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ABSTRACT

Using kinetic theory and the thermodynamics of
phase transitions, a method is derived for finding the
growth rate and temperature increase of a droplet in
water vapor which has been supersaturated by the expan-
sion of a cloud chamber. Calculaﬁions are performed for
a specific numerical example and ;@mpared to @ther work

in this field.
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1. INTRODUCTION

Cloud chambers, in addition to their use as devices
to observe the tracks of charged particles which pass
through them, are currently being used to investigate
the spontaneous, homogeneoﬁs nucleation of supersaturated
water vapor. A knowledge of homogeneous nucleation is
important as a stepping stone to an understanding of
heterogeneous nucleation, which plays an important role
in the formation of clouds and other atmospheric phenomena.

Most of the investigations into homogeneous nucleation
involve a determination of the nucleation rate, the rate
at which droplets of water are formed in the supersat-
urated vapor. Theoretical derivations of the nucleation
rate include those based on the classical liquid drop
theory by Volmer and Weberl, Farkas®, Becker and Doring3,
Frenkelh, Zeldovichs, Sander and Damkaleré, Mason7,
Farleys, and Courtney9 and the one based on statistical
mechanics by Reisslo.

In the development of a nucleation rate theory
intended to be applicable to a supersaturated vapor in
which droplets are formed over a period of time, a
knowledge of the rate of growth of individual drops is
desirable. As a drop grows, it removes water molecules

from the vapor thus redﬁcing the nﬁmber available for

thé formation of new drops. Also the latent heat liberated



by the condensation of the molecules warms the drop and
hence the vapor itself. Both of these effects reduce the
supersaturation of the vapor and therefore its nucleation
rate.

The growth of a drop in a supersaturated vapor will
in general be regulated by the diffusion of water mol-
ecules to the drop and the diffusion of heat from it.
However, when drops are in the region.of the critical
size, the size above which they will tend to grow and
below which they will tend to evaporate; their dimensions
are smaller than the mean free path of a water vapor
molecule. For instance in an example to be presented
later, the mean free path is about 10~°cm while the
radius of a critical droplet is only 10~ 7cm. In a case
of this sort, diffusion theory is not applicable, and
kinetic theory methods should be employed.

Rate of growth laws are calculated by Bagge, Becker,

and Bekowll

using a combination of kinetic theory methods
and diffusion theory and by Mason12 using diffusion
theory with corrections for the diffusion constants in
the region of small drops.
In the following paper, a rate of growth law will
be derived using kinetic theory and the thermodynamics
of phase transitions for the rather specialized case of

a cloud chamber which contains helium and saturated water



vapor and is expanded instantaneously and adiabatically.
However, the general method is easily extendable to other
vapors and gases. The method is not applicable to the
growth of drops large enough to be treated by diffusion
theory, however it will be extended into this region to
serve as a rough approximation and an upper limit to the
actual growth of the drops. Its main value will probably
be to supply the initial conditiomns for diffusion theory

methods.



II. THEQRETICAL DERIVATION OF EQUATIONS

A. ADIABATIC EXPANSION.

1, Density before expansion. Before the expansion

of the cloud chamber, the helium-water vapor mixture is
at room temperature, T;, and normal atmospheric pressure,

Pj. In addition the water vapor is saturated.

The initial conditions are then:

Initial pressure — Py
Initial temperature — T3
Vapor pressure of water -— szO
Partial pressure of

helium = Pye

The initial density of water molecules and of

helium atoms is:

Density of water B Pu.o
vapor molecules — T, — 2
KTy
Density of B p
helium atoms — ng, ~— _"He
KTy

2. Volume-temperatﬁre relation. The chamber then

undergoes an expansion which for purposes of simplif-
ication will be considered to be adiabatic and instaneous.

The adiabatic law is:

iy 4
Pl Vi = P, V2

where P2 and V2 are the pressure and volume after esxpansion.
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Assuming that the gases behave approximately as an

ideal gas:

p — NET
— ¥y

NKET, A4 _ ygkeT, A

ol § Vi — an 2 V2
Vi V2

1

V2 — ([ AlFT (1)

Vl Tg

3. Supersaturation. The supersaturation of a vapor
13

is given by:

P Vo Ty

where pjand p, are the equilibriﬁm vapor pressure at

temperature T; and T2 respectively.

4, Densities after expansion. Thus the same number

of helium atoms and water vapor molecules which occupied
a volume Vy before the expansion now occupy a volume V,,
so that the density of water vapor molecules and helium

atoms is:
1

Density if water PH,0 Tolr -1 (3)
vapor molecules -'nH o e .
—— ‘20__. KTl Tl
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Density of Th .
helium atoms — n, — ~He |22|7-1 (&)
— He— k71T Ty

B. INTTIAL CONDITIONS.

l. Critical radius formula. After the expansion,

the supersaturated water vapor will undergo rapid
statistical fluctuations in density which will result in
the formation of small droplets of water. Droplets which
are smaller than a certain critical radius, r,, will |
evaporate immediately. Other droplets, larger than the
eritical radius will grow. |

14

The formula for the critical radius is:

ReTo vy
o = R )

where O is the ordinary surface tension, T, is the
temperature at which the vapor would be in equilibrium,
vy is the molecular volume of the liquid phase, A is
the latent heat of evaporation of one molecule, and T
is the actual temperature of the supersaturated vapor.

A drop of this size contains N, molecules.
b 1
Ny = (Fura)(s,) (6)

2. Initial vapor depletion. In the following der-

ivation of the formulas involved in the growth of a drop,

it is assumed that the formation of the initial droplet



does not appreciably deplete the vapor immediately sur-
rounding it. This assumption will be wvalid if the number
of water vapor molecules in a volume of one mean free
path radius around the droplet is much larger than the

number of molecules needed to form the droplet itself.

When the density of helium atoms is considerably
greater than the density of water vapor molecules, it is
reasonable to assume that the mean free path of the water
molecules.is determined solely by collisions with helium
atoms. The mean free path of molecules of type 1 col=~
liding with those of type 2 but having no collisions

with particles of its own type is given by the formula:t?

Ly - ] where: rjs — Iy 4T
1= ﬂ 11211'1’12 iz T” 1 2

S0 that: 1

LH20 = (7)

2 nge W (T, o+ THe)”

where rHQG and rye are the molecular radii of water and

helium.

The number of water vapor molecules within a sphere

of radius one mean free path is:

— b o1l

If this number is considerably larger than the number

of molecules in the initial droplet, the assumption
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of no initial vapor depletion is justified.

C. DYNAMTC GONDITIONS.

l. General power balance. Several dynamic processes
are involved in the growth of the drop. Water vapor mol-
ecules strike the drop, condense, and supply energy to
the drop in the form of their heat of condensation. Some
of this energy is used in raising the temperature of the
drop and in creating surface area. Energy is removed from
ﬁhe drop by evaﬁbrating water molecules and by helium
molecules, which upon striking the drop will be raised to
its higher temperature and then,upon evaporating, carry

away this excess energy.

Thus a power balance exists among the dynamic
processes.
Rate that energy

is supplied by
condensing water

where RI is the rate at which water molecules strike
the drop, and H is the heat of condensation of each
molecule.

Rate at which

energy is used 4
to heat the drop — Cgqg 3%

where Cgq is the heat capacity of the drop, and %% is
the rate of changé of the temperature of the drop with

time.
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Rate at which
energy is used — AS (Ri-Rg)
to create surface
where AS is the change in surface energy caused by
the addition of one molécule.
Rate at which
energy is taken

from the drop by — PHe
helium atoms

Rate at which
energy is taken H R
from the drop by — E
evaporating water
where RE is the rate at which water molecules evaporate

frem the drop.
So that the power balance is:
_ .. 4T |
H RI — Cd at +40S (RI-RE) 4+ H RE + PHe

The rate of change of the temperature of the drop
is:

4ar __ (H- AS)(Ry-Bg) - Pye

at — Cq (9)

2. Water vapor condensation. The rate that energy is

supplied by condensing water molecules can be found by
using a kinetic theory formula for the rate at which

particles having a Maxwellian distribution of velocity
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will cross unit area.l6
1
nr — 5—-:”7—* n Co (10)

where n is the particle density, and Cy, is the mean

o = [251‘]% ' (11)

where m is the mass of the particle.

speed given by:

c

The number of water molecules striking the drop

per second is:

Ry — nEgO (Area of Drop)
—_— KT % 2
R —2 | n r 12
I [Z'Wmﬂzo] Hy0 {(bwr<) | (12)

where r is the radius of the drop.

In the derivation of this formula, it was assumed
that the water molecule density, nHZO’ remained constant
throughout the entire growth of the drop. This assumption
will be valid when the drop is small, but as the drop
grows, it starts to‘deplete vapor from the volume sur-
rounding it, and the water molecule density will actually

change. The solution of the growth of large drops belongs
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in the realm of diffusion theory. However, this method
is used here as a first approximation, and sets an upper

limit on drop size.

3. Heat capacity of droplet. The heat capacity of

the drop, C4, is:

Cqg = (1 §§—1—g—.;m 23) (4.18x107 %%)(é’-*an)

Cq = (4.18x107) (3wr3) (13)

L. Surface effects. From Frenkell7, the change in

surface energy caused by the addition of one molecule, AS,

is:

r - (1a)

ll *

AS

where vp is the volume of one molecule, and W is the

surface energy.

5. Water evaporation. The rate of evaporation from

the drop will depend on the temperature and radius of
the drop. The rate at which molecules leave the drop is
equal to the rate at which they would strike it from a
vapor the density and temperature of which are such that

the radius of the drop is the critical radius.
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The formula for the critical radius is:

ZQ'TO VB
?\(TQ"T)

So that:

— DTrAT
' = TA =2 vy (15)

Where Tg is the equilibrium temperature for a certain
vapor which has an actual temperature of T and the

eritical radius of which is r.

Eventually the rate at which ﬁater vapor molecules
would strike the drop from this fictitious vapor must
be found. In @rder to do this we must have the vapor
pressure expressed as a function of the equilibrium
‘temperature of the vapor. In the numerical example beleow,
an expansion is chosen which has room temperature or
293@K as iﬁs initial teﬁperature énd Oac’or 2739K as its
final temperature. The graph of Figure 1 shows vapor

pressure as a function of temperature.

This curve can be closely approximated by using

Newton's forward difference interpolation formula of

the seéond degreels.

y(x) — y@+ x;xe Ay@‘l’ (X-‘-Xe)(iz-z-xe-h) UQY@ (16)
: 21



(mm Hg)

1 EX

&."

PRESSUL

VAPOR

18

0 5 10 15 20

TEMPERATURE (°C)

Figure l. Vapor pressure over water as a function

of temperature. Values taken from the Handbook of Chemistry

and Physics, p. 2326,
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The following values are used:1?

T (°K)  py,o (mm Hg) 34 &2y
273 k579
4,630
283 9.209 3.696
8.326
293 . 17.535
h — 10°k

So that an approximate formula for water vapor

pressure as a function of temperature is:

— 45794 B2, 630) . (TE-273) (TE-283)

o]
P 696
H0 10 2 (100) (3.696)

(17)
Several values were calculated using the above
formula and are indicated on the graph of Figure 1 by
the starred points. It can be seen that thé formula is a

very good approximation to the actual wvalues.

In order for a vapor whose equilibrium temperature
is Ty to exist at temperature T, in other words to be
supersaturated, it must have undergone an expansion. The
- density of water vapor molecules of this fictitious vapor

is then:

@

o Pr.o (1333) [r 11

"Hy0 = 2 [".fg] T-1
K Tg |

where {1333) is a factor introduced to change the units
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of the vapor presgsure from mm Hg to dynes/cmz.

The rate at which these molecules would strike

a unit area is:
@nHZO ﬁ_ 4
T — 21;mH 0 H20

The rate at which these molecules would strike the
drop, or in other words, the rate at which molecules will

evaporate from the drop is:
H»0
Ry = °nr2 (Area}of‘Drop)
H ;
°n20(4 4 r?)
Substituting from the above equations and simplifying:

73
Ry — (1333) [K mHgo]% 2 L s [4 579

+(TE-273) (. 4630) + (Tg-273) (T-283) ( .01848)]

. . —_— rAT
where: g — A 2oV, (18)

6. Helium ceoling. Using formula (10), the rate

at which helium atoms will crgss a unit area is:

He r K Ty .li
B — szmHe J Bye
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The rate at which helium atoms will strike the

drop is:

R o ® (Area of Drop)

KT
[3;57—*“%“

The heat capacity of each helium atom is:

|

RHe

-16

W

Cye — 5 K — 2.07x10

Assuming that the helium atoms strike the drop,
are raised to its temperature, and then leave it, the

rate at which energy is taken from the drop by helium is:

PHe p— CHe RHe (T-Tz) (19)

D. OUTLINE OF SOLUTION.

An inspection of the formulas for the dynamic
processes involved in the growth of a droplet will show
that they are all functions of the radius of the drop and
its temperature only. An iterative method for finding the

growth of a droplet is outlined below.

This process can be altered to show the evaporation
of a drop by inserting an initial drop ratiius which is

smaller than the critical radius.
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1. Assume an initial radius for the drop
which is slightly larger than the critical
radius and an initial temperature equal to
the post expansion equilibrium temperature,
Tzc

Or

Or

re + Small amount

T2
2. Caleulate the following values:
(RI-Rg) = £;(°r, °T)

dT £42(°r, °T)
at

1

3. Calculate new values for r and T which
result from a short period of growth At.

1. gt-n-("r)3+ (Ry-Rg) vg at] 31-

o I
BTT

lT — on\-Q‘EA’t
dt

k. Iterate the process.
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III. NUMERICAL EXAMPLE.,

A. TINITIAL CONDITIONS.

1. Expansion ratic. The sequence of steps followed
in solving the numerical exémple will closely parallel
the steps of the derivation. A cloud chamber will be
imagined in which the helium-saturated water vapor mix-
ture is initially at room temperature and normal atmos-
pheric pressure. The chamber then expands adiabatically
and instaneously with an expansion ratio such that the

temperature after the expansion is 0°C,

Assuming that 4 is equal approximately to 1.4, the

necessary expansion ratio is:

L 293] 2
T2 = [WFIT = [27] (1a)
Vi To
1.2

2. Initial conditions. The initial conditions are:

P{ — 760 mm Hg
Ty — 293°%K

szb — 17.5 mm Hg
Pge =— 742.5 mm Hg

3. Supersaturation, The supersaturation is:

. pl Vl T2
S —_— T (Za)
P2 Vz Tl ,

.97
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L. Densities. The density of water vapor molecules

and of helium atoms after the expansion are:

P 1
n = — _H0 [.T.:?.""“q ) (3a)
T
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“ie __ 2.0hx1019
ng,o 4.8 x1017
— 42.5

So that the assumption that the mean free path of the
water vapor molecules is determined solely by the helium

atoms is a good approximation.

1
VZ g w (ry, o+ Ty

LHZO — )2 (73)

9.6x10-6l

|l

The number of water molecules within a sphere of

radius one mean free path is:

L .3
NLHzO p— nHZO ('3"HLH20) (8&)

1.79x10°

1

Since only 95 molecules are needed to make a drop
of critical size, and 1,790 molecules are readily available
within a sphere of one mean free path radius, it appears
that the assumption made in the derivation, that initial

vapor depletion effects can be ignored, is justified.

7. Water vapor condensation. The rate at which water

vapor molecules will strike a droprof radius r is:
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Ry — ETa : ny o (bwre) (12a)
21rm320 2

8.53x10°% r?

The energy brought to the drop by each condensing
water molecule or taken away from it by each evaporating

molecule is:

. 2 cal -23 7 er
H — (5.955x10% z5=) (3x10 ) {4.18x10 E‘é‘%)

molecule

-13 er
= 7.45x10 molecule

8. Heat capacity of droplet. The heat capacity of

the drop is:
Gy — (4.18x107) (Fw =) (13a)

1.75x108 3 &r8

molecule

9. Surface effects. The change in surface energy

per molecule is:

2 W v
- —-£ (14a)

AS
' r

-21 1 erg
8.58x10 r molecule

10. Water evaporation. The rate at which water mol-

ecules will evaporate from the droplet is:
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3 X
Rp — (1.64x10°%) r? %375[}.579ﬂ-(TE~273)(.4630)

+(T5-273) (T5-283) (.01848)]

(18a)

where: T (7x10'13) T

B = (7x10"13) r - L.2x10-21

11, Helium cooling. The rate at which energy is

taken from the drop by helium atoms is:
PHG — CHe RHS (T —Tz) (193)
— 1.59x10% r2 (T-273)

B. THE ITERATIVE PROCESS.

The iterative process in detail at the n'th
iteration is:

(7x10-13) (Br)(B1)

Tg =
(7x10~13) (%r) - L4.2x10-21
Ry — 8.53x10°% ("r)?
Ny 3
Ry — (1.04x1023) (%) L2 [hw579
(TE)B’S
+(T-273) (.4630) + (Tg-273) (Tg-263 ) .01848 )]
-21
ar __ [?.a9xlo'l3 - 8.58x10 ]\(RI-RE)

-1.59x102 (%r)2(1T-273)
1.75%x108 r3
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n+l n daT
T T =
= T

1
ntly — Enr)3+ 7.15x107%* (Ry-Rg) at] 3

At

C. COMPUTER PROGRAM.

A computer program was deveioped and run which was

based directly on the iterative process described. However,
it was found that in order to avoid unstable oscillations
in the results for droplets near the critical radius, it
was necessary to use a very small interval of growth, At.
To reduce the running time, a procedure was used in which
tﬁenty iterations were followed by an extrapolation for
the equivalent of eighty time intervals, thus reducing the

running time to one fifth of what it would have required.

The notation used in the program is:

Ry —= RI ‘r—=R g1
Rg = RE T —+ T t —» CT
Ry-Rg —# RN Tp—aTE t —amTM
A(1)— 4.579 A(6) — 1.04x10%%  A(11)— 1.59x10°
A(2)— .4630 A7) — 7x10713 A(12)— 7.15x10™2k
A(3)— .01848  A(8) — h.2x107?l  4(13)— 1.75x10°
A(4)— 273 A(9) — 7.49x10713

A(5)— 283 A{10)— 8.58x10™%%
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The computer program is:

1l DIMENSION A
READ lOO (
READ lOO DT
PRINT 30
A(lur-A(1$+
AL )=(A(14)*

CTA=CT*100.
9 DO 19 N=1,L45
RA=R
TMA=TM
137 DO 138 J=1,20
RIﬂA(lh)*(R**z)
TE=(A(7)*R*T)/(A(7
RE=A(1)+(TE-A(4) )*
RE=(RE*A(6) % (T*%3)
R )*RN
12

§293.~A( *A(3))

5))
293 .%%3.5)

*R-A(3))
A(2)4{TE=A(5))*A(3))
{R**2) )/ (TE*%3.5)

*RN A(ll)*(R**Z)*(T-A(h)))/(A(IB)*(R**B))
)YEx(1./3.)

)
(
S
14 RN=RI-RE
DT=( (A(S)-A(10)/R
R=(R¥**3RN*CT*A(1
TM=TM+CT
138 CONTINUE
R=( RA%¥3+RN*CTA*A(12) )**(1./3.)
TM=TMA+CTA
19 PRINT 300,TM,R,T,RN,TE
STOP
100 FORMAT (7EL0.4)
300 FORMAT (5Elh..4)
END

D. NUMERICAL RESULTS.
l. Growth of drop. The initial radius of the drop

was chosen as lO'7cm, and it was necessary to use a At
of thgsec. As the drop grew, the program became less sen-
sitive to the size of the time interval, At, so that it
was possible to increase the size of the interval, usually
by a power of ten for each power of ten that the radius

of the drop increased. The results are shown in Figure 2.
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2. Bvaporation of drop. The program was alsc run
8

with an initial radius of 7x107“cm, which is smaller
than the critical radius. The results are shown in

Figure 2.
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Figure 2. Radius of a drop as a function of the

growth time. Numbers located near points indicate the

temperature at that poipt.
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1V. DISCUSSION OF RESULTS

A. LINEARITY AFTER 10~ °SEC.

1. Condensation function of rz. An examination of

the graph of Figure 2 shows that after the drop has been
growing for about 10‘5sec, further changes in its radius
are approximately linear. This is due to the nature of
the functions for Ry and Rg.

The rate at which water molecules strike the drop,
Ry, is a funetion of re,

Ry ::‘ 8.58x1022 r?

2. Evaporation function of r2. As the radius of the

drop gets large, the temperature Ty, which controls the
evaporation rate approaches the actual temperature of the
drop, T. This means that the evaporation rate approaches
the normal, equilibrium, plane surface rate.

- The function for the evaporation rate is:
R — 6.21x10%% r?

Thus the net rate at which molecules are added to

the drop is:
(R-Rg) — 2.32x10°% r?

The rate of change of the volume of the drop is:
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d ($wr)
= (Bz-Rg) v
dt
L 2y dr 22 .2 ~23
B'K(Br ) It — 2.32x10%° r< 3x10
de . 5,52x1072 Sm_
dt sec

So that the rate of change of the radius of the drop is

linear in this region.

B. ENERGY DISSIPATION ANALYSIS.

It is interesting to analyze the relative effect of
the various mechanisms which dissipate the energy brought
to the drop by the net influx of water molecules. The
formula for the rate of temperature change of the drop is:

(H - AS)(Ry-Rg) - Py

ar __
dt Cd
where: H(RT~Rg) is the net rate that energy is sup-
plied to the drop by water molecules.
AS{R1-Rg) is the net rate at which energy is
used to create new surface of the
drop.
Phe is the rate at which energy is dis=-~

sipated by the helium.

C is the heat capacity of the drop.

d

When the time of growth is 10" 7sec.

4T — (7.49x10733-8,58x10"1%) (3,72x107)~(2.27x1075)
at 1.8x10-13




The energy supplied by
condensing water

The energy used to

create surface

The energy dissipated
by helium atoms

The energy used to

heat the drop

The fraction of the

energy brought to the
drop which is used in
the creation of surface

The fraction of the

energy brought to the
drop which is dissipated
by helium atoms

The fraction of the ..
energy brought to the
drop which is used to
heat the drop

Similar calculations were made for other

times, and the results are shown in the table

Time

Radius

1.01x10~7
1.10x10"7
4. 17x10~7
5,05x10™8
5.35x10"°
5.40x107%
5.40x107°

PHe

Py

+814
.830
.907
«997
1.00
1.00
1.00

|l

1

|
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Py — 2.78x107°
P, — 3.16x107°
Ppo— 2.27x1075
Py — 1.94x107%
P

=2 — 114

PW

Pre _ .81

P,

P4 __ Lo

Py

.072
.066
.066
.001
000
.000
. 000
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C. COMPARISON WITH BAGGE, BECKER, AND BEKOW.,

1, Droplet growth. The graph of Figure 3 shows

the droplet radius as a function of the growth time as
calculated by the method of this paper and as calculated
for air and water vapor at a supersaturation of 3.18 by

Bagge, Becker, and Bekow?0.

The curve as calculated by this paper has a more
rapid growth rate in the region of large radii, because

diffusion effects were not considered.

2. Temperature increase. The graph of Figure 4 shows

the temperature of the drop as calculated by the two methods.
Bagge, Becker, and Bekow used an expansion for which the
initial temperature was 315°k and the final temperature

, éas ZQOQK. The supersaturation is 3.18.

The shape of the two curves is similar, and both
methods predict appreximately the same temperature increase
for the drop. Bagge, Becker, and Bekow predict a slightly
higher increase of 14°, while the method of this paper
predicts only 11.3°. Hewever, the raties of the changes in
temperature of the drop to the changes in temperature of
the expansions are approximately the same.

For the method of this paper:

8Tq  __ -—-*3-1;0 — 565
T1~To -
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Figure 3. Radius of a drop as a function of the

growth time. Solid curve is by the method of this paper.

Dashed curve is from Bagge, Becker, and Bekow.
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while for Bagge, Becker, and Bekow:

AT 14
—_a — 35 — . 560
T1-T2

D, COMPARISON WITH MASON.

Mason derives an expression for the time rate of
increase of the square of the radius of a drop using
classical vapor and heat diffusionZI.‘qu growth in the
region where the dimensions of the drop are on the order
of the mean free path of the vapor, he uses diffusion

constants with Langmuir22 corrections.

Fer ethyl alcohol in nitrogen and a 15% expansion

from an initial temperature of 290°K, he calculates that

2
dd: equals 5x10-6by one method and k.5x10~6 by another.

He compares these to an experimental wvalue of l...5:c1()"6

found by HazenzB.

Using the method of this paper, the time rate of

increase of the radius of the drop is:

dr vB (
—_— T RI-RE)
Also: 2
drc _ 2rdr
dt - dt
So that:
2 v
dr — B (RI‘EE)

dt 2wr
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Using this equation, the wvalues of the time rate of
increase of the square of the radius of the drop at various

growth times were calculated and are shown in the table

below.
2
d r
Time P
10-5 L.06x10~8
103 6.04x10"%

10-2 6.17x10™°
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V. CONCLUSICNS

The calculations performed for the growth rate of
a droplet and for its temperature increase seem to agree
reasonably well with other work done in this field. The
advantages of this method are that the method and the
eqﬁations are very simple, and numerical results can be
easily obtained. The results of this method can be used
as a rough approximation to the growth of large drops and,
if applied only to the growth of small drops, can supply

the initial conditions for a treatment involving diffusion

theory.



1.
2,
3.
b,
5

7e
8.

10.

1l.

12.
13.

Ll

BIBLIOGRAPHY

M. Volmer and A. Weber, Z. Phys. Chem., A119, 277 (1926).
L. Farkas, Z. Phys. Chem., Al25, 236 (1926).

R. Becker and W. Doring, Ann. der Phys., 24, 719 (1935).
J. Frenkel, J. Chem. Phys., 7, 538 (1939).

J. Zeldovich, J. Exp. Theer. Phys. (Russian), 12,
525 (lgn2).

Sander and Damk8ler, Naturwissenshaften, 31, 460 (1943).
B. J. Mason, Proc. Phys. Soc., B6L, (1951).
F. J. M. Farley, Proc. Royal Soc., 4212, 530 (1952).

W. G. Courtney, J. Chem. Phys., Vol. 35, No. 6,
2249-2250, Dec. 1961.

H. Reiss, J. Chem. Phys., 8, 1216 (1952), and Z.
Electrochem., 56, 439 (1952).

V. E. Bagge, F. Becker, and G. Bekow, Z. Ang. Phys.,
Vol. 3, No. 6, June 1, 1951.

B. J. Mason, ¢op. cit.
Ibid.

14 J. Frenkel, Kinetic Theory of Liguids, (Dover Publications

15,

16.
17.
18.

19.

Inc., New York, 1946), pP. 373.

J. D. Cobine, Gaseous Conductors, (Dover Publications
Inc., New York, 19hk1l), p. 21l.

Ibid, p. 20.

J. Frenkel, loc. cit. p. 369.

I. S. Sokolnikoff and R. M. Redheffer, Mathematics of
Physics and Modern Engineerin (McGraw«Hill
Book Co., Imc., New York, 1958}, p. 697.

Handbook of Chemistry and Physics, (Chemical Rubber
PUbliShiag 5@0), P 23260




20. V.
21‘ B.
22. d.

230 Wo

42

E. Bagge, F. Becker, and G. Bekow, op. cit.

J. Mason, op. cit.

Lahgmuir, 1944, G. E. C. Report on Supercooled
Water droplets in Rising Currents of Co
Saturated Air.

E. Hazen, Rev. Sci. Instrum., 13, 247 (1942).



43

VITA

The author was born on July 23, 1941, in Belleville,
Illinois. He received his primary educatien in Millstadt,
Illinois and his secondary education in Belleville, Illinois.
He has received his college education from Belleville
Junior College in Belleville, Illinois and from the Uni-
versity of Missouri School of Mines and Metallurgy in
Rolla, Missouri. He received a Bachelor of Science Degree
in Physics from the Umiversity of Missouri School of Mines

and Metallurgy in January, 196i.

115190



	Drop growth in a supersaturated vapor
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045

