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ABSTRA01' 

Vsing kinetic theory amd the thermodynamics of' 

phase transitions, a lllethod is deriTed. for finding the 

growth rate and t~perature increase o£ a droplet in 

water vapor which has been aupera•turated by the expan-,, 
sioa of a cloud cha111ber. Cal.culatioas are per:Cer~~ed for 

:t 

a specific nuaerieal exam.ple aD.d oeapared te ether werk 

in this field. 
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I. INTRODUCTION 

Cloud chambers, in addition to their use as devices 

to observe the tracks o£ charged particles which pass 

through them, are currently being used to investigate 

the spontaneous, homogeneous nucleation o£ supersaturated 

water vapor. A knowledge o£ homogeneous nucleation is 

important as a stepping stone to an underetanding o£ 

heterogeneous nuclea~ion, which plays an important role 

in the formation of clouds and other atmospheric phenomena. 

Most of the investigations into homogeneous nucleation 

involve a determination of the nucleation rate, the rate 

at which droplets of water are toraed in the supersat­

urated vapor. Theoretical derivations of the nucleation 

rate include these based on the classical liquid drop 

theory by Volmer and Weberl, Farkas2, Becker and Doring3, 

Fx-enk:el4, ZeldorichS, Sander and Daakller6 , Mason 7, 

Farley8, and Courtney9 and the one based on statistical 
10 mechanics ey Reiss • 

In the development of a nucleation rate theory 

intended to be applicable to a supersaturated vapor in 

which droplets are formed over a period of time, a 

knowledce of the rate of growth of individual drops is 

desirable. As a drop grows, it removes water molecules 

from the Tapor thus reducing the number available £or 

the formation of new drops. Also the latent heat liberated 
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by the condensatiC>n of the molecules warms the drop and 

hence :the vapor itself'. Both of these effects reduce the 

supers.aturation of the vapor and therefore its nucleation 

rate .. 

The grt~wth of a drop in a supersaturated vapor will 

in general be regulated by the diffusion ~f water mol­

ecules to the drop and the diffusion of heat from it. 

However, when drops are in the region of the critical 

size, the size above which they will tend to grow and 

below which they will tend to evaporate; their dimensions 

are smaller than the mean free path of' a water vapor 

molecule. For instance in an example to be presented 

later, the mean free path is about lo-5em while the 

radius of a critical droplet is only lo-7em. In a case 

of this sort, diffusion theory is not applicable, and 

kinetic theory methods should be employed. 

Rate of growth laws are calculated by Bagge 11 Becker, 

and Bekow11 using a combination o£ kinetic theory methods 

and diffusion theory and by Mason12 using diffusion 

theory with corrections for the diffusion constants in 

the region of' small drops. 

In the following paper, a rate of growth law will 

be derived using kinetic theory and the thermodynamics 

of phase transitions for the rather specialized case of 

a cloud chamber which contains helium and saturated water 



vapor and is expanded instantaneously and adiabatically. 

However, the general method is easily extendable to other 

vapors and gases. The method is not applicable to the 

growth of drops large enough to be treated by diffusion 

theory, however it will be extended into this region to 

serve as a rough approximation and an upper limit to the 

actual growth of the drops. Its main value will probably 

be to supply the iaitial CCDnditioas for diffusion theory 

methods. 
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II. THEORETICAL DERIVATION OF ~YATIONS 

A. ADIABATIC EXPANSION.· 

1. Density before expansion. Before the expansion 

o£ the cloud chamber, the helium-water vapor mixture is 

at room temperature, T1 , and normal atmospheric pressure, 

P1• In addition the water vapor is saturated. 

The initial conditions are then: 

Initial pressure P1 

Initial temperature T1 

Vapor pressure of water PH2o 
Partial pressure of 
helium PHe 

The initial density o£ water molecules and of 

helium ato•s is: 

Deasity of water B PH20 vapor Dlolecules nH20 -
KTl 

Density of B Pge helium atoms nHe ---.. 

KT 1 

2. Volwae-temperature relatien. The chamber then 

undergoes an expansion which for purposes of simpli£­

icati•n will be considered to be adiabatic and instaneous. 

The adiabatic law is: 

where P2 and v2 are the pressure and volume after wxpansion. 
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Assuming that the gases behave approximately as an 

ideal gas: 

p N K T 
v 

N K T2 V"f 
v2 2 

f~~~ :1 (1) 

3. SUpersaturation. The supersaturation of a vapor 

is given by:13 

s P1 vl T2 

P2 V2 T1 
(2) 

where pland p2 are the equilibrium vapor pressure at 

temperature T1 and T2 respectively. 

4. Densities.after expansion .. Thus the same number 

of helium atoms and water vapor molecules which occupied 

a volume v1 before the expansion now occupy a volume v2 , 

so that the density of water vapor molecules and helium 

atoms is: 

Density of water 
vapor molecules =~2a= 

(3) 



Density of 
helium atoms -n 

- He 

B. INITIAL CONDITIONS. 

11 

(4) 

1. Critical radius formula. After the expansion, 

the supersaturated water vapor will undergo rapid 

statistical fluctuations in density which will result in 

the formation of small droplets of water. Droplets which 

are smaller than a certain critical radius, r 0 , will 

evaporate immediately. Other droplets, larger than the 

critical radiu~will grow. 

The formula for the critical radius is:14 

2e-T0 VB 

7\(T0.ti~T) 
(5) 

where ,_is the ordinary surface tension, T0 is the 

temperature at which the vapor would be in equilibrium, 

vB is the molecular volume of the liquid phase, A is 

the latent heat of evaporation of one molecule, and T 

is the actual temperature of the supersaturated vapor. 

A drop of this size contains Nc molecules. 

(6) 

2. Initial vapor d,epleticm .• In the following der­

ivation of the formulas involved in the growth of a drop, 

it is assumed that the formation of the initial droplet 
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does not appreciably deplete the vapor immediately sur­

rounding it. This assumption will be valid i£ the number 

ot water vapor molecules in a volume of one mean free 

path radius around the droplet is much larger than the 

number of molecules needed to form the droplet itself. 

When the density of helium atoms is considerably 

greater than the density of water Yapor molaeulea, it is 

reasoaable to assuae that the mean rre• path of the water 

aolecules.is determined solely by co1lis1ons with helium 

atoas. The aean free path ot molecules of type 1 col­

liding with those of type 2 but having no collisions 

witb particles or ita own type is given by the formula:l5 

So that: 1 
( 7) 

where ra20 and r 88 are the molecular radii of water and 

heliua. 

fbe number ot water vapor molecules within a sphere 

ot radius oa.e •ean free path is: 

{8) 

It this number is considerably larger than the number 

ot molecules in the initial droplet, the assumption 
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o£ no initial vapor depletion is justi£ied. 

C. DYNAMIC CONDITIONS. 

1. General power balance. Several dynamic processes 

are involved in the growth of the drop. Water vapor mol­

ecules strike the drop, condense, and supply energy to 

the drop ia the f0rm of their heat of condensation. Some 

of this energy is used in raising the temperatur• of the 

drop and ia ~e.ciag surface area. Energy is removed from 

the drop by evaporating water molecules and by helium 

molecules, which upon striking the drop will be raised to 

ita higher temperature and then,upon evaporating, carry 

away this excess energy. 

Thus a power balance exists among the dynamic 

processes. 

Rate that energy 
is supplied by 
condensing water 

- HR 
- I 

where R1 is the rate at which water molecules strike 

the drop, and H is the heat of condensation of each 

molecule. 

Jtate at which 
energy is used 
to heat the drop 

dT where Cd is the heat capacity of the drop, and dt is 

the rate of change of the temperature of the drop with 

time. 



Rate at which 
energy is used 
to create surface 

where AS is the change in surface energy caused by 

the addition of one molecule. 

Rate at which 
energy is taken 
from the drop by 
helium atoms 

Rate at which 
energy is taken 
from the drop by 
eyapcratiag water 

-

H RE 

14 

where ~ is the rate at which water molecules evaporate 

from the drop. 

So that the PGwer balaace is: 

The rate of change of the temperature of the drop 

is: 

(9) 

2. Water Tapor condensation. The rate that energy is 

supplied by condensing water melecules can be foQnd by 

usiag a kimetic theory formula fer the rate at which 

particles havi~g a Mazwellian distributien of velocity 



16 will cross unit area. 

1 
2 "flf n Co 

where n is the particle density, and c·0 is the mean 

speed given by: 

where m is the mass Gf the particle. 

15 

(10) 

{11) 

The n~ber of water molecules striking the drop 

per seeomd is: 

(12) 

where r is the radius of the drop. 

Im the derivation of this formula, it was assumed 

that the water molecule density, nH20 , remained constant 

throughout the entire growth of the drop. This assumption 

will be valid when the drop is small, but as the drop 

grows, it starts to deplete vapor from the volume sur­

rounding it, and the water molecule density will actually 

change. The solution of the growth of large drops belongs 
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in the realm of diffusion theory. However, this method 

is used here as a first approximation, and sets an upper 

limit on drop size. 

3.. Heat ca;eacity of droplet. The heat capacity of 

the drop, cd, is: 

(13) 

4. Snrface t=3f'fects. From Frenkel17, the.change in 

surface energy caused. by the addition of one :molecule, 63, 

is: 

2 W v·· .. 

- B r (14) 

where vB is the volume of one molecule, and W is the 

surface energy. 

5. Water evaporation. The rate of evaporation fro:m 

the drop will depe.nd on the temperature and radius of 

the drop. The rate at which molecules leave the drop is 

equal to the rate at which they would strike it from a 

vapor the density and temperature of which are such that 

the radius of the d.~op is the critical radius. 



The formula for the critical radius is: 

So that: 

2&T0 VB 

"' ( T0 -T) 

I 

17 

TE 
r7\.T 

(15) 

Where TE is the equilibrium temperature for a certain 

v;a.por which has an actual temperature of T and the 

critical radius of which is r. 

Eventually the rate at which water vapor molecules 

would strike tDe drop from this fictitious vapor must 

be found. In order to do this we must have the vapor 

pressure expressed as a function o£ the equilibrium 

tempera:tr.u.re of the vapEJr. In the numerical example below, 

an exp.aA.sion is chosen which has room temperature or 

293°K as its initial temperature and 0°C or 27J°K as its 

final temperature. The graph of Figure 1 shows vapor 

pressure as a function of temperature. 

This curve can be closely approximated by using 

Newton's forward difference int$rpolation formula of 

the second degree18. 

•{x) _ y x-x8 A.V' (x-x.){x-x.,-h) 
.; - e+ ...., • + 2 

h 21 h 
(16) 



                                   18

-0 
J:c.D 

E 
E -

LLJ 
0:: 
:::> 
(/) C\1 (/) 
IJJ 
a::: 
0.. 

cr: 
0 
0.. 
<( co 
> 

0 5 10 15 20 

TEMPERATURE (°C) 

----------

Figure 1. Vapor pressure ove.r water as a function 

of temperature. Values taken from the Handbook of Chemistry 

and Physics, p. 2326. 



The following values are used:l9 

T (GK) Pu2o (mm Hg) AY 

273 4-579 
4.630 

283 9.209 
8.326 

3.696 

293 I 17.535 

h- 10°K -
So that an approximate formula for water vapor 

p;-essure as a £unction of tem.p_e:r,\lt.r'e is: 

19 

p • - 4 • 579+ '1];-273 ( 4. 6)0) ( TE·273) { 'fE-283) ( 3 • 696) 
H20 - 10 + 2 (100) 

(17) 

Several values were calculated using the above 

.tohul'tl and ai-'e iu.dioated oJi the graph of' Figure 1 by 

the starred points. It can be se•» that tpe formula is a 

very good appreximation to the actual values. 

In order for a vapor whose equilibrium temperature 

~is T• to exist at teaperatu:re T, in other words te be 

supersaturate4, it must have undercone an expansion. The 

densi~y of' water •apor molecules of this fictitious vapor 

i.a.the•: 
·irt: c, -,, 

where (1333) is a factor iatroduced to change the units 
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o£ the vapor pressure from mm Hg to dynes/cm2. 

The rate at which these molecules would strike 

a unit area is: 

The rate at which these molecules would strike the 

d.r•p, or in other words, the rate at which molecules will 

evaporate from the drop is: 

' ' ' -
Substituting :lrom 'the aboveequationa and simplifying: 

' [8 .... :'( i 2 r_r3 [ 
Rg = (1333) K aH2oj r Tf3' 4-.579 

+(Tg-273, c •. 46)0) ... (Tg-273, {T:r283, c .o~si,.SU 

where: 
'', l"J. ., (18) 

•. 6. Heliuil e•ei.ins;. Ising :f'ortllula ( 10) , the rate 

at which helium atoms will cr~f& a un~t area is: 

~· ~ [2~~~ ']* aa • 
. 0:~ 



The rate at which helium atoms will strike the 

drC)p is: 

RHe ~e {Area of Drop) 

RHe ~Jl (41fr2 ) 

The heat capacity of each helium atom is: 

ro__ l v -16 -n• = 2 Jl. = 2.07xl0 

21 

Assuming that the helium atoms strike the drop, 

are raised to its temperature, and then leave it, the 

rate at which energy is taken from the drop by helium is: 

(19) 

D. OUTLINE OF SOLVTIOH. 

An inspection of the formulas for the dynamic 

processes involved in the growth of a droplet will show 

taat they are all functions of the radius of the drop and 

its t.-perature only. An iterative method for finding the 

growth of a droplet is outlined below. 

This process can be altered to show the evaporation 

of a drop by inserting an initial drop rafiius which is 

smaller than the critical radius. 
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1. Assume an initial radius for the drop 
which is slightly larger than the critical 
radius and an initial temperature equal to 
the post expansion equilibrium temperature, 
T2• 

0 r rc + Small amount 

oT T2 

2. ealeul .. te the following values: 

(RI-RE) f'l(•r, GT) 

dT f 2 {0 r, eT) 
at 

3. Calculate new values ferr and T which 
result fr~m a shert period of growth At. 

rtrr("r)3+ (RrRE) VB A~l t 
L ~lr J 

3 

1T 0 T * 2! /j,t 
dt 

4. Iterate the process. 
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III. NUMERICAL EXAMPLE. 

A. INITIAL CONDITIONS .. 

1. Expansion ratio. The sequence o£ steps followed 

in solving the numerical example will closely parallel 

the steps of the derivation. A cloud chamber will be 

Ul\agined in which the helium-saturated water vapor mix­

ture is initially at room temperature and normal atmos­

pheric pressure. The chamber then expands adiabatically 

and instaneously with an expansion ratio such that the 

temperature a.rter the expansion is 0°C. 

Assuming that 1 is equal approximately to 1.4, the 

n"es.sary expansion ratio is: 

1 

[~~] '1-1 

- 1.2 

r~. u 2.5 
l_273j (la) 

2. Initial conditions. The.initial conditions are: 

pl 

Tl 

PH20 

PHe 

760 mm. Hg 

293°K 

17. 5 l11Dl F!g 

74.2. 5 :mm Hg 

2· Supe::rsatl.U;"atio~. The supersaturation is: 

s P1 V1 T2 

P2 V2 Tl 

2.97 

(2a) 
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4. Densities. The density of water vapor molecules 

and of helium atoms after the expansion are: 

f!g_l . l 
~:J 1 -1 

(3a) 



n 
He - 2 .. 04xlo19 

4 .. 8 xlol7 

= 42 .. 5 

25 

So that the assumption that the mean free path of the 

water vapor molecules is determined solely by the helium 

atoms is a good approximation .. 

La o 
2 

1 

12 nge 1r (rH2o+ rHe }2 

6 9.6xl0-

(?a) 

The number of water molecules within a sphere of 

radius one mean free path is: 

lla2o cJ .. L~2o J 

1.79xlo3 

(8a) 

Since only 95 molecules are needed to make a drop 

of critical size, and 1,790 molecules are readily available 

within a sphere of one mean £ree path radius, it appears 

that the assumption made in the derivation, that initial 

vapor depletion effects can be ignored, is justified. 

7. Water vaE_or condensation. The rate at which water 

vapor molecules will strike a drop of radius r is: 
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~~::2or (12a) 

== 8.53xlo22 r 2 

The energy brought to the drop by each condensing 

water molecule or taken away from it by each evaporating 

molecule is: 

a (5.955xl02 cal)(3xlo-23 I! ){4.l8xlo7 er~) gm molecule ca 

-13 erf · ?.49xlO mo ecule 

8. Heat capacity of droplet. The heat capacity of 

the drop is: 

1.75xlo8 r3 -•r~g~--­
molecule 

(13a) 

9. SUrface effects. The change in surface energy 

per molecule is: 

{14a) 

16. Water evapor.ation. The rate at which water mol­

ecules will evaporate from the droplet is: 
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3 . ' 
RE = ( 1.64><1023 ) r 2 ~t• 5[4. 579 + (Tr273) (. 4630) 

+ ( TE-273) ( TE-283) ( • dlS48 ~ 

where: 
TE = (7xlo-13) r T 

(?xlo-13) r- 4.2xlo-21 

(l8a} 

11. Helium cooling. The rate at which energy is 

taken from the drop by heliu.m atoms is: 

B. THE ITERATIVE PROCESS. 

The iterative process in detail at the n'th 

iteration is: 

R1 == 8.53xlo22 {nr) 2 

RE· ---· (1.04xlo23)(nr) 2 {nT)3 [ 
(TE}3.5 4.579 

(19a) 

1-( TE-273) ( .4630) 1- (T:g-273) (TE-2!!3) (. Ol!l4!l >] 

~ - [7.49xlo-l3 - !!.5~10-21] (Rr-RE) 

-1.59xlo9(nr)2(nT-27Jl 
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nT+ dT ~t 
dt 

Enr )3+ 7 .15xlo-24 ( Rr-RE) 

C. COMPUTER PROGRAM. 

A computer program was developed and run which was 

based directly on the iterative process described. However, 

it was found that in order to avoid unstable oscillations 

in the results for droplets near the critical radius, it 

was necessary to use a very small interval of growth, At. 

To reduce the running time, a procedure was used in which 

twenty iterations W8~e followed by an extrapolation for 

the equivalent of eighty time intervals, thus reducing the 

running time to one fifth of what it would have required. 

The notation used in the program is: 

Rr.......,. RI r--.. R dT......,.. DT 
dt 

RE_..RE T _...T t ........,. CT 

R 1- RE -... RN TE_,..TE t _,..TM 

A( 1)=: 4. 579 A(6) = 1.04xlo23 A(ll)== 1.59xlo9 

A(2)= .4630 !{7) = 7xlo-l3 A(l2)== ?.15xlo-24 

A(J)= .. 01848 A(8) == 4.2xlo-21 
. 8 

A(l3 )=. l. 75x10 

A(4)= 273 A(9) = 7.49xlo-13 

A(5)= 283 A(lO)== 8.58xlo-21 



The computer program is: 

1 DIY~NSION A(l4) 
READ 100, {A(J),J=l,l3) 
READ lOO,DT,RN,TM,T,R,CT 
PRINT 300 T.M,R RN DT 
!(l4)•A(lj+{29J.-A(4))*(A(2)+(293.-A(5)}*A(3)) 
A(14)=(1(14)*A(6)*(A(4)**3))/(293.**3.5) 
CTA•CT*100. 

9 DO 19 N::a1,45 
RA._R 
TMA•TM 

137 DO 13$ J:l,20 
RI•A(14)*(R**2) 
TE•(A(7)*R*T)/(A(7}*R-A(J)) 
RE=A(l)T(TE-A{4))*(A(2)+{TE-A(5))*A(3)} 
RE•(RE*A(6)*(T**3)*(R**2))/(TE**3.5) 

29 

14 RN•RI-RE 
DT•((A(9)-A(10)/R)*RN*A{l1)*(R**2)*{T-A(4)))/{A(l3)*(R**3)) 
R•(R**~RN*CT*A{12)}**(1./3.) 
TM:TM+CT 

138 CONTINUE 
R•(RA**3+RN*CTA*A(l2))**(1./3.) 
TM-TMA+CTA 

19 PRINT 300, TM,R, T ,RN, TE 
STOP 

100 FOIMAT (7El0.4) 
300 FORMAT {5El4.4) 

END 

D. NUMERICAL RESULTS. 

1. ~owth of drop. The initial radius of the drop 

was chosen as 1o-7cm, and it was necessary to use a At 

of l0-9sec. As the drop grew, the program became less sen­

sitive to the size of the time interval, At, so that it 

was possible to increase the si~e of the interval, usually 

by a power of ten for each power of ten that the radius 

of the drop increased. The results are shown in Figure 2. 



30 

2. Evaporation of drop. The program was also run 

with an initial radius of 7xlo-8cm, which is smaller 

than the critical radius. The results are shown in 

Figure 2. 
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Figure 2. Radius of a drop as a function of the 

growth t~e.· Numbers located near points indicate the 

~emperature at that point. 
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IV. DISCUSSION OF RESULTS 

A. LINEARITY AFTER 10-SSEC. 

1. Condensation function of r 2 • An examination of 

the graph of Figure 2 shows that after the drop has been 

growing for about lo-5sec, further changes in its radius 

are approximately linear. This is due to the nature of 

the functions for R1 and ~· 

The rate at which water molecules strike the drop, 

R1, is a fu.ne.tion of r2. 

. 22 2 Rr == 8.58x10 r 

2. Evaporation .function of r 2• As the radius of' the 

d:r"op gets large, the temperature 'fE, which controls the 

evaporation rate approackes the actual temperature of the 

drop, T. This means that the evaporation rate approaches 

the normal, equilibrium, plal'J.e surface rate. 

· The f'unctio:n for the evaporation rate is: 

Thus the net rate at which molecules are added to 

the drop is: 

'!'he rate of change of the volume of the drop is: 



d cj1t' r3) 

dt 

~1r(Jr2 ) ~ 
3 dt 

dr -
dt 

5.52xlo-2 £!L 
see 
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So that the rate o£ change of the radius of the drop is 

linear in this region. 

B. J:NERGY DISSIP 4a'IOH ANALYSIS. 

It is interesti•g to analyze the relative effect of 

the vartous mechanisms whieh dissipate the energy brought 

to the drop by the net influx ef water molecules. The 

formula for the rate o£ temperature change of the drop is: 

where: 

!I 
dt --

is the net rate that energy is sup­
plied to the drop by water molecules. 

is the net rate at which energy is 
used to create new surface of the 
drap. 

is the rate at which energy is dis­
sipated by the helium. 

is the heat capacity of the drop. 

When the time of crowth is 10-7sec. 



The energy supplied by 
condensing water 

The energy used to 
create surface 

The energy dissipated 
by helium atoms 

The energy used to 
heat the drGp 

The fraction of the 
•••rgy brought to the 
drop which is used in 
the creation ef surfaee 

The fraction of the 
energy brought t~ the 
drop which is dissipated 
by helium atoms 

The :tract i~m ,g tae : 
energy brough~ to the 
cir9p which is liS:ed -&Q 
heat the drop 

6 -6 =P5 =3.lxl0 

== PHe= 2.27xlo-5 

== Pd == 1.94xlo-6 

Ps 
--- .114 
-pw-

p 
- ..1!!- .814 

Pw 

34 

Similar calculations were made for other growth 
'i 

times, and the results are shown in the table below. 

Time Radius PHe p pd 
- _.!. 

Pw p w Pw 

10-7 l.Olxlo-7 .814 .114 .072 

1o-6 l.lOxlo-7 .830 .104 .066 

1o-5 4.17x1o-7 .907 .027 .066 

lo-4 5.05xlo-6 .997 .002 .001 

lo-3 5.J5xlo-5 1.00 .000 .ooo 
10-2 s.40xlo-4 1.00 .ooo .ooo 
10-1 5.40xlo-3 1.00 .ooo .. ooo 
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C. COMPARISON WITH BAGGE, BECKER, AND BEKOW. 

1. Droplet growth. The graph of Figure 3 shows 
' 

the droplet radius as a function of the growth time as 

calculated by the method of this paper and as calculated 

~or -tli!"' au ·water Yape;p at, a -superaat1a1ration of 3.18 by 

~agge, Becker, and Bekow20. 

~ curve •• calculated by this paper has a more 

napid growth rate in the region of large fadii, because 

diffusion effects were not co~sidered~ . 
' 

,;. ~ 
~··· , .2. hape,.ture aareaa.e. The Faph of Figure 4 shows 

the temperatur·e of tbe drop a·s calculated by the two methods. 
t 

~p, .~eeltar, allti.~w .. -.sed an expanaioD for which the 
~ .I • r 

. 'nit~al.teaperatur: ~- Jl5°t and the final temperature 

, "'$&&.· ?&a~:.L,,,,'fae •liPeraatura'tion is 3.18. ''WI",~· 
'!; 

. The shape of th~ two curves is similar, and both 
j 

~etnoas -piealct .• apprexiilately the iam~ temperature increase 

tor the drop. Bagge, ~eeker, and B~kow predict a slightly 

higher increa~e· 'of 14 °, whiie the method o£ this paper 

predicts enly 11.3°. HeweTer, the ra-tios of the changes in 

teaperature of the drop to the ehaage.s in temperature o£ 

the expansions are approximately the same• 

"(fl!: };h;e ~t}le<i ~f: thi~ pape:: 
'il\;o,: ... ~."'"·""'""·'·~-~""'' 

I ( .,.,.<~ 

l~J,. -.T~~, 
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Figure 3. Radius of a drop as a function of the 

growth t~e. Solid curve is by the method of this paper. 

Dashed curve is from Bagge, Becker, and Bekow. 



37 

rt) 
0 
rt) 

,.,. ...... - --- ..... --
/ 

/ 
~; 

-~ 
.e.... rt) 

/ 
/. 

/ 
/ en 

(.\1 
IJ.I 

,~ 

- -· '"' ..,__ --.- .- - - -
0:: 
:::> 
t-
<( rt) 
0:: CX) 
IJ.I (.\1 
a. 
:aE 
LL1 
1-

: 

~ 

_/ 
v 

.. 

rt) ----1'-
(.\1 

RADIUS OF DROP (em) 

--------------· 

Figure 4. Temperature of the drop as a function 

of the radius of the drop. Solid curve is by the method 

of this paper. Dashed curve is from Bagge, Becker. and 

Bekow. 



while :for Bagge, Becker, and Bekow: 

A.Td .!!t .560 
Tl-T2 
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D. COMPARISON WITH MASON. 

Mason derives an expression :for the time rate of 

increase of the square of the radius Q:f a drop using 

classical vapor and heat diff'usion21. For growth in the 

region where the dimensions of the drop are on the order 

of' the mean free path of the vapor, he uses diffusion 
22 constants with Langmuir corrections. 

For ethyl alcohol in nitrogen and a 15% expansion 

from an initial temperature of 290°~, he calculates that 

d r:2 equals 5xlo-6by one method and 4.5x1o-6 by another. 
dt 

He compares these to an experimental value of 4.5xlo-6 

found by Hazen23 • 

Wsing the method of this paper, the time rate of 

increase of the radius of the drop is: 

dr -dt 

AlsG: 
d r2 
dt 

So that.: 

d r2 
dt 

2r dr 
dt 
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Using this equation, the values of the time rate of 

increase of the square of the radius of the drop at various 

growth tiRes were aaleulated and are shown in the table 

below. 
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V .. CONCLUSIONS 

The ealculations performed .for the growth rate of 

a droplet and for its temperature increase seem to agree 

re.asona'b17 w$11 with <lPther W9rk done in this field. The 

advantages of this method are that the method and the 

equations are very simple, and numerical results can be 

easily obtained. The results of this method can be used 

as a rough approximation to the growth of large drops and, 

if applied only to the growth of small drops, can supply 

the initial conditions .fer a treatment involving diffusion 

theory. 
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