:
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Conductor 1 cee 8 @ € & cvevcescacsvocanss 4 torms
Conductor 2 cee D i 2 8 cevccvscccconnsones 4 terms
Conductor 3 cee C 4 @ D seeecesccccervenee 4 tOrms
Conductor 1%... D 8 1 C coeessccsccosesces 4 toerms

Conductor 2'.0- agi D coescesccacccacsce 4 terms

o

Conduetor 3'cee @ € 8 & ceecescoceonccoceses 4 tOrms

Figure 14. Unsymmetrical Phree Phase
Double Circuit Line.

+

Applying the definition for geometric mean distances,
it is seen that the mutual geometric mean distance D, is
equal to the 24th root of the product of the above terms,

or collecting terms,

R4
D, = Vat bt c? a2 ot g% 1t

12
: Vaz bz c a eg gz iz ...........o.-...(50)
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gimilarly,

Da = li’dsf h : eds f h 0000.0000000000(51)

Notice that all of the distances are from center to center
of the conductors, which applies to.equation (24) based on
theorem III which is proved in the apprendix. From the funda-
mental inductance formula the inductance of this unsymmetrical

line is

- -7 .
L=2x10 " 1n :qugigg (50 henries /meter.....(52)

It can be sesn from the above equation that in order %o
keep the inductance as low as possible it is best to put the
two conductors of each phase as far apart as possible, as
in thia case f and h are both greater than any of the dis-
tances in the numerator.

One method of transposition is shown in Pigure 1l4b.
Instead of transposing the two wires of each phase in the
middle of each third of the lins as shown in Figure l4b,
the two phame conductors could be reverssed at the beginning
of each new cycle of transposition but this effect amounts
%o doubling the length of the cycle. Some of the benefits
are 1dast if the cycle is too long because of variation of
current and voltage from section to section. In general,
lengths of a cycle range from 12 to 40 miles, depending upon

inductance interference due to the exposure of parallel
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communication c¢ircuits.

9. Three-Phase Multi-Circuit Line Flat Spaced. It is

common practice to place thelconductors in an unsymmetrical
arrangement, because of convenience, low cost, and other
reasons previously mentioned. A common arrangement used is
that of placing the conductors in horizontal planes, and 1is
sometimes called "flat spacing".

Consider the l1l8-conductor, é-circuit, 3-phase line shown

in Pigure loa.

Ao @0 @0 @0 @D .p
d

BO O O O O O
d

cO O O O O O

Figure 15a. Six-Circuit, Three-FPhase Line
(Phase 1 shown in solid)

Obviously, it will be necessary to transpose the line
but in this case it will be assumed that transposition has
been taken care of. There are several different possibili-
ties which could be used in placing the six conductors of
the thﬁeo phages and atill not change the arrangement of the
circuit as a whole. First, let the arrangement b6 that all
the conductors in each horizontal plane be one phase. In
thig case the self geometric mean distance Dg of the entire

phase is composed of the following terms found by taking the
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distance from each conductor to the other five and multiply-
ing that by the gelf geometric mean distance dg of each

individual conductor.

Conductor 1 ... 4g D 2D 3D 4D 5D ....... 6 distances
Conductor 2 «v. dg D% 2D 3D 4D vu.v..... 6 distances
Conductor 3 ... dg D* (24)% 3D ......... 6 distances
Conductor 4 ... dg D% (24)2 3D ......... 6 distances
Conductor 5 ... dg D? 2D 8D 4D 4eueeernsn distances
Conductor 6 d 2D 3D 4D 5D seevene 6 distances

Dg then would be the 36th root of the 36 above distances,

which when simplified is

D = 3%35 p30 110 58 36 44 2
18
= \/ag® D15 15 24 55 42 51
or ‘
Dg = 1.790 \/6118 D (53)

In calculating the mutual geometric mean distance Dy
each of the six 1nd;vidual conductors, making up one phasse,
mugst be taken with respect to the 12 conductors making up
the other tWo phases. It is necessary to take into account
the fact that due to transposition each phase will ocoupy
in succeasion all three positions. (See Figure 15a)
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The mutual geometric mean distance from one phase to the
other two phases for the transposed line will contain the

following terms:

First Phase in the A Position
Conductor 1 with respect to the 12 conductors of the other

phases:

KX

1 *
a 2a (+D%)F (& +4D') (ad + D*JF (48 + 40°)°
(& + 9D°) (4a° + 9D°)F (& + 16D°)° (4& + 160°)°
(@ + 25D°)% (48° + 25D°)7  teeeesseesssol2 distances

Conductor 2:

»in

2 2 S
(a+ D*)* (44°+ D°)* a4 24 (a° + 4D°)* (4d® + 4D°)®
(&8 + 9D°)F (4d° + 9f)* (4% + 16D°)% (4d® + 16D°)2

eeesssssesssel? distances

Conductor 3:

2 2
2 2

2 2
4 24 (8% + D*) (4a® + D°)F (& + 4D°)F (4d" + 4D°)

(a* + 9D2)é (aa® + ‘33)2)—!2 cesesescssseseld distances

Conductor 4:

The same terms as conductor 3 ceceesesceeld distances
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Conductor 5:

The same terms as cConductor 2 cceeeseescel2 digtances

Conductor 6:

The same terms as conductor 1 cecceeeses.el?2 distances

Firgt Phase in the B Position
Conductor 1 with respect to the other 12:

2
z

g

2
2

(@ + 16D%)
2
(a* + 25D°)2 teseceseessel? distances

i3
a® (a®* + p*)* (a* + 4D%)F (a*+ 9D°)

Conductor 2:

2 2 2
a® (a® + p9)% (&* + 9p)% (a® + 16D°)*(a" + 4D )%

eseesssecesesl? distances

Conductor 3:

4 4 2
a® (a® + %) (a° + 4d")* (" + 9D")%....12 distances

Conductor 4:

The same terms as conductor 3 above......l2 distances
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Conductor 5

The same terms as Conductor 2 above....l2 distances
Conductor 6:

The same terms as Conductor 1 above....l2 distances

The first phage transposed in the C position will
giwe the gsame terms as the first phase in the A position.
There will be a total of 3 x 72 or 216 distances measured
from center to center. By definition, the mutual geometric
mean distance D, will be the Z16th root of the above 216

terms. Thereforse,

Ris
40 32 24 16
Dy = @ (a"+Dp*)* (a*+4D")% (a°+9D°)% (a"+16D°)%
o 12
(& +250%)7 (2a)° (4a%+ D)¥ (40" +4D%)F (4d"+9D%)F
8 4
(4a%+ 16D°)F (4a"+ 250%)%}

and simplifying,

108
D = Y& (&*+ M7 (a®+4p")® (af+9D%)° (a°+16D")*
(a®+ 250°)% (24)® (4a®+ D*)° (4a®+ 4D*)* (4a*+ 90%)°
(40°+ 16D°)* (46%+ 25D%)']  teeereceiecncaeniaoss(54)

The inductence in this case is

- -7 equation (54) nenries per meter...(55)
L=2x107 lne equation555) P
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Another possible arrangement of the phases is to have
the first and fourth vertical columns of conductors comprise
one phase; the second and fifth another phase and the third

and sixth columns the remaining phase. (See Figure 15b.)

D D

B ¢
Op O @ O O
O O e O O
o O

2@ 20>

® O O

Figure 15b. Six~-Circuit, Three-Phase Line
(Phase 1 shown in solid)

Obviously, transposition is again necessary, and taking
this into account the gelf geometric mean distance of the
entire phase is made up of the following terms, found by
taking the distance from each conductor of a phase'to the
other five making up a complete phase and multiplying that
by the self geometric mean distance 4y of each individual
conductor.

Conductor l....dg 4 24 3D (9D ¥ (4a*+90")%. .6 distances
Conductor 2....dg & (@+90°)F BDuveeenrnneeeee 6 Qistances
Conductor 3....same distances as 1 above.......6 distances
Conductor 4....same distances as 1 above.......6 distances
Conductor 5....8ame distances as 2 abové.......6 distances
Conduetor 6....same distances as 1 above.......6 distances

Dg is the 36th root of the product of the 36 above distances,
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or,

39
b, = Va& 8% (2a)* (30 (& +9p*)t (4 +90")%

which when aimplified is

18 '
Dy = Val 4e® 270° (&*+90%)° (4a*+ 9D%)......(56)

The wvalue of Dg is the same for each transposition section
asguming that the phases are interchanged at one~third and
two-thirds the distance along a transposition section. The
effective value of Dg for the entire line will be the same
as the value of Dy for each transposition cycle.

The value of mutual geometric mean distance D, from
ons phase to the other two will be different in the differ-
ent transposition sections. To obtain the effective value
of Dy the phases must be taken in the different transposi-
tion mections. The mutual geometric mean distance from one
phase to the other two phases for the transposed line will
contain the following terms:

Firat Phase in the A Position

Conductor 1 with respect to the other 12 conductors:
D 2D 4D 5D (&*+ DY)F (&% +4D%)% (& + 160°)?
(@% +25D%)F (4a°+ D7) (ad®+ aD*)F (4d®+ 160° )
(482 + 250% ) eeerennoesrnncsssnsssnnnasssssl? distances



Conductor 2:

2 2 2
D 2D 4D 5D (&°+ D*)* (& + 4D")* (a*+ 16D°)*

z 2%
(d +25D).....'....’.‘......'.......'...12 distances

Conductor &:

The same terms as Conductor 1 above......l2 distances

Conductor 4:

A Z
2 F3

3° (20)° (&4 D)% (a°+ ap*)f (4d’+ D°)

2z
z

(4dz+ 4D2)....0..0‘..0.‘0....0'.'....0..012 diatances

Conductor 5:
2 2 2 z% 2 2 %’-
D (2D) (d. + D ) (d +4D ) ...........12 distances
Conductor 6:
The same terms &g Conductor 4 above......l2 distances

First Phase in the B Position

Conductor 1:

2
z

A i z

(a°+ 4% )% (a*+ 16D°)° (4d*+ D°)?
2 20\% 2z 2\F

(48°+ 4D*)° (4@ + 16D} eeceacosncsceaseeesl? dintances

D* 2D 4D (& + D*)

Conductor 2:

2
z

' 2
D% 20 4D (&%+ D°)F (&°+ 4p*)® (a*+16D*)%. 12 distances
Conductor 3:

Phe same terms as Conductor 1 above......12 digtances

62
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Conductor 4:

The same terms as Conductor 1 above......l2 distances
Conductor 5:

The aame terms as Conductor 2 above......l2 distances
Conductor 6:

The same terms as Conductor 1 above......1l2 distances

First phase in the C position will give the same fterms as
the first phase in the A position but in a different order.
The mutual geometric mean distance D, will be the 216th root

of the product of the 216 distances, or

2t6 32
D, = \/{D“ (2D)* (4m)® (5D)° (a*+ D)F (& +4D%)%
| s .
(@ + 16D%)F (a°+25D%)% (4a’+ D)% (4a"+4D°)°
4
(4a*+ 160"} (4a*+ 250°)%]

and simplifying,

108 {0 a

D, = \/{n"" (20)” (4D)° (5D (a*+D°) (&°+ 4D°)
4
(a® + 160°) (d*+ 25D%)° (4a°+ D°)° (ad®+ 4D*)

(4d2+ lsDz)z (4dz+ 25D2)}...O'...'...00..I....(s?)

The inductance for this arrangement can be calculated :rom

the following egquation:

- equation (57 R & 1 -
I = 2:10‘71110 oquatien 6 L ( )
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Another possible arrangement of the phases is to have
the conductor of each phase always separated from one another
by diagonal distance; thus the first phase might comprise
the top coanductor of the firat and fourth columns, the middle
con&uétors of the second and fifth columns, and the bottom
conductors of the third and sixth columns. The other two

phases will be arranged similarly. (See Figure 15c.)

A@DODO @ O O
d

BO @€ O O @ O
d

cO O @€ O O e

Figure 15¢. Six~-Circuit, Three-FPhase Line
(Phase 1 shown in solid)

With this arrangement, transposition is again neceasary, and
with this taken care of the equation for the self geometric

mean distance of each phase contains the following termg:

Conductor 1:

2 2 \3 2 2 \& 2 z)é
a, (a*+ 1°)* (4a"+ 4D ) 3D (4 +16D

L
(48°+ 25D°)% veeeeavesosasecanssssasscsssb distances

Conductor 2:

nN

KN L
a, (a+D°)F (ta"+4") 3D (a7 16D )%..6 distances

Conductor 3:

3 % % z 2,3
a, (& + T°)° (aa"+ 42°)° (a€™+D°)" (' +4D)
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Conductor 4:

iy (D) (a°+4D") (4a’+D*) ('+ D%)*

(405 + 40F )2t e enneieenneeannnreaneenneses b distances
Conductor 5:

The same terms as Conductor 2 above......6 distances
Conductor 6:

The same terms as Conductor 1 above......6 distances

Dg is the 36%h root of the 36 above distances, or

36 6 6 , .2 2 |8 2 2. % 2 2. %

Dg = \/as (3D) (& +D )2 (a +16D7)° (42 +4D7)"
2 4 2
(4a°+ 25D%)F (a"+ 4D*)% a(a*+ D))

and simplifying,

18
Dy = \/a.g 270° (a*+ %) (a*+4D*) (a°+16D%)
L { _;'
(48 + D°)F (4a°+ 4D°)  (4€%+ 250 ) Jeuenn..o(59)
The mutusl geometric mean distance Dy taking transposi-

tion into account is found by taking the 216th root of the
following 216 terms:

FPirst Phaae as Shown in Figure lbc.
Conductor 1 with respect to the other 12 conductors:
a 2a D (4a%+ D% 2D (a%+ o) (P +en) (4%t opt)*
4D (4" +160%)F (5D) (a°+ 250°)% ........12 distances



Conductor 2 with respect to the other 12 conductors:

£ 2 4
p* (a&*+ p%)f & 2p (@ + 40*)* (a®+ 9p%)% (a®+ 16D%)%

4D .Q..'...'.“...'..C........lz distances

Conductor 3:

s A S
(°+ 40%)% (20)° D (4d*+ D°)% 4 20 (a°+ D%)F
A A L
(4a"+ 4D°)* (4a*+ 90%)% (a®+ 9D%)% ......12 distances

Conductor 4:

The same terms as Conductor 3 above......l2 distances
Conductor 5:

The same terms as Conductor 2 above......12 distances
Conductor 6:

Th§ gsame terms as Conductor 1 above......l2 distances

Phagse One Transposed in Phase Two FPoaition

Conductor 1l:
‘ -« 2
a® D (a*+ D*)* 2D (a*+ 4D%)% (a®+ 9D°)% 4D
(8% 4+16D°)% 5D (a°+ 25D°)% veveeeessseessl2 digtances

Conductor 2:

(4a°+ D°)% D% a 28 (&°+ D°)? 2D (4a°+ 4D*)?
+ <+ A
(a*+9Dp%)% (4a*+ 9D )° 4D (a*+ 16D%)%....12 distances

66
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Conductor 3:
AL £ N
D* (2D)° (4a*+4D%)* (a*+D°)* a4 24 (a%*+ 4D%)%
(48%+ D)% (&*+9D°)F (4d*+ 9D*)* vev....12 dimtances
Conductor 4:
2 z 2 z 2,2 2 2. & 2 2, %
D (2D) a4 (a +90")% (a"+4D%)%* (a4 +D°)2
eessseesel® distances

Conductor 5:

The same terms as Conductor 2 above......12 distances

Conductor 6:

D 2D 4D 5D & 24 (a4 F DY)% (4a®+ 4D%)% (a*4+9D%)%
(4a*+ 9D°)% (a*+ 16D°)* (4a*+25D°)% ....12 distances

Phase 1 transposed in phase 3 position will give the same
distance as in the above case with phase 1 in phase 2 posi-

tion. Therefore, for this arrangement D  is

R16 e

Dy = \/{da’* p* (2a)® (20)*° (4D)® (5D)° (a*+2%)%
10 4

(a*+ 43)‘)124‘ (@*+9D° )% (a* +16D%)% (a*+ 25D%)%
2
(4a°+ D*)¥ (4a°+4D° )% (4d*+ 9D*)% (aa®+ 16D%)%

(sa*+ 250°§)

which when simplified is

216 , ’
Dy = \/{a.“ p>°(2a)® (20)°(aD)* (5D)° (a*+ D)° (a"+42%)
(a*+ 97%)" (a*+160°) (a*+250")" (4a*+ D*)° |
(4a%+ 4°)” (4a%+ 95°)° (4d® +16D%) (4d" + 250 ) }
.’.'.'.........(60)
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The inductance for this arrangement is

- -7 equation (60
Il 2110 mem..‘...’....‘....(6l)

Aagumning that 4 and D are each equal to four feet in
Figure 15 and also that the conductors in this arrangement
are all the standard 30 x 7 strand, 556,000 cir-mil, A.C.S.R.
conductor {for which the self geometric mean distance dg
was calculated in equation (38), chapter II) the inductance
will be found for comparigon for each of the three phasse
arrangements shown in Figures 15a, 15b and 15c. The self
geometric mean distance ds of each of the conductors is

0.394 inches.

Arrangement Shown in Figure loa

From equation (53)

)
g 5 1.790 Vag D® |
1.790 (48)% ©0.394)°
1.700 x £25.1 x 0.856 = 38.3 inches...--....o{53a)

D

n

From equation (54), and since d equals D equals 4 feet

Dm

48 x 2.280 = 109.4 inches -............-.....(54.-8.)

1"

From equation (55)

L=2x10°7 lng L%%L% henries per meter



From equation (23a), chapter I, the inductive reactance drop

at 60 cycles is

=
n

D
0.2794 log,; —— = 0.2794 logg l%%;%

60 Dy

0.2794 x 0.455 = 0.1271 ohm per mile per phase

no.'ooo-0;0..-..0.--{55&)

With the spacings and conductors the same as above, the
inductance and reactance drop for the arrangement of phases

as shown in Figure 15b is calculated as follows:

18
8 0.3945 V& x 27-10° x 15

(=
i

= (48)

25¢1 X 0.856 X 1.932 = 41.5 1inNCheSeececssssa(56a)

from equation (56) with @ = D = 4 feet. From equation (57},

Dy = 48 x 108/115 212 46 58 10 58 174 262 55 g% 202 2ol

L}

48 X 2.191 = 105.0 1NCheB.ceovsocaceesscsaslda)

The inductive reactance at 60 cycles 1is

D ‘ 05.0
X0 T 0.2794 x logjy —pi = 0.2794 x log, EZITS
S

2 0.2794 x 0.403 = 0.1086 ohms per mile per phase

0‘0.0-0-..-000.0...0(58)

Phe inductance and reactance drop for the phase arrange-

ment as shown in Figure 15c¢ is calculated as follows:
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Prom equation (57)

1 18
Dy = 48% 0.3945 \/27 x 22 x 5 x 17 x V5 x 8 x Y5

= 25.1 x 0.856 x 24139 = 45.8 1incheSeceess..(59a)

The mutual geometric mean distance from equation (60) is

=)
"

= 48 212/?154 236 412 56 210 57 10912 195 962 55 gb

185 201 291)

i

48 X 200777 = 99,73 iriches.........-.......(60&)

The 60 cycle inductance reactance drop in this case is

99,73
45.8

"

0.2794 x 0.337 = 0.0942 ohms per mile per phase

...0.'.......Q..‘......(ela)

Obviousgly, the best arrangement of phases is the one
shown in Figure 15¢; the next best of the three arrangements
is the one shown in Figure 15b, since the reactance is
spproximately 26 and 14 per cent lower in the above cases
respectively, than in the first case. This is aas was expected,
gsince the diatances between conductors of each phase were

increased in the arrangement of Figure 15b compared to
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Figure 1l5a; and this is also true for the arrangement of

Figure 15c¢ as compared to Figure 15b. The mutual geometric

mean distance decreased from Figure 15a to Figure 15¢ respective-
ly. Therefore, as has been previously stated, the best
arrangement is obtained by placing the conductors of one

‘phase ag far apart as practicable and the diatances between
conductors of one phase with respect to another as close as
practicable, keeping im mind the expense as compared to the

advantages obtained by the above.
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SUMMARY

A thorough study has been made in this thesis of the
application of geometric mean distances to inductance cal-
culations.

The classic induction formula, based upoa the "rationa-

liged" M.XK.3. gystem of units is,

L= 2x 1077 Ing gm henries per meter
8
where Dy is the mutual geometric mean distance of one phase
to the remaining phases and Ds is the self geometric mean
distance between conductors of a phase. This formula was
derived in Chapter I, starting with the fundamental equation
of induced voltage, equation (1), and carrying it on through
to its final form. It was derived from the definition of
inductaace and from a consideration of internal and exteraal
flux linkages of any conductor carryiang a current. The
formula is based upon the assumption of uniform current den-
sity (or non-uniformity was taken into account by the self
geometric mean distance dg of the individuai conductor as in
the case of A«CeS.R.). This formula, in its present form,
applies to non-magnetic conductors, and A.C.S.R. and copper~
weld conductors where aluminum or copper carry practically
all of the curreant.
The method of calculating the self geometric mean distance

dg of standard conductors was shown in Chapter III, and 1is



75
baged upon some well established theoremsl/.

The application of the basic inductance formula to the
calculation of inductance on multicircuit lines was shown in
chepter III. Here, the method of calculating the mutual
geometric mean distance D, of one phase with respect to the
other phases was developed, along with methods of calcula-
ting the self geometric mean distance of the entire phase.

D, and Dy were calculated for several different ar-
rangements of the conductors making up a phase along With
different transposition cycles.

This thesis gives the complete method of calculating
thé inductance of different types of lines composed of

different conductors by means of geometric mean distances.

27309 the appendix of this thesis.
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APPENDIX

MATHEMATICAL PROOFS OF THREE BASIC
E6MD THEOREMS

1f +hree terms are in 2 geometric progresiion
the middle 4erm (3 said 4o be +he geometric mean
of the other +wo and equal +v +he squere root of

their product , for (# 2, b, 2nd ¢ are ingeometric
progression  +hen

b a
_— - or b = yae .
a [}

The geometric mean may ®lio be consgidered the

exponeéntial of +he average of +he Logarithm ., or
Sihee

b= aici
in b= 'z"(!nb-f- ne)
there fore

ns + Ine
e 2 = yac

Which gues +he geometric mean of 2 funetion as
the expongntial of the average of +he Jog2rithm - of
+he fundation,
For example, consider 3 oirele of radinws ¥
p 3N 3 point , P, whose
distance from 4the center,
0,18 b (33 shown inh Figure 3),
By the law of cosines, the
digt ance from point P 4o
the exfremity of r vradius,
Figure 3 4, wmaking 3n angle &
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with OFP g ¢

d = Vr*+ b* ~ 2rb cos ©

Taking +his 3¢ 2 function of +he are length on
the c\rcle, and d3pplying the geoma*‘-ﬂc mean, 3¢
ju.s*' defined, over +he whole airele, 4 will become the
3«90?“2'}\"\42 mean distance, D, from pont P 4o the
Mrcum ference, Sinee +he aversge s unchanged by
a change (n 3cale, 4 ean be daken with respect 4
&, 2nd Since & is 2n even function, the 2verage
m2yqy be taken from O +e 7. Thus,

-
in D = -‘—/L In {r*+b>=2+rl cos@) do,
(0 R
[~

This .lintegra)l is 3 contimuous funekion of v for
a3l values , there fove dfferentisting with respect +o
whieh will hold exeept when r equals b, the
equation becomeg,

7
dinD 1 Rr —Rboosb o
ar T 2 r*+ b - 2rfocos 6
o
i
— Vvcos o
= = r 46
vil r*+b"-2vb CoSQ
o

multiplying by %—E and 2dding 2nd Subtraeting b*,

Y'-'bC‘oSG X 2". - rt_‘_r‘- _Zrlo eos & -‘-b"_\ax
rr+b* - 2 v cos o r Rrir-+b>+ 2¢lk coso)
re_d«.c(ng, -
r-—2rls 0os® + bt r-b

Zrelr*+ b -2 vlosose) 2r(r*+p-=-2rl coso
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the final equation becomes,
7

dbd | oL b 46
dr vil 2Y 2r r*+b*- 2¢b ccso

Rearranging 4he denéminater of +he 12t term so
‘v can be more readily imtegrated znd applying
Arigome tric dentity cos*X 4 $imix =1, and cosx=
CDC"% - 3ipt % , it becomes

FE4bY ~2rb o3 6 = (ri+bt) 3 S 4 cosE -

z2 & .
2rl (cos® 3 Snn"'f)

= <\'+\a)"sfh"% + (r-p)* cos‘%

Now hqul“"y'}alqim‘ and dl'uislr'ng bﬁ 0.05'2'—%-

n o . ,_-e _ S 2_@_ COS‘G -
[(r k)" 8in®* = + (r-b)*cos z_] PypTOm

I:Qr"'-»\a)" tan? O + Cr-\o)"] cos* o

) j
Since %S¢t 2 ~—— $+he equa{'n'ah becomes

Cos*o
7
+r - bt I
._l_. = — 460 =
2 7T r*+p"-2rb Cos 8
)
-
r*-p* 1 S¢c’o do
2r T (r+b)* +an*@ + (r-k)*
P
ovr
_r- b* | 2 sects

\
— = p.Y~)
Zr 7 2(r+b)* | tenro + LEZBD
| ) " Cetlo)™
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Whieh i3 now of +he form de L are Yan —

wr+3? a F.)
‘H\erefare,
Vil
F2- bt I
- " 46 =
Ry 77 r*+ b*- 2¢rb cos &
)
by
r*-\ov 2 tan £
= 3re tan |—2 .
2y T (r+bXr-b) r-v
r+lo o
Simee are tan oo = -E
_ rr=b?® 2 7T { re-lo®

S ey sy e L s

2e 7@ |r-pl 2 7 2r |F-V

Therefore +he finzl equatisn becomes

dnD _ . _©® ] 1 rpr-lt
dr T 2r lo Rr |r--bt

f v rr=ht

-~
= e

Rr Zr -t

Since |r*-ob>| is an absolute value and will slwagqs

be pos‘\-Hu& , therefore when + is greater thon b
din D
ar r 2r r

3nd when r is less +han

{ |
—_— —— sy - o
ar RBr  R¥ *
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f?e{;e\-rmg baax to +he original ,irn'i'-egr-a\ for the
In D i+ (s seen +hat when r=0
T

|
\hD=;/‘é‘lhbzde
o

= inb,
Therefore when rzo0 , Dz . If r iy greater then b,

/

from +he above equztion

d In D i dr
— — r D = —
dr tr % d In r

Taking +he jntegral of both sdes +he egquation

becom es _
din D = dr

P

r

m D= In

theye foce D=2t when ¢ s gre—ﬁer than b. Now if
r (s less +han b

d m D=0
in D= C,
but when 120 1n D= In b which wmust hold for all
values of B, %herefore when ¢ (s less +hau b.
C = Inhb

henece M D= iInb
’ D=V
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These results are congistent with the €act +hat
the integral s Sqmwmetricatl (n r and b.

Thus, the gmd €rom 2 pornt +o 2
dircumtecence s egqual o ‘s distznee from +he
centey (Theorem m', th‘o+er IIY 3inee i+ was Proueé
+hat when b>rc p= b,

When b<r , Dzr, This proves Theo rem
T (Chaptey MY Lhiah SYates +ha+ +he grhcl froea

2 Circular line of yadius v 4o ang poht | Iin e
or 2aved in +he Ssame plene and Lu\noih‘ enclosed
b:,, +h e Aivaeul a2y line 'S equzl o ity reclu&.!,

THE SELF @MD OFf A CIRCULAR AREA

The GMD from an 3res s de€ined by

{0
= 4 L , A
in O y A‘AAMJM dA

Biven 2a aircle of radius a, 4o £md its self @MD

§* = r*4 r1 - 2rr, cos O

(Law of Cosines)
Ind = 'é h (r] +n*- 291 Coso)
A=Az rat

Sinee +he distonce
€rom P Yo P, equnals
the distanae from

P, to P, over the oivele
the \og ot the @aMD
(s

in D = f //IHSAAAA'
mha¥
A4

I+ {s necess2ry 4o aon3ider the Jength from P
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to P, 23 well as the leng+h €rom P, 4 P,
Yinae +he fvﬁ-egra’ form ineludes +hys distapoe
only onee, +he +utal expression must pe
Mmaltiplicd by 2.

4A = r drde dA = rdr do

there fore

! n Fan 21
0= —2 : e
In = Sige P [n(r*+ -2 nk,cos0)
d@d@ V',d", Jﬁ."x
o o) o o

and simee +he ihtegral s ah even Funetion

. 3 noARm A7
2 A wt
ln D = — In(rr«rl -2 rr Cos8) dode
r, dv, v, dr
o -] d o
T

het T = /h (Y, 4¢> - Rrr_cose6)de
r-]

m
41 2, — v, Coseé io
e ’= mem—
r. rl «v_=2rv, G050
o
r
~R2r Cos & 4+ R,
= JG
—Rrneose +rntanrt
9
, . onrv2
d2dd/ng 2hd Subtracting ‘r
-
d e, — ﬁ;"ﬁ
4T - A + %= 6%
dr, v n*+ri- 2rr_coso
)
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Vi v
dl _ « 16 + n—r’ do
AN r r. rr*+vl ~-2rv_coso
o o
T
m + rr-r2 4o
- r, £ r*+ry- rr,coso
(o
40 FY-)
18 of form
L+ L —2r v cose 3- 0030
X 24z ad
i+ 22 24z
—10 Cos O - =2 [ (a-b)+(ath) 22
a-lo—7
o
e
t = .
het z +ahz
[« 7]
a+b
= 2 . \ 3re tan z]
Ya+b  ¥a-b a-b ],
Z ul Al _ v
Voo 2 s~k gfiriericann
-
ry —r
+here fore
dI . pr—-r 77 2w
dr, n r,  ri-r r
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when r, = O I =R2minr, +¢
m

Inh r3 d0 = 27inr,

L}
[}

P
there fore
c=0 I=27Inr,
Su.bsﬂ-l'whng I in the original equation

8 A h R

2
In D = oy e R7 Inh ryd® rdr, r dn
© 9 o
3 » N
2T
P
= 6] r, r, dr v, d
7 ae 0“1 . i or Yo
o Jo

é h

n r,r dn rodr

o
3 r,
r\

z'] In r, rdn

8
o
o
- F- ]
- v
o
a
< 3
= "5:/?‘2 in r\-“rz
0

which s of +he $orm /XP(BX) dx

d
4 [re3 r:]
o~ = —— ] — | . -
In O 34):4 nh 18

o



in O

there fore

[

n

4 [a‘ 4
a*le " 16 ]
i
ina ~ yy
0.25 S
Iha — Ine = Zo25

ae“é ( Theorem 1T, Chap+er]1)
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