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INTRODUCTION AND REVIEW OP LITERATURE

TJltrasonio -waves have proved very valuable in  the observation 
o f both the v e lo c ity  and the absorption c o e ffic ie n t  o f sound in 

various media. Prom the v e lo c ity  measurements o f  u ltrasonic waves 
in  metals, i t  is  possible to obtain e la s t ic  constants, such as the 

com pressibility, and the sp ec ific  heat x. A lso, the observed 
attenuation depends grea tly  on the type and structure o f  the material. 

One o f the widely used methods fo r  investigation  o f  the internal 
losses in  so lid  state physics is  the pulse-eoho technique. This 

method is  being used almost exclusively in  in ternal fr ic t io n
p

investigation  •

There are three methods usually used to generate u ltrasonic 
waves:

a) P ie zo e lec tr ic  Method:
A p ie zo e lec tr ic  transduoer is  placed in  contact with the 

specimen and an o sc illa to ry  voltage is  applied^. The trans­

duoer converts the e le c tr ic a l signal to a tra in  o f mechanical 
waves which then is  propagated in to the specimen. This method 

is  used fo r  the production o f  both continuous and pulsed waves.
b) Magne to s t r ic t !  ve Method:

In  this method, a rod o f magnetic material is  subjected to an 
a lternating magnetic f ie ld  p a ra lle l to its  length. The materials 
used are ferro-magnetic metals such as iron, niokel or cobalt.

In this method, the application o f  an a lternating magnetic f ie ld  

to the transduoer generates mechanical vibrations which are 
transmitted into the specimen* 

e) E lec tr ic  Method:

In  1h is method, an o s c illa t in g  e le c tr ic  f ie ld  is  applied between 
the specimen and an electrode. This o s c illa t in g  e le c tr io  f ie ld  

gives tri.se to a force which acts on the surface o f the specimen. 

This impressed e le c tr ic  force sets up vibrations in  the specimen 

which in  turn produces u ltrasonic waves. This method has been 
used only to generate continuous waves.
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Hie pulse-echo method has been one o f the most important tech­

nical advances in ultrasonics in the past decade. In this method, 
a sinusoidal voltage pulse o f between 1 and 5 yu. sec duration is applied 

to a transducer which is  attached to the sample. With Morse's^ 

equipment the peak-to-peak voltage may be as much as several hundred 
vo lts . With this technique, the spatial decay o f a pulse is 

measured, either as i t  passes between a sender and a receiver, or 
as i t  is  reflected between two parallel faces o f the sample. The 

chief advantages of this method lie  in the simultaneous measurement 
o f ve locity and attenuation, the large frequency range possible, 

and that the directional properties in a single crystal may be 
studied.

Hie continuous wave method is useful fo r attenuation measurement 
in liquids but has also been used fo r such measurements in solids.

5
Bordoni^ used the e lectrio  f ie ld  method for generating 

continuous ultrasonic waves in solids.We investigate here the 
possib ility  o f generating pulsed ultrasonic waves by applying an 

e lec tr ic  fie ld  to the surface o f the sample.

Hie chief advantages o f the e lectrio  method over other methods
are:

1) Hie absence o f a transducer, which eliminates elecromeohanical 

resonance that occurs with the piezoelectric method.
In that method, the transducer thickness must be chosen to 

be a multiple o f the input wavelength, and design for a wide 
range o f operation is  d iff icu lt .

2) Hie design is simple, as there is no direct contact between the 
sample and the electrode. In other methods, o i l  or other bonding 
material is  required between the generator and the sample.

3) Energy losses from absorption o f the ultrasonic waves are small, 
because the sample is  not in contact with the electrode, 

therefore attenuation measurements are more accurate for the 

e lec tr ic  method than for other methods.
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Mathematical methods Here used here for:

1) Calculation o f the stress generated in  a sample by p iezoe lectric  
orystals.

2) Analysis o f  the wave propagation in an isotrop ic circu lar cylinder*

3) Calculation o f the stress distribution in a cy lindrica l sample 
using e la s tic  theory* Stress as a function o f radius and o f the 
frequency is  obtained.

4) Investigation o f electrode shapes necessary fo r  generating the 

stress d istribution found in 3)* An e le c tr ic  f ie ld  applied 
between such a shaped electrode and the cy lindrica l rod w ill  

produce a stress distribution sim ilar to the previous one.

5) Numerical calculation o f these electrode shapes; The shape o f 

an electrode is  taken to be that o f an equipotential surface 
in  the e le c tr io  f ie ld  o f 4) .
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FORCES QSNBRATBD BY A PIEZOELECTRIC GENERATOR

According to the usual convention in  spec ify in g  crysta l cuts, 

the thickness is  taken along the z axis o f  the c rys ta l, the length 

along the x ax is , while the width l ie s  along the y axis as shown 

in  figu re  1 he low, where represents the thickness o f  a p iezo­

e le c t r ic  generator along the z axis.

For mathematical s im p lic ity  without loss o f gen era lity , i t  
can he assumed that the generator has in f in it e  dimensions along 
the y and x axes. I f  we take z as the thickness d irection  and 

apply a conductive coating to the transduoer surfaces normal to 

th is axis , an e le c tr io  f i e ld  in  the z d irection  can he established 

in  the transduoer.

From the d e fin ition s  o f  e la s t ic  and p ie zo e le c tr ic  constants, 
the fo llow in g  equations can he obtained  ̂ *

S33 T3 + d33E3 ( 2- 1 )

Eidle re is  the e la s t ic  constant along the z a x iz ,

d ^  is  the p iezoe lec  t r io  constant along the z axis,
and are resp ec tive ly  the s tra in  and stress components 

along the z axis,

B  ̂ is  the o s c illa to ry  e le c tr ic  in ten s ity  with angular frequency 
along the z axis.

Substitute Eq. (2 - l )  in to

J - t ' d £
( 2- 2)

which is  the equation governing the longitudinal v ibrations o f
7

the bar •

There resu lts*

S  * V 5 ^
(2-3 )



Generator Sample

g ig . 1

Wave propagation from generator to sample along the z-axis
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or

* u3

}  V S®
^ 3

2_____ 31
3®33

E.

d z
(2 -4 )

where is  the displacement along the z ax is ,

^  is  the density o f the generator*

Since the thickness is  assumed small, the voltage gradient E  ̂ w i l l  
he a constant throughout the thickness o f  the generator* The 

equation o f  motion fo r  the generator is  thus:

^  U.

*  V s®̂
3 z

(2 -5 )

In the same manner, i f  the generator is  attached to the sample 

(see F ig . l )  the equation o f  motion o f  the sample is  o f  the same 
form. x  -v

'  ^  u;
-------- 1-------------- ( 2 - 0B*

33 ^ z

Here u* is  the displacement o f  the sample along the z axis , 
v * E*

^  and are -the density and e la s t ic  constant fo r  the sample.

Before we can obtain the force generated by the p ie zo e le c tr ic  

generator, we must solve equations ( 2- 5) and(2- 6) ,  which are the 
wave equations. We now set

1

the so -ca lled  wave v e lo c ity  in  the generator. 
Eq. (2 -5 ) now becomes

( 2- 7 )

The general so lu tion  o f  equation (2-7 ) is  

u3 “  u3  ̂ 25 -  v 1 * ) ( 2- 8)
where u  ̂ is  any function which possesses f in i t e  second deriva tives . 

We seek solutions in  the form o f  a superposition o f  standing waves 

having frequency equal to the d riv in g  e le c tr io  f ie ld  angular
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frequency, . I t  is

u^» A s in  ( z -  V-^t ) 4- B sin  - ^ (  z + v^ t )

+ C oos -Af- ( z -  V- t  ) + 3) cos y  ( z + ▼_ t  )

(2-9)
where X * ” ^ A T f is  the wave length in  the generator and 

A, B, C and I) are the a rb itrary  constants.

For s im p lic ity  ire put

XTT
A ,  ” Ki (2-10)

— T s T  Yi "  w> (2-1X)

A + B rn L
B -  A -  F
C + D • G (2-12)

C -  D - H
'Then (2 -9 ) becomes

U j» ( L s in  K^z + G oos K^z ) cos u>,t +

( F oos K^z + H sin  K^z ) sin  U %t  (2-13)

Using the same method we consider the sample, ®ie thickness o f  
the sample is  e f f e c t iv e ly  in f in it e .  Propagation w i l l  then occur 

only in  the +z d irection  wi1h v e lo c ity  v^, The solu tion  in  the 

form o f  a superposition o f  waves fo r  the sample becomes

u^* Ms i n ■ ̂ ^"■( z—Vgt) + N cos -” ĵ ” ( z-v^ t)

How i f

.Jft1L K.

(2-14)

- AH". y  «vh

then u^ »  (M sin K^z + H oos K^z) oos t ^ t  +

( -Moos K2z + H s in  Kgzjsiny^t (2-15)
By using the fo llow in g  boundary conditions one can determine 

the a rb itra ry  constants:
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l )  At z-0 , fo r  a free  c ry s ta l, the stress is  zero* From (2 - l )  

i t  fo llow s that

d33E3
2-0

2)  When z -  ^ , the stress is  continuous across the in terface  ,

± L _  i 3 3 f l
s»
Z l .

,E g® *
B* "33 "33 33

where and are the e la s t ic  and p ie zo e le o tr io  constants
along the z axis o f  the sample,

or

S E
33

( -  a33B )
33  3 33

1  » t )

£ a

3) The displacement is  continuous a t z -

u3( {  , t )  -  u» ( , t )

From boundary condition l )

d u.

d z
L cos K^z oos f o t  -  F s in  z sin  t  

-  G sin  K^z cos t  + HK̂  oos z sin  u^t

d u3( 0 , t )  

d z '  d33E3

( LK^oos K^z -  GK^sin K^z)cos (*) t  +

( HK^cos Z^z -  F ^ s in  ^ z )  sin  i^ t  -d^E^

Put K -  E cos ul t
3 0 I
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where 33 is  the maximum e le c tr ic  f ie ld ,  o

Therefore, since the corresponding terms must be equal,

( LK^cos K^z -  QK^sin K-jZ ) * d33BQ

and

Putting

EK^cos K^z -  FK  ̂ sin K^z* 0 

z *  0, there results

L K «  d-^E 
1 33 o

or

and

or

d-^EHMMftMl O

H K i« °

H “  0

From "boundary condition 2) 
1

( L I^oos K 0 K sin K ^ ) oos U  t  + -------- g* ( HK.

33
-  FK^sin K ^ ) sin ti ^ -

S33

33
d-- E cos t  33 o »

33

K0 ( M oos K0 -  H sin  K (  ) cos tv) t+

+ E eosKg ^ ) K2 sin fcD̂ t 

Since CA

E*
33

U)

the corresponding coe ffic ien ts  must be equal.

K,
( L ^ c o s K ^ -G ^ s in ^ X ) -  — ^g-  M 008 K2 ^

N sin  K2 -

33
K

33

33

d-^E
. 21-P , «  o

33

( 2- 16)

(2-17)

cos

Ms in Kjt, 

(? - l3 )

( 2—19a)
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-■ "E ( H^OOS K ^ -  PK^sin K ^ )-  BinK2 Ĵ + K cosKgQ)

®33 S33 (2-19T>)
Prom equations ( 2- 16) and (2-17)> Eq.(2-19a) becomes

K,
- £ —( d33E000sKi t -  ------4 r  M COS K25l + - g f -  H sin

:>3 j3 S33
d^.E

-  J & A
sE
S33

(2- 20)

and Eq, (2-19b) becomes

-  “ 5 “  Bin KXV - M sin  K2 !L + H oos K .,^ ) = 0 ( 2- 21)

:S3 S33
Prom boundary condition 3)> equations (2-13) and (2-15 ), i t  
fo llows that

M sin K2l+  N oos K2i  -  L sin G cos (2_ g2)

"  d „E
M sin  K A + H oos KJ .  -  sin K j  + 0 cos K i (2-23)

and -  M oos d  + K sin  K Q -  F oos K ^ + H sin  kJ  (2-24) 

or

-  M oos + 5  sin  Kj,\_ = P oos iq  ^  (2_25)

Tbe equations ( 2- 20) ,  ( 2- 2l ) ,  (2-23) and (2-25) give the values 

o f  M and If

d,,E K, K
’( 1-  cosK[) (— si nK^ 81x0^ +  — 1 |- oosK^oosKjO

M ______ 1______5 a_____ 1__________ s3321

K 2 2 HL 2 2
(— y r )  oos *  (  - 4 ---- ) Sin

S33 S33 (2- 26)
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-----cosK \ )• (-^frsinK ®oosK ^ ------------------- £F“cosK { sinK^)
33__________ t _____ 133_____t _____ t ______ b * _____ I __________F= 2 2 2 2

(— § * - )  oos K J + ( — “ T“  ) sin K_ l.
S33 1 33 ^

(2-27)
From t ie  r igh t side o f Equation ( 2- 18) ,  the expression fo r  the 

stress at z® 'becomes

T
E K_ o 2

3 s?: s.B

K K
d ^ (l-o o g K I^  ) ( — cosKjcos \Ap — ■g^sinK^sinvjt

K K,
33 33 ( — §r) 008 K1 J[ +(----1— ) sin. Kjl.

33 533 ( 2- 28) 
For s im p lic ity , we express (2-28) in another forms

T K2Eo A33 008 M 2  ain(t~

3 *5 M
|(- f ^ ) o ° 8*K lL  + (g V - )V K 's in

t

where

t e - i  ( - ^ - >  m A _________

( — f t " )  s i »  K1
H

From (2-29) the amplitude o f the stress w i l l  he

A33Eq( 1"  008 K1 U

(2-29)

(2-30)

sEf S E 
w  H

33 ov ___________
- f v f o o s 2K ^+  ( - ^ V )2sin2KjA

33 ' 33 J
¥

Generally, the maximum value o f the stress can he obtained when 
the thickness s a t is fie s  the condition 

1-  cos Ŝ = 2 ( 2- 31)



Therefore

KXJL" TT »3T  , * * ’ (2n -  l)TT

( 2n -  l)TT  (2n - l )  / 1
*1 2 t

oos K̂ Jt * -1

(•
i

gE
®33

(2-32)

where n -  1, 2, 3, . . .

Therefore Eq.(2—32) is  the resonance condition fo r  the thickness o f  
the p ie zo e lec tr ic a l generator*

Now consider a quartz crystal as the generator and an aluminum 

orysta l as the sample* In  Eq.(2-32), the thickness o f  the quartz 
crysta l fo r  maximum stress can be found. Some -typical values are 
given in  Table I*

TABLE I

Thickness fo r  quartz crysta ls

Frequency _____

1 megacycle 
10 megacycles 

100 megacycles 
500 megacycles

fo r  various resonant frequencies

__ _____ Thickness

O.269O cm 

0.0269 cm 
0.0026 cm 

0.0005 cm

From Eqs. (2-29) and (2 -3 l ) ,  one obtains the equation
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which expresses the amplitude o f  the stress a t resonanace, as a 

function o f the e le c tr ic  in tensity amplitude. In  cgs units, the 

e la s tic  and p iezoe lec tr ic  constants hare the values

Ŝ 3 *  127.9 x 10 cm /dyne 
—8

CI33 ** - 6.76 x 10 statooulombs/dyne

The ra tio  o f the stress to e le c tr ic  in tensity  is  given hy T^/E  ̂

which numerically has the value 1.064 x 10** statcoulomhs/cm^.
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WAVES DT CYLINDRICAL ROD

We now investigate wave propagation in an iso trop ic  circu lar 

cylinder. Under th is assumption we put the z-axis coincident with 

the axis o f the cylinder.

Before we investigate further the wave form s,it is  necessary 
to find  the stress-stra in  equations and the vibration  equations in 
cy lindrica l coordinates. For an isotrop ic body, only two e la s ticg
constants are independent,and the s ix  stress-stra in  equations are

where T„ = Txx

T1 “ ( \

*2 * ( \

T3 - ( \

T4 P S4

5 S5

T6 " S6

V T ,yy T.

T = T -  T , T_ «  T 4 yz zy 5 xz

* Tzz
T , T.= T =Tzx* 6 xy yx

(3-1 )

are the stresses.
Here , in  T. ., th< 
stress component and the second le t te r  denotes the orientation
Here , in  T . ., the f i r s t  le t te r  designates the d irection  o f the

o f the face on which T. . acts.x d
A lso ,  ^  u

Sl ” 2  X ”  9 s 2“

-  * U3 , ^ U2
4 a y 9

^ u lr i  S T  + ... , _ 5> u3

~5 Z * ^  X
9

3 ,  >  V *  U1
s s - ^ r - a y

<2^  

a  *



are the stra ins and u^, u^, u  ̂ are the displacements along the x , 

y , z d irections respective ly* The numbers\ and ja are the two Lame 

e la s t ic  constants.

We use the equations o f v ib ration  in  rectangular coordinates,
o

x , y , z. These equations are:

^ A

(3-2 )

where

A =  -ŝ L l. ^  3 *3  _

and

^>X

*  —  .JlL
V ------TT a^

*  V =  5 + (3-3 )

(3 -4 )
^ x *  ^ y

The equations o f  v ib ra tion  in cy lin d rica l coordinates, r ,  e, z
. 10 become :

in  which a vu
o r

^ 8

(3 -5 )

> 2 *  r U Y  * 8  )>  * *  *Y
8114 y r x =

t Y »8 * *

Love11  has considered the problem o f waves propagated along the 

axis o f  a oylinder and has shown that the displacements VXr ,lX&

u along the r ,  0 , z d irections can be w ritten  in  the fonns:z
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up= B e ^ Bz -  U t >

ue. ® e ^ B z -  ( 3- 6)

u -  Z e^®2 "  ***> z

nhere R, (g) and Z are, in general, functions o f r  and $ onljL B

is  the propagation constant and j  is  the imaginary unit;
x
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STRESS DISTRIBUTION

I t  is  assumed here that u * * 0 and that the p a rt ic le  actions
12are independent o f  £ # Mason points out that the solutions take 

the form

R «  A JQ(h r ) + CBJ1 (k r ) * -  AhJ1 (h r ) + CBJ^kr) (4 - l )

Z -  AjBJ (h r ) + *  j(ABJ (h r ) + CKJ (k r ) ) (4 -2 )v j  O O
where A and C are constants,

» _ 1

\  + l ^  >

-  B

and
« J L -  B

(4 -3 )

(4 -4 )

The constants A and C are determined "by using the fo llow in g  

"boundary condi tionss

T »  T * T _  »  0 a t r  = a ( a t the surface o f  the
ra r r  r©

cy linder)

One obtains

<3 I l M ______ >» rn _
r F -  \  ^ -T N =  0

(4 -5 )

and

For a given frequency, the phase v e lo c ity  is

v  * W/B

(4 -6 )

(4 -7 )

I t  is  found that the v e lo c ity  in  a rod fo r  which the diameter is
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many times the wavelength, is  close to the v e lo c ity

V »  ( ----- ------------------- ) *  (4_8)

■where ^ is  the density o f  the rod 
,\ is  Lame's e la s t ic  modulus 

fA is  Lame's shear modulus.
From Eq. (4 -6 ) we obtain

2AB i iT e .  (A ^ .I
2AB

/ J
)1 .U ^ ( “^ J ----2B)J1(ka)

y i ( ^ ) (4 -9 )

where a is  the radius o f  the cy lin d r ica l rod. The stress along 
the z axis is

zz o ^  z
where Y is  Young's modulus, o
From (3 -6 ),  (4 -2 ) and (4 -9 ) Eq* (4 4  0 ) becomes

(4- 10)

T »  Y jBu = jB Y Z e ^ Bz ~ ^  ^  zz ow z w o

= .  s ’ Y a I^T (V i ') + — ^  ■ ' e^ Bz~
° l >  (2BX- ^ ( K a )

P  ?  (4-11 )
E lim inating C, from (4 -5 ) and (4~6 ), we have fo r  the frequency 
equation

4jUi.,.£ ___—

r  ‘ ^ ;

■ A - y  (V *)

Since

A^TsCkfti

(4-12)
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(K-O-
K

^ X ( U )

-  - k 'f e w o -

Eq. ( 4- 12 ) becomes 

4H  B K — |X"]"(K<0

1_____A iL b a n

_  L A T .  (^ * - )
^  «v—

3

T . (H «0

(4-13)

3

< $ w  -  l j £ ? -  > '; v v ^ r ' - l' 4  

,» e V  f e w  £ $ 1 . ™
=> rr/.. w  .. 7  - rU T T Y x( 2B"-

r  ‘

Prom Eq. (4 -3 ),  (4 -7 ) and ( 4- 8) we :find 
• *»—  .

^ (4 —14)

l x  , * » r . „  _
K  > v +2/̂ > S + 2 ^

or *0
In the same way, we obtain

j£ £ . _
^  - \  + 2fL»

^ S .  .  ^ r c x + p o

(4-15)

( 4- 16 )
^  lV ^ ■ —  fL . (\ + 2 )» )

Prom Eqs. ( 4 - l l )  , ( 4—14 ) and ( 4- 15) the stress d is tr ib u tion  a t 

the z=0 plane becomes

T -  zz —B T A o
- j  wit dr) -

s jM & o w  -  )  \

-  B Y A e~j
(  I , ( ^
| l -------------

■ ^ 2 v
K  + i f i

2 ^ b2^ T .  (K<0 - - 3 L L S EK,a _

(4-17)
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idiere A is  an a rb itra ry  constant. For s im p lic ity , l e t

and

B2 Y A o
-  w £  V  

\ + 2 ^

2B I A * o

2fKS2

*  + 2 *
j^Ttoy
ka

(4-18)

(4-19)

= T . A___________

idle re and C are both dependent on the cy linder radius and

the frequency. A is  an a rb itra ry  constant. Therefore, Eq. (4-17) 

can be w ritten  in  the fo llow in g  form:

V o < te>
*

cos w&t ( 4- 2 0 )



21

ELECTRODE SHAPES

When u ltrasonic waves pass along the cy lind rica l rod, its  stress 
d istribu tion  in  a plane perpendicular to the axis may he represented 

by Eq.(4-20) fo r  the z *= 0 plane. How le t  us assume an electrode 
placed near the end o f the rod. By proper choice o f  the shape o f  
this electrode, a voltage applied "between this electrode and the 

cy lind rica l rod w il l  produce a stress d istribu tion  at the z -  0 

surface in  the cy lind rica l rod in  approximate conformity with (4-20) . 
In other words, this method can he used to generate u ltrasonic waves.

F irs t  we discuss the re la tion  "between stress and e le c tr ic a l
in tens ity  ^

T - — —  VZ (5-1)zz 2 *

1 9
where «  8,85 x lCf* farad/meter 

and K «  d ie le c tr ic  constant *
We know that since the d ie le c tr ic  constant fo r  fre e  space is  

unity, % * (5 - l )  becomes

Tzz ■ < V 2> Ez2 (5-2)

When Eg.(5-2 ) is  expressed in  cgs units, i t  is

T■ - ( i / 8 i r ) B 2 (5-3 )ZZ A
From Gauss's theorem fo r  a conductor, we have

E -  4 T r  (5-4 )

where is  the surface charge density.

From (5-4 ) and (5-3) i t  follows that

'T -  ( Tzz/2ir ) *  (5-5 )

From Eq,(5-5)> the potentia l d istribu tion  in  the region o f space

near the end o f  the rod can be obtained fo r  those cases in which
T has the same sign fo r  a l l  values o f r  < a, zz



22

To find the poten tia l d istribution , the solution o f  Laplace's 

equation in  the three dimensions is  required# This problem was found 

too tedious fo r  d irec t solution# Ins ted, i t  was solved by in tegrating 

Coulomb's Law over the charge distribution  o f Eq.(5-5)• Let the 
rectangular coordinates o f  P be (b , 0, a) as shown in  Pig# 2# Then

V r  r  dr d>
S ( 5 -0

where T  is  the surface charge density and R is  the radius o f  the 

cylinder. Since

E

We have
4 T r

E i r i t Ae

4 t s
(5-7)

O O
The poten tia l a t P , an arb itrary point on the xz plane, is

Putting

_ H E r  dr dft
—L-l 1 z

4\r\ 'l l (b - rcosq + fbirf® +av

l

t  -  TV -  2^

d a *  — 2 d^

cos £ * cos( tt -  2 <̂  ) * -  ( 1

Since a2 + ( t  -  r  ) 2 >, 0

and a2 + b2 + r 2 -  2 b r  >  0

then 2 a.a +
? 2b  ̂ + r  + 2br ^  4br

put
2 2, ,2 , a + b + r 2+ 2brm

4-br

( 5—8 )

(5-9)

then Eq, (5-8 ) becomes
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Cylindrica l coordinates used in ca lcu lating poten tia l
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V  — \
3-TT

=  j J * <z f  K (
l<C -V b*-t X*-Y-a.V> X Yl

(5-10)

ehere Kf l/m) *  F(l/m, TT/2) is  the E l l ip t ic  in tegra l o f  the f i r s t  

kind.

The cy lin d r ica l har is  an equ ipotential region. I t  is  assumed

that it s  po ten tia l is  zero. However, the contribution to the poten tia l
due to the neighboring electrode crust be taken in to  account; this

is  represented by a term • Therefore, Eq. (5-8 ) becomes
/nr /ft * r-

V  =
_ L
4 -Ti

E .  Y<tr<>6

As
Hence,

X 4Tv J

11 b~X"6t»a b ?'-tTSvv'W© -4- 

0, V *  0

E v ^ r i - c ^ e

](ba-Vx‘ — aVC^-6e ) (5-11)

/*y R

v - ^ r -  - J f c .  < « «
-  *V>Y<«*b 4 t  ) J 0\<CH-bx-vx^-iY^*4»

In order to te s t  Eq.(5—12) one can show that i t  s a t is f ie s  Laplace's 
Equation, * 0. For convenience Eq. (5-12) can be expressed in

terms o f rectangular coordinates(Fig. 3)#

The distance S is

5  - ^ - i V T i y y i ' - *  V )

In rectangular coordinates Eq. (5-12) then 1)60011108

/

\/ 3f i l * ,

v * °

(5-13)

\
4 TT k * - * y  M . y i ? - v v

4R v*° j lU-*)MW  f-r V 
1 0 (5-14)
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S l&lA

Rectangular coordinates used fo r  ca lcu lating poten tia l



2 6

J V  ^  ( f E J  [ < V K v O ^ ( x - x ) V c  v i ) * i f  (x -x f\
a x *  ^ f )

+ —-—iv
4 ¥ js

r

f f  E fc I tW f- r tv - 'i 'f t  fY «a  x A v

?l

Here

1)

+ - 4 (
j j i

* . -  0

Therefor© Eq. ( 5- 12) is  correct.
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NUMERICAL INVESTIGATION OF ELECTRODE SHAPE

Once we fin d  the p o ten tia l d is tr ibu tion , the shape o f  our 

e lectrode is  then determined by an equ ipoten tia l surface* That 

is ,  i f  our e lectrode mere not one o f  the equ ip *ten tia l surfaces, 
a current would flow  on the surface o f  the electrode* However, 
we know that no current is  flow ing, thus our o r ig in a l statement 
is  ju s t if ie d *

A numerical method was used to fin d  an equ ipoten tia l surface 

fo r  the previous problem* Sinoe this problem is  symmetric with 

respect to z a x is , fo r  s im p lic ity , we can condsider th is to be 

a two-dimensional problem* F ir s t , we fin d  the equ ipoten tia l 
curve in  the xz—plane. This plane curve can be rota ted  about the 

z axis* Then th is surface o f  revolu tion  is  the equ ipoten tia l 

surface*

Now consider the radius o f  the aluminum c y lin d r ica l rod as 
one centimeter and the medium around the cy lin d r ica l rod to bo a ir* 

The frequency is  taken as one megacycle* From (4 -1 6 ), (4-18) and

(4-19)
we have

o -  -*  0.694053 x 1010 dynes/cm

o *  9.95305 x  1010 dynes/om2 
k2»  5.5603 l/cm

From the roots o f  Bessel function and E q.(4 -20 ), i f  the value o f  
r  is  la rg er than 0.4325 cm, the stress is  opposite in  sign to 

that fo r  values o f  r  le ss  than 0*4325 cm. (See F ig . 4 .)

When the stress is  negative E o f  Eq*(5-3) becomes an
2

imaginary number* Sinoe we cannot deal with an imaginary f i e ld ,  
the r e la t iv e  p o ten tia l o f  every po in t was calcu lated only fo r  that 

part o f  the charge dis tribu tion  f o r  which

r  4  0.4325 cm

Then from Eq. (5-10 ) and (5—12) we ge t
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V - -L ( EvfK(-V)*y 
^  j 1 ̂ "VC L-v*Vf

4 -
¥

* Ê rXl-jeUx"
\ v»% x^ -t *■'»¥"■

o
(6- 1)

■where R is  the radius o f the rod. Rhen the value o f r  is  greater 
than 0.4325 cm, the value o f  E in E q .(6- l )  becomes zero. 
Therefore E q .(6- l )  can be written as

fO.4̂  *5

v  =-=

(6-2)

The values o f  the above integrals were obtained fo r  d iffe ren t 

values o f  a and b. These integrals could not be evaluated in  terms 
o f elementary functions but were evaluated using Simpson's Rule.

IV>r fixed  values o f a and b, corresponding values o f  potentials 

are lis ted  in Table I ! . 13’ 14,15

Row we choose one o f the fam ily o f equipotential curves in 
the xa-plane. The value o f  potential at this surface is  116.4 

s ta tvo lt . P ig. 5 indicates that fo r  values o f  b near 0.4325 cm 
the slope is  in f in ite .  This is  because the stress is  zero fo r  

r >  0.4325 cm.
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TABLE I I

The value o f the potential fo r  corresponding values o f a and b

\  a 
b \ 0.01 0.02 0.03 0.06

0.00 cm 116.4 148.9 statvolts
juoi 114.4 141.4
0.02 112.3 140.2
0.03 108.9 130.7
0.04 105.1 122.4
0.05 99*84 117.7
0.06 99.12 117.3 128.4
0.07 88.77 103.6 124.9
0.08 88.64 101.8 117.4
0.09 87.73 99.98 110.9
0.10 87.74 99.59 106.4 138.4
0.11 100.1 131.1
0.12 128.1
0.13 119.0
0.14 118.9
0.15 H4.5
0.16 107.1
0,17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31

0.32 om 120. 1 statvolts 
0.33 117.4
0.34 114.0
0.35 103.6
0.36
0.37 120.5
0.38 117.4
0.39 105*6
0.40 
0.41 
0.42 
0.43 
0.44 
0.45

120.0
116.2
110.1
105.7

0.08

134.5
131.1 
128.7
120.3
118.4
113.2
104.5 
98.7

0.10

134.4 
127.7 
123.1
119.4

e.12 em

129.3
127.1 
110.5
110.2
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Fig, 5 An equipotential curve in  the xz plane 
fo r  one megacycle frequency and one 
centimeter radius o f cy lin d rica l rod

Distance from the z axis , cm b
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DISCUSSION

For the generation o f  u ltrason ic waves by e le c t r ic  f ie ld s ,  
the e letrode shape is  designed as an equ ipotentia l surface* I t  
has been shown that stress can be expressed in  terms o f  Bessel 

functions* For a given frequency, the stress has one sign in  some 
regions and the other sign in  other regions* Hence , the shape o f  

the equ ipotentia l surface w i l l  depend on the frequency and cylinder 

radius,

We w i l l  give the procedure fo r  designing an e lectrode to 
produce the desired stress in  a cy lin d r ica l rod o f f ix e d  radius: 

a) From Eqs. (4—3 6) 9 (4 ~ l8 ), (4-19) and (4~20) we know ihat the 
greater the frequency, the smaller are values o f  the roots 

o f JQ(k r ) ,  r 1, r 2* . .  The stress d is tr ibu tion  fo r  a higher 
frequency as is  shown in  Fig.6A* I f  an electrode is  designed 
to give this stress d is tr ibu tion  in  a cy linder, i t  w i l l  have 
the shape shown in  Fig*6B. Radii B and IT equal the f i r s t
zero o f the stress curve , C and CM equal r^ , -the second 
zero,D and D" equal r^ , the third zero, E and E" equal r^ , 
the fourth zero* Outer radius, F, equals R, the radius o f 

the cylinder* Curve AJB, CD and EF, when re la ted  to s tress, 

can s a t is fy  equations (4 -20 ), (5—l )  and(6—l ) .  Then, the 
curvature is  large along AB, CD and EF, becuase the stress 
gradient is  large. We can consider distances BB", CC", DD" 
and EE" to be quite long, so that B"C" and D"E" w i l l  not 

m ateria lly  a f fe c t  the stress d is tr ibu tion . Note that, in  
Eq. ( 5 - l ) ,  the stress Tzz is  proportional B^ , the square o f  

e le c tr ic  f i e ld  in ten s ity . Oherefore, in  F ig . 6A. only posi­

t ive  values o f  stress have physical meaning, as negative 

values lead to imaginary f i e ld  in tensity* Ike resu ltin g  
stress curve consists only o f the parts o f  F ig . 6k above 

the zero ax is , g iv ing the e f fe c t  o f  in term itten t pulses o f  
stress. The negative values o f stress from to r 2, and
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r^ to r^ are taken as zero s tress , and the corresponding 

separation between the sample and the eleotrode is  made 
la rge  from B” to CM and D'* to E ", g iv in g  approximately 
zero stress,

b) When the frequency is  small , the value o f  k is  small but 
the d ifferen ce between r^ and r^ becomes la rger. F ig . 7A 
and 7B show the stress curve and corresponding eleotrode 

shape fo r  low frequency. Here, the curvature is  small in  

A*B* and C*!)*, because the stress gradient is  lower*
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Fig. 6A

Stress versus radius on the top 
surface of cylindrical conductor 
fo r  high frequency

Radius o f cylinder

Fig.6B

Possible shape o f electrode to give approximate 
stress distribution in cylinder fo r  high 
frequency
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Fig. 7A

Stress versus radius on top surface of 
cylindrical conductor for low frequency

B" C"

B*

Radius of cylinder 

Fig.7B
Possible shape of electrode to give approximate 
stress distribution in cylinder for low frequency
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