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INTRODUCTION AND REVIEW OP LITERATURE

TJltrasonio -waves have proved very valuable in the observation
of both the velocity and the absorption coefficient of sound in
various media. Prom the velocity measurements of ultrasonic waves
in metals, it is possible to obtain elastic constants, such as the
compressibility, and the specific heat x. Also, the observed
attenuation depends greatly on the type and structure of the material.
One of the widely used methods for investigation of the internal
losses in solid state physics is the pulse-eoho technique. This
method is being used almost exclusively in internal friction

investigationp-

There are three methods usually used to generate ultrasonic
waves:
a) Piezoelectric Method:
A piezoelectric transduoer is placed in contact with the
specimen and an oscillatory voltage is applied”. The trans-
duoer converts the electrical signal to a train of mechanical
waves which then is propagated into the specimen. This method
is used for the production of both continuous and pulsed waves.
b) Magnetostrict!ve Method:
In this method, a rod of magnetic material is subjected to an
alternating magnetic field parallel to its length. The materials
used are ferro-magnetic metals such as iron, niokel or cobalt.
In this method, the application of an alternating magnetic field
to the transduoer generates mechanical vibrations which are
transmitted into the specimen*
e) Electric Method:
In lhis method, an oscillating electric field is applied between
the specimen and an electrode. This oscillating electrio field
gives tri.se to a force which acts on the surface of the specimen.
This impressed electric force sets up vibrations in the specimen
which in turn produces ultrasonic waves. This method has been
used only to generate continuous waves.



Hie pulse-echo method has been one of the most important tech-
nical advances in ultrasonics in the past decade. In this method,
a sinusoidal voltage pulse of between 1 and 5y sec duration is applied
to a transducer which is attached to the sample. With Morse's™
equipment the peak-to-peak voltage may be as much as several hundred
volts. With this technique, the spatial decay of a pulse is
measured, either as it passes between a sender and a receiver, or
as it is reflected between two parallel faces of the sample. The
chief advantages of this method lie in the simultaneous measurement
of velocity and attenuation, the large frequency range possible,
and that the directional properties in a single crystal may be
studied.

Hie continuous wave method is useful for attenuation measurement
in liquids but has also been used for such measurements in solids.

Bordoni’§ used the electrio field method for generating
continuous ultrasonic waves in solids.We investigate here the
possibility of generating pulsed ultrasonic waves by applying an
electric field to the surface of the sample.

Hie chief advantages of the electrio method over other methods
are:

1) Hie absence of a transducer, which eliminates elecromeohanical
resonance that occurs with the piezoelectric method.

In that method, the transducer thickness must be chosen to
be a multiple of the input wavelength, and design for a wide
range of operation is difficult.

2) Hie design is simple, as there is no direct contact between the
sample and the electrode. In other methods, oil or other bonding
material is required between the generator and the sample.

3) Energy losses from absorption of the ultrasonic waves are small,
because the sample is not in contact with the electrode,
therefore attenuation measurements are more accurate for the
electric method than for other methods.



5)

Mathematical methods Here used here for:
Calculation of the stress generated in a sample by piezoelectric
orystals.
Analysis of the wave propagation in an isotropic circular cylinder*
Calculation of the stress distribution in a cylindrical sample
using elastic theory* Stress as a function of radius and of the
frequency is obtained.
Investigation of electrode shapes necessary for generating the
stress distribution found in 3)* An electric field applied
between such a shaped electrode and the cylindrical rod will
produce a stress distribution similar to the previous one.
Numerical calculation of these electrode shapes; The shape of
an electrode is taken to be that of an equipotential surface
in the electrio field of 4).



FORCES QSNBRATBD BY A PIEZOELECTRIC GENERATOR

According to the usual convention in specifying crystal cuts,
the thickness is taken along the z axis of the crystal, the length
along the x axis, while the width lies along the y axis as shown
in figure 1 helow, where represents the thickness of a piezo-
electric generator along the z axis.

For mathematical simplicity without loss of generality, it
can he assumed that the generator has infinite dimensions along
the y and x axes. |If we take z as the thickness direction and
apply a conductive coating to the transduoer surfaces normal to
this axis, an electrio field in the z direction can he established

in the transduoer.

From the definitions of elastic and piezoelectric constants,
the following equations can he obtained » *

$33 T3 + d33E3 (2-1)
idlere Eis the elastic constant along the z axiz,
d”~ is the piezoelectrio constant along the z axis,
and are respectively the strain and stress components
along the z axis,
B is the oscillatory electric intensity with angular frequency
along the z axis.
Substitute Eq. (2-1) into

(2-2)
J-t’ d £

which is7the equation governing the longitudinal vibrations of
the bar -
There results*

S *V 5 7



Generator Sample

gig. 1

Wave propagation from generator to sample along the z-axis
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E.
*u3 2 31 (2-4)

by RS ¥y dz
where is the displacement along the z axis,
N is the density of the generator*
Since the thickness is assumed small, the voltage gradient E™ will
he a constant throughout the thickness of the generator* The

equation of motion for the generator is thus:
U
*V 3;@3 z

In the same manner, if the generator is attached to the sample
(see Fig. 1) the equation of motion of the sample is of the same

(2-5)

form. X -V
. A u
1-g* (2-0
33 nz
Here u: is E”Ehe displacement of the sample along the z axis,
v
N and are -the density and elastic constant for the sample.

Before we can obtain the force generated by the piezoelectric
generator, we must solve equations (2-5) and(2-6), which are the
wave equations. We now set

1

the so-called wave velocity in the generator.
Eq. (2-5) now becomes

(2-7)

The general solution of equation (2-7) is

uld “u3 N 5-vl*) (2-8)
where u”™ is any function which possesses finite second derivatives.
We seek solutions in the form of a superposition of standing waves
having frequency equal to the driving electrio field angular



frequency, . It is
u”» A sin (z- V™M) 4Bsin -~ ( z +v/~t)
+ Coos-Af-( z- V-t ) + 3cos vy (z+ vt)
(2-9)
where X *”"~MATfis the wave length in the generator and
A, B, C and I) are the arbitrary constants.
For simplicity ire put

>/§'T - (2-10)
— TsT Yi" w> (2-1X)
A+ BmL
B- A-F
C+D-G (2-12)
C-D-H

Then (2-9) becomes
Uj» ( L sin K"z + G oos K"z ) cos u>t +

( Foos K"z + H sin K"z ) sin U% (2-13)
Using the same method we consider the sample, ®ie thickness of
the sample is effectively infinite. Propagation will then occur

only in the +z direction wilh velocity v», The solution in the

form of a superposition of waves for the sample becomes

u™* Msin " z—vgt) + N cos -"N"(z-v/it) (2-14)
How i f
JitlL
- AH". y «vh
then u® » (M sin K*"z + H oos K”z) oos tNt +
( -Moos K2z + H sin Kgzjsiny”~t (2-15)

By using the following boundary conditions one can determine
the arbitrary constants:



I) At z-0, for a free crystal, the stress is zero* From (2-1)
it follows that

d33E3
2-0
2) When z - ~, the stress is continuous across the interface ,

)
+L _ i33fl Zsi
,E g®*
B* "33 "33, . 33. .
where and are the elastic and piezoeleotrio constants
along the z axis of the sample,
or
1 »t)
E ( - a33B )
833 33 3 33 £ a
3) The displacement is continuous at z -
ud( { , t) - w( , t)
From boundary condition 1)
d u. . .
L cos K~z oos fot - F sin Z sin t
d z - G sin K~z cos t + HK™ oos z sin u”t
d u3(0, t)
d z ' d33E3

( LK™oos K™z - GK~sin K”~z)cos (M)t +
( HK”cos Z™z - F2~sin N z) sin inNMt -dN"EN

Put Ig - E0 cos ullt



where 330 is the maximum electric field,

Therefore, since the corresponding terms must be equal,

( LK™cos Kz - QK~sin K-z ) * d33BQ

and
EK™cos K™z - FK™ sin K™z* O
Putting z * 0, there results
L K1 « d—3’:\3E0
or it o (2- 16)
and H Ki« °
or H*“ 0 (2-17)

From "boundary condition 2)

1
( L I™oos K O Ksin K”) oos U t + ———- g ( HK cos
33 33
- Ne) N 1 AN -
FK~sin K”™) sin ti < d33 E0 cos »t
33
KO ( Moos KO - H sin K () cos t t+ Msin Kjt,
E*
33 33
+ E eosKg N ) K2 sin fdDt (?-13)
Since CA 0]

the corresponding coefficients must be equal.

K
( LAcOSKA-GAsinAX) - — Ag- M 008 K27
33 33
K d-"E
N sin K2 - . 21-P , « O

33 33 (2—19a)



-m"E ( HMO0S K~- PKAsin K7)- BinK2 ™+ K cosKgQ)

€33 S33 (2-19T>)
Prom equations (2-16) and (2-17)> EQq.(2-19a) becomes

Kl
-£ —( d33EO000sKit- - 4r MQOS K23 + -gf- H sin
>3 i3 S33
d™E
- Jé&g (2- 20)
and Eq, (2-19b) becomes
- “5 * Bin K¥/- Msin K2IL+ H oos K.,”) =0 (2-21)

B3 S33
Prom boundary condition 3)> equations (2-13) and (2-15), it

follows that

M sin K2I+ N oos K2i - L sin G cos (2_g2)
d,E
Msin KA+ H oos KJ. - sin Kj + 0 cos Ki (2-23)
and - Moos d + K sin KQ- Foos K™+ Hsin kJ (2-24)
or
- M oos +5 sin Kj\_ = P oos iqg " (2_25)

Tbe equations (2-20), (2-21), (2-23) and (2-25) give the values

of Mand If
d,,E K, K
(1- cosK[) (— sinkK™ 8O + — 1 ]- oosK™oosKjO
M 1 5a 1 33
K 2 2 H 2 2
(—yr) oos * (-4 —-) Sin
S33 S33

(2- 26)

10



————— cosK \)e (-*frsinK ®oosK /N ------------—---—- £F“cosK { sinK?")
= 33 t 133 t t b * I
2 2 2 2
(—8*-) oos KJ +(—“T“ ) sin K
S33 1 33 n
(2-27)
From tie right side of Equation (2-18), the expression for the
stress at z® ‘becomes
K K
E0K2 d™(l-oogKIN )(— cosKjcos \Vp —mg”/sinK”sinvjt
T
3s? s.B K K,
33 33 (- 8r) 008 K1 J +(----1- ) sin. Kjl.
33 533 (2-28)

For simplicity, we express (2-28) in another forms

T K2Eo A33 008 M 2 ain(t~ (2-28)
3 %M I(-f~)o °&KIL + (gV-)VK'sin
where
te-i (- -> m A (2-30)
t (—ft") si» K1

H
From (2-29) the amplitude of the stress will he

A33Eqy 1" 008 KLU

s§ SE -fvfoos2K~+ (-AV)2sin2KjA ¥
w H 33 ' 33 J

Generally, the maximum value of the stress can he obtained when
the thickness satisfies the condition
1- cos = 2 (2-31)

11



Therefore oos KNIt * -1

KXJL" TT»3T , **" (2n - DTT

( 2n- DTT @n -1) (/ 1
. *  gE (2-32)
1 2t %33

where n - 1, 2, 3,
Therefore Eq.(2-—32) is the resonance condition for the thickness of
the piezoelectrical generator*

Now consider a quartz crystal as the generator and an aluminum
orystal as the sample* In EQq.(2-32), the thickness of the quartz
crystal for maximum stress can be found. Some -typical values are
given in Table I*

TABLE |

Thickness for quartz crystals for various resonant frequencies

Frequency o Thickness

1 megacycle 0.2690 cm
10 megacycles 0.0269 cm
100 megacycles 0.0026 om
500 megacycles 0.0005 com

From Egs. (2-29) and (2-31), one obtains the equation
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which expresses the amplitude of the stress at resonanace, as a
function of the electric intensity amplitude. In cgs units, the
elastic and piezoelectric constants hare the values

SN3 * 127.9 x 10 an /dyne

a3 *-6.76 x 10_8 statooulombs/dyne

The ratio of the stress to electric intensity is given hy TE®

which numerically has the value 1.064 x 10* statcoulomhs/cm”.
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WAVES DI' CYLINDRICAL RCD

We now investigate wave propagation in an isotropic circular
cylinder. Under this assumption we put the z-axis coincident with
the axis of the cylinder.

Before we investigate further the wave forms,it is necessary
to find the stress-strain equations and the vibration equations in
cylindrical coordinates. For an isotropic body, only two elastic
constants are independent,and the six stress-strain equations areg

T« (N
x> x (\
- (\
T4 P (3-1)
5 $H
6" 6
where T, = Txx v Tyy, T. *TZZ
T4= TyZ_ sz, T5 « TXZ TZX* T6: Txy:TyX

are the stresses.

Here , in T..., the first letter designates the direction of the
stress component and the second letter denotes the orientation
of the face on which TXd acts.

Also, Nou 21
siv . x 9 s2” a *
- * U3 , N U2
4 ay °
ri S/} UII- ey _5> U3
9
~5 N X
3. >V * Ul
ss -"Nr -



are the strains and u”®, u”, u® are the displacements along the x,
y, z directions respectively* The numbers\ and ja are the two Lame

elastic constants.

We use the equations of vibration in rectangular coordinates,
) o
X, Yy, z. These equations are:

~A
(3-2)
where
A= L1 N 3*3
AsX «y = 5+ (3-3)
* — JIL
and vl T )'(F,a’\ Ay (3-4)
The equations of vibration in cylindrical coordinates, r, e, z
become 10:
~8
(3-5)
in which avd
or
84 yrx=
t Y »8 * * > 2 % ruy *8 )> * * 2%

Lovell has considered the problem of waves propagated along the

axis of a oylinder and has shown that the displacements VX ,IX&

uZ along the r, O , z directions can be written in the fonns:



up= Be”"Bz - Ut>
ue.® e " Bz- (3-6)

u_- Z eN®2 " >

nhere R, (g) and Z are, in general, functions of r and $ onljL B
X

is the propagation constant and j is the imaginary unit;

16
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STRESS DISTRIBUTION

It is assumed here that u* * O and that the particle actions

are independent of £ # Mason12 points out that the solutions take

the form
R« A JQhr) + CBIl(kr) * - AhJl(hr) + CBJ"kr) (4-1)

Z - ABJ (hr) + * J(ABI(hr) + CKIL(kr)) (4-2)

where A and C are constants,

\ + I~ >

and
«J L - B (4-4)

The constants A and C are determined "by using the following

"boundary condi tionss

T »T *T » 0 atr =a ( at the surface of the
ra rr ro

cylinder)
One obtains

3l 1M >»rn =0
r F - \ N -T' N

and

For a given frequency, the phase velocity is

v *W/B
(4-7)

It is found that the velocity in a rod for which the diameter is
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many times the wavelength, is close to the velocity

Vo | ) * (4_8)

mwhere © is the density of the rod
,\is Lame's elastic modulus
fAis Lame's shear modulus.
From Eq. (4-6) we obtain

2AB iiTe. (AN o
2AB y (%) 49
/ “w.u~»~r ("™ J---2B)J1l(ka)

where a is the radius of the cylindrical rod. The stress along
the z axis is

zz o "Nz (4-10)
where Yo is Young's modulus,
From (3-6), (4-2) and (4-9) Egq* (44 0) becomes

H — 1 N ~ NN
TZZ» Yo!NBuZ = b\li% YoZ e Bz

= . s'Y alrT (Vi) + — A om ' en Bz~
° > (2BX- A (K a )

P ? (4-11)
Eliminating C, from (4-5) and (4~6), we have for the frequency
equation

4jUi.,.£ —

(4-12)
Since ’

ANTSCkfti A -y (V¥
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(K-O-
~X(U) _ L AT. (~*-)
NoV—
- -k'fewo-L__AiLban (4-13)
3
Eqg. (4-12) becomes
4H BK . IXH]H(K<O T(H«O
3
<$w - IjE?- > v v™rr'-1'4
reV few £$1.™
( 2B"- >rr/.. W .. 7 -rUTTYX
r ‘
~N(4—14)
Prom Eq. (4-3), (4-7) and (4 8) we :find
. HH— .
1 x , rr.,
K >v+2/m >S+ 2”7
or *0 (4-15)
In the same way, we obtain
JjE £ . _ ~NS. . ~“rcx+po (4-16)
n v A\ & 2fL» fL.(N+2)»)

Prom Egs. (4-11) , (4-14) and (4-15) the stress distribution at
the z=0 plane becomes

) -j wit
T - —BTA dr) -

“ siM&ow - ) \
N2V
I, (N - Y
- BY Ae~j $| ________ (_____ K +ifi

22p2~ T . (K<O --3LIKSE
& _

(4-17)
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idiere A is an arbitrary constant. For simplicity, let

- w £ V

B2 YA 4-18
AN (4-18)
and
BZIO A= )
* + *
J"\Ttoy (4-19)
2fKS2
ka
= T. A
idlere and C are both dependent on the cylinder radius and

the frequency. A is an arbitrary constant. Therefore, Eq. (4-17)
can be written in the following form:
Vo< te> COSW (4-20)

*
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ELECTRODE SHAPES

When ultrasonic waves pass along the cylindrical rod, its stress
distribution in a plane perpendicular to the axis may he represented
by Eq.(4-20) for the z *=0 plane. How let us assume anelectrode
placed near the end of the rod. By proper choice of the shape of
this electrode, a voltage applied "between this electrode and the
cylindrical rod will produce a stress distribution at the z - 0O
surface in the cylindrical rod in approximate conformity with (4-20) .
In other words, this method can he used to generate ultrasonic waves.

First we discuss the relation "between stress and electrical

intensity N
TZZ— — > VZ, (5-1)
19

where « 8,85 x ICf* farad/meter

and K « dielectric constant *
We know that since the dielectric constant for free space is

unity, % *(5-1) becomes

Tzz m <V 2> Ez2 (5-2)

When Eg.(5-2) is expressed in cgs units, it is

Tzz—(i/8ir)B%\ (5-3)
From Gauss's theorem for a conductor, we have

E - 4Tr (5-4)
where is the surface charge density.

From (5-4) and (5-3) it follows that

'T - ( Tzz/2ir )* (5-5)

From Eq,(5-5)> the potential distribution in the region of space
near the end of the rod can be obtained for those cases in which
TZZ has the same sign for all values of r < a,
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To find the potential distribution, the solution of Laplace's
equation in the three dimensions is required# This problem was found
too tedious for direct solution# Insted, it was solved by integrating
Coulomb's Law over the charge distribution of Eq.(5-5) Let the
rectangular coordinates of P be (b, 0, a) as shown in Pig# 2# Then

v r rSdr d> (5_0

where T is the surface charge density and R is the radius of the
cylinder. Since

E 4Tr

We have
E iritAe

4ts

(5-7)

(ONO)
The potential at P , an arbitrary point on the xz plane, is

_H E_. r dr dft
—4-1 1 z (5-8)
A\r\ 'l I (b- rcosq + fbirf® +av
I
Putting
t- TV- 27
da* —2d»
COSE£ * cos(tt- 2<) * . (1 (5-9)
Since a2 + (t - r )2>0
and a2 +b2+r2- 2br > 0
2
then a2 @& bA + r2 + 2br ~  4br
put 2
2 a%+ B+ r2+ 2br
4-br

then Eq, (5-8) becomes



Cylindrical coordinates used in calculating potential

23
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\
31T

vV —

= jar << T Kl (5-10)
I<C Vb*-t XYa\>XY |
ehere Kfl/m) * F(I/m, T1/2) is the Elliptic integral of the first

kind.

The cylindrical har is an equipotential region. It is assumed
that its potential is zero. However, the contribution to the potential
due to the neighboring electrode crust be taken into account; this
is represented by a term e Therefore, Eq. (5-8) becomes

/nr /ft = r-
v L E . Y<tr<>6
4 11 b~X"6tra b ?'-tTSvwW'V® 4
As 0, V*0
Hence,
Ev~Ari-c”Ne
X 4Tv.J  J(ba-Vx*—aVC”"-6e) (5-11)
/*vR
VvV - A~r - -Jfc. < o« «

- ALSY<eb 4t ) J OCHVXN-TYA* 4y
In order to test Eq.(5—32) one can show that it satisfies Laplace's

Equation, * 0. For convenience Eq.(5-12) can be expressed in
terms of rectangular coordinates(Fig. 3)#
The distance S is

5 -4 -iVTiyyi'-* V) (5-13)

In rectangular coordinates Eq.(5-12) then 160011108
/

\/ 3f il*, \

v*e 4T k*-*y M .y i? -vyv

4R v*° l.L lU-*)MW f-r\é

(5-14)



S 1I&IA

Rectangular coordinates used for calculating potential

25



Jv ~ (FEI[< VKVO M(x-x)Vcvi)*if (x-xf\

+ ivff Efc
4 ¥ JS?I
I
Here
1)
+-4 |
Jii
* -0

Therefor© Eq. (5 12)

is correct.

ItW f-rtv-'i'ftfY«a xAv

26
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NUMERICAL INVESTIGATION OF ELECTRODE SHAPE

Once we find the potential distribution, the shape of our
electrode is then determined by an equipotential surface* That
is, if our electrode mere not one of the equip*tential surfaces,
a current would flow on the surface of the electrode* However,
we know that no current is flowing, thus our original statement
is justified*

A numerical method was used to find an equipotential surface
for the previous problem* Sinoe this problem is symmetric with
respect to z axis, for simplicity, we can condsider this to be
a two-dimensional problem* First, we find the equipotential
curve in the xz—plane. This plane curve can be rotated about the
z axis* Then this surface of revolution is the equipotential
surface*

Now consider the radius of the aluminum cylindrical rod as
one centimeter and the medium around the cylindrical rod to bo air*
The frequency is taken as one megacycle* From (4-16), (4-18) and
(4-19)
we have

0 - -*0.694053 x 1010 dynes/cm

0 * 9.95305 x 1010 dynes/om2
k2» 5.5603 I/cm

From the roots of Bessel function and Eq.(4-20), if the value of
r is larger than 0.4325 cm, the stress is opposite in sign to
that for values of r less than 0*4325 cm. (See Fig. 4.)

When the stress is negative E2 of Eq*(5-3) becomes an
imaginary number* Sinoe we cannot deal with an imaginaryfield,
the relative potential of every point was calculated only for that
part of the charge distribution for which

r 4 0.4325 an
Then from Eqg.(5-10) and (5—32) we get
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V- L ( BIKEWY 0 F BrdjelX
A BvC wVE ¥ \wte xat ey
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mrvhere R is the radius of the rod. Rhen the value of r is greater
than 0.4325 cm, the value of E in Eq.(6-1) becomes zero.
Therefore Eq.(6-1) can be written as

fO.4™*5

V =-=

(6-2)

The values of the above integrals were obtained for different
values of a and b. These integrals could not be evaluated in terms
of elementary functions but were evaluated using Simpson's Rule.
IV>r fixed values of a and b, corresponding values of potentials
are listed in Table 1!.13'14,15

Row we choose one of the family of equipotential curves in
the xa-plane. The value of potential at this surface is 116.4
statvolt. Pig. 5 indicates that for values of b near 0.4325 an
the slope is infinite. This is because the stress is zero for
r> 0.4325 cm.



The value of the potential for corresponding values of a and b

\
b\

a

0.00 am

juoi
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0,17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31

0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45

om

0.01

116.4
114.4
112.3
108.9
105.1
99*84
99.12
88.77
88.64
87.73
87.74

120.1
117.4
114.0
103.6

TABLE 11

0.02

148.9
141.4
140.2
130.7
122.4
117.7
117.3
103.6
101.8
99.98
99.59

statvolts

120.5
117.4

105*6

0.03

statvolts

128.4
124.9
117.4
110.9
106.4
100.1

120.0
116.2
110.1
105.7

0.06

138.4
131.1
128.1

119.0
118.9
H4.5
107.1

0.08

134.5
131.1
128.7
120.3
118.4
113.2
104.5

98.7

0.10

134.4
127.7
123.1
119.4

e.12 em

129.3
127.1

110.5
110.2
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Distance of equipotential surface from the cylinder, an

Fig,

5 An equipotential curve in the xz plane
for one megacycle frequency and one
centimeter radius of cylindrical rod

Distance from the z axis,

cm
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DISCUSSION

For the generation of ultrasonic waves by electric fields,
the eletrode shape is designed as an equipotential surface* It
has been shown that stress can be expressed in terms of Bessel
functions* For a given frequency, the stress has one sign in some
regions and the other sign in other regions* Hence , the shape of
the equipotential surface will depend on the frequency and cylinder
radius,

We will give the procedure for designing an electrode to
produce the desired stress in a cylindrical rod of fixed radius:
a) From Egs. (4-—36)9 (4~18),(4-19) and (4~20) we know ihat the

greater the frequency, the smaller are values of the roots

of JQkr), rl,r2*.. The stress distribution for a higher
frequency as is shown in Fig.6A* If an electrode is designed
to give this stress distribution in a cylinder, it will have
the shape shown in Fig*6B. Radii B and IT equal the first
zero of the stress curve , C and CMequal r™, -the second

zero,D and D" equal r», the third zero, E and E" equal r~ ,

the fourth zero* Outer radius, F, equals R, the radius of

the cylinder* Curve AB (D and EF, when related to stress,
can satisfy equations (4-20), (5—4) and(6—). Then, the
curvature is large along AB, CD and EF, becuase the stress

gradient is large. We can consider distances BB", CC", DD"

and EE" to be quite long, so that B"C" and D"E" will not

materially affect the stress distribution. Note that, in

Eq. (5-1), the stress Tzz is proportional B , the square of

electric field intensity. Oherefore, in Fig. 6A. only posi-

tive values of stress have physical meaning, as negative
values lead to imaginary field intensity* Ike resulting
stress curve consists only of the parts of Fig. 6k above

the zero axis, giving the effect of intermittent pulses of

stress. The negative values of stress from to r2, and



r™ to r™ are taken as zero stress, and the corresponding
separation between the sample and the eleotrode is made
large from B’ to CMand D* to E", giving approximately
zero stress,

When the frequency is small , the value of k is small but
the difference between r™ and r™ becomes larger. Fig. 7A
and 7B show the stress curve and corresponding eleotrode
shape for low frequency. Here, the curvature is small in
A*B* and C*!)*, because the stress gradient is lower*
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Distance of equipotential surface

from the cylinder

Fig. 6A
Stress versus radius on the top

surface of cylindrical conductor
for high frequency

Radius of cylinder
Fig.6B
Possible shape of electrode to give approximate

stress distribution in cylinder for high
frequency
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Stress

Distance of equipotential surface

from the cylinder

Fig. 7A

Stress versus radius on top surface of
cylindrical conductor for low frequency

Radius of cylinder

Fig.7B
Possible shape of electrode to give approximate
stress distribution in cylinder for low frequency
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