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INTRODUCTION 

The art of imparting a certain amount of ductility and 

toughness to castings made originally 0£ white cast iron and, 

there£ore, extremely hard and brittle, is a very old one. The 

o peration consists of a long annealing 0£ the castings at a

temperature well above their thermal critical ranges, £ollow­

ed by very slow cooling. The article now known as "Black 

Heart" castings are made up 0£ many rounded particles of tem­

per carbon embedded in a matrix of ferrite. 

Considerable research has been carried out on the graph­

itization of binary (iron-carbon) and ternary (iron-carbon­

silicon) a1loys. The kinetics of graphitization in these al­

loys and the e£fect of manganese and sulphur ratio on the mor­

phology of graphite nodules has been thoroughly investigated. 

The effect or various alloying elements on the kinetics of 

g raphitization has been fully studied, but the role of al1oy­

ing elements is not yet fully understood. 

The heterogenous nu..:cleation ot graphite nodules is still 

largely unexplained in quantitative terms. However, the prob­

lems surrounding t.he mechanism of growth of the nodules are 

well understood. The controlling mechanism is the rate 0£

solution 0£ carbides. 

The mechanism of graphitization was generally thought to 

be well explained until the publication of a paper by Taub1 in

October, 195S. He criticised the old theory that temper car� 

1All.references are in bibliography.
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bon precipitates directly from the supersaturated austenite. 

With the help of a few micrographs, he indicated that second­

ary globular carbides precipitate from the austenite, which 

later decompose into temper carbon and carbon depleted austen­

i te. 

Purpose of Investigation: 

The purpose of this investigation was to study the mech­

anism of first stage graphitization in iron-carbon-silicon al­

loys in the light of results obtained by Taub, and to propose 

a new mechanism of graphitization. The results of preliminary 

experiments confirmed the findings of Taub as regards the pre­

c ipitation of secondary carbides. Therefore,· ·it was decided 

to extend the investigation so as to include the study or 

growth of secondary carbides. In order to know the chief 

factor responsible for the growth of secondary carbides, the 

activation energy was calculated. Another factor which was 

i nvestigated was the site of graphite nuclei formation·. 

Plan 2f. Investigation: 

Only the early stages or graphitization were investigated, 

as the mechanism of graphite nodule growth has already been 

thoroughly worked out. The dilation method was employed to 

determine the degree or graphitization. The metallographic 

studies were made to investigate the precipitation of second­

ary carbides and to locate the sites or graphite nuclei forma­

tion. 

Dilatometer specimens were prepared from the iron-carbon­

silicon alloy, and these were chromium plated to avoid oxida-
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tion and decarburization. The specimens were annealed at 

various temperatures by moving the already hot furnace of the 

dilatometer over the specimens. Specimens were held at var­

i ous temperatures for different periods or time and then were 

water quenched. The change in length of the specimens was 

noted, and it was assumed to be proportional to the degree of 

graphitization. The specimens were fractured and transverse 

sections were prepared for microscopic examination. The �rowth 

of secondary carbides was studied under the microscope and 

the activation energy was calculated from the growth rate. 



REVlEW OF LITERATURE 

In 1722 Reaumur, a French Physicist, described a process 

£or producing· malleable cast iron by packing small castings 

of white cast iron in pulverised hematite ore and heating

them to bright redness for many days. His product was the so 

called "White Heart" malleable in which carbon was completely 

removed. The art of making "Black Heart" malleable iron was 

discovered in America probably unconciously by Seth Boyden 

while attempting to practice Reaumer's method in 18260 

Bo�den and others who were concerned with the production 

of malleable iron were manufacturers rather than scientists

and probably for this reason no papers were published and the 

production of malleable iron castings remained a closely guard­

ed secret for about one hundred years. This undoubtedly was 

the cause o� the retarded development of the theory of the 

process. 

The pioneer work in putting the process on a scienti£ic 

basis w.as conducted in 1875 by Hammer2 • He found it possible

to lay down "a chemical ratio as between carbon and silicon, 

and manganese and sulphur". His conclusions were thought to 

be too valuable trade secrets to warrant publication. At the 

same time Pope3 came to similar conclusions with reference to

manganese and sulphur ratio. 

3auveur4 published his first rudimentary iron-carbon di-

agram in 1896, which indicated various transformations and 

phase regions. In 1902, Charpy and Grenet5 published a paper

o n  graphitization of white cast iron. Howe6, in 1908 discussed
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critically and exhaustively the evidence then available on 

graphitization. In 1910, Moldenke7 published a book outlining 

his knowledge and experience in the malleablization techniqueo 

In the same year, Hatfieldg discussed the chemical physics of 

the precipitation of free carbon from iron carbon alloys. In 

1911 Ruff and Goecke9 published a study of the solubility of 

carbon in iron and in the same year Ruer and IljinlO discus­

sed the stable system of iron-carbon. 

The first scientific American contribution to the liter-

ature of the metallurgy of malleable iron was a publication 

o f  the results of some research work dealing with the funda­

mentals of the graphitizing reaction by Storey11 in 1913.

Archer,White, Merica and Schwartz were very active in malle­

a ble iron research during the early 20's. In 1919, Mericcf2

stated that cementite in white cast iron decomposed at tem­

peratures between 7000 and 1000°c producing temper carbon.

He also indicated that the elements which promoted graphiti­

zation by lowering the temperature range within which the de­

composition of cementite is possible during annealing of white

i ron, were the same which promote graphitization upon solidi­

f ication.

In 1920, Honda and Murakam113 advanced the theory that 

graphitization does not take place directly but is consequent 

·or·oxidation by CX>2 and subsequent decompositon or CO formed

with liberation of free carbon. There appears to be little

doubt, however• that although graphitization may be acceler­

ated by this gas as by a catalyst, graphitization or cementite

can, nevertheless, proceed without it. Thus, Pingaultl4- re-
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ported fairly rapid graphitization or aementite in a vacuum 

at temperatures above 1000°c. 

Bain'sl5 work demonstrated fairly definitely that graphi­

tization may take place .from austenite and cementite simul­

taneously. Philips and Davenportl6 submitted micrographs 

that indicate that in ordinary annealing or white cast iron, 

t emper carbon is formed directly from the solid solution ar­

eas, and not in general from the massive cementite areas. 

In 1924, Hayes and Diederichl7 summarized all the theo­

r ies in an informative bulletin. They outlined the theory 

t hat throughout the temperature range employed for first 

stage graphitization, cementite is metastable; the saturation 

limit in gamma iron of carbon derived .from carbide is greater 

than the saturation limit or carbon derived from carbon. The 

c arbide saturation line lies to the right of the carbon satu­

ration line as shown in .figure 1. Upon heating a white cast 

i ron above the critical range, the pearlite is converted to 

austenite in which is dispersed much massive carbide. Upon 

soaking at annealing temperature, this carbide goes in solu­

tion in the austenite until the austenite is saturated with 

carbon from carbide. At this stage, it is supersaturated 

with respect to carbon from carbon and as a result carbon is 

deposited. Graphitization always starts at the surface of 

carbide particles because supersaturation is first attained 

there. The solution 0£ carbide and the deposition or graph­

ite continues until all the free carbide has disappeared and 

then deposition of graphite continues--unti.l the equilibrium 

concentration ot carbon £rom the carbon .for the temperature 
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is attained. 

In 1928, Schwartzl8 claimed that the nucleation or graph­

ite i.s probably due to inhomogeneties of stress or eomposi-

t iono The presence of graphite nuclei acts as a powerful aid 

to graphitization. Bain19 suggested that once graphite forms 

it means the presence of an additional phase and, therefore, 

according to the phase rule a decrease in the degree of vari­

ance of the system. This would tend to accelerate the disap­

pearance or one of the phases, namely cementite. 

Yap20 , on thermodynamic grounds, concluded that cementite 

is unstable at low temperatures, but becomes more stable at 

higher temperatures, and above 940° c is thermodynamically sta­

ble. His work was later disputed by Schwartz21 and Chipman22
o 

It was definitely proved by Wells23 that cementite can be de­

composed to graphite at any temperature between 700° and 1125 

°Co 

In 1935, Sauveur and Anthony24 stated that free cementite 

only graphitizes above the thermal critical range. The carbon 

present in the austenite matrix above that range must be thrown 

out of solid solution before graphitizing can take place.

Much interest was aroused in the 30's among investigators 

in  what constitutes a nucleus or a graphite nodule. Schwartz25, 

on the basi-s 0£ the micrographs presented by Junge, stated 

that secondary graphitization customarily begins at a cement­

ite-solid solution interface. In non-eutectiferous iron-car-

bon-silicon alloys in which such inter.faces may not exist, 

the graphite is commonly seen to grow about manganese sulphide 

tnclusions. In 1936, Schwartz and Ruff-26 expressed the opinion 
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that the nucleus of" a graphite nodule may be a submic-roscopic

fragment of grap·bite or 0£ metallic oxide or silicate, or _on­

ly a field of forc.e due to surface tension at an interface. 

It was further stated that there might be any one or more of 

these nuclei even in the same metal. 

In 193g, Wells27 presented a classic paper on the graphi­

tization of iron carbon alloys. He determined the equilibrium 

iron-graphite diagram in the vicinity of the eutectoid. He 

demonstrated that graphite forms directly from austenite and 

as a decomposition product of cementiteo The graphite from 

solution occurs in former austenite grain boundaries, possibly 

at austenite-carbide interfaces, and as spherical masses •. 

Graphite from carbide_appears to form along crystallographic 

planes in carbide masses, in possible cracks of the brittle 

c arbide, and as approximately spherical masses. Schwartz 28

stated in 1942 that the form 0£ the isothermal time-graphite 

curve can be predicted given a sufficient knowledge of the

various fundamental constants. He gave an elaborate mathe­

matical treatment for calculation of values of ti�e tor var­

ious stages 0£ completion of the graphitization process by 

various reactions. 

At the symposium on graphitization held in 1942 Schwartz� 

summariz.ed his views with regard to the mechanism or graphi­

tization. He repeated his conjecture that a graphite nodule 

grows around an oxide or sulphide particle that has been re­

jected at the surface of a cementi te grain. He also discussed 

the film theory of graphitizing retardation,. 

McMillan30 stated in his paper presented at the symposium 
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that the number of graphite nodules is greater in the higher 

silicon irons and that with continued heating at the same 

tempe.rature the number of graphite nodules decrease. 

In 1949, Zener31 gave an analytical expression for the

rate or· growth of a spherical particle growing in a matrix 

originally of uniform composition. Brown and Hawkes32 
modified 

and applied Zener's approach specifically to cast iron and 

published a comprehensive·paper on the kinetics of graphitiza­

tion of cast iron in 1951. According to Brown and Hawkes, 

the process of decomposition of cementite above the eutectoid 

temperature·is one in which graphite nuclei form, and carbon 

atoms diffuse through austenite to precipitate on the grow-

ing graphite particles; during the reaction the iron atoms of 

cementite attach themselves to the adjacent austenite lattice. 

Further� it was reported that the morphology of' the graphite 

thus produced is controlled by the composition of the alloy 

and by the temperature of the reaction. It was noted that 

the carbide particles nearest to the nodule dissoived faster 

than those somewhat more remote. It was stated that in gen­

eral the growth rate increased with increasing temperature. 

I n  one of their experiments, the growth rate was observed to 

be discontinuous, which they explained on the basis that the 

growth rate is an algebraic sum of the effects of diffusion 

and competitive nucleation. Brown and Hawkes postulated that 

if  carbide-austenite was the principal site or nucleation, 

then the probability or nucleation will be a function of the 

t otal carbide-austenite interracial area, which for a given 

oarbon content depends upon carbide size distribution. They 
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supported the view held by McMillam33 and other investigators

that at a given temperature the number of nodules reach a max­

imum and then decrease with increasing time. They explained 

this on the basis that the solution potential of carbon at 

the surface of nodules of small diameter is greater than that 

at the surface of nodules of larger diameter. They also stat­

ed that the rate of nucleation and growth are increased by 

increasing the temperature. 

In 1954, Burke and Owen34 determined the isothermal reac­

t ion rate curves by measuring the length changes of the spec­

imen. It was observed that the time of the completion of the 

first stage of graphitization and the incubation period {on 

logarithmic scale) are approximately linear functions of tem­

perature, and the two lines are approximately parallel. It 

w as further noted that although variation in silicon content 

alters the position, it has no ef£ect on the slope of the 

linear plot. The average value of the slope was found to be 

- 0.010.

131.lrke and Own indicated that their data can be examined 

by using the semi-emperical equation : 

y : 1-exp (t/k) n

where y is the fraction transformed at time t, k is a tempera­

ture dependent rate constant. The average value or n is equal 

to 4.07. They gave a value or 68000 cal/mole for the activa­

tion energy 0£ grapbitization . 

According to Burke and Owen the growth of graphite nod­

ules in iron-carbon-silicon alloys involve three diffusion 

processes. They pictured diffusing carbon as an advancing in-
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terface against which silicon will build up. For carbon dif• 

fusion to continue, silicon must diffuse away. Iron atoms 

must also diffuse away from the centers of nucleation in order 

to provide free volume for the growing graphite. It was not­

ed that rate 0£ growth is controlled by the rate of silicon 

diffusion although the possibility of iron diffusion govern­

ing the rate was not discounted. They were of the opinion 

that the influence of temperature on the rate of nucleation 

is greater than its influence on the rate of growth. 

On the basis of extensive experimental evidence, Hultgren 

and Ostberg35 concluded that the effect of increased S: Mn

ratio and/or increased hydrogen content of the surrounding 

atmosphere was to increase the compactness of the aggregates 

and to change the shape of the graphite units forming those 

aggregates into equi-axed partieleso They also stated that 

favored nucleation sites for graphite were found to be iron 

sulphide or manganese sulphide on the one hand and austenite 

or cementite on the othero

In 1958, Taub1 refuted all the mechanisms proposed previ­

ously and with the help of micrographs proposed that the pro­

cess or graphitization occured in two steps. First, the sec­

ondary globular carbides were precipitated from austenite, and 

then these carbides decomposed into graphite and carbon de­

pl�ted austenite. 

!.2.!!. 2£ Alloying Elements: 

In answer to the query whether graphitization will take 

place in absence or such elements as silicon, Schwartz36 stat-
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ed that graphitization is a phenomenon occuring in binary al­

loys of' as high.a purity as is obtainable. However, silicon 

pl-ays such an important role in the graphitization of iron­

carbon alloy.s that it must be dealt with in any discussion or 

t he mechanism of graphitization. 

Silicon is known to promote graphitization in cast iron, 

but t�e mechanism of this action is not very clearly under­

stood. Wust and Peterson37 and Becker38 found that increas­

ing the silicon content reduced the solubility of carbon in 

cast iron and lowered the percentage or carbon in the eutectic o

As graphitization generally increases with increasing carbon 

content, there may possibly be a connection between this ef­

fect of silicon and its tendency to promote graphitization. 

According to Hatfield39 some of' the silicon in cast iron is 

presen� in the iron carbide; the amount in the carbide increas­

ing with the silicon content. He considered the silicon con­

tent in the carbide to be responsible for the varying degree 

of stability 0£ that constituent. 
A,.O 

In 191+2, Schwartz list-ed the elements, silicon, alumin-

ium, titanium, zirconium, nickel, copper, and uranium, which 

de£initely accelerate the graphitizing rate when present in 

not too great a quantity. On the other hand, manganese, chro­

mium, molrbednum, vanadium and tungsten retard the grahiti� 

z·ation rate. He did not put forward any theory to explain 

the ef£ect of various elements on the graphitization rate. 

Brown and Hawkes41 held the view ·that the elements which 

affect the graphitizillg rate of white cast iron, do so prima­

r�ly tihrough their effect on the stability of cementite. Using 
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the model of cementite lattice as proposed by Austin42, they 

suggested that the elements niekel and cobalt, which enter 

the lattice, thus distending it, make the cementite less sta­

ble. On the other hand, atoms like chromium, which enter the 

lattice causing it to contract, make the cementite become 

m ore stable. Also certain elements which enter the lattice 

interstitially cause the cementite to become more stable, 

presumably by forming with the carbon some subsidiary bond­

ing reinforcing the �xisting resonance bonding. Although, 

Brown and Hawkes present no experimental eveidence, they 

point out several points in favor of the theory, i. e. that 

c ertain deoxidizers, Aluminium, Boron, and Manganese act as 

graphitizers in small quantities and stabilizers in quantities 

i n  excess of the amount needed for deoxidation. 

Burke and Owen43 indicated that increasing silicon co�.­

t ent markedly increases nucleation rate and also slightly in­

creases rate or growth. 
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DISCUSSION OF MECHANISM OF GRAPHITIZATION 

The .ferritic "Black Heart" castings are made up of many 

rounded particles of temper carbon in a matrix of ferrite. 

The transformation of white iron into finished malleable iron 

is accomplished in two stages. The first stage consists in 

converting the cementite-pearlite structure into austenite and 

graphite by a long annealing of the casting well above its 

thermal critical range. The second stage of the process is 

the formation of ferrite and graphite which is usually accom­

plished.by slow cooling through the critical range. Some of 

the more recent concepts of first stage malleabilization are 

discussed in the following short resume. 

A glance at a micrograph showing graphite nests in mal­

l eable cast iron clearly indicates that temper carbon is not 

arranged like the cementite in the original white cast iron, 

and that graphitization has not taken place in situ. The con­

clusion that may be drawn is that the migration or diffusion 

of  carbon takes place through the solid solution, with subse­

quent precipitation of carbon from solid solution onto the 

existing graphite nuclei. 

It was pointed out by Schwartz44 that graphitization

process can be split up into the solution 0£ cementite, its 

dissociation, the migration of carbon and its deposition. The 

rate 0£ graphitization will be governed by the slowest of the 

four enumerated processes under existing circumstances. These 

several processes may not be similarly affected by changes of 

temperature and composition. It was stated by Schwartz that 
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for an extremely short period in the beginning the rate is 

determined by the crystallization velocity of graphite. For 

m ost of the deposition of graphite, it is governed by the rate 

of migration of carbon. In the end, the dissociation rate is

the controlling factor. The dominant importance of carbon

diffusion has been fairly conclusively ruled out by the observ­

ations of Wells, Batz and Mehl 45. It was stated by Burke and

Owen46 that besides the migration rate of carbon, the diffu­

sion of iron and silicon should be considered for studying the

rate of graphitization of iron-carbon-silicon alloys. They

observed that the rate of silicon diffusion governs the rate

o f  growth, although the possibility of iron di£fusion control­

ling the rate was not ruled out.

In view of the recent disclosure by Taub1 of secondary 

carbide preciptation, it seems necessary to include the preci­

pitation rate of secondary carbides and their decomposition 

as the variables to be considered .for studying the rate of 

graphitization. 

The graphite nodule formation has been well established 

as a process 0£ nucleation and growth. It is believed that 

the nuclei for graphitization can be present in the "as cast" 

white iron. The number or nuclei increase with increase in 

the annealing temperature. Also at a given temperature, the 

number of nodules reach a maximum and then decrease with in-

creasing time. This indicates that nuclei can be precipitated 

and redissolved. 

As graphite nodules are found at the austenite-cementite 
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interfaces, it is assumed that the graphi�e nuclei fona a� 

these interfaces. There is no conclusive microscopic proot 

t o  substantiate this statement. It is, however, indirectly 

verified by the fact that quenched iron, which has a large 

cementite-austenite interracial area, graphitizes very rapid­

l y. The very fine carbides produced by tempering would tend 

t o  form a large interracial area and thus tend to increase 

the grahitization rate. 

Graphitization rate is known to be affected by tempera­

ture and chemical composition. The percent reaction vs. re­

action time (on log scale) curves were plotted by Brown and 

Hawkes47 for different temperatures and chemi·cal compositions.

It was observed that all the curves were similar in shape as 

shown in figure 2, and the curves could be superimposed by 

simple lateral shifting of the log time axis. This was also 

confirmed by Burke and Owen48.

The role of alloying elements on graphitization is not 

well established. Many observers have stated that those ele­

ments whi·ch form stable ca:rbides retard graphitization. In 

ease of Chromium and Manganese the retardation may be through 

this action. But this theory does not account for the behav­

iour of other elements like fi tanium and S:ili.con. It was re­

p orted by Schwartz 49 that carbide in malleable iron has sili­

c on associated with it. Silicon being a weak carbide former, 

w ould tend to make the cementite more unstableo But it has 

b een shown by Owen50 that silicon is not present in the cement­

i te lattice, and thus its effect cannot be explained on the 
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basis of carbide unstability. 

The fact that many or the elements which are graphitizers 

are strong deoxidizers, has led to considerable speculation 

that their effect is due to the fact that they have removed 

oxygen. There is no reason to believe that Nickel or Copper 

could act in this way. On the other hand, 1"18.nganese, which 

i s  rather powerful deoxidizer, is a retarder of graphitization. 

All the theories proposed for the role of alloying ele­

ments are oversimplified and alloying elements may have some 

other additional means, of affecting the graphitization rate, 

by affecting the di£fusion rate of carbon or iron atoms in 

the austeuite. 

In conclusion it can be noted that the old theories £or 

the mechanism of graphitization should be modified as to in­

clude the precipitation of secondary carbides as proposed by 

Taub. The role of alloying elements is not well understood 

and there is a vast field £or research on this subject. 



EXPERIMENTAL TECHNIQUES AND RESULTS 

Preparatio� 2! White Cast Iron 
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Two 1500 gm. heats of iron-carbon-silicon alloy of a 

slightly different composition were prepared in the high fre­

quency furnace. The photograph and the specifications of the 

high frequency furnace are given on page 21· The constituent 

elements used in the investigation were Armco iron, ferro sil­

icon and electrode carbon. The chemical analysis of these 

materials is given in Table I. 

Armco iron was first melted in a silica crucible. When 

the iron was in a liquid state, small quantities of carbon 

and ferro silicon were added simultaneously. When these went 

into solution, fresh additions were made until the iron con­

tained requisite amounts of carbon and silicon. The complete 

charge of the two heats is given in Table II. 

The ingots used in the experiment were produced by cast­

ing the iron-carbon-silicon alloy ibto a 3/4 inch diameter 

and 15 inch long dry graphite mould. The compositions of the 

ingots are given in Table IIIo 

As the number of dilatometer specimens which could be 

prepared was limited 1 it was decided to conduct the experi­

ments only on heat No. 1. 
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Figure .3 

HIGH FREQUENCY INDUCTION FURNACE 
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TABLE I 

COMPOSTION OF MATERIALS 

Element Armco Iron Ferro-silicon 

Carbon% 0.012 1.0 max. 

Manganese% 0.017 

Phosphorus %., 0.005 0.04 max. 

Sulphur% 0.025 0.04 max. 

Silicon% Trace 80-85 



Material 

Armco Iron 

Electrode Carbon 

Ferro-silicon 

TABLE II 

AMOUNTS OF MATERIALS 

Heat� 1 

1500 gms. 

45 gms. 

33 gms. 

TABLE III 

COMPOSITION OF THE INGOTS 

Heat Mo. I 

1500 gms. 

50 gms. 

36 gms. 

Element Ingot !2.:_ ! Ingot !2.:. 1 

Carbon% 2 •. 4s 2. 71+

Silicon% 1.45 1.57 

23 
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PREPARATION OF DILATOMETER SPECIMENS 

The degree of graphitization was determined by measuring 

length changes in a differential optical dilatometer. 1-i 

inch long pieces were cut £rom the 15 inch long ingot with 

the carborundum cut off wheel. A number of pieces were exam­

ined under the microscope to make sure that no slag inclusions 

were present. To minimize the possible effect of small varia­

tions in grain size across the section each piece was split 

l ongitudinally into quadrants, and the dilatometer specimens 

were ground out of each quarter. The dilatometer specimen 

was 5 mm in diameter and 25 mm in length. A great care was 

excercised in cutting and in preparation of specimens so as 

n ot to over heat the material. 
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ELECTROPEATING OF DILATOMETER SPECIMENS 

In order to avoid oxidation and decarburization of the 

specimens at high temperatures, it was decided to electropl­

ate the specimens with either nickel or chromium. Electro-

plating was preferred over working in a vacuum or maintaining 

an inert atmosphere because 0£ its simplicity. 

Nickel plating \"lith a copper base was first tried. The 

specimens were severely oxidized in about J hours at 800
° 

c.

The ·specimens were then plated with 0.001 inch thick chromium 

plating. The specimens did not oxidize at 925° C even a£ter 

5 hours. 

The following procedure was adopted to obtain pore �roof 

chromium plating. 
*

1. The specimens were weighed.

2. The specimens were cleaned in a weak alkali solutjon and

then rinsed with distilled water.

3. The specimens were dipped in a 5% H2so
4 

solution to remove

the last traces of alkali solution.

4. The specimens were rinsed with distilled water and kept

i11111ersed in water until ready to plate.

5. The specimens were mounted on the copper rod cathode and

sheet lead anodes were put in place. Two sheet lead anodes,

one on either side 0£ the specimens, were used because 0£

the low throwing power of chroraium.

6. The current is switched on and the cra3 solution is poured

• Please see acknowledgements
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in the cell to cover the specimens. 

7. The specimens were plated at a current density of 2 amps/sq.

inch for 50 minutes; the specimens were reversed and plat­

ed for 50 minutes more.

8. The specimens were washed, dried and weighed. The gain

in weight was noted.

9. The thickness of the plating was calculated from. the gain

in weight.

The composition 0£ the electrolyte is given in Table IV,

and the working conditions are listed in Table V. 
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TABLE IV 

COMPOSITION OF THE ELECTROLYTE FOR CHROMIUM PLATING 

CrO 
J 

•••••••••••••• o 

K2so4 ............•.
VI/ Cr so

4 
.......... .

240 gms./Litre 

J.7 gms./Litre

60/1 

TABLE V 

CHROMIUM ELECTROPLATING WORKING CONDITIONS DATA 

The specimens were electroplated in two batches 0£ 12 

and 16 s_pecimens each.

No. of specimens 

Weight of bare specimens 

Weight of plated specimens 

Gain in weight 

Approximate thickness of 

chromium plating 

Total Voltage 

Total Current 

Current Density 

Total time of electroplating 

Batch !. 

12 

22.012 gms.

22.450 gms. 

o.43g gms.

0.001 in. 

6.o volts

9.5 amp. 

2.0 amp/in2

100 minutes 

Batch ll 

16 

28.851 gms. 

29.412 gms. 

0.561 gms. 

0.001 in. 

7.5 volts 

12.5 amp. 

2.0 amp/in2

100 minutes 



DILATOMETER STUDIES 

The study of graphitization rates can be made by employ­

ing any of' the following methods, each of which has some inher­

e nt disadvantage. 

1. Chemical Analysis Method:

Frequently graphitization does not occur with such uni­

formity that sample, weighing one gram, can be considered as 

representing what has gone on as the average of a large pieceo 

Therefore, it is often necessary to analyse many samples in 

order to obtain a usable averageo 

2. Measurement of Expansion Method:

The liberation of carbon results in the expansion of the

specimen which can be measured. The chief advantage of such 

a method is that information is obtained concerning a rather 

large volume of metal. This method has been used by several 

investigators to study the rate of graphitization but it is 

doubtful whether an exansion of the specimen is directly pro­

portional to the percentage of the graphite formed, as assumed 

by these investigators. 

3. Electric Resistance� Coercive Force Measurement:

Measurements of' electric resistance and coercive .force

have been used similarly but are still more doubt.ful in inter­

pretation. 

4. Metallographic Methods:

On the assumption that the microscope will resolve part-



29 

icles of graphite or cementite too small to be detec·ted by the 

chemist, several investigators have adopted the metallographic 

technique for the recognition of the beginning or the end of 

the graphitizing process. However, when very few such part­

icles exist, the liklihood that any of these few will appear 

in the polished surface becomes very small ., thus reducing the 

precision of the technique. 

In the present study expansion of the specimen was used 

t o  know the degree of graphitization while metallographic 

technique was adopted to determine the location of the graph­

ite nuclei and for the study of the secondary carbides. 

The degree of graphitization was determined by measuring 

length changes in a differential optical dilatometer. The 

details of the dilatometer are given in tigure 4. The in­

crease in length of the specimen was taken to be directly pro­

portional to the degree of graphitization. A fully graphitized 

specimen was used as a standard. It was possible to detect 

length changes of 0.0002 inch. An electric resistan·ce furnace 

was used to heat the specimens. The temperature of the furnace 

was controlled with the help of a rheostat and the variation 

of temperature within the working range was l5o c. The tea-

perature.of the specimen was measured by flacing a caliberated 

Pt/Pt-RH thermocouple near the test specimen 1 and noting the 

reading 0£ the galvanometer supplied with the furnace. The 

a ccuracy of temperature measurement was 1205° 
c.

Before starting each experiment, the furnace was allowed 

to  run for two hours after it had attained the temperature to 
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FI.GURE 4 

LEITZ OPTICAL DILATOMETER 
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establish equilibrium conditions. It took about two minutes 

to raise the temperature of the specimen from room tempera­

ture to the furnace temperature. In order to have some zero 

reference point for time, the time was measured a fter two 

minutes from the instant ·the furnace was moved over the speci­

men. The specimens were water quenched from the annealing 

temperature (800° to 925° C). The results of dilatometer 

investigation are given in Table VI. 

It is evident from the expansion results that the incu­

bation period is shorter at high temperatures. The maximum 

expansion, which corresponds to the total graphitization at 

the temperature, is more at lower temperatures. This is to 

be expected,as at high temperatures austenite requires a 

greater amount of carbon for saturation, and the amount of 

carbon held in solid solution in gamma iron is not available 

for graphitization. 



Time 

TABLE VI 

VALUES OF THE EXPANSION OF DILATOMETER SPECIMEN 

!.!!_ mts. 

goo0 

20 Nil 

40 Nil 

Expansion� J.125 � l�� inches 

c 825 ° 
c ez2

0 G 900
° 

c

Nil Nil Nil 

Nil Nil 2.5 

80 Nii··. Nill 1.0 14.0 

160 Nil Nil 6.o 26.0 

320 1.0 2.0 32 .• 0 

640 9.5 

� 

2250 

Nil 

5.0 

20.0 

27.0 

32 

c 
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?REPARATION OF SPECIMENS FOR METALLOGRAPHIC EXAMINATION 

The specimens were fractured after annealing and the 

transverse sections were mounted in bakelite o The mQunted 

specimens were ground on -carborundum paper of 320 and 600 

grit. The rough polishing was done on the wheel using dia­

mond powder while the final polishing was done using the al­

undum powder. 

The spec�mens were etched vn.th 4% picralo The specimens 

were repolished and etched, and examined under the microscopeo

Repolishing was done to remove the disturbed layer formed 

during first grinding and polishing. 

Photomicrographs were taken on the Bausch and Lomb metal­

lograph at a magnirication of lOOOx. Micrographs taken are 

attached on the following pages o



Micrograph No. 1 Sample as cast 

Picral Etch. 

1000 x 

34 
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No. 2 Annealed at 800
° 

C for 20 minutes
1000 x 

Picral Etch. 



No. 3 Annealed at 800° C for 40 minutes 1000 x 

Picral Etch. 

36 



Noo4 Annealed at 800
° C for 80 minutes 1000 x 

Picral Etcho 

37 



No. 5 Annealed at 800
° 

C for 160 minutes 

Picral Etch. 

38 

1000 x 



No. 6 Annealed at aoo
° 

C for 320 minutes

Picral Etch. 

39 

1000 x 



Noo 7 Annealed at 800° C :for 6la,,O minutes 

Picral Etch. 

40 

1000 x 



No. 8 Annealed at 825
° 

C for 40 minutes 

Picral Etch. 

41 

1000 x 



No. 9 Annealed at 825
° 

C for go minutes 

Ficral Etch. 

42 

1000 x 



No. 10 Annealed at 825
° 

C for 160 minutes

Picral Etch. 

43 

1000 x 



No. 11 Annealed at 825° C for 320 minutes 

Picral Etch. 

44 

1000 x 



No. 12 Annealed at 875
° 

C for 40 minutes

Picral Etch. 

45 

1000 x 



No. 13 Annea1ed at s75o c for 80 minutes 

Picral Etch. 

1000 x 



Noo 14 Annealed 3t 875 ° C for 160 minutes 

Picral Etch. 

47 

1000 x 



No. 15 Annealed at g75° C for 320 minutes 

Picral Etch. 

48 

1000 x 



No. 16 Annealed at 900° C for 5 minutes 

Picral Etch. 

49 

1000 x 



No. 17 Annealed at 900
° 

C for lO minutes

Picral Etch. 

50 

1000 x 



No. 18 Annealed at 900° C for 10 minutes 

Picral Etch. 

51 

1000 x 



No. 19 Annealed at 900° C for 40 minutes 

Picral Etch. 

52 

1000 x 



No. 20 Annealed at 900° 
C for 80 minutes 

Picral Etcho 

53 

1000 x 



No. 21 Annealed at 900
° 

C for 160 minutes 

Picral Etch. 

54 

1000 x 



Noo 22 Annealed at 925° C for 5 minutes

Picral Etcho 

55 

1000 x 



56 

No. 23 Annealed at 925
° 

C for 10 minutes 



Noo 24 Annealed at 925° C for 20 minutes 

Picral Etch. 

57 

1000 x 



No. 25 Annealed at 925 ° C for 40 minutes 

Picral Etch. 

58 

1000 x 



No. 26 Annealed at 925° C for 80 minutes 

Picral Etch. 

59 

1000 x 



No. 27 Annealed at 925° C for 160 minutes 

Pi.cral Etch. 

60 

1000 X.
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(.. RESULTS -OF ·l'f1ETALL0GI\APHI.C u»litfAIIOI: ·� 

The following points were observed in the examination of 

the specimens under the microscope. 

1. The 17 3.s cast" sample showed only primary cementite and

pearlite. No sph€rical carbides were observed. {Micro­

graph No. 1 page. 34) o 

2. On annealing for short periods of time, it w�s- observed

that secondary globular carbides were precipitated in

the austenite matrix which grew in size with time. (Micro­

graph No. 2, 4, 6). The precipitation and growth of the

secondary carbides seemed to be at the expense of primary

cementite. The primary cementite areas decreased in size

during this period. (Micrograph No. 22,23,24).

3. For short periods of time some areas etched darker than

the rest of the matrix. Most of the dark etching areas

were observed to be around the secondary carbides. (Micro­

graph No� 9). During this period, no expansion of the

specimen was noticed. This indicated that apparently no

graphitization had taken place.

4. The graphite nuclei seemed to precipitate along the sec­

on_dary carbide-austenite interface. In some cases it was

observed that the graphite nuclei formed on the primary

cementite-austenite interfaceo (Micrograp� No. 6, ).

5. The rate of .growth of secondary carbides seemed to increse

with temperatureo

6. The graphitization was complete in a shorter·period at

higher temperatures.
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7o The area in which graphite nodules are formed, gets de­

pleted of secondary carbides at !3 faster rate. (Micro­

graph No. 26, )o 
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DETERMINATION OF ACTIVATION ENERGY 

!heoratical Considerations:

If the precipitation of secondary carbides may be consi­

dered to proceed by nucleation and growth,"the isothermal 

reaction curve for such a process would follow a general 

differential equation of the type: 

. .!Z = k(a-y)tm

dt 
Equation 1 

where: a is total extent of the reaction possible, 
y is the extent of the reaction at time t, 
k is a temperature dependent constant, and 
mis a constant 

k reflects the temperature dependence of the reaction rate 

and follows the usual exponential form: 

k = A exp. (�) Equation 2 

where: Q is activation energy in cal/mole, 
T is absolute temperature 
A. is a constant
R is gas constant 

The constant, m, determines the form of the isothermal 

reaction curve and has been used by Zener as a criterion for 

t he shape of the precipitating particleo 

In the integral form, Equation l becomes 

log log ___ a_ 
__ a-y 

: { 11 I- 1) logt {- log -·k 
-2-.3-

Equation 3 

To eYaluate this equation, it is assumed that the change 

i n  the precipitate size is proportional to the extent of the 

r eaction and the maxilllWll size of the precipitate corresponds 

t o  the completion of the reaction. If log log a '.is plot-
a-y 

ted �s a function of log t, a straight line with a slope of 
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(m fl} should be observea51
.

n

Experimental values of the constant k can be determined, 

The 3Ctivation energy Q can be evaluated by plotting the log­

arithm of k against 1/T and measuring the slope. 

Zener remarked that the activation energy obtained from 

values of k had dime�sions (time);� i; and, therefore, re­

quired adjustment for comparing the activation energies of 

different reactions. It is usual to obtain the activation 

energy values with the rate constant_ having dimen�ions (time)-lo 

Experimental Determination of Activation Energy 

The rate of growth of spherical carbides at a particular 

temperature was determined by measuring the diameter of the 

largest carbide particle found in each of a series of samples 

reacted for increasing time intervals. The measurements were

made on the micrographs with a scale marked to 1/100 inch with 

the help of magnifying glass having a magnification of 20. In 

case of carbide particles which were not truly spherical, an 

average of several sides was taken to be the true diameter. 

The results or this investigation are given in Table VII. The 

diameter of the largest carbide particle as a function or

time (on log scale) for dif£erent temperatures is plotted in 

figure 5. 

In calculating the activation energy, it is assumed that 

t he change in the particle diameter (y) ie proportional to the 

extent ol the reaction and the maximum size of the precipitate 

(a) corresponds to the completion or the reaction. Log log
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a and the corresponding values of time t fod different
a-y 

temperature are listed in Table VII. The plot of.log log a 
a-y

versus log t for different temperatures is shown in figure 6 0 

The points fall very closely on a set of parallel straight 

lines. The slope (m f 1) of these straight lines is determined 

and is found to be equal to o.6.

The value of log k at different temperatures was evaluated 

using Equation 3, and these values are listed in Table VIII 

along with the reciprocal of the corresponding absolute tem­

peratures. The plot 0£ log k versus 1/T is ·shown in figure 7.

A straight line passing through nearly all the points is obtain­

ed. ·rhe slope of this straight line d �lo
' 

k) was accurately
· a 17 J 

determined and is equal to 3-.65 x 1030 The activation energy 

is calculated as follows: 

Q _ 2.303 x Rx Slope 

_ 2.303 x 1.987 x 3.65 x 103 

= 16700 Bal/mole 

This value of activation energy refers to a quantity 

w ith dimensions (time)-0•6• On the more usual basis of {time)-1,

for the reaction constant, the activation energy is given by 

16,zoo = 27,g30 Cal/mole. 
o. 

The activation energy calculated is of the- same order 0£ 

magnitude as the activation energy of carbon diffusion in au­

stenite52 . It may, there:fore, be in ferred that carbon dif­

fusion 1• the rate controlling factor for the growth of sec-

1, Offttary carbides o 
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The proportionality of secondary carbide growth rate to 

the diameter was based on the theoretical concepts proposed 

by Zener31., From dimensional arguments alone, he showed that 

the growth coordinate varies with time, t·, according to the 

equation 

Equation l+ 

where e-(J\ is the growth coefficient and subscriptArefers to 

the number of dimensions 

Dis the atomic diffusion coefficient. 

S refers to the half width of a plate if the growth 0£

a plate is considered. In the case of a cylinder S 

is the radius of the cylinder, while it refers to the 

radius of the particle in considering the growth of a 

spherical particle. 

Zener arrived at his conclusions assuming that the bound­

ary conditions at the interface correspond to 

Equation 5 

where S(t) is the value ors at the interface. In the oase 

o f  a plate precipitate s is the linear coordinate, while in

the case of a spherical precipitate, s is the radial coordin-

ate. 

Equation 5 corresponds to the conditions wherein pre­

cipitate particles have attained a size large compared to 

the critical size of a stable nucleus and the rate of growth 

is limited solely by diffusion. 

The final boundary conditions relates the rate of advance 
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. 
of the interface, S, to the gradient of the concentration at 

the inter:face. Upon equating the rate at which solutec.atoms 

are left behind the inter:face in the precipitate to the rate 

at which the solute atoms encounter the interface in the 

matrix, the following equation is obtained. 

Equation 6 

In order to obtain the velocity 0£ advance S, the value of

· �"tis at the interface is estimated and this value is sub­

stituted in Equation 6, and then it is solved·for the func­

tion S(t). In the one dimensional case it leads to the £ol-

lowing a:timate.

��, Is:: s ::::: � �s

: 2. ( "'·- "\c) % l'\ , 
: ( "'e11- �.>

">\• is the concentration of solute atoms in the precipitate, 

�. is the concentration in the matrix which is in equilibrium 

with the precipitate and"'... is the concentration in the ma­

trix far away from the precipitate. 

Upon substituting this estimate.back into Equation 6, 

and solving for s, we obtain: 

S � °'7 tai-l'� 

... � «• = "')&- �. 
I (.,--,.,,"("" �)�

Zener further stated that the growth coefficient of a 

s pherical particle can be eYaluated precisely ae in the one 

dimensional case lllhen the solute atoms are depleted from only 

a comparatively thin sha11 surrounding the spherical preci­

pitate. Such treatment leads to the result that 



•Tb• qu&lltity � •• ciflll in Bqllati•n 7 ta a na\u.ral

par ... 'ter in �el"IU e� wbieb t.o eapr .. • the e&ae't solution ot 

the expandi.ng .,._rieal precipi�•••·• 

Tb• ahape ot curYea in-figure .5 depend.a on 1-he yalue ot 

a in &quation l. Th• oun-ea will •• atraipt, lln� oal1 when 

a 1• uait.y • la the pr•••t. ••••, tile Yalu• ot • 1• o.6. ,_ , 

_exact - lihap• or the curve in the rep.one 0£ illflenioa can 

ealy be ••aluat.ed it a mlllber o� speellleaa are trea�ed a� 

el••• laterYala or tlae wi�hln �bat rqloa. Ille-. •h• hi.ab 

coa, or tdl• prepa.rat.ion or epec1•� lh• author waa 1••-

�o onl:, 2a. aa ooapared to 'tbe original ll\lllber Gr 64 that, 

wu tin't ..... � .. by Dr.. D. a. lppel•1'•iaer•. 
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TABLE VII 

'iariation 'of log· log __§...__ with time il Various Tem:ee:ratures 
a-y

Time in 9!rbide a a log log__!._ 
rarticie

-

a .. y a-y
s ze in ino 

x !(j"'�,--
--

a. Temperature 800° ,,.

40 5 .. 5 llo5 lo93 -Oe-54

80 605 llo5 2.45 -0.41

160 9.5 11.5 5o4 -0.14

320 llo5 11.5 10 -0.00

b. Temperature 825° c

40 7.5 13.5 2125 -00453

80 9.5 13.5 3.37 -00280

160 11.5 13.5 6.75 ...0.081 

320 13.5 13.5 10.00 -0.000

c. Temperature 875° 
c

20 10.5 15.0 3�285 -o.2g69

go 12.5 15.0 5.75 -0.12

160 1590 15.0 10.00 -0.000

d-. Temperature 925°
c 

5. 6.o 16.0 1.6 -o.69 

10 s.o 16.0 2.0 . -0.52 

20 11.0 16.0 3.2 ... 0.297 

40 12.5 16._0 4.57 -0.18

80 16.0 16.0 10.00 o.oo
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TABLE VIII 

Values of 1 and log K at Various Temperatures 
T 

TemEerature 
in °c

Tem12e-rature 
in ot-

1/T x 10-5 log K 
-- --

800 1073 93.5 0..-0617 

825 1096 91o0 0.1417 

875· 1148 87o0 0.3217 

925 .1198 8306 0.4217 
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Possible Errors 

It was assumed in the present investi�ation that the 

largest particle· measured was cut through-i�,the center of the 

spherical particle by the plane of the sample. The probabil­

ity of cutting some 0£ the largest particles through the 

center increases with the number 0£ _particles. -In most of 

the photomicrographs, a suf:ficient number of carb�de parti­

cles were present to assume that some of the particles were 

cut through the center. On an average the· diameter of ten 

largest particles was measured and the diameter of these 

particles was su£ficiently in agreement to indicate that these 

were probably cut through the center. 

The small scatter 0£ points in Figures 6 and 7 indicates 

that the error involved in aetiTation energy measurement is 

not greater than that ot methods employed.for activation 

energy determination. In the present case it is (lifficul� 

to evaluate-the percentage error involved. 

Besides the diffusion 1of carbon, the other diffusion 

processes taking place are diffusion of iron and silicon atoms. 

The activation energy of iron and silicon diffusion through 

austenite is more than 60,000 cal/mole. 53 Therefore, if it 

is assumed that the percentage error in the activation energy 

calculation is 2°", the value of activation energy calculated 

is 27,!00 cal/mole, which is in fair agreement with the value 

of 23,000 cal/mole obtained by extrapolating the results of

Wells, Batz and Mehl for the diffusion of carbon through 

a ustenite. 



Suggestions £2!: Further Work: 

?Ob 

The activation energy of' secondary carbide precipitation 

can be very accurately det_ermined, if' the secondary carbides 

are electrolytically extr __ :cted and weighed from samples which 

have been annealed for various intervals of'.time at different 

temperatures. The chief difficulty which may be encountered 
. -

in such a work is the separation of secondary carbides from 

primary cementite and other inclusions that may be present :. 

such as oxides, silicates, and sulphides. The problem offers 

further difficulties when temper carbon is precipitated. Also 

great care will have to be excercised to see that no reductio.n 

of' size takes place due to dissolution of the carbides.

The kinetics of seconary carbide precipitation in white 

cast irons containing vario�s amounts of' different alloying 
: .... 

elements should be investigated. This may give an insight 

into the rol_e played by alloying elements during graphitiza­

tion. The composition of the secondary carbides might be 

evaluated by taking x-ray diffraction photographs of the elec­

trolytically extracted carbides. 
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. DISCUSSION OF EXPERIMENTAL RESULTS 

It is observed that secondary carbides are not present 

in t�e "as cast" condition and, therefore, it may be inferred 

that these are precipitated during the initiil stages of an­

nealing. The decrease in the amount of primary cementite dur­

ing this period gives an indication.that the precipitation 

and growth of secondary carbides take place at the expense of 

primary cementite. 

The dark etching areas formed before any change in length 

is noticed, may be due to the precipitation of submicroscopic 

amounts of carbon which is coherent with the secondary carbide 

latticeo 

As graphite nodules are found at the austenite-cementite 

-� :1t,.) inter.faces, it was assumed by previous investigators 2_5, , 

�7,.)� that the graphite nuclei form at these interfaces. The 

formation of graphite.nodules within the austenite grai� was 

never clearly explained, except by a vague statement49 that 

the conditions at the cementite-austenite interface are not 

favourable for the nucleation of graphite. On the other hand, 

if it is assumed that the graphite nuclei form at the austenite­

secondary carbide interface, as shown in the present investi­

gation, the explanation for the formation of graphite nodules 

within the austenite region becomes very simple. The forma­

tion of most of the graphite nodules at the austenite cementite 

interface may be due to the high concentration of carbon in 

this area, which results in faster rate of precipitation and 

�rowth of secondary carbides in this region. 
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O.n the basis of chemical analysis, Schwartz 49 reported

that carbide in malleable iron has silicon associated with ito 

Similar conclusions were drawn by Hatfield39 earlier o But it 

was shown by Owen50 that silicon is not present in the cemen­

tite lattice. The results of Owen are based on the x-ray dif­

fraction work, and in the opinion of the author, his studies 

were confined to primary cementite only which does not contain 

silicon in its lattice. The secondary carbides may have sil­

icon associated with them, and the results of Hatfield and 

Schwarts confirm this assumption. 

The role of alloying elements may be explained, if the 

secondary carbides are extracted and analysed by x-ray dif­

fraction technique to know whether the alloying elements enter 

the secondary carbide lattic�. The kinetics of secondary 

carbide precipitation and growth in the presence of different 

alloying elements may also give an insight to the �ole played 

by alloying_elements during gra-phitization. 
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CONCLUSIONS 

1. The precipitation of secondary carbides during the early

stages of anne·aling has been definitely proved. ( Figure

2' p. 3 5) 0 

2. The secondary carbides grow to a maximum size, after which

these decompose into temper carbon and carbon depleted

austenit�. {Mic�ogra�h hj.P-39).

3. The rate of growth a.nd the maximum size of the secondary

6arbide increase with the temperature.

4. The graphite nuclei are formed at the austenite secondary

C3.rbide int;erfaceo {-Mic�ograph �. p.39).

5o The activation energy of growth of secondary carbide is

27 1 800 cal/rnoleo (p. 65}. This value is of_ the same order

of �agnitude as the diffusion of carbon in austen4te.

Therefore, it may be in_.£erred that the rate of secondary

carbide growth is controlled by the diffusion of carbon

through austenite.

60 The following mechanism of ·g�aphitization of Fe-C-Si alloy

is proposed.

(a) On heating the Fe-C-Si alloy to the annealing tem­

perature ,·"c -..i equilibrium between aus teni te and

primary cementite is attained.

(b) The globular secondary carbides are precipitated

in the austenite matrixo (Micrographs 2,4.6).

(c) The equilibrium between primary cementite and aus­

tenite is disturbed. Some amount of primary cemen­

tite goes into solution, and the secondary carbides
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grow in size. 

(d) On attaining the maximum size, the se_condary car­

bides decompose into graphite and carbon depleted

austenite.

(e) Some more primary cementite is taken into solutiono

(f) This process, of solution of primary cementite,

precipitation and growth of secondary �arbides and

their decomposition, goes on until the austenite 6onta

the equilibrium amount of carbon for the temperature.
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ARPUJ)IX 

It has been suggested by Dro J. L. Kassner that a curve 

between the particle size and the number of particles in the 

immediate neighbourhood of largest particle size should be 

drawn. If the curves corresponds to curve (ll in Figure 8 1

the straight line portion should·be extrapolated as shown in 

the figure and t he largest particle size should be taken 

corresponding to its intercept <in the x-axis. If the curve 

corresponds to curve (2) in Figure a, the largest particle 

cannot be taken for calculation of activation energy. 

Figure 8 Di�eter of particle 
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