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An Online Outlier Identification and Removal
Scheme for Improving Fault Detection Performance

Hasan Ferdowsi, Sarangapani Jagannathan, and Maciej Zawodniok, Member, IEEE

Abstract— Measured data or states for a nonlinear dynamic
system is usually contaminated by outliers. Identifying and
removing outliers will make the data (or system states) more
trustworthy and reliable since outliers in the measured data (or
states) can cause missed or false alarms during fault diagnosis. In
addition, faults can make the system states nonstationary needing
a novel analytical model-based fault detection (FD) framework.
In this paper, an online outlier identification and removal (OIR)
scheme is proposed for a nonlinear dynamic system. Since the
dynamics of the system can experience unknown changes due
to faults, traditional observer-based techniques cannot be used
to remove the outliers. The OIR scheme uses a neural network
(NN) to estimate the actual system states from measured system
states involving outliers. With this method, the outlier detection
is performed online at each time instant by finding the difference
between the estimated and the measured states and comparing its
median with its standard deviation over a moving time window.
The NN weight update law in OIR is designed such that the
detected outliers will have no effect on the state estimation, which
is subsequently used for model-based fault diagnosis. In addition,
since the OIR estimator cannot distinguish between the faulty or
healthy operating conditions, a separate model-based observer is
designed for fault diagnosis, which uses the OIR scheme as a
preprocessing unit to improve the FD performance. The stability
analysis of both OIR and fault diagnosis schemes are introduced.
Finally, a three-tank benchmarking system and a simple linear
system are used to verify the proposed scheme in simulations,
and then the scheme is applied on an axial piston pump testbed.
The scheme can be applied to nonlinear systems whose dynamics
and underlying distribution of states are subjected to change due
to both unknown faults and operating conditions.

Index Terms— Data analysis, fault diagnosis, neural networks,
nonlinear systems.

NOMENCLATURE

x Actual system states.
y Measured system states.
xs Estimated outlier-free states.
u System input.
ω Known dynamics of the system.
η Modeling uncertainties.
� Time profile of the fault.
h Fault function.
ν Noise and outliers.
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cg Lipschitz constant for the function ω.
ηM Upper bound on modeling uncertainty.
p Window length.
W Unknown target weights for outlier

removal NN.
Ŵ Estimated weights.
W̃ Weight estimation error.
μ Approximation error.
μM Upper bound on μ.
ψ Basis function for outlier removal NN.
β Learning rate for updating Ŵ .
e Difference between the measured and estimated states,

i.e., e = y − xs .
x̃ State estimation error, i.e., x̃ = x − xs .
M Median.
σ Standard deviation.
x̂ Estimated states from the fault detection (FD)

observer.
ĥd Estimated fault function.
θd Unknown parameter matrix of the FD

online approximator.
θ̂d Estimated parameters.
θ̃d Parameter estimation error.
ε Approximation error.
εM Upper bound on ε.
φ Basis function for FD online approximator in

discrete time (OLAD).
α Learning rate for updating θ̂ .
ē FD residual, i.e., ē = xs − x̂ .

I. INTRODUCTION

OUTLIERS are present in data sets of practical industrial
systems. By definition [1], an outlier is an observation,

which deviates sufficiently from other observations thus creat-
ing suspicion that it was from a different system. In industrial
systems, outliers can appear in the measured data. If measured
data from a system is contaminated by outliers, processing
the data becomes difficult since these outliers can render
inaccurate decisions during fault diagnosis. In many cases, the
underlying distribution of the measured data can change due
to outliers.

On the other hand, due to the high risk of component and
system failures, reliable fault diagnosis schemes are required
to guarantee safe system operation even in the presence of
uncertainties, outliers, and faults. A reliable FD scheme is the
one that can detect faults at an early stage, without missed or
false alarms before the root cause analysis.

2162-237X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Recently, the topic of FD and diagnosis has attracted a
number of researchers around the world. FD is performed data
driven [2], model-based [3], or a combination of both [4], [5].
Several model-based FD techniques have been developed in
the past decade [6]–[10]. However, even the best FD schemes
can become unreliable in the presence of data corrupted with
outliers since outliers can cause false alarms.

Several outlier identification and removal (OIR) schemes
have been proposed in the literature such as distribution-
based [11], distance-based [12], [13], clustering [14], [15], and
density-based methods [16]. In addition, surveys of different
outlier detection methods are given in [17] and [18]. However,
these methods are data driven and work offline. An online
outlier detection scheme is a prerequisite for improving the
performance of the model-based FD scheme where system
states are used. Therefore, several online outlier removal meth-
ods have also been developed for linear systems with known
dynamics using Kalman filter and its variations [19]–[21] by
assuming that the system states and measurement noise belong
to the Gaussian distribution. However, due to changes in the
operating conditions and presence of faults, the underlying dis-
tribution of states is not necessarily fixed and therefore nonsta-
tionary. Therefore, a novel scheme to detect the presence and
the removal of outliers from system states is needed for both
linear and nonlinear systems in nonstationary environments.

Since the system states are considered to be contaminated
with noise and outliers, the main objective of this paper is
to develop an online OIR scheme for system states prior
to FD stage in contrast with traditional model-based FD
framework where outlier-free state assumption is made [22].
The robustness and reliability of the model-based FD scheme
is evaluated using detection rate, missed and false alarms
with and without outliers. In model-based FD, data points are
system states or outputs.

Since in practice outlier-free system states are not avail-
able, they need to be estimated and then compared with the
measured states to detect outliers. Here, traditional observers
cannot be used because the system dynamics are not known
and subjected to unknown faults. Therefore, a two-layer feed-
forward neural network (NN) is used to estimate the actual
system states and at the same time to identify and remove the
outliers. The NN outputs are the estimated states filtered for
noise and outliers. At each time instant, the estimated state
vector from the OIR scheme is calculated for the next instant
of time and compared with the measured states to generate the
state estimation error.

Next, median and standard deviation of the state estimation
error in a limited time window are found. If the state estimation
error and the calculated median are both higher than three
standard deviations, an outlier is detected. A novel NN weight
update law is derived using the state estimation error. To
prevent an update of the NN weights in the state estimator
in response to an outlier, a variable learning rate is selected
such that it takes on a zero value when an outlier is detected.
The stability of the state observer used for OIR is discussed
in this paper.

For the purpose of FD, a different observer with known
nominal dynamics of the system is introduced. Since the OIR

scheme estimates the known system dynamics, uncertainties,
and fault function, it cannot be used as an FD observer.
Moreover, using a second observer for FD, the fault function
can be approximated for isolation and prognostics. Therefore,
an observer-based FD scheme is introduced that uses the
estimated outlier-free state vector instead of the measured state
vector. A fault is detected by comparing the observed states
with the outlier-free system state vector. Upon detection, an
online approximator is activated to estimate the fault dynamics.
The performance of the FD scheme is evaluated with and
without the proposed outlier scheme. Again note that the state
estimation for the OIR scheme is different than the one used
for fault diagnosis.

Therefore, the contributions of this paper involve the
development of an OIR Scheme, which can operate online
in contrast with data-based methods [11]–[16], and can be
applied to both linear and nonlinear systems in nonstationary
environments in contrast with existing Kalman filter-based
schemes [19]–[21]. Since the proposed NN estimator is quite
generic and does not use the system representation or model,
it is useful even when the system dynamics are not known. In
other words, the OIR scheme can be used both for data driven
and model-based fault diagnosis schemes.

Moreover, a model-based FD scheme, which uses the
estimated outlier-free states instead of the actual measured
states of the system is presented and the stability analysis
of the proposed fault diagnosis scheme is included when the
underlying distribution of states are nonstationary in contrast
with all the available model-based fault diagnosis [3]–[8]. This
requires a complete novel analytical framework.

To verify the performance and effectiveness of the proposed
outlier removal technique and observe its effect on FD process,
a three-tank water system is used. A fault is seeded in one of
the tanks and outlier removal is performed on both healthy
and faulty data. It is shown that FD can only provide reliable
results when the outliers are removed from the measured data.
In addition, a linear example is used to compare the proposed
scheme with a Kalman filter-based method. Simulations have
been repeated for a significant number of times to evaluate
the proposed scheme in different cases of random noise
and outliers. Furthermore, an experimental study has been
conducted on an axial piston pump testbed in healthy operating
conditions and it is shown that the measured outlet pressure
involves several outliers, which will trigger false alarms during
FD. The outliers are shown to be removed successfully from
the measured outlet pressure using this online OIR scheme.

This paper is organized as follows. Section II introduces
the system description and required assumptions. Section III
presents the outlier detection and removal technique while FD
scheme is introduced in Section IV. Section V discusses the
simulation and experimental results.

II. SYSTEM DESCRIPTION

Consider the nonlinear discrete-time system described by
the following state space representation:

x (k + 1) = ω (x (k) , u (k))+ η (x (k) , u (k))

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on November 08,2024 at 13:40:17 UTC from IEEE Xplore.  Restrictions apply. 
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where u ∈ R
m is the control input vector, x ∈ R

n is the system
state vector, ω : R

n×R
m → R

n is the known nonlinear system
dynamics, and η : R

n ×R
m → R

n is the system uncertainties.
Now, consider the nonlinear system with a fault as

x (k + 1) = ω (x (k) , u (k))+ η (x (k) , u (k))

+�(k − k0) h (x (k) , u (k)) (1)

where h(x(k), u(k)) is a vector of possible fault dynamics.
The time profile of a fault is given by �(k − k0). The time
profile �(k − k0) is modeled by �(k − k0) = diag{1(k −
k0),2(k − k0), . . . ,n(k − k0)} where

i (k − k0) =
{

0, if τ < 0

1 − e−κ̄iτ , if τ ≥ 0
for i = 1, . . . , n

is the time profile variable and κ̄i is an unknown constant that
represents the rate at which a fault occurs. A larger value of
κ̄i indicates that it is an abrupt fault. The use of such time
profiles is common in fault diagnosis literature [6].

Note that this fault will definitely change the system dynam-
ics and might even change the underlying distribution of
system states. Normally in the literature [6]–[9], it is assumed
that the states are free with noise and does not change
its underlying distribution, which is not practical. Therefore,
Kalman filters [23] cannot be used to eliminate noise and
outliers from the measured states because they require system
states and noise to have a fixed distribution and also require
the exact system representation, which is not available in our
case due to unknown fault. In this paper, a NN-based approach
will be taken with an appropriate selection of NN weights such
that this assumption is relaxed.

For the purpose of monitoring the system and performing
FD, state measurements are required. Usually, the measured
system states are contaminated with noise and outliers. The
measured state vector y(k) can be represented by

y (k) = x (k)+ v(k)

where v(k) includes the measurement noise and outliers, which
is considered as bounded above such that ‖v(k)‖ ≤ vM .
The distribution of the measurement noise can change over
time. According to the definition [1], if the measured states
y(k) deviates significantly from the actual system states x(k),
the data point is said to be an outlier. Model-based FD
schemes cannot distinguish a residual increasing due to a fault
or an outlier. Therefore, outliers in the measured states can
cause false alarms during FD and diagnosis. This fact clearly
emphasizes the importance of detection and removal of outliers
before FD. The following standard assumptions are needed to
proceed.

Assumption 1: The modeling uncertainty is bounded, i.e.,
‖η(x(k), u(k))‖ ≤ ηM , ∀(x, u) ∈ (χ × U), where ηM is a
positive known constant.

Remark 1: Assumption 1 is needed to distinguish between
the faults and the system uncertainties and to analytically
determine the FD threshold.

Assumption 2: The nonlinear system dynamics ω(x, u) is
Lipschitz in x , i.e., ‖ω(x1, u) − ω(x2, u)‖ ≤ cg‖x1 − x2‖,
where cg > 0 is the Lipschitz constant.

Remark 2: This assumption is only required for the FD part,
mainly because the estimated outlier-free states are used in the
proposed FD estimator instead of the actual system states. This
assumption has been used in other papers on fault diagnosis
[6], [24], where the entire state vector is not available and
estimated states have to be used in the estimator dynamics
instead of actual system states.

Assumption 3: The functions ω(x(k), u(k)), η(x(k), u(k)),
and h(x(k), u(k)) can be expressed as nonlinear in the
unknown parameters (NLIP), thus can be approximated by
two-layer NNs with bounded weights and approximation
errors.

Next, the proposed outlier detection scheme is introduced.

III. OIR SCHEME

The main objective of this paper is to design an outlier
scheme, which can detect, identify, and remove the out-
liers online, before an outlier triggers a false alarm dur-
ing fault diagnosis. Therefore, the outlier detection must
be performed online and prior to FD and root cause
analysis.

According to Chebyshev’s theorem and outlier detection
method [25], almost all the observations in a data set of
system states will fall into the interval [μ − 3σ, μ + 3σ ],
where μ and σ are the mean and standard deviation of
the data set, respectively, and the data points outside this
interval are declared outliers. If the distribution of the actual
system states was fixed over time, traditional outlier detection
methods [25], [26] can be employed whereas for the present
scenario, these methods cannot be used. Now initially assume
that the measured system state vector y has following fixed
distribution:

y(k) ∼ N (x(k), σ 2)

where N (μ, σ 2) is a Gaussian distribution with mean μ
and variance σ 2. In this case, an outlier can be defined
as a point, where |y(k) − x(k)| > 3σ where | · | is the
absolute value operator. If the mean value of the actual
states is equal to μ, then this definition can be rephrased as
|y(k) − μ| > 3σ . However, this method is offline and also
it cannot be used when the system states do not have a fixed
distribution. In this paper, we have assumed that the system is
subjected to a fault, which can change the nominal dynamics
of the system as well as the underlying distribution of
the states.

To develop a method of online outlier detection for a system
with changing dynamics, we will investigate the measured
state vector in a fixed time window, assuming that the mea-
surement noise has a fixed distribution over each of these small
time windows. Suppose that the state vector at time instant k
is being investigated and consider a finite window of time with
length p in which the measured state vector is available, i.e.,
{y(k − p + 1), . . . , y(k − 1), y(k)}.

If the outlier-free state vector in the current window is
available, then the difference between the actual and the
measured state vector can be calculated by δ = y − x and
its mean and variance over the selected time interval can be

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on November 08,2024 at 13:40:17 UTC from IEEE Xplore.  Restrictions apply. 
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found by

μ (k)= 1

p

p−1∑
j=0

(δ(k− j)), σ 2 (k)= 1

p

p−1∑
j=0

(δ(k− j)−μ(k))2.

Since the distribution of measurement noise is normal,
assuming that its variance is constant within the considered
time window, an outlier can be detected at time k, when
|δ(k) − μ(k)| > 3σ(k). Although this is an online outlier
detection method, which can also handle the changes in
the system dynamics, it is impossible to implement since
the outlier-free system states are not available in practice
and the only available data would be the measured states
contaminated with noise and outliers.

To overcome this issue, an estimator will be proposed to
estimate the unknown system states by assuming that the
states are available for measurement. In the literature, the
outlier removal is traditionally done without an estimator
while an observer is normally used for model-based FD and
not for outlier removal. In contrast, using an observer, we
are estimating the actual states and also performing outlier
removal.

If the system dynamics was known, it could be used to
construct an observer to estimate the system states, similar
to Kalman filter-based outlier detection methods. However,
this is only possible when the system is working in healthy
conditions with known dynamics. In our case, the system
is subjected to unknown changes like faults. Therefore, an
estimator, which is able to approximate the system states
without using the system dynamics is required. To construct
this online approximator and its learning mechanism, initially
we consider the case when the measured data does not have
outliers, and then the general case will be investigated. Since
ω (x (k) , u (k)), η (x (k) , u (k)), h (x (k) , u (k)) are all smooth
functions, x(k + 1) in (1) can be approximated by a two-layer
NN, if xm does not involve outliers. Therefore, x (k + 1) can
be written as

x (k + 1) = W T (k)ψ (x (k) , u (k))+ μ(k)

where W∈ R
q×n is the unknown parameter matrix, which will

change when a fault occurs in the system or the model para-
meters change due to shift in the operating conditions, which
can also change the distribution of the states, ψ (x (k) , u (k))
is a basis function-like sigmoid, and μ(k) is the approximation
error, which is bounded by μM [27].

Now, let the estimated states be denoted as xs and consider
the NN output as

xs (k + 1) = Ŵ T (k)ψ(xs(k), u(k)) (2)

where Ŵ∈ R
q×n represents the unknown weights of the output

layer of NN. Now, an update law for training Ŵ is required.
Define the state estimation error x̃ (k) = x (k) − xs(k) and
parameter estimation error W̃ (k) = W (k)− Ŵ (k). When there
is no noise and outliers in the measured states, which means
y is equal to x at all times, the weight update law can be

selected as

Ŵ (k + 1) = Ŵ (k)+ βψ(xs(k), u(k))eT (k + 1)

−γ‖I −βψ(xs(k), u(k))ψT (xs(k), u(k))‖Ŵ (k)

(3)

where β > 0 is a constant learning rate, 0 < γ < 1, and
e (k + 1) = y (k + 1)−xs(k+1). Note that the NN weights are
updated by the difference between the measured and estimated
states, because the actual system states are not available. Then,
the state estimation error can be written as

x̃(k + 1) = W T (k)ψ̃ + Ŵ T (k)ψ(xs(k), u(k))+ μ(k)

where ψ̃ (k) = ψ (x (k) , u (k))− ψ (xs (k) , u (k)).
Remark 3: Instead of the measured state vector y, the

delayed output of the NN (xs(k)) along with the input vector
u (k) are used as NN inputs, to prevent the outliers in measured
data from affecting the state estimates, whereas y is only used
for updating the NN weights. Later on, the weight update law
in (3) will also be modified to cancel the effect of outliers on
the NN weights.

By choosing the following Lyapunov function candidate:

V = x̃ T (k)x̃(k)+ 1

β
tr{W̃ T (k)W̃ (k)}

it can easily be shown that state and parameter estimation
errors will be uniformly ultimately bounded (UUB). However,
measured states involve outliers, so this approach cannot be
used since the outlier-free state vector is not available. In other
words, when y is contaminated with outliers and this measured
data is used to update the NN weights in (3), the actual states
will not be estimated correctly while the outlier detection will
also be unreliable.

To solve this problem, the outlier detection and state estima-
tion processes will be combined to properly detect the outliers
and design a new weight update law that is not affected by the
outliers. The parameter update law in (3) is modified using a
variable learning rate whose value will be zero when an outlier
is detected at time (k + 1) and not zero otherwise. Suppose
that y(k +1) is an outlier. In this case, e (k + 1), which is used
to update the parameters will be large, even if the weights are
close to their desired values and xs(k+1) is close to its desired
value x(k+1). To prevent the NN weights to be updated by an
outlier at this time instant, the variable leaning rate β(k + 1)
used in the update law should take zero value.

Since Ŵ (k) is available at the time instant k, xs(k + 1) can
be calculated and used for outlier detection before updating the
weights. To perform the outlier detection on y (k + 1), again
consider a finite window of time with length p. The median
value of ‖e‖ = ‖y − xs‖ (where ‖·‖ is the norm operator) in
a window ending at time (k + 1) is defined by

M(k + 1)=Median{‖e(k− p + 2)‖, . . . , ‖e(k)‖, ‖e(k + 1)‖}
and the standard deviation in the same time window is defined
by

σ (k+1)=√
Var {‖e (k− p + 2)‖ , . . . , ‖e (k)‖, ‖e (k+1)‖}.

Similar to the first case, we assume that the variance of
the measurement noise is constant within the time window.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on November 08,2024 at 13:40:17 UTC from IEEE Xplore.  Restrictions apply. 
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Therefore, a threshold value of three times the standard
deviation is used to detect the outliers. Because of the limited
time window, the mean value of the data set inside a window
might be significantly affected even by a single outlier, which
might increase the probability of a false or missed alarm. In
contrast, median value is not easily affected by a single outlier.
Therefore, if the mean value is used for outlier detection, the
unwanted change in the mean value can definitely degrade the
performance of outlier detection process. This simple example
clarifies the reason why median is used in this outlier detection
scheme instead of mean value.

Thus, median value is used instead of mean value to
overcome this problem. Finally, the data point at time (k + 1)
is considered an outlier if

| ‖e (k + 1)‖ − M(k + 1)| > 3σ (k + 1) .

Now that the outlier detection is performed for the data set
comprised of system states at time (k+1), we need to construct
an analytical formula to find the variable learning rate β(k+1)
based on whether or not an outlier exists at this time instant.
The idea is to reduce the learning rate, preferably to zero,
when an outlier is detected at time (k + 1), to prevent the NN
weights from getting updated by an outlier. In addition, the
learning rate needs to be small when outliers are not present
with a relatively large amplitude noise.

For this purpose, define the function S (·) as

S (z) =
{(

1 − z2
)2
, for |z| < 1

0, otherwise.

This bell-shaped function achieves its maximum at z = 0 and
takes zero value when z ≥ 1. This function is used to construct
the robust variable learning rate given by

β (k + 1) = βM S

(
1

3σ(k + 1)
| ‖e (k + 1)‖ − M (k + 1)|

)
where βM is the maximum possible learning rate parameter,
which keeps the estimator stable. Larger noise amplitude will
result in larger values for |‖e(k +1)‖− M(k +1)|, thus smaller
values for the learning rate. Particularly, when |‖e(k + 1)‖ −
M(k + 1)| > 3σ(k + 1) [which means an outlier is detected
at time (k + 1)] β(k + 1) will automatically be set to zero,
so the weights will not be updated upon detecting an outlier.
Furthermore, considering the definition of outliers, it can be
inferred that an outlier is detected at time k if β(k) = 0.

Finally, the proposed parameter update law can be repre-
sented by

Ŵ (k + 1) = Ŵ (k)+ β(k + 1)ψ(xs(k), u(k))eT (k + 1)

−γ ‖ I − β(k + 1)ψ(xs(k), u(k))ψT (xs(k), u(k)) ‖ Ŵ (k).

(4)

The definition of the learning rate implies that, if e (k + 1) is
relatively close to M(k + 1), then the corresponding learning
rate β(k + 1), which appears in the parameter update law,
will be close to maximum possible learning rate. Whereas,
if e (k + 1) is largely deviated from M(k + 1) then the
corresponding learning rate, will be zero or close to zero.
Thus, the measurement noise cannot make significant change

on the NN weights while the effect of outliers on the weight
update law is completely eliminated. In the following theorem,
the performance of state estimation with the proposed outlier
detection and removal scheme is discussed.

Theorem 1: Let an adaptive observer in (2) be used to
estimate the state vector of system (1) when the measured
state vector y is contaminated with outliers. Then, the state
estimation error, x̃ (k) = x (k) − xs(k), and the NN weight
estimation error W̃ (k) are UUB in the mean if the user-defined
variables are selected such that

3W 2
maxc2

ψ(1 + 2β2
Mψ

2
max) < 12γ ‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖

> 2β2
Mψ

4
max+3ψ2

max + 2/3

+γ 2‖I −β(k+1)ψ̂(k)ψ̂T (k)‖2.

Proof: Consider the following Lyapunov function:

V = E(tr{x̃ T (k)I x̃(k)})+ 1

3
E(tr{W̃ T (k)W̃ (k)})

where E(·) is the expectation operator. The first difference of
this function is given by

�V = E(tr{x̃ T (k + 1)I x̃(k + 1)− x̃ T (k)I x̃(k)})
+1

3
E(tr{W̃ T (k + 1)W̃ (k + 1)− W̃ T (k)W̃ (k)}).

By substituting x̃(k + 1) from the state estimation error
equation and W̃ (k + 1) from the update law in the above
equation and applying Cauchy–Schwarz inequality, we obtain

�V ≤ E(tr{3ψ̂T (k)W̃ (k)W̃ T (k)ψ̂(k)

+3ψ̃T(k)W (k)W T (k)ψ̃(k)+3μT (k)μ(k)−x̃ T(k)x̃(k)})
+1

3
E(tr{3(1−γ ‖I−β(k+1)ψ̂(k)ψ̂T (k)‖)2W̃ T (k)W̃ (k)

+3β2(k + 1)e(k + 1)ψ̂T (k)ψ̂(k)eT (k + 1)

+3γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2W T (k)W (k)

−W̃ T (k)W̃ (k)})
≤ 3ψ2

max E(‖W̃ (k)‖2)+ 3E(tr{ψ̃T (k)W (k)W T (k)ψ̃(k)})
+3E(‖μ(k)‖2)− E(‖x̃(k)‖2)

+1

3
E(tr{−6γ ‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖W̃ T (k)W̃ (k)

+3γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2W̃ T (k)W̃ (k)

+6β2(k + 1)x̃(k + 1)ψ̂T (k)ψ̂(k)x̃ T (k + 1)

+6β2(k + 1)v(k + 1)ψ̂T (k)ψ̂(k)vT (k + 1)

+3γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2W T (k)W (k)

+2W̃ T (k)W̃ (k)})

where ψ̂(k) = ψ(xs(k), u(k)). Note that E(vT (k + 1)v
(k + 1)) = E(‖v(k + 1)‖2) ≤ v2

M . Assuming that the
basis function ψ(·) is a Lipschitz function with the Lipschitz
constant cψ , in the difference of Lyapunov function, we
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arrive at

�V ≤ 3ψ2
max E(‖W̃ (k)‖2)+ 3W 2

maxc2
ψ E(‖x̃(k)‖2)+ 3μ2

M

−E(‖x̃(k)‖2)+ 2

3
E(‖W̃ (k)‖2)

−2γ ‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖E(‖W̃ (k)‖2)

+γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2 E(‖W̃ (k)‖2)

+γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2W 2
max + 2β2

Mψ
2
maxv

2
M

+2β2
Mψ

2
max

(
ψ2

max E(‖W̃ (k)‖2)

+3W 2
maxc2

ψ E(‖x̃(k)‖2)+ 3μ2
M

)
where Wmax and ψmax are the maximum norm values of W
and ψ . By substituting x̃(k +1) from the state estimation error
equation and combining similar terms to obtain

�V ≤ −(
1 − 3W 2

maxc2
ψ

(
1 + 2β2

Mψ
2
max

))
E(‖x̃(k)‖2)

−(2γ ‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖ − 2β2
Mψ

4
max − 3ψ2

max

−2

3
− γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2)E(‖W̃ (k)‖2)

+γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2W 2
max + 2β2

Mψ
2
maxv

2
M

+3μ2
M

(
1 + 2β2

Mψ
2
max

)
.

Define b1, b2, and D as

B1 = 1 − 3W 2
maxc2

ψ

(
1 + 2β2

Mψ
2
max

)
B2 = 2γ ‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖ − 2β2

Mψ
4
max − 3ψ2

max

−2/3 − γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2

D = γ 2‖I − β(k + 1)ψ̂(k)ψ̂T (k)‖2W 2
max

+2β2
Mψ

2
maxv

2
M + 3μ2

M

(
1 + 2β2

Mψ
2
max

)
.

If the design parameters are selected such that B1 > 0 and
B2 > 0, the state and weight estimation errors will be UUB
in the mean with the following bounds given by:

E(‖x̃(k)‖2) ≤ D

B1
, E(‖W̃ (k)‖2) ≤ D

B2
.

Remark 4: The conditions stated in Theorem 1 can be
satisfied by proper selection of the basis function ψ and user-
defined parameters including βM , ψmax, cψ , and γ.

In summary, the proposed NN and weight update law can
both detect and remove outliers from the measured data or
system state or output vector y. First of all, if β(k) is zero
then an outlier is detected in y(k), which will have no impact
on NN weight update. Therefore, outliers will automatically be
removed in the state estimates xs and measurement noise will
be moderated. Furthermore, by reducing the effect of outliers
on the weight update law, the state estimation issue is resolved
and the boundedness of state and parameter estimation errors
can be obtained similar to the case without outliers in mea-
sured data.

After detection and removal of outliers, the estimated
outlier-free state vector xs can be used for FD without the risk
of having false alarms. Fig. 1 shows an overview of the com-
bined online outlier detection/removal and FD scheme. The
following section briefly discusses about the fault diagnosis
after outlier removal.

Fig. 1. Overview of the combined outlier removal and FD scheme.

IV. FAULT DIAGNOSIS SCHEME

Model-based FD schemes require an observer to estimate
the system states. Then an FD residual will be generated
by comparing the actual and estimated system states [28].
Traditional model-based FD schemes use the measured states
in the FD observer and then compare them with the observer
states to detect faults. However, when the measured states
are not reliable and involve outliers, false alarms could be
triggered. Therefore, in this section, the outlier-free state
vector xs is used for the purpose of fault diagnosis, instead of
the actual measured state vector y. As mentioned in previous
section, it can be shown that x̃ = x − xs is bounded in the
mean, i.e., E(‖x̃(k)‖) < σM = √

D/B1.
Consider the nonlinear FD estimator

x̂(k + 1) = Ad x̂(k)+ ω(xs(k), u(k))

+ ĥd(xs(k), u(k); θ̂d(k))− Ad xs(k) (5)

where x̂(k) ∈ R
n is the estimated state vector, ĥd : R

n ×
R

p×n → R
n is the output of the OLAD with θ̂d ∈ R

p×n

being its set of unknown parameters, and Ad is a user-defined
diagonal matrix, which must be selected in a way that the
eigenvalues of the closed-loop system lie within the unit
circle [16]. Initial values of the FD estimator are taken to
be x̂(0) = x̂0, θ̂d(0) = θ̂d0 , such that ĥ(xs, u, θ̂d0) = 0.

In the proposed FD estimator, NNs are used as the OLADs.
NN-based OLAD is off prior to the detection of a fault and
thus its output is zero. Upon detection of a fault, the OLAD
is turned on to estimate the fault dynamics.

Define the detection residual as ē = xs − x̂ . Prior to the
detection of a fault, the residual dynamics are given by

ē(k + 1) = xs(k + 1)− x̂(k + 1)

= x(k + 1)− x̃(k + 1)− x̃(k + 1)

= Adē(k)+ ω(x(k), u(k))− ω(xs(k), u(k))

+ η(x(k), u(k))− x̃(k + 1)

= Adē(k)+ ω̃(k)+ η(x(k), u(k))− x̃(k + 1)
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where ω̃(k) = ω(x(k), u(k))− ω(xs(k), u(k)). As mentioned
earlier, x̃ , which is the difference between the actual system
states x and the estimated outlier-free states xs , is bounded. In
addition, from assumptions 1 and 2, we know that ω̃ and η are
bounded. Therefore, with the appropriate selection of Ad , the
detection residual ē will remain bounded in healthy operating
conditions of the system.

Now, consider a dead-zone operator

D [z] =
{

0, if |z| ≤ ρ
z, if |z| > ρ

where ρ is the FD threshold. When the detection residual
exceeds the detection threshold, a fault is declared active
through the dead-zone operator and the OLAD that generates
ĥd (k) is initiated and tuned online using the following update
law:

θ̂ (k + 1) = θ̂d(k)+ αφ̂(k)D[ēT (k)|]
−γ‖I − αφ̂(k)φ̂T (k)‖ θ̂d (k) (6)

where α > 0 is the learning rate, 0 < γ < 1 is the forgetting
factor, and φ̂ (k) = φ (xs (k) , u (k)) is a basis function like
sigmoid or RBF. Moreover, the output of the OLAD will be
given by

ĥd (k) = θ̂T
d (k)φ(xs(k), u(k)).

After detection, the residual dynamics can be described by

ē(k + 1) = Adē(k)+ ω̃(k)+ η(x(k), u(k))− x̃(k + 1)

+ h(x(k), u(k))− ĥd (xs(k), u(k); θ̂d(k)).

Asserting the NLIP assumption on the fault function, the
above equation can be rewritten as

ē(k + 1) = Adē(k)+ ω̃(k)+ η(x(k), u(k))

−x̃(k + 1)+ θ̃T
d (k)φ(xs(k), u(k))+ ε(k) (7)

where θ̃d(k) = θd − θ̂d(k) is the OLAD parameter estimation
error, and ε(k) is the approximation error, which is bounded
by εM .

The stability of the proposed scheme will be investigated in
the following theorem.

Theorem 2 (Fault Diagnosis Observer Performance): Let the
proposed observer in (5) be used to monitor the system in (1),
with the OLAD turned on upon detection of a fault. Let the
update law in (6) be used to update the unknown parameter set
θ̂d . Then, the FD residual, ē(k), and the parameter estimation
errors, θ̃d(k) are UUB in the mean.

Proof: Consider the following Lyapunov function candi-
date:

V = E(tr{ēT (k)ē(k)})+ E
(
tr
{
θ̃T

d (k)θ̃d(k)
})
.

Then, the first difference of the Lyapunov function is given by

�V = E(tr{ēT (k + 1)ē(k + 1)− ēT (k)ē(k)})︸ ︷︷ ︸
�V1

+E
(
tr
{
θ̃T

d (k+1)θ̃d(k+1)−θ̃d(k+1)−θ̃T
d (k)θ̃d(k)

})
︸ ︷︷ ︸

�V2

By substituting ē (k + 1) from (7) in �V1 and applying the
Cauchy–Schwarz inequality, we obtain

�V1 ≤ E
(
tr
{
6ēT (k)AT

d Aē
d(k)+ 6ω̃T (k)ω̃(k)

+6ηT (x(k), u(k))η(x(k), u(k))

+6x̃ T (k + 1)x̃(k + 1)+ 6φ̂T (k)θ̃d(k)θ̃
T
d (k)φ̂(k)

+6εT (k)ε(k)− ēT (k)ē(k)
})

≤ 6E
(
tr
{

AT
d Ad ē(k)ēT (k)

}) + 6E
(
ω̃T (k)ω̃(k)

)
+6E

(
ηT (x(k), u(k))η(x(k), u(k))

)
+6E

(
x̃ T (k + 1)x̃(k + 1)

) + 6E
(
εT (k)

)
+6E

(
tr
{
φ̂(k)φ̂T (k)θ̃d(k)θ̃

T
d (k)

}) − E
(
ēT (k)ē(k)

)
.

Now, substitute θ̃d (k + 1) from (6) in �V2 and use the
Cauchy–Schwarz inequality

�V2 = E(tr{θ̃d(k)− αφ̂(k)ēT (k)− γ‖I − αφ̂T (k)‖θ̃d (k)

+γ‖I −αφ̂(k)φ̂T (k)‖θd )
T (θ̃d(k)− αφ̂(k)ēT (k)

−γ‖I −αφ̂(k)φ̂T (k)‖θ̃d (k)+γ‖I −αφ̂(k)φ̂T (k)‖θd )

−θ̃T
d (k)θ̃ (k)})

≤ 3α2φ̂T (k)φ̂(k)E(ēT (k)ē(k))

+3γ 2‖I − αφ̂(k)φ̂T (k)‖2 E
(
tr
{
θT

d θd
})

+2E(tr{θ̃T
d (k)θ̃d(k)})

−6γ‖I − αφ̂(k)φ̂T (k)‖E(tr{θ̃T
d (k)θ̃d(k)})

+3γ 2‖I − αφ̂(k)φ̂T (k)‖2 E(tr{θ̃T
d (k)θ̃d(k)}).

By combining �V1 and �V2, taking Frobenius norm, and
using Assumption 2, we arrive at

�V ≤ 6A2
dmax

E(‖ ē(k)‖2)+ 6c2
g E(‖ x̃(k)‖2)+ 6η2

M + 6σ 2
M

+6ε2
M + 6φ2

max E(θ̃d(k)‖2)− E(‖ ē(k)‖2)

+3α2φ2
max E(‖ ē(k)‖2)+3γ 2 ‖I −αφ̂(k)φ̂T (k)‖2 θ2

dmax

�V ≤ 6A2
dmax

E(‖ ē(k)‖2)+ 6c2
g E(‖ x̃(k)‖2)+ 6η2

M + 6σ 2
M

+6ε2
M + 6φ2

max E(‖ θ̃d(k)‖2)− E(‖ ē(k)‖2)

+3α2φ2
max E(‖ ē(k)‖2)+3γ 2‖I −αφ̂(k)φ̂T (k)‖2 θ2

dmax

−6γ‖I − αφ̂(k)φ̂T (k)‖E(‖ θ̃d (k)‖2)

+(3γ 2 ‖ I − αφ̂(k)φ̂T (k)‖2 +2)E(‖ θ̃d(k)‖2)

≤ −(
1 − 6A2

dmax
− 3α2φ2

max

)
E(‖ ē(k)‖2)

−(6γ‖I − αφ̂(k)φ̂T (k)‖−6φ2
max

−3γ 2‖I − αφ̂(k)φ̂T (k)‖2 −2)E(‖ θ̃d(k)‖2)

+6c2
gσ

2
M + 6η2

M + 6σ 2
M + 6ε2

M

+3γ 2 ‖ I − αφ̂(k)φ̂T (k)‖2 θ2
dmax

.

Therefore, ē and θ̃d are UUB in the mean if the following
conditions are satisfied:

6A2
dmax

+ 3α2φ2
max < 1

3γ‖I −αφ̂(k)φ̂T (k)‖(2−γ‖I −αφ̂(k)φ̂T (k)‖) > 6φ2
max+2.

Moreover, the bounds are given by

E(‖ē(k)‖2) ≤ F

C1
, E(‖θ̃d (k)‖2) ≤ F

C2
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Fig. 2. Schematic view of the three-tank system.

where F , C1, and C2 are defined by

F = 6c2
gσ

2
M + 6η2

M + 6σ 2
M + 6ε2

M

+3γ 2 ‖ I − αφ̂(k)φ̂T (k) ‖2 θ2
dmax

C1 = 1 − 6A2
dmax

− 3α2φ2
max

C2 = 6γ ‖ I − αφ̂(k)φ̂T (k) ‖ −6φ2
max − 2

−3γ 2 ‖ I − αφ̂(k)φ̂T (k) ‖2 .

V. SIMULATION RESULTS

In this section, a three-tank water system is selected to verify
the performance of the proposed schemes in simulations and
then an axial piston pump testbed is used as an experimental
study to show the effectiveness of the proposed outlier removal
technique in practice.

Example 1: A schematic view of the three-tank benchmark-
ing system [29] is shown Fig. 2. This system consists of three
tanks connected to each other, two input pumps on tanks 1
and 2 and one water outlet on tank 2.

The three-tank system dynamics are described by

x (k + 1) = ω (x (k) , u (k))+ η (x (k))

where x = [x1, x2, x3]T is the state vector and ω(x(k), u(k))
is the known nonlinear dynamics of the system [17] given by

ωx(k, u(k))

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T
A

{ − c1Spsign (x1 (k)− x3 (k))
√

2g |x1 (k)− x3 (k)|
+u1 (k)

} + x1 (k)
T
A

{ − c3Spsign (x2 (k)− x3 (k))
√

2g |x2 (k)− x3 (k)|
−c2Sp

√
2g x2(k)

+ u2 (k)
} + x2 (k)

T
A

{ − c1Spsign (x1 (k)− x3 (k))
√

2g |x1 (k)− x3 (k)|
−c3spsign(x3(k)− x2(k))

√
2g|x3(k)+ x2 (k)

} − x3 (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where T is the sampling time chosen to be 0.01 s,
A = 0.0154 m2 is the cross section of the tanks,
Sp = 5×10−5 m2 is the cross section of the connecting pipes,
c1 = 1, c2 = 0.8, and c3 = 1 are the outflow coefficients, and
g = 9.8 m/s2 is the standard gravity. Moreover, η(x(k)) =
[10−3 sin(0.7 kT)10−2 cos(0.8 kT)10−1.65 cos(0.5kT )]T rep-
resents the modeling uncertainty.

This system is subjected to a fault, which is given in terms
of leakage in tank 1 and occurs at time t0 = 40 s. The fault
function is described by

h(x(k)) = [0.0154(1 − e−0.5T (k−k0))
√

2gx1(k) , 0 , 0]T .

Fig. 3. Actual system states x .

Fig. 4. Measured system states.

Fig. 5. Distribution of the measured data y1.

The FD estimator in (5) is used to detect the faults, where
Ad = 0.99I3×3. The OLAD output is given by ĥd (k) =
θ̂T

d (k)φ(V xs(k) + B), where θ̂d ∈ R
8×3 is the estimated

parameters while φ ∈ R
8 is a vector of sigmoid functions.

Moreover, V and B are selected randomly and the update law
parameters are α = 0.5, γ = 10−4. The detection threshold,
ρ, is selected to be 2.5.

Fig. 3 shows the actual system states, while Fig. 4 shows
the measured system states involving a number of outliers.
The state distribution for healthy and faulty periods is shown
in Fig. 5. The mean and variance of the distribution in
healthy period are 2.33 and 2.05, respectively, while mean and
variance values for the faulty period are 54.24 and 1479.53,
respectively. If the measured data is used for FD, the outliers
will cause false alarms to be triggered. This can be observed
in Fig. 6, where the detection residual is plotted along with
detection threshold. Fault is seeded at t = 40 s, but a false
alarm will be triggered at about t = 8 s. It is obvious that in
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Fig. 6. Detection residual without outlier removal.

Fig. 7. Estimated outlier-free states xs .

this case, the estimated fault given by the OLAD cannot be
close to the actual fault at all.

To fix this problem, the proposed outlier removal scheme
is first used to remove the outliers from the measured data.
An NN with 12 hidden layer neurons and sigmoid activation
functions is used to estimate xs and p, which is the window
size is selected as 100 (that means 1 s). The estimated xs

is shown in Fig. 7. It can be observed that the outliers are
removed from the measured states. Table I shows the outlier
detection results for several cases with different number of
outliers at randomly selected times. It is observed that the
proposed scheme has been able to detect 100% of the outliers
in most of the cases, with low number of false positives.

When xs is used in the FD observer, no false alarm will be
triggered and the actual fault is detected at t = 74 s (Fig. 8).
Fig. 9 shows the estimated and actual fault magnitudes in
this case. Unlike the previous case, when no outlier removal
was performed, the fault can be estimated with a small error.
The simulation results clearly show the effectiveness of the
proposed outlier detection/removal scheme. Furthermore, the
importance of removing the outliers before performing the FD
is clarified.

Example 2: A linear system has been selected as the second
example to compare the proposed scheme with a Kalman
filter-based approach. The system is described by x (k + 1) =
Ax(k), where A is defined by

A =
[

cos θ sin θ
− sin θ cos θ

]
for t ≤ 50

A = 1.003

[
cos θ sin θ
− sin θ cos θ

]
for t > 50

with θ = π/500. In fact, the system dynamics are slightly
changed during the simulation, to test the proposed scheme

TABLE I

OUTLIER DETECTION STATISTICS

Fig. 8. Detection residual with outlier removal.

Fig. 9. Detection residual with outlier removal.

and compare its performance with a Kalman filter-based
method under nonstationary operating conditions. The entire
simulation time is taken to be 100 s and the sampling time is
0.1 s, and the states are measured as follows:

y (k) ∼ N
(

x(k),

[
.25 0
0 0.25

]
+

[
r1(k) 0

0 r2(k)

])
where r1(k) is set to 1 with probability κ and to zero with
probability 1 − κ .

Fig. 10 shows the actual system states x , along with
measured states y when κ = 0.05 and Fig. 11 shows the
distribution of y2 − x2 for t < 50 and t > 50. In the first
half of the simulation, the mean and variance of y2 − x2 are
0.049 and 0.82, respectively, whereas mean and variance in
the second half of the simulation are −0.008 and 1.37. The
proposed outlier detection and removal scheme is applied on
the measured data, with p = 10, γ = 0.01, and randomly
selected W matrix. The estimated states are shown in Fig. 12.
It is worth mentioning that the performance of the scheme
is not degraded after the change in the system dynamics
at t = 50 s.
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Fig. 10. Actual and measured system states.

Fig. 11. Distribution of the difference between actual and measured states.

Fig. 12. Estimated states using the proposed NN-based scheme.

Next an outlier-robust Kalman filter whose parameters are
fitted according to the maximum-likelihood criterion [19], is
applied on the same measured data and the result is shown
in Fig. 13. Although this method has a good performance in
the first 50 s of the simulation, its performance is extremely
degraded when the dynamics of the system changes. Mean
squared error of state estimation for both of the methods
are presented in Table II for comparison. This simulation
clearly shows that unlike Kalman filter-based approaches, our
outlier removal method is robust to changes in the system
dynamics (which could be due to the faults or changes in
the operating conditions). Although the state estimation error
of the Kalman filter method after the occurrence of fault
seems to be useful for FD, the large error in estimation makes
this method useless for outlier removal in the presence of
fault.

The simulations have been repeated for 4000 times using
the proposed method. The noise and outliers are random,
thus vary from one simulation to the other. The average

Fig. 13. Estimated states using an outlier robust Kalman filter.

TABLE II

OUTLIER REMOVAL PERFORMANCE COMPARISON

TABLE III

RESULTS OF THE REPEATED SIMULATIONS USING NN-BASED SCHEME

Fig. 14. Picture of the axial piston pump testbed.

and maximum mean squared error of state estimation and
the average percentage of detected outliers are shown in
Table III. The results imply that the proposed method is
able to detect and remove the outliers with consistently
high performance. The important point is that the average
percentage of detected outliers is as high as 97% and the
maximum mean squared error in all the simulations is less than
four, which is still very low compared with the Kalman filter
method [19].

Example 3: An axial piston pump testbed is used to test
the performance of the proposed outlier removal scheme and
observe its effect on FD in an experimental study. A picture
of this testbed is shown in Fig. 14. The nonlinear dynamics
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Fig. 15. Measured pump outlet pressure.

of this system is described by

xi (k + 1) = xi (k)+ BT

C − A p Spi

(
Qkpi (k)−Q pi(k)−Qlpi (k)

)
for i =1, . . . , 9

x10 (k+1)= x10 (k)+ C BT

Vc

(
9∑

i=1

Q pi (k)−Cd2 Av

√
2x10(k)

ρc

)

where [x1(k), . . . , x9(k)] represent the pressures in the nine
pistons, x10(k) is the pump outlet pressure, B is the bulk
modulus of the hydraulic fluid, Vc is the theoretical vol-
ume of flow, A p is the piston area, Cd2 is the discharge
coefficient of needle valve orifice, Av is the orifice area of
the needle valve, ρc is the flow density, and T is the sam-
pling time. Furthermore, Qkpi (k), Qlpi (k), Q pi (k), Spi (k)
are obtained by

Qkpi (k) = ωπd2 Rp

4
tan(βc) sin(ωk − (i − 1)αp)

Qlpi (k) = πrh3
g

6μL
(xi (k)− Pc)

Q pi (k) = Cd1 Ad1

√
2 |xi (k)− x10(k)|

ρc

Spi (k) = Rp tan(βc) (1 − cos(ωk − (i − 1)αc))

where ω is the angular velocity of the pump drive shaft, d is
the diameter of the piston, Rp is the piston radius on barrel,
βc is the angle of swash plate, αp is the phase delay, r is the
radius of piston, μ is the absolute fluid velocity, and L is the
length of leakage passage.

In this system, only one of the states, namely the pump
outlet pressure is measurable. Therefore, for the purpose of
FD, an output observer [24] is constructed using the model of
the system. The dynamics of the output observer is slightly
different from the full state observer presented in this paper,
in that it uses the output of the system instead of the entire
state vector. The sampling time for measuring the data is
0.1 s. The output of the system is measured in healthy
operating conditions for 200 s and is shown in Fig. 15. Mean
and variance of the whole data set are 1428.79 and 59.34,
respectively.

If the measured data is directly used for FD, several false
alarms will be triggered. This can be clearly observed in
Fig. 16, which shows the FD residual and threshold without
any outlier removal performed. To solve this problem, we

Fig. 16. Detection residual without outlier removal.

Fig. 17. Estimated outlier-free pump outlet pressure.

Fig. 18. Detection residual with outlier removal.

use our proposed outlier removal scheme. The user-defined
parameters of the update law are selected as τ = 0.2 and
p = 20. The estimated state xs is shown in Fig. 17 and the
FD residual when xs is used for FD is shown in Fig. 18. It is
clearly observed that the outliers are removed from the data
and no false alarm is triggered.

VI. CONCLUSION

In this paper, an NN-based online outlier detection and
removal scheme was presented and combined with a model-
based FD scheme. It was demonstrated that the underlying
distribution of data in the case of a data driven scheme or states
in the case of model-based FD is nonstationary due to the
presence of changing dynamics, outliers, and noise. Moreover,
it was shown that a separate OIR scheme is necessary prior to
any FD and diagnosis. On the other hand, when the outliers
are removed by the proposed scheme, FD can be performed
successfully. The proposed observer-based method changes the
learning rate to zero when an outlier is detected. The proposed
OIR scheme can function even when the measured data, which
is going to be used for monitoring and FD is contaminated
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with outliers. Then, a data driven FD scheme can yield low
detection rate and high false alarm rate similar to the model-
based FD framework.
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