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INTRODUCTION 

Although the discovery of the "Liesegang 

Rings" phenomenon was made sometime before 1855~ 8 ) 

little was done in. the way of study or experi

mentation until 1896 when R. E. Liesegang discov

ered that if a crystal or strong solution of 

silver nitrate is added to a gelatin gel con

taining dilute potassium chromate, the resulting 

precipitate of silver chromate is not continuous, 

as might be expected, but forms a discontinuous 

periodic pattern. This pattern follows a geo

metric progression law, xn = akn, where xn 1s the 

position of the ntll ring~ and a and k are con

stants. K is known as the spacing coef1c1ent. 

This law may also be written xn/Xn-1 = k , where 

the constants are the same. The constant k is 

also known as the Jablynsk1 constant. 

Another useful relationship 1s one which 

connects the time of appearance, tn , of the .n~ 

ring and its position. This relationship 1s 

x /t l/2 = k', wher_e k' is known as the Morse and n n 

Pierce constant. 

Since the discovery of this phenomenon there 

have been many theories proposed in an attempt to 

explain the mechanism which produces this unusual 
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effect. It is the aim of the writer to clear up 

one of the major objections to one of the two 

major theories that are still accepted as possible 

explanations. 

As a great many examples of periodic deposi

tion of matter are found in nature, there have 

been many suggested correlations with the Liesegang 

phenomenon. Some of these are the agate and other 

geologic formations, the banded structure of gall-

stones and other concretions, the rhythmic swarming 

of bacilli, tree rings, beet root markings, etc. 

However, if the constancy of the two ratios men

tioned above 1s taken as the criterion for true 

L1esegang phenomenon, all but the agate and other 

geologic formations must be excluded. In regard 

to these last examples, there is still some in

terest, although there have been other seemingly 

more reasonable theories propounded. 

One application of the L1esegang phenomenon 

was propounded by Butcher in 1937. (l) This 

application makes use of the sensitiveness of the 

phenomenon to very slight variations i .n blood com

posi tio.n and quality to analyze blood. Also, Liese

gang discussed the production of artificial pearls, 

and Van Hook has made some pieces of novelty ware 
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by generating patterns in certain media which were 

then hardened and fixed by tanning. 
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REVIEW OF LITERATURE 

There is a great amount of data available on 

the Liesegang phenomeno.n. <12 ) However, most of 

this data is qualitative in nature. This 1s espe

cially true where the amount of precipitate in a_ 

given band, or ring, is concerned. Some values of 

k and k' have been calculated, for instance, by 

Schleussner. (9) 

Four major theories have been proposed to ex

plain the phenomenon. These theories will here-

after be re~erred to as: 

1) The Supersaturation Theory, 

2) The ·Adsorption Theory, 

3) The Wave Theoi:y, and 

4) The Kinetic Theory. 

A short resume of each of these theories follows. 

1) The Supersaturation Theory 

Proposed by.Wilhelm Ostwald,(lOa) this theory 

suggests that, as the incoming ions (A-ions) dif

fuse through the gel, a solution of the precipi-

tate with a conce.ntration in excess of the .. normal 

saturatio.n concentration is formed. Then, whe.n 

this concentrat~on arrives at a value H, called 

the "supersolub111tytt, spontaneous crystalliza

tion takes place and the concentration reduces to 



the normal solubility limit. Simultaneous back-

ward diffusion of the A-ions clears the area 

ahead of the precipitation fro.nt. This produces 

a clearly defined band o~ precipitation and ere-

ates an area without A-ions which must be tra-

versed by the reformed diffusion front before the 

process can repeat itself. 

2) The Adsorption Theory 

This theory, as proposed by Bradfora,ClOa) 

gives the credit for the per1od1c1ty to periodic 

adsorption of the A-ions by the gel medium, which 

seems to beg the question. 

3) The Wave Theory 

This theory, proposed by Christiansen and 

Wulf,(lOa) makes use of the de Broglie wave equa-

t1on: 

y h = ffiV 

where: v is the diffusion velocity, 

A. is the wavelength (distance between 

rings), 

h is Planck's constant, and 
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m is the mass of the diffusing particle. 

Further application of the Schr6d1nger wave equa

tion gives approximate formulas for the Liesegang 

phenomenon. 
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4) The Kinetic Theory 

This theory was used by Van Hook (lOb) as an 

explanation of the action of the Liesegang phe.nom

enon in the presence of seed crystals of the pre-

cipitate. The static supersolubility limit pro-

posed by Ostwald could not explain why ring for

mation could proceed in the presence of crystals 

of the precipitate. The Kinetic Theory explains 

this by substituting for the static supersolubility 

limit the condition that the rate of crystalliza-

tion, at any point, increases as the concentration 

builds tip by diffusion. This rate may be augmented 

by the presence of seed crystals of the prec1p1-

tate. The positions __ and times of appearance of 

the bands are found by maximizing the relation 

for the net concentration which results from the 

opposing tendencies of diffusion and crystalliza

tion. 

The Adsorption Theory has been largely dis-

counted by many observers as the major mechanism 

producing the Liesegang phenomenon. For instance, 

after much experimentation, H. w. Morse (5) arrived 

at the following conclusion. "These results indi

cate that any general theory which is to account 

for periodic precipitation should avoid the intro

duction of such factors as:- any effect involving 



the special properties of a gel or other colloid 

(other than water solution).• The major reason 

for this statement was the successful use of dis-

tilled water as the dispersing medium in the pro

duct ion of a periodic precipitation system. How-

ever, it has been demonstrated that adsorption, 
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pept1zat1on, and other factors due to the dispers

ing medium have varying effects on the character 

of periodic prec1p1tations.<4 ,7a,7b) 

Effectively, the Wave Theory and the Kinetic 

Theory extend and supplement the Supersaturation 

Theory. The Wave Theory supplies methods of com-

puting the various constants for a given set of 

rings. The Kinetic Theory not only offers no 

particularly valid objections to the Supersatur-

ation Theory, but it also shows how the L1esegang 

phenomenon can occur with seed crystals of the 

precipitate present. 

In the light of these theories and results, 

the general consensus of experimenters and theo-

ret1cians alike seems to favor a modified Super

saturation theory, where the static supersolu

bili ty constant, H, is ~eplaced by a kinetic con-

dition, to explain the gross phenomenon. 

An interesting correlation of theoretical and 

experimental results has been attempted. Carl 
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Wagner(ll) analyzed the theoretical situation 

using the static supersolub1lity constant, which 

he terms Kn• He also assumed that there was no 

interaction with the medium. The resulting equation 

follows. 

This 1s true if a 0 1s much greater than b0 and 

y2 is defined by the equation: 

k is the Jablynski constant, 

H is a constant for a given set of reactants, 

Kn 1s the supersaturation constant, 

a 0 is the initial concentration of the diffus

ing, A-ions, 

b 0 is the initial concentration of the react

ing, B-1ons, 

a and ~ are the number of atoms of A and B, 

respectively, in a molecule of the pre

cipitate. 

For a given set of reactants and constancy of the 

ratio a 0 /bo, this equation approximates to: 

(k-1) = E (l/bo)a+~/2a+~ = F (l/ao)a+~/2a+~ 
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H. Matalon and A. Pacter(4 ) report the exper

imental relationship to be: 

(k-1) = c + D/ao 

where C and D are constants for a given set of 

reactants and gel concentration. However, C will 

vary with the gel concentration, the set of react

ants and b0 , while D depends on the set of react

ants and b0 • Matalon and Pacter attempted to show 

a direct correlation betwee.n their results and 

those of Wagner. If orie assumes that Wagner's re

sults had the form: 

(k-1) = F/a0 

as did Matalon and Pacter, and one assumes also 

that, if the effect of the gel is neglected, C will 

drop out of the Matalon and Pacter result, the two 

results will be of exactly the same form. However, 

this ad hoc modification of Wagner's result hardly 

seems justified, as the exponent on a 0 is seen to 

be always less than one. 

Resume: 

Experimental work by Matalon and Pacter con

cerning the effect of the medium on the L1esegang 

phenomenon has shown that the composition of the 



10 

medium has a definite effect on the character of 

the phenome.non . Also, their experimental results 

are in fairly close agreement with the results of 

Wagner which are derived directly from the diffus

ion equations with the assumption of a static 

supersolubility constant . 

However , any theory based solely on adsorp

tion has been ruled out . Also , the theory based 

on a static supersolubility constant appears to 

be overly idealized. 



11 

DISCUSSION 

Due to the conclusions drawn from the liter-

ature, it would appear that a theory based upon a 

kinetic supersaturation ••constant .. is most nearly 

correct. The least complicated theory involving 

such a constant would be a theory based upon the 

assumption that the diffusion of A-ions, and thus 

the formation of product molecules AB, will pro-

ceed more rapidly in the direction of advance of 

the phenomenon than the crystal growth will pro

ceed in the same direction. This condition is 

also used by Wagner.(ll) 

In the following discussion of this theory 

the molecules of AB still in solution will be re-

ferred to as the solute, and the molecules of AB 

which have precipitated out will be referred to 

as the precipitate. 

From the following equation of Nernst< 2
> it 

is evident that the rate of growth of crystals is 

proportional to the concentration of the solute 

in the bulk solution. 

dx/dt = B A (C2 - Co) 

dx/dt is the rate of precipitation of the solute, 

A 1s the surface area of the crystals pre -

sent, 
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C2 is the concentration of the sol~te in the 

bulk solution, 

C0 is the saturation concentration of the 

solute in equilibrium with large crystals, and 

B is a constant which depends on the rate of 

diffusion of the solute in the dispersing 

medium and on the thickness of the layer 

through which this diffusion takes place. 

Within a certain distance from the last zone of pre

cipitation C2 is essentially equal to C0 • For thls 

distance no new nuclei will be formed and for a short 

distance further on, where c2 is only slightly greater 

than C0 , the rate of growth of the nuclei formed will 

be quite small. If dx/dt were dependent only on the 

diffusion gradient (C2-C0 ), the rate of growth of the 

nuclei formed would keep increasing with no cr1t1cal 

value reached as C2 is a measure of the amount of 

solute formed. However, dx/dt is also dependent on 

the size of the crystals present. Thus, when the size 

of the crystals formed combines with the effect of the 

diffuslon gradient to increase the value of dx/dt to 

the point where it is equal to the rate of formation 

of the solute, the advancing diffusion wave is halted 

until the value of C2 drops to the value of c0 and 

the cycle is ready to repeat itself. 

The major objection to this theory 1s that the 
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'cr1 tlcal' cond1 t1o.n is not cri tlcal enough. Crystals 

of appreciable size would be formed on both sides of 

the main precipitation band and the critical condition 

would be approached rather slowly. This theory, there

fore, would not provide for the narrow bands and the 

rapid formation of these bands which have been observed 

experimentally. Thus, a more critical condit1o.n is 

needed. 

The above theory 1s based on the assumption that 

C0 is a constant. This is not the case. It has been 

shown experimentally that solubility of a crystal is 

a function of its size. Theoretical work gives the 

following formula for this relationship. (J) 

Sr = S exp (a/r - ~/r4) 

r is the radius of a crystal which is assumed 

to be spherical, 

Sr is the solubility of a crystal of radius r, 

S is the solubility of the solute 1n equilibrium 

with large crystals, 

a and ~ are constants for a given dispersing 

medium and a given product AB 

where: a = 2<T M/HTp and ~ = q2 M/8nKBTp 

cT is the 1nterfac1al tension between the solid 

and 1ts solution, 
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p is the density of the solid, 

M is the molecular weight of the AB molecule, 

K is the dielectric constant of .the medium, 

B is the gas constant, 

T is the temperature in degrees Kelvin, and 

q is the amount of charge on the crystal. 

As the saturation concentration is the solubility 

per unit volume, this equation may be written: 

where Cr is the saturation concentration· for a crystal 

of radius r and C0 1s as formerly defined. Figure 1 

is a curve showing the relationship between Cr and r 

and certain critical values of Cr and r are labeled. 
Cr 

r 

It can be seen from the Nemet equation that as 

nuclei are formed ahead of the last precip itation zone 

they w111 grow larger as long as the Cr corresponding 



15 

to their size is less than C2 at that point, where 

the Nernst equation now reads: 

dx/dt =BA (C2 - Cr)• 

That 1s, the nuclei will grow if the diffusion gradient 

(C2-Cr) is greater than zero. The curve in figure 1 

shows that as C2 increases from zero Cr can not be 

greater than C2 until C2 reaches Ck• If the nuclei 

increase in size to the point where their corresponding 

Cr is equal to the value of C2 at that point, the 

nuclei will cease to grow due to the then zero diffu

sion gradient. Actually, Cr will be slightly less 

than C2 due to the need for a finite diffusion gradient. 

If Cr lags behind C2 to any appreciable degree, the 

value of the diffusion gradient will be correspondingly 

larger causing accelerated growth of the nuclei which 

will cause Cr to "catch up" with C2• Thus, until C2 

reaches the value Ck, the nuclei present will have 

radii smaller than r
0

• 

The above discussion is applicable only until C2, 

and thus Cr, reach the value Ck• At this point and 

time any increase in r will cause an increase in A and 

a decrease in Cr• The decrease in Cr will cause an 

increase 1n the diffusion gradient. The combined 

increase in both the diffusion gradient and A will 

cause a rapid increase 1n dx/dt with a corresponding 
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rapid increase in r. This two fold reaction to an 

increase in r will cause the solute to precipitate 

out of solution very rapidly until C2 has decreased 

to the value C0 • 

It can also be shown from the curve in figure 1 

that if there are any crystals of radius greater than 

r 1 and less than r2 present when c2 reaches C0 then 

these crystals will dissolve until they have radius 

r equal to r1. Also, if crystals of radius less than 

r 1 are present, these crystals will grow until their 

radius equals r 1 • This strongly suggests an experiment 

to test the validity of this theory. According to the 

theory, after equilibrium has been reached, there 

should be crystals present of size r = r1 and r greater 

than r 2 only. This condition can be tested exper

imentally. 

By use of obvious conditions, the values of r 1 

and r 0 can be found in terms of a. and ~. 

l/J r 1 = (~/a) = r 0 /l.6 

Representative values of cs- and q were not available 

to the writer. However, an independent source< 2 > 

gives values of r 0 which are on the order of one tenth 

of a micron to one micron. The crystals of radius 
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less than r
0 

are therefore less than visible size. 

Thus, it is shown that, by taking into account 

the variance of solubility with particle size, a 

logical theory can be set up which will provide for 

both the rapid formation and the narrow width of 

L1esegang rings. This theory answers the major 

objections to the theory using a constant solubility. 

If the further assumption is made that the 

amount of solute used to form the nuclei of radius 

less than r 0 is negligible, that is, that it does 

not materially effect the diffusion of the A-ions 

and B-ions, Wagner's results will apply with the 

maximum value of Sr, Sk, substituted for Kn• 

To clarify the mechanism proposed above, a 

description of what would happen at an arbitrary 

point, y, in advance of the last band of precipi

tation, will now be given. For simplicity of 

descrintion, the phenomenon will be assumed to be 

advancing toward the right. 

At point y the initial conditions are a con

centration of solute of C0 or less and a prepon

derance of B-ions which are diffusing in from the 

right. As the newly formed diffusion wave of A-ions 

builds up from the left, there is a point at which 

the varying concentrations of A-ions and B-ions form 

a maximum value of c2 for the given time. This 
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maximum value of c2 will increase and move toward 

the right as time progresses, assuming that the 

influx of A- ions is greater than that of B-1ons . 

At some point y 0 and time t 0 , C2 will reach the 

value Ck and a new precipitation band will form . If 

y is at or near y 0 , nuclei will form and increase in 

radius until r = r 0 • At this time Cr = Ck and the 

nuclei will grow rapidly until Cr = C2 = C0 • Those 

nuclei whose radii do not equal or exceed r2 will 

dissolve until r = r1 and those with radii greater 

than zero but less than ri will grow until r = ri . 

Any excess solute formed in this process will diffuse 

to crystals of r greater than r2 and precipitate out . 

If y is not near y 0 , nuclei will form and grow 

to the size where r corresponds to the largest value 

of c2 reached at this point. As .C2 at this point· does 

not reach Ck , r will not reach r 0 • Shortly after t 0 , 

C2 will decrease to c0 , causing the nuclei at y to 

increase or decrease to r = r 1 , with any excess of 

solute diffusing to the nearer precipitation zone. 

The advantages of this theory over that of 

the static supersolubility constant are as follows. 

A kinetic explanation for the heretofore unwarranted 

assumption of a supersolubility limit is given. 

This new criterion depends to some extent upon the 

dispersion media . 
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CONCLUSIONS 

Due to experimental results found 1n the lit

erature, it was concluded that some form of kinetic 

supersolubility limit was needed to explain the 

mechanism of the L1esegang phenomenon. 

The form of the •rate of crystal growth" 

equation of Nernst suggested that, if a speci-

fic type of funct1oD were used in place of a con

stant value for the saturation concentration, just 

such a kinetic supersolub111ty l1m1t would be a 

distinct poss1b111ty. When ·the desired function 

was found in the literature, it was concluded 

that this could well be the correct explanation 

of the mechanism of the Liesegang phenomeno.n. 
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SUMMARY 

The literature is reviewed to determine the 

bes form for an explanation of the mechani sm which 

produces the Liesegang phenomenon . It is decided 

that a theory based on a kinetic supersolub111ty 

limit is most nearly correct . A theory based on 

the rate of precipitation equation of Nernst , 

dx/dt = BA ( C2 - C0 ), 

is formulated using C0 as a constant , and found to 

lack a sufficiently critical condition for observed 

properties of the phenomenon . The actual· relation

ship Cr 1s then substituted for C0 and a revised 

theory is formulated . where 

4 Cr = C0 exp (a/r - ~/r ) . 

This revised theory is found to have the necessary 

critical condition. 

An exp r1ment necessitating the finding of . 

nuclei of single size about a micron in diameter 

bet een the rings is proposed to test the validity 

of this theory . 

The advantages of this theory over the existi 

sup rsaturat1on theory are stat d. 
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