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ABSTRACT 

 

Evolutionary mechanisms are often difficult to observe in action because 

evolution generally works slowly over time.  Hybrid zones provide a unique opportunity 

to observe many evolutionary processes, such as reinforcement, because of the rapid 

changes that tend to occur in these zones.  Salamanders provide an ideal model for 

examining the rapid changes in populations that result from hybridization because many 

closely-related species lack reproductive barriers.  In Missouri, a well-documented 

hybridization zone exists among the two subspecies Eurycea longicauda longicauda 

(long-tailed salamander) and E. l. melanopleura (dark-sided salamander).  These 

salamanders inhabit caves, limestone creek beds, and abandoned mine shafts. A closely 

related species, Eurycea lucifuga (red cave salamander) also inhabits caves and mine 

shafts.  A recent study found that E. lucifuga and E. longicauda ssp. were likely 

hybridizing in the Onondaga Cave system. In this study, samples were collected from 

three Missouri caves with the E. longicauda ssp. hybrid zone.  Morphological analysis 

demonstrated significant differences in the morphology of each species and genetic 

analysis presented evidence of potential hybridization among these species. Because of 

the apparent differing degrees of hybridization occurring among the Eurycea species, this 

hybrid zone could offer a valuable natural laboratory to investigate the mechanisms of 

reinforcement. 
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1. INTRODUCTION 

 

A driving force behind many evolutionary studies is the question of how the 

multitude of species found on this planet came to be.  In the not too distant past many 

believed that all the species on Earth had been here since the beginning of time and those 

species experienced very little change over their time on Earth.  In 1859, Charles Darwin 

transformed that thought process by introducing the concept of evolution with his book 

“On the Origin of Species by Means of Natural Selection”.  He presented evidence for 

species developing from common ancestors and suggested the change among descendants 

was in part due to natural selection.  While there was much controversy at the time of 

publication, Darwin’s theory of “descent with modification” is now widely accepted 

among biologists.  An additional contribution to the study of evolution was Gregor 

Mendel’s model of inheritance. At the same time Darwin published his work on natural 

selection, Mendel was in the middle of conducting experiments with pea plants. Mendel’s 

work demonstrated that individual traits are inherited from parents by discrete units, 

which now are referred to as genes.  The combination of the two theories is known today 

as the Modern Synthesis. Scientists now investigate the many mechanisms and processes 

involved in evolution such as what modifications or adaptations take place, how the 

changes take place, and why changes take place.  Concepts such as isolation, sexual 

selection, mutations, reinforcement, sexual recombination and natural selection all have 

crucial roles in the evolutionary process. The combination of these processes can take 

millions of years to change a population enough to result in a new species, making it 

nearly impossible to physically observe the specific mechanisms involved in these 
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concepts. Fortunately, there are certain circumstances in nature that offer biologists the 

opportunity to witness evolutionary processes in action.  In the last few decades, 

investigations of hybrid zones have provided such an opportunity.  These investigations 

have fueled discussions on everything from defining evolutionary concepts to 

determining the mechanisms behind concepts such as reinforcement really work. 

Summarizing what is known and understood is a necessary first step for discussions in 

this area.  

 

1.3. BACKGROUND 

 

1.1.1. What Is A Species? What defines a species continues to be discussed by 

biologists from all fields of study. Because the word species is Latin for “appearance”, 

most likely the historical definition simply referred to different types of animals or plants 

based on visible differences as different species. This is concept is workable for distantly 

related species with obvious differences in appearances. However, confusion arises when 

two similar species have few differences in appearance but have different life histories 

such as occupying different geographical regions or not interacting with one another even 

when sharing the same habitat. This requires a more complex definition to appropriately 

define what is meant by the term species. Ernst Mayr’s biological species concept (BSC) 

is the most frequently followed definition and describes a species as a group of 

genetically distinct individuals who may interbreed to produce viable offspring but are 

incapable of breeding with other populations (Mayr 1942, Coyne and Orr 2004).  This 

definition implies the existence of reproductive barriers that inhibit two distinct species 

from producing offspring.  Because this definition is based upon the ability to reproduce 
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with another organism, it does not encompass asexual organisms. Other definitions of 

species include both asexual and sexual organisms. For example, the morphological 

species concept is based on similarities in body size, structure, and shape, categorizing 

species based on similarities rather than differences (Campbell and Reece 2005).  A 

strong disadvantage to this definition is the subjective nature of the criteria used to define 

the species. The ecological species concept defines a species based on its ecological 

niche or its function in the community it inhabits (Campbell and Reece 2005). The 

paleontological species concept is used for defining species based solely on fossil records 

of species because the reproductive qualities of those organisms cannot be evaluated 

(Campbell and Reece 2005).  Each of these definitions is useful depending on what type 

of question is being investigated.  When exploring speciation among sexually 

reproducing organisms, the biological species concept is a common and practical 

definition to use.    

1.1.2. Speciation and Reinforcement. Speciation is the evolutionary process in 

which the divergence of one ancestral species results in new (distinct) species. Isolation 

of populations and genetic divergence are the two main factors involved in speciation 

(Mayr 1942).  Isolation can occur through development of geographic barriers or through 

the development of reproductive barriers. In either case, the barriers prevent gene flow 

among populations. Over time, because of variations in the alleles of the populations they 

evolve differently. If enough variation occurs, and the genetic differences among the 

populations prevent successful reproduction, new species have formed.  

A main mode of speciation is allopatric speciation.  Allopatric speciation occurs 

when a parent population is divided by geographic barriers which prevent gene flow 
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between the two populations (Campbell and Reece 2005).  Due to natural selection and 

the availability of different resources in the different locations, each population evolves 

differently. If the populations diverge enough so that they no longer successfully 

interbreed, separate species result.  This type of speciation intuitively makes sense in that 

it is likely different resources are available in the different geographic regions, therefore 

species are going to evolve differently. Peripatric speciation is a term given to specific 

type of allopatric speciation in which two species ranges are separated by a physical 

barrier preventing gene flow, but one population is significantly smaller than the other 

population (Ridley 2003). Parapatric speciation is where two species form over a large 

geographical region due to being in different areas of the region (Ridley 2003). Although 

there is not a specific physical barrier preventing the individuals from meeting, the 

physical distance among individuals on either end of the range prevents gene flow among 

those individuals. Again, over time, enough genetic differences arise to prevent 

successful reproduction among individuals of the separate populations.  

The fourth main mode of speciation is sympatric speciation. This occurs when 

two populations share the same geographical area but do not interbreed (Campbell and 

Reece 2005). The same resources are available to each population yet distinct species 

arise.  In this case, reproductive barriers are the primary isolating mechanisms.  Pre-

zygotic barriers include mechanisms such as breeding at different times of the year, 

having different courtship rituals, or simply mechanical incompatibility. Hybridization 

occurs when individuals from two genetically distinct populations do interbreed 

(Harrison 1993).  Post-zygotic barriers such as gametic incompatibility, hybrid 

inviability, or hybrid infertility generally prevent the two populations from merging. 
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Wasting valuable energy and resources on unsuccessful reproduction can be detrimental 

to a species’ survival. To avoid this wasted effort, strengthening of reproductive barriers 

is promoted through a concept called reinforcement.   

Reinforcement is the evolution of isolating mechanisms in areas of overlap or 

hybridization that promote selection against hybridization (Howard 1993, Servedio 

2004).  For example, if two populations diverge due to a geographic barrier for a period 

of time long enough to develop some unique traits and then meet again due to removal of 

that geographic barrier; they may still be able to physically breed. However, the offspring 

with mixed ancestry may be inviable or simply less fit. It is in the best interest of both 

species to not waste energy and resources on interbreeding so stronger pre-zygotic 

barriers (such as having different mating calls) develop over time to prevent this wasted 

effort. These barriers tend to be more intense in areas of sympatry of closely related 

species than in areas of allopatry. This is known as reproductive character displacement 

(Howard 1993). The hypothesis of this process can be credited to Dobzhansky’s 1940 

article which suggested stronger sexual isolation in two Drosophila species that occupied 

a region of overlap than the same two species which occupied regions that did not 

overlap (Howard 1993). Reinforcement is of interest to many evolutionary biologists 

because it serves as a link from the macroevolutionary process of speciation to the 

microevolutionary process of natural selection (Servedio 2004). As with all evolutionary 

mechanisms, there are still many unknowns about reinforcement. How often it occurs, 

what promotes reinforcement, and specific genetic mechanisms involved in 

reinforcement are some key questions needing answers for a clear understanding of this 

process. Because reinforcement is thought to occur in regions of overlap, a better 
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understanding may come from investigating specific types of overlapping regions such as 

hybrid zones.         

1.1.3. Hybrid Zones. Any region in which two separate taxa meet, mate and 

produce offspring of mixed ancestry can be classified as a hybrid zone (Harrison 1990).  

The study of animal hybrid zones has been increasing over the past few decades due in 

part to the increasing ease of genetic analyses of these zones (Barton and Hewitt 1985, 

Harrison 1993).  Hybrid zones tend to occur where the range of two closely related 

species meet, although they sometimes occur intermittently throughout overlapping 

ranges of otherwise sympatric species. Tension zones is the term given to hybrid zones 

that may move, when not bound by local ecological conditions, in the direction of the less 

adapted population until two stable populations have formed or a physical barrier 

prevents further movement (Key 1968, Barton and Hewitt 1985).  Frequent or occasional 

hybridization can occur in different hybrid zones resulting from ecological variants such 

as habitat changes or resource availability (Harrison 1993).  Hybrid zones occur naturally 

but also may develop because of anthropogenic activities such as introduction of non-

native species or habitat alteration (Riley et al. 2003, Allendorf and Leary 1988, Rhymer 

et al. 1994 and Allendorf et al. 2001). Some hybrid zones have successful, fertile hybrids 

while others appear to select against hybridization and the resulting hybrids are inviable, 

infertile or simply less fit.  Hybrid zones occur across a variety of taxa including birds, 

amphibians, reptiles, mammals, insects and fish (Grant and Grant 1992, Wake 1980, 

Fitzpatrick et al. 2008, Heaney and Timm 1985, Harrison 1983, and Planes and Doherty 

1997, to name a few).  
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Hybrid zones can provide evolutionary biologists with the opportunity to witness 

evolution in action (Hewitt 1988, Harrison 1993). Hybrid zones can be sources for the 

development of new species, the extinction of species, the strengthening of selection 

against hybridization (i.e., reinforcement), or simply a natural setting in which biologists 

can observe genetically distinct populations interacting.  Specifically, mechanisms of 

reinforcement can be investigated in hybrid zones due to the either its breakdown 

allowing hybridization to occur, or its strengthening which prevents hybridization from 

occurring.  

1.1.3.1 Hybrid zones of salamanders. Salamanders frequently lack the 

reproductive barriers necessary to prevent hybridization among closely related species 

(Voss and Shaffer 1996). Numerous natural and laboratory settings have shown that 

salamanders across many genera can produce hybrids (Brown 1974, Wake 1980, Veith 

1992, McGregor et al. 1990, Voss and Shaffer 1996, Riley et al. 2003, and Alexandrino 

et al. 2005).  The hybrid zones may occur from primary or secondary contact, within 

ecotones, or from anthropogenic activities. Members of the family Plethodontidae in 

particular have been found to hybridize frequently (Highton and Peabody 2000).     

The Plethodontidae is the largest family, and includes 396 species (Frost 2010). It 

is a diverse group with two subfamilies and three tribes (=supergenera). All members of 

this family lack lungs; hence are commonly known as the lungless salamanders.  They 

are widely distributed throughout North America and also are found in Central America 

and two genera in South America (Petranka 1998). The North American species tend to 

be associated with cool waters, forest habitats, and subsurface dwellings. Some members 

of this family are strictly aquatic, others are strictly terrestrial, and some maintain the 
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typical biphasic life history (Larson et al. 2003).  Some members have developed into 

troglobites and others are entirely arboreal. Species from the different genera of this 

family can frequently be found in the same community. The ability to utilize different 

resources within the same habitat is a classic example of sympatric speciation. However, 

as mentioned earlier, members of this family can also be found in numerous hybrid 

zones. Typically in sympatric speciation, reproductive barriers appear to be stronger to 

enhance reproductive isolation thereby preventing hybridization. The occurrence of so 

many hybrid zones is thought to be related to rapid diversification (Highton 1995, Wiens 

et al. 2006). 

Hybridization has also been found in other clades that experienced rapid 

diversification or radiation such as Galapagos finches, Hawaiian crickets, and Rift Lake 

cichlids (Grant and Grant 2002, Shaw 2002, Seehausen et al. 1997).  All three groups 

have experienced recent rapid radiation, and all currently experience regular within-group 

hybridization.  It has been hypothesized that rapid radiation may result in a time period of 

incomplete evolution of reproductive isolating mechanisms, allowing introgression to 

commonly occur (Seehausen 2004). Three specific clades within the Plethodontidae 

family have undergone rapid radiation in eastern North America. The subfamily 

Spelerpinae, supergenus Desmognathus, and genus Plethodon diverged approximately 50 

million years ago. All three clades appear to have experienced rapid radiation within 

those groups over the last 25 million years and include many species diverging in less 

than 10 million years (Kozak et al. 2009).  Plethodon have been studied extensively; they 

have exhibited evidence of recent diversification and have high rates of introgression (for 

review see Highton 1995, Wiens et al. 2006, Kozak et al. 2006).  Desmognathus and 
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Eurycea (Spelerpinae genus) have not been studied as extensively but there are some 

cases of hybridization among species in both of these groups as well (Smith 1961, Smith 

1964, Johnson 1977, Tilley et al. 1978, Sweet 1984, Guttman and Karlin 1986, Potter 

2008).  Most of these studies involve frequent interbreeding among sister species but 

studies involving two particular Eurycea species (e.g., Smith 1964, Potter 2008) report on 

rare hybridization.  

1.1.3.2 Case study: Eurycea genus. Eurycea lucifuga and Eurycea longicauda 

melanopleura were examined by Smith (1964) in Foshee Cave in Arkansas. Of the 

approximate 200 E. l. melanopleura collected, over seven percent were found to have 

some genetic influence from E. lucifuga; however, the 200 E. lucifuga had no evidence of 

mixed ancestry. Female hybrids were found tight with eggs but it is unknown if they were 

able to produce viable offspring as the specimens were lost in a laboratory accident.  

Potter (2008) investigated individuals in Onondaga Cave in Missouri that had 

questionable morphological characteristics reflective of both species. For minimum 

disturbance of the cave life, individuals were opportunistically collected but sampled in 

the cave and released the same place they were caught. Due to time constraints and 

limited availability of samples, conclusive evidence of hybridization among these two 

species within Onondaga was not reached in this study, although questions regarding 

unidentifiable individuals were presented. In both cases, a few hybrids (or potential 

hybrids) were found over at least a year of sampling, indicating hybridization may be a 

rare event among these species.  Examining the life history of these species may provide 

insight regarding the occurrence of these events.        
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Eurycea longicauda currently contains two subspecies, Eurycea longicauda 

longicauda and Eurycea longicauda melanopleura.  Eurycea guttolineata was considered 

a subspecies of this group at one time, but is now considered its own species (Carlin 

1997, Petranka 1998).  E. l. longicauda occurs in the eastern United States, including 

southern New York toward northern Alabama and westward toward the eastern part of 

Missouri.  E. l. melanopleura occurs in the central and western parts of Missouri, 

northern Arkansas, and the eastern edge of Oklahoma (Petranka, 1998). There is a 

presumed hybrid zone of the two species along the eastern side of Missouri, into the 

western edge of Illinois and southward in the northeastern part of Arkansas (Petranka 

1998). E. l. longicauda is generally yellow to yellowish-brown with a cream or yellow 

belly.  Dark, irregular blotches are found along the dorsum and at times form 

discontinuous lines along the sides. E. l. melanopleura is similar in appearance except for 

a dark, broad stripe which is found along both sides. These stripes tend to have scattered 

white flecks. The intergrades tend to have patterns consistent with both species (Smith 

1961).  It is worthwhile to also note that E. l. longicauda has been implicated in potential 

hybridization with E. guttolineata (Myers 2009). E. longicauda ssp. are often found in 

forested habitats near cool streams, under rocks or logs, and in or near caves or 

abandoned mines. Breeding tends to occur in autumn through early winter. Finding egg 

deposits has been rare, but some have been identified in subsurface habitats such as caves 

or mines.  Incubation lasts from 4-12 weeks, depending on water temperature, and 

metamorphosis typically occurs in June or July. There have been some cases of 

overwintering of larval stage and transformation the next summer (Anderson and Martino 

1966, Franz and Harris 1965, and Huheey and Stupka 1967). Adults grow to 10-20 cm 
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total length, and their diet mainly consists of invertebrates. As adults, their tails comprise 

60-65% of their total length, resulting in the common name, long-tailed salamander.  

They are most active in the early evening hours.  

Eurycea lucifuga occurs primarily in limestone regions of Missouri, Kentucky 

and Tennessee.  They can be found from the western edge of Virginia to eastern edge of 

Oklahoma and from northern Alabama and Georgia northward to southern Indiana.  E. 

lucifuga is generally orange with round, dark spots along the dorsum.  They are 

frequently seen in the twilight zones of caves but can also be found deep within caves or 

along rock walls associated with springs within forest habitats.  Although not well 

documented, is believed that breeding tends to occur in late summer and autumn 

(Petranka, 1998).  It is unusual to find egg deposits of this species, and those that have 

been identified were found deep within caves. The larval period varies for this species 

with some completing metamorphosis by the end of the summer and others overwintering 

before metamorphosing.  Adults generally reach 10-20 cm in total length, and are active 

in the evening hours. There is some documentation of cave salamanders migrating deep 

within caves during autumn and winter, and then returning to the surface during late 

spring (Hutchinson, 1958).  Cave salamanders forage on a variety of invertebrates. This 

species does secrete a noxious substance from the tail when attacked by predators 

(Brodie, 1977).   

The E. longicauda ssp. and E. lucifuga have similar life histories and share similar 

habitats. Their ranges, as well as the E. longicauda ssp. hybrid zone, are displayed in 

Figure 1.1.  
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Figure 1.1   Distribution of E. longicauda ssp. and E. lucifuga. (Redrawn from Petranka 

1998) 
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These taxa are sister species that diverged about 10 million years ago, and in a phylogeny 

produced from mitochondrial and nuclear DNA, E. l. melanopleura and E. lucifuga 

appear to be more closely related than E. l. melanopleura and E. l. longicauda (Kozak et 

al. 2009).  It has been proposed that there may be competition among these animals due 

to the negative correlation found between the numbers of each species found in Virginia 

caves, suggesting the use of very similar resources (Hutchison 1958, Petranka 1998).  

Smith discussed the significance of a slight overlap of the breeding seasons of the two 

species (1964). He suggested that the male E. lucifuga may still be present in the caves 

toward the end of their breeding season as the E. l. melanopleura migrate into the caves 

at the beginning of their breeding season, resulting in infrequent hybridization events. 

This failure of reproductive isolation may be a case of incomplete reinforcement or a 

breakdown of reinforcement. The combination of being such closely related species with 

such similar life histories along with the potential occurrence of rare hybridization events 

makes these two species ideal for studying speciation, reinforcement, and hybridization.  

 

1.2. OBJECTIVES 

The evolutionary mechanisms of reinforcement are vital to the process of 

speciation. Examining hybrid zones may provide insight to the specific mechanisms of 

reinforcement. The occurrence of frequent hybrid zones among members of the 

Plethodontidae makes them exemplary for investigating reinforcement. Missouri terrain 

features karst landscape throughout a large portion of the state, an ideal environment for 

Plethodontidae; according the Missouri Department of Natural Resources, there are over 

6,000 caves and over 3,000 springs recorded in Missouri, ranking it second only to 
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Tennessee in number of caves. Additionally, there is forest land throughout much of 

Missouri. This habitat is ideal for both E. lucifuga and E. longicauda ssp., and a known 

hybrid zone of E. longicauda ssp. is located along a narrow strip in eastern Missouri. 

Onondaga Cave is located within the known hybrid zone of E. longicauda ssp. and is the 

location of a recent study which discussed the potential hybridization E. longicauda ssp. 

and E. lucifuga (Potter 2008). Another report documented hybridization of these two 

species comes from a Foshee Cave in Independence County, Arkansas, which is outside 

the documented E. longicauda ssp. hybrid zone, but still geographical close to this zone 

(Smith 1964). The hybridization that did occur in Foshee Cave was rare, potentially 

indicating some isolating mechanisms at work which could be due to reinforcement. Two 

questions arise from these findings: 1) Does hybridization of E. longicauda ssp. and E. 

lucifuga occur more frequently throughout this (or near) the known E. longicauda ssp. 

hybrid zone? 2) Is reinforcement present in the form of pre- or post-zygotic barriers? The 

objective of my project is to determine if hybridization is occurring among E. longicauda 

ssp. and E. lucifuga using microsatellites for genetic markers.  
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2. GENETIC ANALYSIS OF HYBRID ZONES 

 

2.1.  MOLECULAR TECHNIQUES USED TO STUDY HYBRID ZONES 

2.1.1. Background. Genetic analysis is a key component in contemporary 

investigations of hybrid zones. Before genetic analysis, scientists had to rely on 

morphological characteristics to distinguish hybrids. Phenotypes vary greatly within a 

species, so comparing specific characters based solely on morphology among different 

species was difficult. It was especially challenging among sister species with very similar 

morphologies such as in cases of field crickets, orioles, and toads (Harrison 1986, Rising 

1983, Sattler 1985). With the growing ease and decreasing cost of molecular techniques, 

researchers can now use genotypic data along with phenotypic data to investigate hybrid 

zones (Selkoe and Toonen 2006).  To examine genotype variations, there is an assortment 

of molecular techniques that can be used. Techniques using DNA sequencing or fragment 

analysis such as restriction fragment length polymorphisms (RFLP), random amplified 

polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLP), and 

microsatellites have most commonly been used in hybrid zone studies (Harrison and 

Arnold 1982, Guttman and Karlin 1986, Howard 1986, Potter 2008).  

2.1.2. Sequencing. DNA sequencing establishes the actual sequences of 

individuals in question using a primer and dideoxy ribonucleotides (ddNTP) in a reaction 

similar to PCR (DNA Sequencing ... 2002).  The primer initiates DNA synthesis at a 

known sequence and the DNA is amplified as in PCR. During elongation, occasionally a 

ddNTP attaches. The ddNTP’s lack a 3′ OH group, which prevents another nucleotide 

from attaching, thereby terminating the strand. The fragment sizes then can be compared 
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and a sequence can be established. A popular technique using DNA sequencing for 

population studies involves mitochondrial DNA (mtDNA) (Zhang and Hewitt 2003).  

This DNA is not found within the cell nucleus (nuclear DNA) but rather in the 

mitochondria of the cell. Sequences in mtDNA are highly conserved across generations 

allowing relationships to be established within and among populations (Avise et al. 1987, 

Harrison 1989, Simon 1991). Single nucleotide polymorphisms (SNPs) provide a unique 

identity to each individual. This process compares specific sequences of mtDNA of the 

individuals in question. Although this can be a useful genetic marker, it does not come 

without some problems. MtDNA is maternally inherited, so in hybrid zones where it is 

important to determine both maternal and paternal inheritance, additional comparisons of 

some other markers are needed. Also, there have been some examples of mitochondrial 

pseudogenes found within nuclear genomes of some animals; these have greatly weaken 

the effectiveness of mtDNA markers (Zhang and Hewitt 1996, Bensasson et al. 2001).  

2.1.3. Fragment Analysis. Fragment analysis is the alternative to DNA 

sequencing. Rather than determining the specific order of nucleotides, sizes of fragments 

amplified in PCR are compared to known DNA fragment lengths established by a size 

standard.  RFLP’s have target sequences which can bind to labeled probes and are 

flanked with restriction sites (RFLP …2001). Through a process described by Botstein et 

al. (1980), a series of bands can be compared among individuals tested by performing a 

Southern blot hybridization.  However, this test is arduous and time-consuming making it 

difficult for high throughput applications (Williams et al. 1990).   As a result, RAPD’s 

were developed using arbitrary primers to perform PCR. Essentially, random primers 

were used to amplify unknown segments of DNA for an individual. Amplified fragment 
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lengths were detected using gel electrophoresis with a size standard, and scored banding 

patterns could then be used to for population analysis, phylogenetic studies and gene 

mapping (Williams et al. 1990, Micheli et al. 1994). AFLP’s are a method that basically 

combines RFLP and RAPD by using restriction enzymes and arbitrary selected primers 

(reducing the difficulty of using RFLP alone) to establish banding patterns among 

individuals (Vos et al. 1995, Bensch and Åkesson 2005). AFLP’s are useful in population 

genetic studies, but do have some drawbacks; perhaps most importantly is the apparent 

sensitivity to DNA quality (Bensch and Åkesson 2005). Any DNA degradation or 

presence of residual inhibitors can affect the outcome of the amplification. AFLP’s also 

may amplify with any species, so cross-contamination can be a problem. Another type of 

fragment analysis involves microsatellites, which have been noted to be valuable in 

kinship research (Queller et al. 1993), and in turn can answer several questions regarding 

hybrid zone genetics. 

2.1.4. Microsatellites. Microsatellites, also known as simple sequence repeats 

(SSR), variable number tandem repeats (VNTR), or short tandem repeats (STR), 

generally consist of a series of tandem repeats of 2-5 base pairs (Dowling et al. 1996, 

Selkoe and Toonen 2006).  Microsatellites can be found primarily in the non-coding 

region of the nuclear genome of most species although a few are found within coding 

regions. They vary in length but generally range from 5 – 40 repeats flanked by a 

conserved region (Selkoe and Toonen 2006).  For example, a specific locus may have a 

dinucleotide repeat such as GC that occurs 7 times, resulting in the microsatellite: 

GCGCGCGCGCGCGC. Mutation rates of microsatellites span 10
-6

 to 10
-2

 per locus in 

each generation primarily through DNA replication slippage (Schlötterer 2000).  The 
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conserved region flanking a microsatellite designates the specific locus of a 

microsatellite. This allelic diversity in microsatellites provides essential information to 

molecular biologists interested in genetic studies and can help answer questions such as 

which population did a specimen come from or how many distinct populations are 

present in a given area (Pearse and Crandall 2004, Selkoe and Toonen 2006). Using the 

above example, suppose that in a diploid species each offspring has two copies of each 

microsatellite locus, one from each parent. The father may have the GC microsatellite 

with one allele having 5 repeats and the other having 10 repeats, while the mother may 

have this same microsatellite with 7 repeats in one allele and 9 repeats in the other allele. 

The offspring could then have various combinations of those alleles, such as a 

microsatellite with 7 repeats and 10 repeats. To coarsely categorize hybrid zones, four to 

five microsatellites are recommended, but for determining specific kinship relations, at 

least 10-20 microsatellites are needed for accurate results (Boecklen and Howard 1997, 

Queller et al. 1993).  

Although the process of isolating microsatellite loci can be tedious, once it has 

been completed for a specific species, there are many advantages to using microsatellites. 

First, the conserved region of microsatellites allow for the design of primers that can be 

used in polymerase chain reactions (PCR).  The use of PCR allows small tissue samples 

to be analyzed, alleviating the need for whole specimen samples for genetic analysis 

(Selkoe and Tooken 2006). This is useful for endangered species or small populations in 

which too much disruption could have a negative impact on the ecological community. 

Second, microsatellites are species specific. This basically eliminates cross-

contamination concerns which can be a problem in some cases (e.g., using fecal samples, 
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Selkoe and Tooken 2006). Another advantage of using microsatellites is they are short--

usually 100 – 300 base pairs long compared to other sequenced loci which are generally 

500-1500 base pairs long. Because they are shorter, if some DNA degradation does 

occur, PCR can still accurately amplify the specific segments (Taberlet et al. 1999, 

Selkoe and Toonen). This allows researchers to use old DNA, store new DNA in 

undemanding preservatives such as 95% ethanol, and use quick and easy DNA extraction 

kits (Taberlet et al. 1999). Lastly, microsatellites represent a segment of the genome; 

thus, combining several single locus microsatellites can provide a “fast and inexpensive 

replicated sampling of the genome” (Selkoe and Tooken 2006).  

2.1.5. Summary For the Eurycea hybrid zone examined in this study, 

microsatellite molecular markers appeared to be the best choice for genetic analysis. For 

this project, it was important to not disturb the populations of the cave ecosystem; 

consequently, small tissue samples had to be used. DNA would be stored in the field for 

several hours as well as in the lab for several months while other samples were being 

collected, which could have resulted in DNA degradation of the samples.  It also would 

be valuable to assess specific kinship to assist in determining what degree of 

hybridization was occurring, and paternal as well maternal lineages needed to be 

determined. Time was also a limiting factor in this project, so fast molecular techniques 

were deemed most suitable for the project. Finally, even if the primers did not indicate 

specific microsatellite alleles, techniques similar to RAPD could be employed to compare 

banding patterns of the individuals.     
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3. MATERIAL AND METHODS 

 

3.1. SAMPLING METHODS 

3.1.1. Sampling Locations. Three cave sites were chosen within the hybrid zone 

of E. longicauda ssp. as seen in Figure 3.1 to survey for potential hybrids of E. lucifuga 

and E. longicauda ssp.  Each cave was chosen based on either personal observation or 

personal communication with cave staff and cave owners confirming the presence of both 

species. All three caves had permanent streams. The main collection site chosen for one 

cave was not along the stream, but was known for frequent sightings of salamanders and 

had nearly constant surface seepage in some locations. All three caves consisted of 

mostly dolomite and typified ideal environments for both species to inhabit.  

 

 

 

Figure 3.1 Sampling Locations. Caves within Eurycea longicauda hybrid zone surveyed 

for salamanders. Onondaga Cave is found in the northern section, Gourd Creek Cave in 

the central section, and Banker Cave in the southern section (hybrid zone estimated from 

Petranka 1998). 
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Onondaga Cave is located in Crawford County, Missouri and is in the northern 

section of the E. longicauda ssp. hybrid zone. This cave is state owned and operated with 

public tours conducted in certain sections. It is a large cave with rooms over 100 meters 

long and 25 meters high. A little under a mile of passages is toured by the public. Access 

to the cave was through the entrance used for public tours that was over a mile from the 

collection site. This cave is where Potter’s (2008) research was conducted regarding 

potential hybridization among E. longicauda ssp. and E. lucifuga. The main collection 

site for both Potter’s study and this project was the Missouri Caverns section. This 

section has been closed to the public for several decades. There is an old man-made 

entrance at one end of this section that is no longer open to the surface. Just inside this 

entrance is a concrete staircase enclosed by concrete walls.  On those walls, along the 

staircase, and near this entrance is where a variety of salamanders was found.  Because 

the cave does not have a public entrance, arrangements with the staff were necessary for 

each visit.  

  Gourd Creek Cave is located in Phelps County, Missouri, and is in the central 

section of the hybrid zone of E. longicauda ssp. This cave is privately owned but has no 

gate to prevent public access. On several trips, there was evidence of humans such as 

litter or shoeprints near the mouth of the cave. This cave has a large, modified rectangular 

entrance that is at least 10 meters wide and at least 5 meters tall. The inside of the cave 

drastically changes shape as it veered to the left. It is a single, slightly twisting passage 

that is approximately 250 meters deep. It is a narrow, canyon cave in which both sides 

can be touched at the same time throughout most of the cave, but the ceiling is usually at 

least five meters tall. The floor of the cave has a permanent stream and was covered by 
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cobble and gravel. Access to this cave is open; no arrangements with the cave owners 

required for each visit of this study.  

Banker Cave is located in Shannon County, Missouri, and is in the southern 

section of the hybrid zone. This cave also is privately owned, but has a large steel gate 

installed to protect the bat population from public disturbance. It had been opened to the 

public in the past, but has been closed for at least two decades. This cave has an elliptical 

entrance that is approximately five meters wide and three meters tall. The cave does not 

change shape but does get more narrow with a progressively shorter ceiling the deeper it 

goes. It is single, twisting passage cave with a permanent stream running along the entire 

length of the cave that supplies a spring at the entrance of the cave. For the most part, the 

floors are smooth dolomite with little or no gravel or pebbles. There are some places 

along the walls that are thick with clay and other places along the ceilings and walls with 

numerous speleothems.  Because the steel gate was locked to protect the bat population 

of this cave, arrangements with the cave owner were necessary for each visit of this 

study.   

3.1.2. Preparation for Field Work. Once the locations were determined, 

permission to access to the sites and specimens was necessary. Verbal permission was 

given from both landowners of Gourd Creek Cave and Banker Cave. Permission to 

conduct research on state owned property required an application be submitted to the 

Missouri Department of Natural Resources (MoDNR).  Written permission was granted 

for research in Onondaga Cave for one year from MoDNR as long as a wildlife 

collector’s permit was received from the Missouri Department of Conservation (MDC).  

Wildlife collector’s permits #14177 and #14432 authorized sampling specimens at 



23 
 

Onondaga Cave, Banker Cave and Gourd Creek Cave with a maximum of five sacrificed 

specimens and ten salvaged specimens. The original approval documents were kept on 

person when conducting field work as requested by MDC.  

It was important to plan efficient field work in combination with minimal 

disturbance to the populations under study. Cave ecosystems are delicate and changes 

within that ecosystem can have adverse affects on the cave. The size of the populations of 

either E. longicauda ssp. or E. lucifuga was not known for any of the chosen caves, and 

removing even a small portion of them from the cave could have a negative impact on 

those species and/or the cave environment. These factors contributed to the decision to 

not remove individuals from their habitat, but rather to do all data and tissues collection 

on site. Small tissue samples were stored in 70% ethanol in microcentrifuge tubes and 

transported from the site in a common picnic cooler. Before embarking on each visit, the 

local conservation agent was notified of the planned field visit, as per MDC protocol.  

All equipment was properly cleaned and sterilized before going to each location 

to prevent possible contamination in different locations.  Any equipment that was safe to 

submerse was bathed in a  3% bleach solution for at least fifteen minutes and then rinsed 

with tap water. Equipment that could not be submersed was wiped thoroughly with a 

towel soaked in the bleach solution and placed outside, in the sunlight, for at least four 

hours. (This is a recommended practice by the Missouri Department of Conservation 

when the temperature is above 30°C allowing all water to evaporate from the equipment).    

At the onset of this research, there were concerns of a fungus spreading in bat populations 

in the eastern United States. No cases had been reported in Missouri during the time of 

this fieldwork, but special precautions were taken to decrease any risk of spreading the 
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fungus. All equipment was sterilized with bleach solution (submersed in solution if 

possible) and placed in sunlight for no less than four hours. Also, separate packs were 

used for each cave, and  a different pair of shoes were worn in Onondaga Cave than in 

the other two caves. For both Gourd Creek Cave and Banker Cave, rubber boots were 

worn due to the amount of water, but the boots were cleaned with bleach solution and 

exposed to sunlight for at least four hours before visiting the next cave. If coats were 

worn, they were washed in warm water before visiting the next cave. 

3.1.3. Specimen Sampling. Adults and some juveniles were captured 

opportunistically at the three cave sites. Salamanders were maintained in small, plastic 

containers with lids to prevent them from escaping. Precautions such as water being 

available to keep hands moist when individuals were handled, placement of specimens in 

moist containers while they were being evaluated, and release of specimens as soon as 

recovery was complete were taken in an effort to reduce impact to the individuals. The 

evaluation of each specimen was completed on site and the specimen was released where 

it was originally captured. During evaluation, each individual was placed in a .05% 

solution of  the anesthetic Tricaine-S (tricaine methanesulfonate, MS-222). The 

salamanders were placed in the solution for approximately 5-7 minutes. When the 

individual would no longer react to being touched but before it turned over on its back, it 

would be removed from the MS-222 and immediately bathed in filtered water for 15-20 

seconds.  

While individuals were sedated, visual assessments were completed to attempt to 

identify the species based on coloration and types of markings present on the individual. 

To determine the sex of the specimen, the vent was examined for swollen testes and the 
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mouth for pronounced cirri. Morphological measurements (nearest 0.1 mm) were 

obtained using a metric dial caliper. Each individual was placed on its back to measure 

the snout-vent length and tail length. The individual was then turned over to measure the 

left femur length and head width. The costal grooves were counted three times for 

verification of a correct count. Filtered water was squirted along the salamander’s body 

when it was turned over and again when it was picked up to count costal grooves.  The 

individual was photographed from the lateral and the dorsal view. Tissue samples for 

genetic analysis were then obtained.  A small section of the tail (approximately 5 mm) 

was removed using a razor blade. Forceps were used to place the tail sample in a 1.5 ml 

microcentrifugetube filled with 70% ethanol. A new razor blade was used for each 

specimen and the forceps were cleaned with an pre-packaged alcohol swab after each use 

to prevent contamination of the tissue samples. Each tissue sample was stored in a 

separate, labeled tube and placed in a cooler with an ice pack to keep the samples cool 

until returned to the lab for appropriate storage. The individual’s tail was then sprayed 

twice with Bactine
®
, an anti-bacterial agent, and the individual was place in a moist 

container for recovery. Salamanders would continued to be moistened with filtered water 

every 3-5 minutes during the recovery period. When the individual was moving on its 

own, it was returned to the same location that it was found.  Before leaving the cave, 

salamanders that could still be seen were checked on to ensure they had completely 

recovered. Upon returning to the lab, tissue samples were stored at 4°C until molecular 

analysis was completed. Only one questionable specimen was taken back to the lab for 

further analysis and evaluation by a collegue. It was then returned to the original site of 
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capture as the morphology alone did not bear enough evidence to verify that it was a 

hybrid.   

3.1.4. Samples Collected.  At the completion of the field work, a total of 22 trips 

had been made over nine months to the three separate caves. Table 3.1 lists the number of 

each species found at each site. Species that could not be identified by visual assessment 

alone are listed as unknown specimens; these individuals had characteristics of both 

species. A total of 82 samples were collected with four unknown specimens.  A majority 

of the E. longicauda ssp. appear to be E. l. melanopleura. 

 

 

Table 3.1 Samples Collected. Total samples collected from each location. Individuals that 

could not be identified by phenotype alone are listed as unknown. 

 E. longicauda ssp. E. lucifuga unknown 

Banker Cave 35 3 3 

Gourd Creek Cave 1 2 1 

Onondaga Cave 2 35 0 

Total Samples 38 40 4 

 

 

 

3.1.5. Morphological Analysis. Statistical analyses involving the morphology of 

the specimens were carried out for 56 of the 82 individuals surveyed. Broken tails prior to 

sampling or inadequate data collection due to the anesthetic not working properly led to 

the exclusion of  26 individuals from the morphological analysis. MANOVA was carried 

out with SAS
®
 software using the GLM procedure on 56 individuals for analysis of the 

morphological measurements (SVL, TL, FL, HW) and costal groove count. The 

individuals were labeled as two groups based on what species they most looked like. A 
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principal components analysis was conducted using SAS
® 

software.  Results for these 

analyses can be found in the morphological analysis section of the next chapter.  

  

3.2. TISSUE SAMPLE PROCESSING 

3.2.1. DNA Extraction. DNA was extracted from the tissue samples using the 

DNeasy
®

 Blood and Tissue Kit from Qiagen. First, tissue samples were bathed in 

deionized water 10-15 times to remove most of the ethanol. Protocols of the kit (provided 

in Appendix A) were followed to extract the DNA. In short, first the tissue was lysed 

using proteinase K, then the lysate was loaded onto a spin column-included with the kit, 

and finally, through centrifugation and wash steps, the DNA was eluted in a buffer 

solution, also included in the kit. It was recommended by the manufacturer of the kit to 

repeat the final elution step to obtain maximum DNA yield. In order to prevent dilution 

of the first eluate, a new microtube was used for the second elution.  The concentration of 

extracted DNA from each individual was determined  using a NanoDrop
® 

 

Spectrophotometer ND-1000 and ND-1000 v3.2 software.  

3.2.2. Microsatellite Primer Selection. No literature could be found to describe 

microsatellite loci primer pairs developed for either of these species. The Molecular 

Ecology Resources includes an online database for primers that can be searched based on 

species, families, etc. (Molecular Ecology Resources… accessed Sept 2009). The only 

Eurycea in the database was Eurycea bislineata. However, some data suggest that the 

conserved region flanking the microsatellites are highly conserved among families even 

if divergence occurred several million years ago (Fitzsimmons et al. 1995).  In 

microsatellite study regarding Eurycea cirrigera, microsatellite primers developed from 
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the genome of Plethodon cinereus were screened, and seven of the 13 screened could be 

used in DNA analyses (Connors and Cabe 2003, Boyle 2005). In another study, some of 

the microsatellite loci that were isolated for Dicamptodon tenebrosus were found to 

successfully amplify alleles in Eurycea bislineata (Curtis and Taylor 2000). In both of 

these studies, microsatellite loci primer pairs developed for other species were successful 

in Eurycea. Based on the success reported in those studies, primers from each were 

selected to be screened with E. longicauda ssp. and E. lucifuga. In addition, a few 

microsatellite primers, found from searching the Molecular Ecology Resources database, 

developed for Ensatina eschscholtzii were also selected to be screened (Devitt et al. 

2009). The primers names with the forward and reverse sequences are listed in Table 3.2. 
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Table 3.2 Microsatellite Primers. These primers were originally developed for closely 

related species and screened for successful amplification in the E. lucifuga and  

E. longicauda ssp. 
a
 Successfully amplified in E. lucifuga and E. longicauda ssp. 

b
 Used for final banding pattern determination   

 

Locus   (Genbank 

Accession no.) 

 

Primer Sequence  (5′-3′) 

 

Published By 

Dte4 (AF149305)
a, b 

F: [6~FAM]TGCTTCTGCCACCATAGCC 

R: AGAGCCAGCCTTTGTTGCG 

Curtis and 

Taylor 2000 

Dte5 (AF150725) F: GGAGGAGTTTTTGAAGTTG 

R: ATTCTCCAAACATTCTCCC 

Curtis and 

Taylor 2000 

Dte8 (AF150726)
a 

F: [TAMRA]CTGCATACATTGCATCTCCG 

R: CCGCAAGGTCATCTTCACTAAC 

Curtis and 

Taylor 2000 

PCII14 (AY151372)
a, 

b 
F: [5HEX]AACCCACACCAGATCCACTC 

R: TGGTTTGCTGTCTTCTTTGC 

Connors and 

Cabe 2003 

PCXD23 

(AY151376) 

F: GCAAAACAGCAACAAGACAAC 

R: AACCTTGATGTTTGGCAAGG 

Connors and 

Cabe 2003 

ENS4 (FJ446706)
a 

F: [Amino-C6+ROX]TTCCGGGTAACAGAAAGCAT 

R: AAATAACTCACAGGTTGTAATCAGG 

Devitt et al. 

2009 

ENS6 (FJ446708) F: CTTGTTCAGAAAGGGGACCA 

R: AAGTTCATCCACTGCCCAAC 

Devitt et al. 

2009 

ENS13 (FJ446714) F: CAATGGCCACTGTGTTTCTG 

R: CAGGACACCTATAGTGGTTGGA 

Devitt et al. 

2009 

ENS15 (FJ446716) F: CTGAGTTGCCCATTCTGGTT 

R: AGGGGGATGTTCACATGTTT 

Devitt et al. 

2009 

ENS20 (FJ446718) F: TTCACCAATGTGGTTGAACTG 

R: CACACCTTTCACCCAATAAACA 

Devitt et al. 

2009 

 

 

 

To prevent wasting money on fluorescently labeled primers that may turn out to 

be incompatible with the species in this study, it was necessary to first screen the 

potential primers using gel electrophoresis, which does not require fluorescent labels for 

analysis. Unlabeled primers were ordered dry and resuspended in enough nuclease-free 
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water to form a concentration of 100 pmol/ul. Original solutions were stored at -20°C 

with 25 ul kept in a separate tube and handled as needed for the screening process. 

Forward and reverse primers were combined and nuclease-free water was added to form 

a final concentration of 20 pmol/ul. For each set of primers, 1 ul was added to separate 

microcentrifugetubes which each contained 22.5 ul of Accuprime
®
 Supermix and 

approximately 150 ng of DNA (5 ul of eluate) of either species. Each tube was spun 

down for a few seconds and then placed in a Techne TC-312 Thermocycler on a 3-step, 

35-cycle. There was an initial denaturing step at 94°C for five minutes, then the cycles 

consisted of  94°C for 30 seconds for denaturing, 50°C for 30 seconds for annealing, and 

finally 72°C for one minute to complete the elongation step. After the 35 cycles, there 

was final extension at 72°C for four minutes and the final hold was at 10°C.  After 

spinning down all microtubes retrieved from the thermal cycler, each PCR product had 4 

ul of purple dye mixed with it. These products then were run on a 3% agarose gel with 

ethidium bromide at 100 V for 60 minutes. A ladder was added in one lane to compare 

band lengths. The gels were viewed and images captured using a Photodyne base with an 

Olympus C-7070 camera and Foto Analyst
®
 software.  Primers showing some bands 

were ordered with fluorescent labels and ran in a capillary genetic analyzer.  

Labeled, HPLC purified, forward primers were ordered and resuspended using the same 

methods as above. The forward primers were then combined with the reverse primers to 

create a final concentration of 20 pmol/ul. Because of the fluorescent labels, the primer 

solutions were stored in an opaque box to prevent degradation of the labels from too 

much light exposure. A Type-it
™

 Microsatellite PCR  kit from Qiagen
®
 was used for 

PCR with labeled primers. After some experimenting with the kit, procedures outlined by 
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the manufactured were altered slightly for this study and are described in Appendix B. 

Each microtube contained 2.5 ul of primer solution, approximately 100 ng of DNA from 

each specimen, and 12.5 ul of 2x Type-it Multiplex Master Mix. A 3-step, 32-cycle was 

used in the Eppendorf Mastergradient thermal cycler, which can be used for larger 

sample sizes. There was an initial denaturing step at 95°C for five minutes and then 32 

cycles which included a denaturing step of 95°C for 30 seconds, an annealing step at 

55°C for 90 seconds, and an elongation step at 72°C for 30 seconds.  There was a final 

extension at 60°C for 30 minutes and then 4°C final hold. Each tube was spun down after 

retrieval from the thermal cycler and was ready to be prepared for the capillary 

sequencer.  

A 96-well plate was used to run the PCR product in the capillary genetic analyzer. 

Each PCR product was diluted at 1:10 ratio with Hi-Di™ formamide received from 

Applied Biosystems. GeneScan
™

 1200 LIZ
®
 Size Standard from Applied Biosystems was 

diluted at 1:38 ratio with the Hi-Di
™ 

formamide. In each well 9.5 ul of the diluted size 

standard was added, and then .5 ul of the diluted PCR product was added. The well was 

spun-down at 1000 rcf for two minutes, incubated at 95°C for three minutes, and spun-

down a final time at 1000 rcf for two minutes. Order of samples were programmed into 

Genemapper
®
 v3.7 from Applied Biosystems and the plate was ran in the Applied 

Biosystems 3130 4-capillary Genetic Analyzer. Genemapper
®
 was used to view and 

analyze the results of the assays. 

 3.2.3. Electropherograms. Results of the assays were displayed in 

electropherograms plotted by Genemapper
®
. Although the software had an automated bin 

process (a process of labeling significant peaks), it did not seem to work properly as 
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obvious peaks were not being included, so the peaks were manually labeled or binned. 

This was achieved by looking at 12 individuals’ electropherogram plots (one for each 

primer, 24 total) and designating a bin at each peak that was over 200 nm in height. Bins 

were labeled based on fragment size and no fragments smaller than 50 or larger than 

1000 were labeled. Once this was completed, all samples were analyzed against these 

bins. The software then listed the samples in descending order with unlabeled bins 

indicated by question marks in boxes between bins currently labeled. This was part of the 

automated binning process that seemed to work some of the time. Through examining 

each box marked with question marks on the given electropherograms and designating a 

labeled bin to those boxes, eventually all samples were listed with no question marks. A 

total of 114 different bins were labeled among the 73 different specimens and two 

primers. At first, it was understood that all peaks in those bins over 200 nm were labeled 

on all samples. However, upon further investigation regarding a separate issue, it was 

discovered many peaks were not included on several samples, even though a bin was 

designated for that peak. So, each sample was manually reviewed for all 114 bins 

between the two primers and scored on a separate Microsoft Excel
®
 spreadsheet to 

indicate if a specific bin was present (1) or absent (0).  After reviewing all of the bins, 12 

pairs were combined as they were most likely allelic stutter and four removed as they 

were small peaks (<250) found only once on different samples. This left a total of 98 

bins. The unique banding patterns were a result of the presence or absence of each bin on 

each individual electropherogram. These banding patterns were distinguished using the 

discrete characters mentioned above (present-1; absent-0).   
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3.2.4. Resolution of Phylogenetic Tree. To develop a phylogenetic tree, the 

PHYLIP package was used. Mix v. 3.69, one of the general parsimony programs which 

can be used to produce discrete character trees, was selected. This program allows for 

situations in which ancestral states are unknown (using the Wagner parsimony), different 

characters and lineages may evolve independently and changes from 0 to 1 are equally 

probable. These assumptions were necessary to build the tree because specifics about the 

amplified segments amplified were unknown. The default settings with the Mix program 

were used to produce the tree that is presented in the next chapter. 
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4. RESULTS 

 

4.1. UNKNOWN SPECIMENS 

Out of 82 samples collected, there were four that had characteristics of both 

species. Three of the unknown specimens at first glance appeared to be E. lucifuga, but 

upon further evaulation had characteristics of E. longicauda ssp. such as distinct vertical 

bars along the sides, elongated spots on the dorsum, or the more slender build typical of 

E. longicauda ssp. The fourth unknown specimen was removed from the the cave for 

further evaluation with a colleague. Upon this review, it was determined to be a likely E. 

l. longicauda but remained listed as unknown because it of unusual markings noted on 

the specimen. Presented in Figure 4.1 are pictures of a typical representative of both 

species and in Figure 4.2 are pictures of the four unknown specimens found during this 

study.       

 

 

 

Figure 4.1 Typical Morphology of Both Species. (a) E. longicauda ssp., adult, is yellow 

to yellow-brown with irregular,dark marks arranged in lines along dorsum, tightly 

arranged dark, vertical bars with interspersed white flecks along the sides, dark limbs and 

cream to white venter  (B. Beasley) (b) E. lucifuga, adult, is orange with round, dark 

markings along dorsum and sides, orange to pale cream limbs and venter  (B. Beasley)  
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Fig 4.2 Unknown Specimens. These specimens exhibited characteristics of both species 

(a) Specimen B121 has coloring of E. lucifuga with some elongated, dark markings and 

dark feet similar to E. longicauda ssp. (B. Beasley) (b) Specimen B130 has typical 

coloring and marks of E. lucifuga, vertical bars and white flecks on sides as well as 

slender build similar to E. longicauda ssp. (B. Beasley) (c) Specimen G143 has orange 

coloring with round, dark marks on dorsum and robust build similar to E. lucifuga, 

vertical bars tightly arranged along sides with white flecks dispersed similar to E. 

longicauda ssp. (B.Beasley) (d) Specimen B239 has more of a robust build and pale 

orange-yellow venter and limbs similar to E. lucifuga, yellow-orange color and irregular, 

dark marks on dorsum and vertical bars along sides similar to E. longicauda ssp. (B. 

Rupert)  

 

 

4.2. MORPHOLOGICAL ANALYSIS 

MANOVA showed significant difference among the groups, so the post hoc test, 

Tukey’s Studentized Range (HSD) Test was completed. As in Table 4.1, this test found 

significant differences among Group 1 (E. lucifuga) and Group 2 (E. longicauda ssp.) in 

all variables except tail length. E. lucifuga had greater snout-vent lengths, head widths, 

and femur lengths. E. longicauda ssp. had a greater costal groove count. There was a 
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difference in tail length, with E. lucifuga being greater, but it did not surpass the 

minimum significant difference value.   

 

 

Table 4.1 MANOVA Results. Analysis of morphological measurements (mm) 

 

Measurements (mm) 

Group 1 

E. lucifuga 

Group 2 

E. longicauda ssp. 
Minimum 

Significant Difference 

Snout-Vent Length 59.476 52.477 4.0139 

Tail Length 79.597 73.445 7.6057 

Head Width 9.2853 7.5227 0.556 

Femur Length 5.8529 5.1045 0.3947 

Costal Grooves 12.6176 13.4545 0.346 

 

 

 

The scores of the Principal Components Analysis (PCA) were calculated as a 

scatter plot using SAS
®
 and reproduced in Figure 4.3.    In this plot, two distinct clusters 

are evident and are outlined by large circles. The circle on the top, left side is comprised 

primarily of E. longicauda ssp., and the circle toward the bottom, right side is comprised 

mainly of E. lucifuga.  Most of the outliers are juveniles of either species. The small 

circle in the middle is to simply note that one of the questionable specimens did not 

cluster with either group. Two components make up for 80% of the clustering exhibited 

in this plot. 
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Figure 4.3 PCA Scatter Plot. Principal components analysis showing distinct clustering of 

two groups in scatter plot. Upper, left circle is comprised of E. longicauda ssp., lower, 

right circle is comprised of E. lucifuga. Outliers are juveniles of either species. Small 

circle in the center notes the unknown specimen does not seem to cluster with either 

group. 

 

 

 

4.3. GENETIC ANALYSIS 

4.3.1. DNA Extraction and Primer Results. Of the 82 tissue samples collected, 

DNA was extracted successfully on all but one individual. The concentrations from each 

sample ranged from 7.7 ng/ul to 111.4 ng/ul. Of the ten primers selected for this study, 

only two were used in the final run. Primers ENS6, ENS13, ENS20 did not show any 

quality results in screening the primers with the 3% agarose gel. Based on the amount of 

significant bands in the gels, Dte4, Dte8, PCII14, and ENS4 were chosen to be used as 
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labeled primers for the capillary sequencer. During the testing phase of the capillary 

analyzer, samples with multiplexed Dte4 and PCII14 had multiple peaks. Dte8 did not 

show up at all except for a few samples but only directly under the peaks from PCII14 

(this is further discussed in the technical issues section of the next chapter); hence, it was 

not used in the remaining tests.  ENS4 only had 1-2 medium peaks and only worked well 

in some samples. Because of the inconsistency and drastic difference in significant peak 

numbers compared to the other two primers, ENS4 was not used in the remaining 

experiments.   

4.3.2. Capillary Genetic Analyzer Results. Of the 81 successful DNA 

extractions, 76 were run in the 3130 Applied Biosystems 4-Capillary Genetic Analyzer 

using a 96-well plate with the two primers and size standard multiplexed, allowing all 

reactions to be run just once. Each electropherogram plot was manually scored as no 

peaks (0), less than five peaks (.5), 5 or more peaks, (1) based on being able to see peaks 

of at least 500 nm.  Two samples scored a 0 but did show the size standard, most likely 

indicating that the PCR did not work for those reactions. Therefore, these samples were 

not considered for further analysis. Two other samples also were removed from analysis 

because they appeared to be “super-amplified”; there were well over 20 peaks over 2000 

nm when most other samples would only have at most one or two over 2000 nm (further 

discussion about these samples is included in the next chapter); these samples also were 

excluded from further analysis. This resulted in 72 specimens being used for the 

evaluation: 31 E. longicauda ssp., 37 E. lucifuga, and 4 unknown specimens.  

Microsatellite primers used in this study ultimately did not indicate microsatellite 

alleles in either of these species. Thus the original goal of analyzing the genetics of this 
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hybrid zone was not achieved. This was a known potential problem from the beginning of 

the study because microsatellite primers were used that were not specifically designed for 

either species. However, the individuals still could be compared based on genetic 

differences; using techniques similar to RAPD, a comparison of the banding patterns of 

all the individuals still could be accomplished.  

Thorough examination of the electropherograms was completed to determine 

banding patterns of each individual. A sample of an electropherogram for one individual 

is shown in Figure 4.4. This figure includes an image of one plot with all dyes displayed. 

The orange peaks represent the lane standard, the blue peaks represent the fragments 

amplified with Dte4, and the green peaks represent fragments amplified with PCII14.  
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Figure 4.4 Sample Electropherogram. (a) plot showing size standard (orange), fragments 

amplified by Dte4 (blue), and fragments amplified by PCII14 (green) (b) plot displaying 

bins marked for Dte4, numbered boxes indicate significant peaks (>200nm) marked for 

the banding pattern of this specimen (c) plot displaying bins marked for PCII14, 

numbered boxes indicate significant peaks (>200nm) marked for the banding pattern of 

this specimen  

 

 

 

4.3.3. Phylogenetic Tree. Drawgram v. 3.69 was the program used to plot the 

tree calculated by Mix. The tree is depicted in Figure 4.5.  
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Figure 4.5 Phylogenetic Tree. Phylogenetic tree constructed from banding patterns 

displaying E. lucifuga (blue), E. longicauda ssp. (green) and unknown specimens (red); 

showing one main group for E. lucifuga including two unknowns, a few separate groups 

for most E. longicauda ssp., and  seven outliers from the main groups (image modified 

from Drawgram) 
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5. DISCUSSION 

 

5.1. MORPHOLOGICAL ANALYSIS 

The morphological analysis did show significant differences in the morphology of 

the two species, and the scatter plot derived from the Principal Components Analysis also 

grouped most of each species in distinct clusters. The outliers were all juveniles of either 

species except for individual B130 (unknown130), which was listed as a questionable 

specimen. The morphological data of B130 is as follows: SVL = 44.4, TL = 53.0, FL = 

4.3, and HW = 6.9. When comparing this information to the mean measurements 

calculated through the MANOVA test, this individual is physically smaller in all four 

measurements. It was recorded in the field notes that this individual appeared to be an 

adult based on the swollen testes. Combining this information with the genetic analysis 

and placement of B130 in the phylogenetic tree, rather than this being a hybrid of the two 

species, it appears more likely this individual is a small E. lucifuga.  

 

5.2. GENETIC ANALYSIS 

5.2.1. Primers. The primers chosen for this study ultimately did not provide the 

genetic markers needed for successful microsatellite analysis of the individuals in this 

study. However, unique banding patterns were rendered for each individual based on the 

numerous fragments of different lengths that did amplify with some of primers Dte4 and 

PCII14. The phylogenetic analysis grouped all E. lucifuga and two unknown individuals 

together. Most E. longicauda ssp. were grouped in a smaller group separate from E. 

lucifuga. There were seven individuals that were outliers on the tree.      
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5.2.2. Unknowns and Outliers. The unknowns were B121 (unknown121), B130 

(unknown130), G143 (unknown143), and B239 (unknown239). B121 and B130 grouped 

neatly within the E. lucifuga sections of the tree. As discussed in the previous section, it 

is likely B130 was simply a juvenile E. lucifuga. B121 clustered with the E. lucifuga in 

the scatter plot, so it is likely this was also E. lucifuga with some unusual elongated 

markings on its dorsum.  

G143 could not be included in the morphological analysis as there were no 

measurements taken in the field with this specimen due to the MS-222 not working 

properly; see the section on technical issues for further explanation.  The visual 

assessment of this individual made it very difficult to determine which species it was 

because it had distinct markings of both species including round, dark spots on the 

dorsum similar to E. lucifuga, but elongated, vertical bars down both sides, similar to E. l. 

longicauda. Its coloring was a dull orange, not the typical brownish-yellow of the E. l. 

longicauda but not the bright orange of the E. lucifuga. This specimen’s banding pattern 

made it distinct from all other individuals sampled. It is possible this is an E. l. 

longicauda with unusual markings because that species does exhibit some variance in 

coloration throughout its range. However, based on the evidence in the visual assessment 

and not grouping specifically with either species, it also is possible this specimen could 

be of mixed ancestry.    

B239 was the specimen taken back to the lab for further collaboration with a 

colleague. This specimen clustered with E. longicauda ssp. in the morphological analysis. 

Upon seeing the specimen in the light and collaborating with a colleague, it was 

determined this specimen is likely E. l. longicauda. However, for the sake of the study, it 
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was left listed as an unknown because it was originally deemed an unknown in the cave 

and removed only because it was potentially a hybrid. Based on genetic analysis, this 

individual grouped with G143 and B232 (longica232). It is possible this individual is an 

E. l. longicauda or an E. longicauda intergrade but because of some of the unusual 

markings, and its grouping with another unknown specimen, it also is possible this 

specimen is of mixed ancestry with E. lucifuga.  

In the field notes, B232 was recorded as juvenile E. longicauda ssp. with a single 

question mark. This indicated there were some concerns with the identification but 

nothing specific enough to warrant it an unknown specimen. This specimen appears as an 

outlier in the scatter plot of the morphological data, which is likely because this 

individual is a juvenile. However, based on the genetic analysis, it is also an outlier in the 

tree and grouped with two other unknown specimens (B239 and G143). Because B239 

could have been an E. l. longicauda, and B232 was recorded as an E. longicauda ssp., it 

is possible this entire group is E. l. longicauda. They could be separate from the main 

groups because the other E. longicauda ssp. were primarily E. l. melanopleura. Or, it is 

possible that all three of these specimens are of mixed ancestry to some degree.    

The remaining outliers include: B201, B203, B221, and B231. Visual assessment 

of all four individuals indicated these were E. l. melanopleura. B201 and B203 were 

clustered with the E. longicauda ssp. based on the morphological analysis. Because B231 

was listed as a juvenile in the field notes, it was believed this was the cause of it being an 

outlier in the scatter plot. B221 was another specimen for which measurements were not 

obtained due to MS-222 not working properly and no successful photograph was 

obtained due to humidity in the cave. There were no field notes indicating questions 
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about identity. As with all of the outliers it is possible these are E. longicauda intergrades 

or they are of mixed ancestry with E. lucifuga, creating a banding pattern as to not group 

with either groups.   

After manually reviewing the banding patterns of the outliers, certain patterns 

were noted. All six did not have 16 bands present in all or most E. lucifuga. The three 

outliers which grouped together had four bands present; no other outliers had this 

characteristic, and it was only sporadically present throughout the main two groups.  

 5.2.3. Genetics Summary. The banding patterns could only indicate when there 

were strong similarities among individuals’ genetics. If there were not enough similarities 

to be included in a group, individuals became outliers to those groups. Unfortunately 

there is no way to determine the species identity of the outliers from banding patterns 

alone. This particular set of samples is difficult to analyze for banding patterns because of 

the likely E. longicauda intergrades present in this region. However, the genetic results at 

least do present some evidence of individuals with banding patterns outside the typical 

representative of either species. These unusual banding patterns could be due to some 

type of hybridization occurring, resulting in mixed ancestry.     

 

5.3. TECHNICAL ISSUES 

5.3.1. Equipment Issues.  It is worth mentioning a few difficulties both for 

explanation of missing data in this study and as guidance for those planning similar 

research in the future. The primary issues were equipment malfunctions. Deep within the 

caves surveyed for this study a wet and humid environment was found. Taking pictures 

became very difficult at times due to the humidity fogging up the lens. Even if the lens 
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was wiped clean, a clear picture of the salamander was not possible because of the thick 

moisture in the air between the camera and the salamander. Because of this, some 

photographs of individuals did not provide clear views of the salamanders in question. 

Another problem occurred when the anesthetic, MS-222 did not work properly. In 

general, the solution seemed to work better on E. lucifuga than E. longicauda ssp. as it 

worked faster and they recovered more quickly. However, some days, the MS-222 simply 

did not anesthetize the salamanders. Different things were attempted, such as making a 

new solution for each visit, using the same solution for each cave, making a slightly 

stronger solution, and even leaving the salamanders in the solution for more than seven 

minutes. It is possible that using the same solution more than a few times could cause the 

solution to become diluted with dirt from the salamanders, thereby affecting its efficacy. 

When the salamanders were left in the solution for longer than seven minutes, it took 

them much longer to recover. This raised concerns of the long-term affects on the 

salamanders from the solution. The stronger solution did not seem to make a difference, 

and it was important not to make it too strong as this same substance is used to euthanize 

specimens in stronger concentrations. A brand new bottle of MS-222 was used and this 

did not make a consistent difference. Whatever the cause of the MS-222 difficulties, it 

resulted in nearly a third of the salamanders not being measured, including a few outliers 

of the genetic analysis. This likely had some impact on the results of this study. 

5.3.2. Primer Issues.  There were no existing primers specifically designed for 

either species, so an attempt was made to find primers developed for closely related 

species that were successful with closely related species (Curtis and Taylor 2000, Boyle 

2005). Ten primers were screened and four of them appeared to be good candidates. Four 
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has been shown to be an adequate number to determine relationships among different 

species (Boecklen and Howard 1997).  Had all four primers worked effectively as 

microsatellite primers, conclusive evidence likely would have been collected regarding 

the identity of questionable specimens. 

Primer Dte8 did not appear to work properly when run in the capillary genetic 

analyzer. The labeled primer Dte8 only appeared to peak a few times in the very same 

places as PCII14 even though it did not when screened as unlabeled in agarose gel. These 

primers were different sequences, so the chances of the same fragments being amplified 

each time only in some places, with no amplification anywhere else is very unlikely. 

What may have caused this problem is unknown. It is possible the primer was not 

properly manufactured or an error occurred while preparing in the lab. Either way, it was 

unfortunate because it was a strong candidate for a successful microsatellite primer when 

the agarose gels were carried out.  This was discussed with the DNA lab supervisor, and 

it was recommended that this primer not be used in the study because it would most 

likely misrepresent that primer. Also, it would not have resulted in any additional bands 

in the final set that was used to compare banding patterns. More markers were needed 

than the two primers that were used in the final analysis for any conclusive genetic 

evidence of hybridization, and it would have been useful for this primer to have worked 

effectively.  Due to time constraints and funding concerns, this primer was not re-ordered 

to see if it might work differently.  

A final issue with the primers likely did not impact the study, but is still worth 

mentioning. Two samples were removed from final analysis due to “over-amplification”. 

This is the best way to describe what happened with these two samples. When the 
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electropherograms were examined, it was noticed there were numerous peaks (>50) 

binned on both samples. Most peaks were over 2000 nm with the noise registering many 

small peaks. It was difficult to discern which peaks were significant and which ones were 

not, so the samples were removed from the final analysis. The cause of this is unknown. 

Many factors are involved in the final analysis of these products. It is possible there was a 

lab error while preparing the PCR, the capillary genetic analyzer may have had an error, 

or something else entirely may have been the source of the problem.   

 

5.4. ENHANCEMENTS FOR THE PROJECT 

  5.4.1. Increase Sampling. More conclusive evidence also may have been 

uncovered if more samples had been included in this study. A few issues may have 

impacted the success of collecting samples in this study. Approval for a wildlife 

collector’s permit from the Department of Conservation took longer than expected, so the 

initial field work was started later in the year than originally planned. Also, due to 

medical issues of the field investigator, no field work was done for two very wet months 

that were likely the ideal to find salamanders. Additionally, the coldest February in 

decades occurred during the span of the approved collection time, which may have 

inhibited the movement of the salamanders even within the cave systems; it also could be 

the reason that so few salamanders were found in that month. Only one breeding season 

was including in the time the field work was conducted. During the first breeding season, 

most of each species were collected, so perhaps including another breeding season would 

have increased the sample size. Gourd Creek Cave was full of small cobble and gravel, 

giving the salamanders numerous places to hide and escape from capture. These 
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conditions made it difficult to spot and catch salamanders, which is possibly the cause of 

fewer samples being collected in this cave (rather than the cave having a significantly 

smaller population). Also, permission to use this cave for research was received later than 

the other two caves, so surveying the cave commenced later than the other caves. Asking 

for permission on permits to sample a salamander not closely related to these species 

would have also been valuable to the study. This was not originally done because the 

microsatellites were meant to be specific to the species. However, early in this 

investigation there was consideration that if the microsatellites did not work, a banding 

pattern could likely be assessed; that plan should have included the need for a control 

group.  

5.4.2. Improve Genetic Analysis. Effective microsatellite primers would have 

improved greatly the genetic analysis of this study. Even with this small sample size, 

more conclusive evidence may have been available through effective microsatellite 

primers.  Only ten primers were selected to screen for potential success, and upon later 

discussion with an expert in microsatellites, it was learned that at times, many more 

primers (i.e. >50) are sometimes screened in this type of process. It might have helped to 

spend more time optimizing the primers that were chosen for the capillary genetic 

analyzer to see if they were successful at amplifying only the microsatellite segments.   

 

5.5. FURTHER RESEARCH 

  Based on the visual assessments, morphological analysis, genetic analysis, and 

related literature gathered in this study, there are numerous opportunities for further 

research. A glaring need is microsatellite primer development for either or both of these 
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species. As mentioned earlier, E. l. longicauda have been reported to sometimes include 

another subspecies or to potentially hybridize with that species (E. guttolineata) in 

addition to its subspecies, E. l. melanopleura, and E. lucifuga. Microsatellites are 

invaluable in assessing kinship, so for this species in particular, the primer development 

would prove useful in hybrid zone studies and taxonomic distinctions.  To enhance this 

particular study, more samples from these caves and other caves inside the hybrid zone as 

well as outside the hybrid zone would be useful. As control groups, even with the 

microsatellites, samples from E. longicauda ssp. populations whose range does not 

overlap with the E. lucifuga also would be a worthy addition. If evidence of hybridization 

is conclusive, the next steps could be to determine fitness of the hybrids in a natural 

setting, determine the degree of hybridization and backcrosses, and even do laboratory 

controlled testing of crosses among the two species. Additionally, a long-term study 

could also be conducted regarding reinforcement mechanisms comparing the success of 

hybridization of the E. longicauda ssp. compared to the hybridization success E. 

longicauda ssp. with E. lucifuga.   
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6. CONCLUSION 

 

The world has an enormous variety of species. What makes each species so 

different from each other and how they developed throughout time is still a driving force 

behind many evolutionary studies of today. As evolution can be a series of slow 

processes, it is often impossible to witness the process. However, hybrid zones can 

provide a rare opportunity to see evolutionary processes in action. The processes 

involved in speciation are of particular interest within hybrid zones as this is where there 

is an apparent breakdown of barriers that prevent the interbreeding of species. The 

mechanisms of reinforcement support the advance of reproductive isolating mechanisms 

among closely related species, and thereby may be able to be studied within hybrid zones 

in which different degrees of interbreeding occur.  

Salamander hybrid zones are quite common due to frequent lack of pre- or post-

zygotic reproductive barriers. Members of the Plethodontidae are regularly used in hybrid 

zones studies due in part to the rapid diversification that occurred within subfamilies and 

genera in this family. In Missouri, a known hybrid zone exists among E. longicauda ssp. 

Within and near this zone have been a few reports of interbreeding of sister taxa, E. 

longicauda ssp. and E. lucifuga. There is no clear documentation of whether this 

hybridization is occurring sporadically throughout the ranges of these species or along a 

narrow zone, similar to the E. longicauda ssp. hybrid zone, to what degree the 

hybridization may be occurring, and how fit the hybrids are. Determining any or all of 

this information may provide some insight into the nature of reinforcement mechanisms 

within these species.   
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The objective of this study was to determine if hybridization of E. longicauda ssp. 

and E. lucifuga was occurring throughout the already established hybrid zone of E. 

longicauda ssp. This was attempted through surveying three cave sites found within the 

known hybrid zone. Morphological analysis showed significant differences among the 

two species, with E. lucifuga exhibiting more robust features but E. longicauda ssp. 

having more costal grooves. Microsatellites were chosen as the DNA markers to perform 

the genetic analysis. Although the primers chosen did not successfully amplify 

microsatellite alleles, banding patterns were produced to provide unique identities to each 

individual. A total of six outliers were plotted on the phylogenetic tree constructed from 

these banding patterns. Three of the outliers that grouped together included two unknown 

specimens. It is possible that all three in this group are E. l. longicauda rather than the 

typical E. l. melanopleura that was found. It also is possible that all of the outliers are of 

mixed ancestry, which is why none of them group with the two main groups. More 

definitive DNA evidence is needed before a valid conclusion can be made.  

Although this study did not result in conclusive evidence of hybridization, it did 

bring to light some topics for further research---i.e., more extensive laboratory studies 

should be completed to gather evidence of hybrid fitness and microsatellite primers need 

to be developed for these species. This would allow for more intense assessments of 

relatedness of individuals. If hybridization is occurring, but to a lesser degree than with 

E. longicauda ssp. hybrids, then this hybrid zone may provide an ideal natural setting in 

which to examine mechanisms of reinforcement.  
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APPENDIX A 

PROCEDURE FOR DNA EXTRACTION FROM ANIMAL TISSUE  
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APPENDIX A 

Procedure for DNA Extraction from Animal Tissue  

1. Allow tissue samples to thaw to room temperature (15-25°C). 

2. Bath tissue sample in deionized water to remove most of the ethanol. This was 

completed by filling a 1.5 ml microcentrifuge tube with the deionized water, placing 

the tissue sample in the tube, and shaking vigorously for 5-10 seconds. After 

removing the tissue sample, fresh water was placed in the tube and the process was 

repeated. This was done 10-15 times for each sample. 

3. All tubes were labeled before putting tissue samples and different mixtures in the 

tubes. 

4. Buffer AW1 and Buffer AW2 from the DNeasy
® 

kit were supplied as concentrates, so 

25 ml and 30 ml of 100% ethanol were added, respectively, as instructed on the bottle 

label.    

5. Following DNeasy
®

 Blood and Tissue Handbook, the following steps were taken to 

extract the DNA: 

a. Tissue sample was cut in half to aid in more efficient lysis as suggested by this 

handbook. The tissue was placed in a 1.5 ml microcentrifuge tube and 180 µl of 

Buffer ATL (provided in the kit) were added. 

b. 20 µl of proteinase K (provided in the kit) was added and the mixture was 

thoroughly mixed by vortexing for 5-10 seconds.  

c. Tissue sample was incubated at 56°C in thermal cycler for 4 hours. After the first 

2 hours, the sample was vortexed for 5 seconds to aid in the lysis, and then placed 

back in the thermal cycler for 2 more hours.  

d. At the end of the four hours, the sample was vortexed for 15 seconds. 200 µl of 

Buffer AL was added and the sample vortexed again for 5 seconds. 200 µl of 

100% ethanol was then added and the sample vortexed again for 5 seconds. 

e. The mixture was pipetted into a DNeasy Mini spin column (provided in the kit) 

that was placed in a 2 ml collection tube (provided in the kit). The tube was then 

centrifuged for 1 minute at 8000 rcf. 
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f. Spin column was placed in new 2 ml collection tube (provided in the kit), 500 µl 

of Buffer AW1 added, and tube centrifuged for 1 minute at 8000 rcf. 

g. Spin column was placed in new 2 ml collection tube (provided in the kit), 500 µl 

of Buffer AW2 added, and centrifuged for 5 minutes at 16,100 rcf (adjusted from 

handbook protocol suggesting 3 minutes at 20,000 rcf because the centrifuge used 

had 16,100 maximum rcf). 

h. Spin column placed in 1.5 ml microcentrifuge tube and 200 µl of Buffer AE 

pipetted onto the spin column membrane. Incubated at room temperature for 1 

minute and then centrifuged for 1 minute at 8000 rcf.  

i. As suggested by the DNeasy handbook, for maximum yield, this step was 

repeated with new 1.5 microcentrifuge tube.  

6. The concentration of each eluate was then measured with the NanoDrop
® 

 

Spectrophotometer ND-1000 and ND-1000 v3.2 software, recorded and the sample 

frozen at -20°C until ready to complete PCR.  
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APPENDIX B 

PROCEDURE FOR MICROSATELLITE PCR 
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APPENDIX B 

Procedure for Microsatellite PCR 

 

1. Template DNA and the Type-it
™

 Microsatellite PCR kit (Qiagen) were thawed to 

room temperature (15-25°C).  

2. Microcentrifuge tubes containing DNA were spun-down, 0.5 ml microcentrifuge 

tubes labeled for PCR. 

3. 12.5 µl of 2x Type-it Multiplex PCR Master Mix (provided by kit), 2.5 µl of Dte4 

primer and 2.5 µl of PCII14 primer, and approximately 100 ng of DNA (4 µl of 

eluate) added to the 0.5 ml microcentrifuge tube. Mixture was gently mixed by 

shaking tubes and then spun-down.  

Note: This kit suggests mixture be brought to a final volume of 25 µl by addition of 

RNase-free water (provided by kit). Through some experimenting, better 

amplification was found without this addition for these primers.  

4. PCR tubes were placed in an Eppendorf Mastercycler thermal cycler programmed for 

a 3-step, 32-cycle. An initial step of 5 minutes at 95°C to activate the HotStar Taq 

Plus DNA Polymerase was followed by the 3-step cycling: denaturing for 30 seconds 

at 95°C , annealing for 90 seconds at 55°C (adjusted from 60°C as recommended by 

kit), and elongation for 30 seconds at 72°C.  After 32 cycles, there was a final 

extension step of 30 minutes at 60°C and then a final hold at 4°C. 

5. Samples were spun-down and then prepared for capillary genetic analyzer the same 

day.  
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