

Scholars' Mine

Masters Theses

Student Theses and Dissertations

1970

OPTUMR a digital computer program to cost optimize a district heat piping network to remove waste heat from nuclear power reactors

James Richard Hendricks

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Nuclear Engineering Commons Department:

Recommended Citation

Hendricks, James Richard, "OPTUMR a digital computer program to cost optimize a district heat piping network to remove waste heat from nuclear power reactors" (1970). *Masters Theses*. 5454. https://scholarsmine.mst.edu/masters_theses/5454

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

OPTUMR

A DIGITAL COMPUTER PROGRAM TO COST OPTIMIZE A DISTRICT HEAT PIPING NETWORK TO REMOVE WASTE HEAT FROM NUCLEAR POWER REACTORS

BY

JAMES RICHARD HENDRICKS, 1942-

A

THESIS

submitted to the faculty of

UNIVERSITY OF MISSOURI-ROLLA

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN NUCLEAR ENGINEERING

Rolla, Missouri

1970

180 pages c.1 Approved by Fing Elward (advisor) <u>abjele</u> d Ù

190865

T2508

ABSTRACT

The thermal pollution problem of a nuclear reactor electrical generating facility can be eliminated if an economical, productive use for the waste heat can be found. The computer program presented here is designed to investigate the economic feasibility of utilizing this waste heat to heat buildings. The program optimizes a district heating network using the reactor's rejected heat and performs a comparative analysis with a selected conventional heat rejection system. The results indicate that the system is feasible only if the reactor can be sited relatively close (5 miles) to an urban center. Increasing national concern regarding thermal pollution and recently enacted legislation will tend to make this system more competitive so long as the current siting restrictions (about 10-12 miles) are not made more stringent.

TABLE OF CONTENTS

		Page				
ABSTRAC	T	ĺĺ				
TABLE O	TABLE OF CONTENTS					
LIST OF ILLUSTRATIONS						
LIST OF TABLES						
1.	I. INTRODUCTION					
11.	II. REVIEW OF LITERATURE					
111.	III. DISCUSSION					
	A. SIMULATION OF PIPING NETWORK BY					
	AN ELECTRICAL CIRCUIT	8				
	B. REDUCTION OF THE CIRCUIT	12				
	C. THEORY OF THE CALCULATIONS	15				
	D. OPTIMIZATION THEORY	19				
	E. ECONOMIC ANALYSIS	28				
	F. SAFETY	31				
IV.	COMPUTER PROGRAM FLOW DIAGRAM	33				
v.	TYPICAL PROBLEM AND RESULTS					
VI.	CONCLUSIONS					
VII.	APPENDICES	A1				
	A. SYMBOLS USED	Al				
	B. FORTRAN IV PROGRAM LISTING	B1				
	C. SUBROUTINE LISTING	C1				
	D. INPUT INSTRUCTIONS	D1				
	E. BALANCE SHEETS	E1				
VIII.	BIBLIOGRAPHY	60				
IX.	IX. ACKNOWLEDGEMENTS					
х.	X. VITA					

LIST OF ILLUSTRATIONS

FIGURE			
1.	LOAD DISTRIBUTION OF FARSTA REACTOR	5	
2.	SCHEMATIC OF CONVENTIONAL REJECTION SYSTEM	9	
3.	SCHEMATIC OF DISTRICT HEATING REJECTION SYSTEM	10	
4.	CONTROL CIRCUIT	11	
5.	ARTIST'S SKETCH OF DISTRICT HEAT SYSTEM	13	
6.	EQUIVALENT CIRCUIT DIAGRAM	14	
7.	NETWORK REDUCTION	16	
8.	THREE DIMENSIONAL OPTIMIZATION SPACE	22	
9.	GENERAL COST CURVE	25	
10.	DISCONTINUOUS COST CURVE	26	
11.	THREE POSSIBLE CURVE SHAPES	27	
12.	COMPUTER PROGRAM FLOW DIAGRAM	34	
13.	THREE EXAMPLE CIRCUITS	D15	

LIST OF TABLES

TABLE		Page
I.	PARAMETERS OF AGESTA	6
II.	COST CALCULATIONS OPTIONS	20
III.	INPUT DATA FOR TYPICAL PROBLEM	44
IV.	CONPUTER PROGRAM RESULTS FOR DATA IN TABLE III	45
v.	COST DATA VS. DISTANCE FROM REACTOR TO URBAN AREA	57

I. INTRODUCTION

The consumption of electrical power in the United States is doubling about every ten years [30]¹. To meet this increasing energy demand, the use of nuclear powered generating plants is currently considered by many to be the best solution. Among the many problems that have developed with the use of nuclear powered generating facilities is the increased thermal pollution from nuclear reactors as compared to fossil fueled plants. Although this problem exists in conventionally powered generating facilities, the nuclear powered plant rejects from ten to fifty per cent more waste heat than its conventionally powered counterpart.

The problem under consideration here is one possible solution to the thermal pollution problem by a nuclear powered generating plant. The heat rejected from a nuclear powered generating plant is low energy waste heat because the prime, high energy steam is used for electrical generation. If a practical use of this low energy waste heat cen be developed and exploited, then this major problem of nuclear powered generating plants can be solved.

A practical use of this low energy rejected heat is in a district heating network. This use has been investigated by A. J. Miller [22] and most dramatically by the Swedish experimental nuclear reactor Agesta². In both of these investigations, it has been determined that, under proper conditions, the use of nuclear reactor waste heat to heat buildings can be profitable. To date, however, this scheme has not been utilized in the United States.

- 1. Numbers in brackets indicate references in bibliography.
- 2. In some references the designation ADAM or R3 are used.

The most significant disadvantage of the nuclear district heating system is the requirement to provide continuous heat to the system. An unscheduled shutdown of the reactor could cause serious consumer relationships. However, because the current tendency in the nuclear industry is to construct multiple reactor sites, the solution to this problem is to design the nuclear plants such that either plant could provide the base heating requirements of district heating network. Further, the reliability problem can be alleviated using conventional heat sources for peaking service (with the additional capability of providing the base load requirements for short periods of time) as is done in the Agesta Plant. (See Page 5.)

To further develop this use of nuclear reactor waste heat, the digital computer program described herein has been developed to cost optimize and economically analyze a district heat distribution network. The program is designed for use by an electrical generating facility that is considering the use of nuclear reactor power generation. By supplying appropriate input data, the electrical utility can determine the feasibility of installing a district heat distribution system to remove the reactor's waste heat.

II. REVIEW OF LITERATURE

Probably the most frequently discussed topic in the United States today is pollution -- smog, industrial pollution, automobile pollution, radioactive pollution, and thermal pollution [21,24,30]. At the present time there are numerous legal struggles in progress attempting to stop the construction of industrial plants on pollution grounds or to cause the shutdown of existing plants because of excessive pollution. In addition to the legal struggles, there is a newly enacted law (The National Environmental Policy Act) which may bring about even more dramatic legal action [21]. Further, Jaske [19] reported that growing national interest in the thermal and radioactive pollution problems could ultimately prevent the construction of nuclear reactor generating facilities.

There are many proposed solutions to the thermal pollution problem. Among these are: 1. cooling towers [25], 2. natural convection cooling ponds [20], 3. spray cooling ponds [25], 4. concurrent electrical production and desalination [28], 5. use of waste heat for industrial processes [3], 6. melting of the Saint Lawrence Seaway in the winter [6], 7. more efficient methods of sewage treatment [4], 8. heated irrigation water [2], and 9. district heating systems [6,13, 22,31]. The first three methods can cause a severe mist or fog under certain weather conditions, particularly in the northern part of the United States, and, in general, require a relatively large makeup water supply. The next two require, in general, a higher energy source than the waste heat from a nuclear reactor. The remaining four have the disadvantage of being seasonal requirements. The district heating system, however, can be used to provide air

conditioning [18] using an absorption air conditioning plant.

The preliminary investigation by the United States into the utilization of waste heat from nuclear generating plants for district heating was conducted by A. J. Miller under an Atomic Energy Commission contract [22]. The results of this investigation revealed that if the nuclear reactor could be sited a reasonable distance from an urban-industrial area (by a reasonable distance, five miles is considered a maximum), then the installation of a district heating network would be profitable.

In addition to Miller's investigation, the Swedish government has constructed and successfully operated the Agesta heavy water reactor in a district heating network [7,27,31]. The Agesta reactor is a 65 Megawatt Thermal (MwT), dual purpose (10 Mw Electrical, 55 MwT) reactor designed to produce electrical power and to heat the city of Farsta which is 10-15 miles from Stockholm. This reactor has been in operation since about 1964.

The Agesta reactor is located about three miles from Farsta. The justification for the proximity to the population center is that the reactor is built underground. (In fact, the reactor is built in a mountain under rock.) The district heating water from the reactor ties into an existing district heating distribution system. The nuclear reactor is designed to absorb the base heating load with conventional plants assuming the peaking loads. This load distribution is shown as Figure 1. The plant is shut down for maintenance in the summer months [27]. A summary of the parameters of the Agesta reactor are shown in Table I.

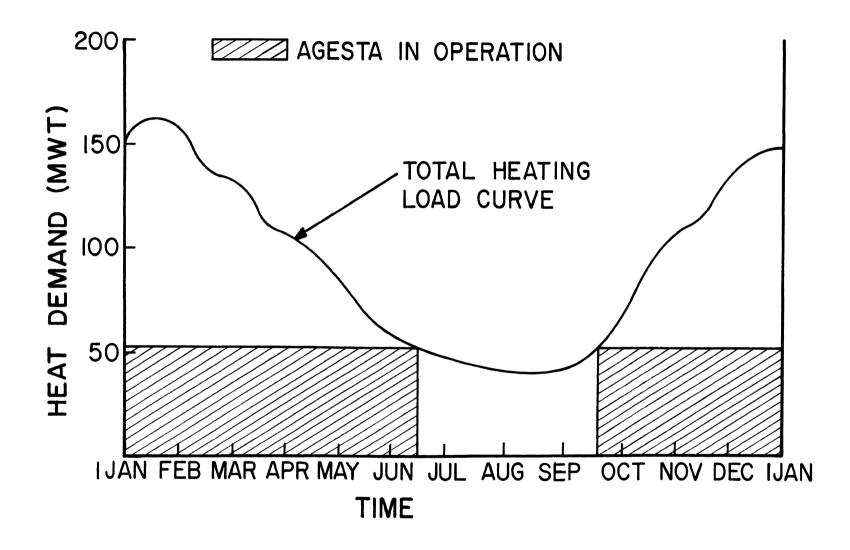


FIGURE 1. LOAD DISTRIBUTION OF FARSTA REACTOR

TABLE I

PARAMETERS OF AGESTA

Rating	55 Mw Thermal
	10 Mw Electrical
Туре	Pressurized, heavy water
	moderated and cooled,
	slightly enriched Uranium.
Flowrate	4,800,000 lbs./hour
Outlet Temperature	160 to 240 degrees F
Return Temperature	130 to 150 degrees F
Operating time	5000 to 6000 hours/year
Make up water when operating cooling towers	75 tons/hour

The economic performance of the Agesta reactor is not satisfactory [27]. This statement is made, even with consideration given to the reduction in size of conventional heat removal equipment, and the advantages gained from lesser maintenance expenses. (The Agesta has fully capable conventional heat removal system.) The problem with Agesta, however, is not in the district heating concept. The economic difficulties in Agesta are caused by severe losses of heavy water (D_20) from the primary plant. The replacement cost of the D_20 has led to the development of a pressurized light water reactor for district heating [5].

The design, construction, operation and maintenance of district heating systems have been under development and used for many years [6]. Due to the volume of literature available dealing with these systems, a summary of the opinions of several authors [8,9,16,20,32] is presented:

1. The system should be installed underground.

2. A closed liquid system (e.g. water) should be used in preference to steam.

3. Due to the corrosiveness of the environment, the piping should be relatively corrosion resistant, insulated for protection, and encased in a conduit with provision for conduit drainage.

4. Adequate duplication of equipment, manholes, isolation capability, and instrumentation should be provided to increase the system's reliability.

These guidelines were used to prepare the computer program. In some cases, the user has the option of changing these guidelines. See Appendix D for input instructions.

III. DISCUSSION

The logical starting point of the district heating system analysis is at the heat source. A schematic diagram of a typical power reactor and the reactor's heat rejection system is shown in Figure 2. Figure 3 shows the heat rejection system for a typical reactor plant that has a district heating network capability. Since the systems are equivalent from the reactor to the condenser, for the rest of this discussion, the heat source is considered to be the condenser. Figure 3 shows that in addition to the district heating network, a small heat rejection system (cooling tower, cooling pond, etc.) would be installed. This would give the plant the capability of following minor transient heat demands on the district heating network while producing a constant amount of electrical power.

An automatic control system would sense the fluid temperature to the district heating network and the inlet to the condenser. The control system would then generate position commands for the automatically controlled throttle valves in the pump suction and condenser discharge lines. This would distribute the flow to the district heating network and to the tower to maintain the desired temperature. Figure 4 shows a block diagram of a simple analog circuit that will control the system as described above.

A. Simulation of Piping Network by an Electrical Circuit

The piping network that is proposed for installation as the district heat piping network is simulated using an electrical circuit to represent the network. The mass flowrate is treated as an electrical current; pressure drops are treated as voltage drops; and piping lengths, bends, traps, etc. are treated as resistors. Pumps

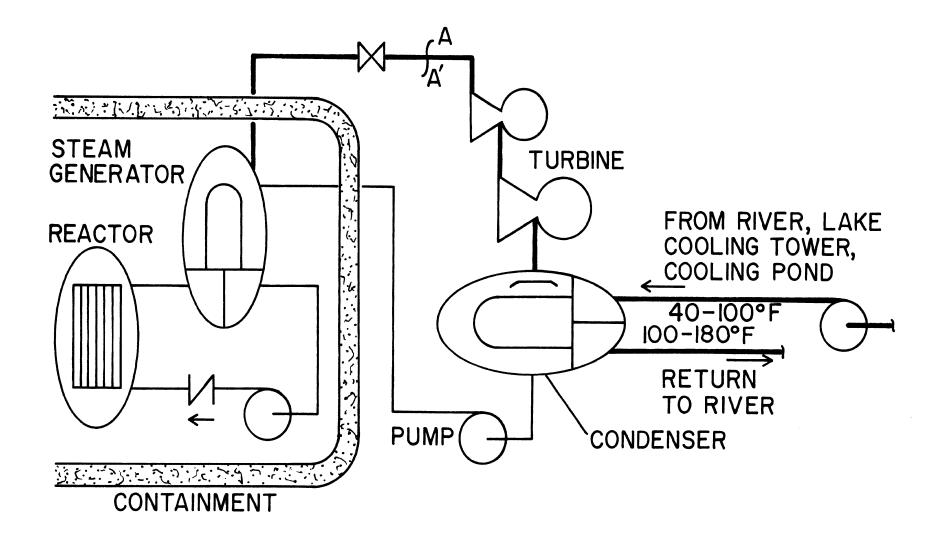


FIGURE 2. SCHEMATIC OF CONVENTIONAL REJECTION SYSTEM

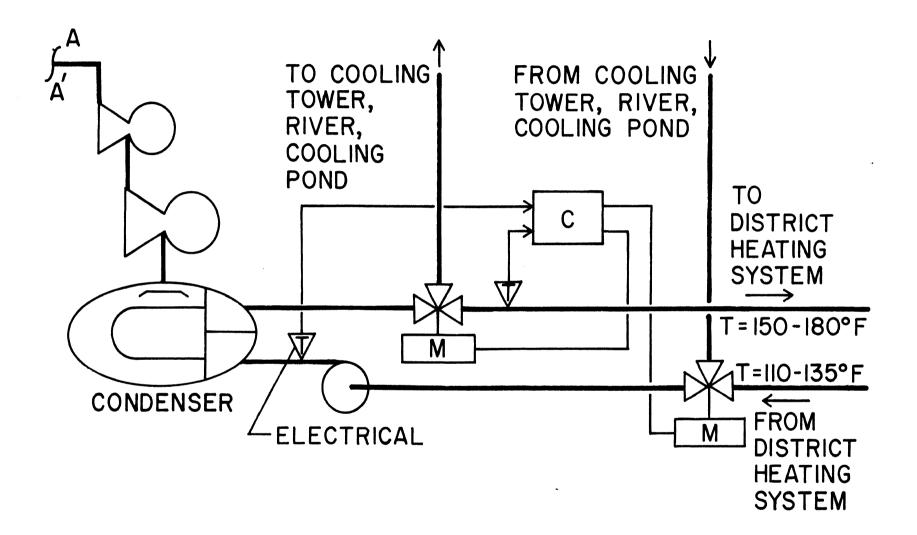
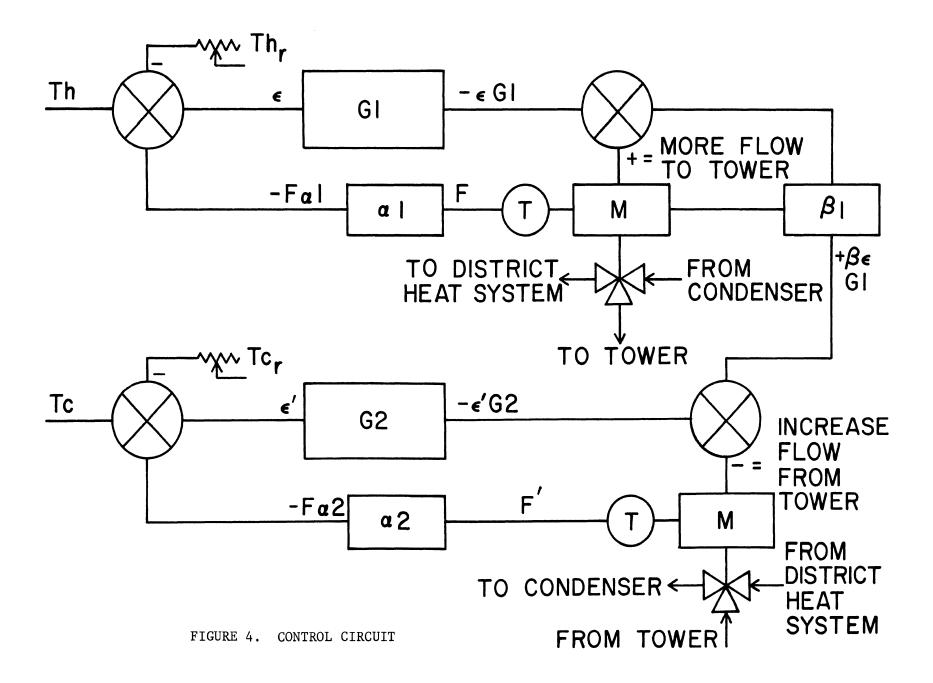



FIGURE 3. SCHEMATIC OF DISTRICT HEATING REJECTION SYSTEM

are analyzed as voltage or current sources and the head losses, due to the fluid passing through the buildings, are treated as series resistors.

The principles used to accomplish this simulation are illustrated using Figures 5 and 6. Figure 5 shows a piping system that might be a typical, scale district heating system using a nuclear reactor's waste heat. The reduction of this network to an electrical circuit is shown in Figure 6. The current source is the representation of the pump; Rl is the line loss from the reactor to the city; R2,R3, R5,R7,R8, and R9 are the losses in the piping to and from buildings 2,3,5,7,8, and 9 of Figure 5; R4,R6,R10, and R11 are the losses in the lines between building groups; and R12 is the loss from the city back to the reactor.

Since the heating requirements for the buildings are known, one can readily compute the mass flowrates (currents) required for each building. A simple Kirchoff's node law application gives a mass balance at the nodes. In addition, one can readily calculate the pressure drops in each path of the network if one is given the size of piping required. The details of the above outlined technique are more fully explained in the next section and are illustrated by means of an example on page 40.

B. Reduction of the Circuit

Once the physical space heating network has been simulated by an electrical circuit, there is a reduction procedure that is employed to insure that:

1. All piping runs are optimized,

and

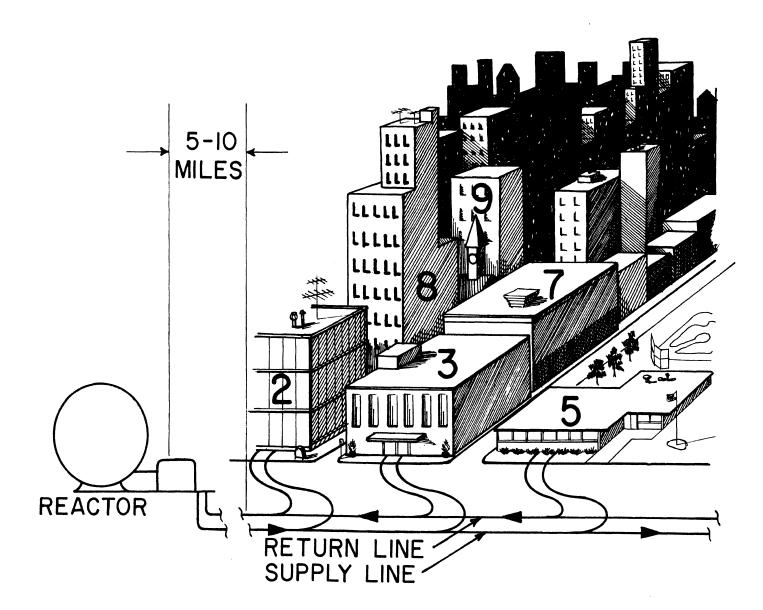


FIGURE 5. ARTIST'S SKETCH OF DISTRICT HEAT SYSTEM

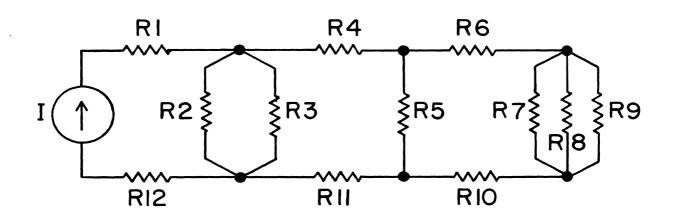


FIGURE 6. EQUIVALENT CIRCUIT DIAGRAM

 No piping run has duplicate calculations performed.
 To accomplish these objectives, the electrical network is step-bystep reduced in the manner discussed below.

The basic principle used is that any linear, purely resistive, two terminal electrical circuit can be simulated by an equivalent circuit composed of a voltage or current source and an equivalent resistance [10,17,23].

The reduction is accomplished by starting at the most distant flowpath from the reactor and by step-wise reducing the network until the entire system is optimized. This reduction is best illustrated by using the example problem shown in Figure 6. The step-by-step reduction is shown in Figure 7. This reduction technique is explained in more detail in Appendix D.

C. Theory of the Calculations

In this section, the basic equations and theory used in computing the cost and economic values are presented.

The calculations start with a given mass flow rate and an assumed diameter. From this data and the continuity equation

$$W = \rho A \overline{V} , \qquad (1)$$

one can calculate the average velocity for a one pipe system. If more than one pipe of the same diameter is used, the flow is assumed to be equally distributed. Thus, by increasing the number of pipes, the average velocity can be reduced. This is done by the program to insure that \overline{V} is less than the maximum desired by the programmer. For later use, it is also noted that the volumetric flowrate, Q, is given by

$$Q = A \overline{V}$$
(2)

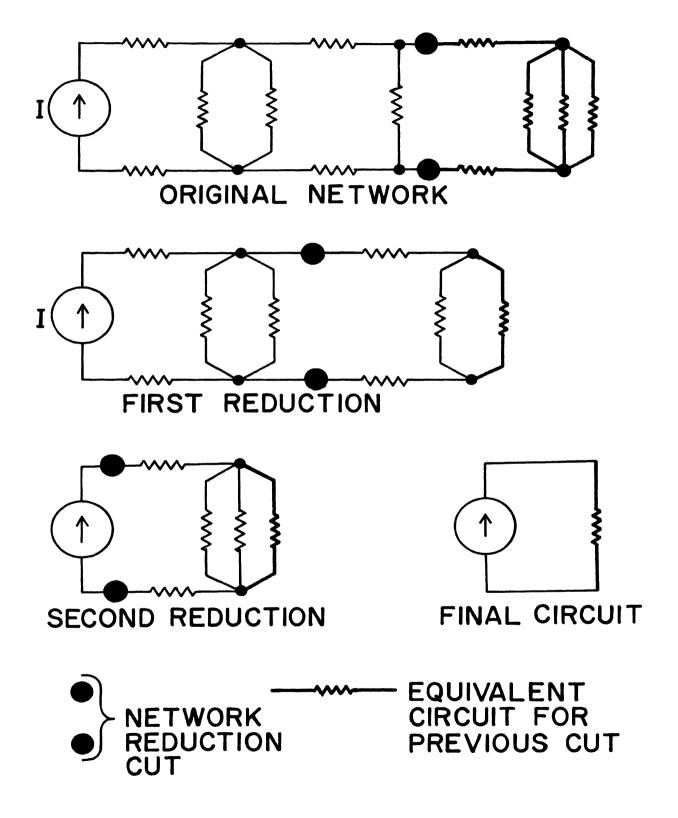


FIGURE 7. NETWORK REDUCTION

For incompressible, closed system fluid flow, the Bernoulli equation reduces to

$$H_{g} = \Delta p/\rho = \frac{4fL}{D} \frac{\overline{V}^{2}}{2gc}$$
(3)

The unknown friction factor in equation 3 is computed using an emperical relationship [20] based on the Reynolds Number

$$RE = \frac{D V \rho}{\mu} , \qquad (4)$$

and the following relationships:

$$f = \frac{16}{RE}$$
 $RE < 2200$ (5)

$$f = 0.186 - .0026 \log RE \qquad 2100 < RE < 100000 \quad (6)$$

$$f = 0.0025 \qquad RE \ge 100000 \quad (7)$$

Summarizing the results, one has the head loss in the piping, volumetric flow rate, velocity and the number of pipes.

The installation costs that are computed are the pump cost, piping cost, excavation cost, insulation cost, conduit cost and manhole costs. In addition, a supplemental cost subroutine is provided to permit other cost inputs to be made. The cost estimation schemes for each of these items will be further described below.

Before describing the cost schemes in detail, however, some basic cost estimation techniques that are used frequently throughout the program will be described.

One of the most powerful tools of the cost estimator is the cost-price index [25,28,29]. For a variety of specific and general types of equipment, components, or operations, cost analysts compute a number called the cost-price index. A cost-price index is the ratio of the cost (price) of a specific item (e.g. a pump) at some specified time to the cost (price) of the same item at some other time. The advantageous feature of the cost-price index is the ability to accurately predict the cost of a specified item at some later time, using some previous time. If, for example, one had cost estimates for three different items: one based on 1965 dollars, one on 1967 dollars and one on 1969 dollars, the uncorrected addition of these costs to obtain a total cost would be in error. If, however, one uses the cost-price indices, one can adjust the costs to the same year. Further, using the same concept, one can estimate the cost at some future date.

Another tool for the estimator is the exponential estimation technique [25]. In this technique, one is given a base size of an item and a base price for that size. Then, to estimate the cost of the same item of a different size, one uses

New Cost=(Base Cost) x
$$\left(\frac{\text{New Size}}{\text{Base Size}}\right)^a$$
 (8)

Numerous references in the literature give values of the exponent, a, to use for various types of equipment. In general, this value lies from 0.4 to 1.5, average being about 0.6.

An extension of the exponent method is to have two values of item size and item cost. In equation 8, designate new cost, new size as cost 2, size 2; base values as cost 1, size 1. Thus,

$$cost 2 = (cost 1) x \left(\frac{size 2}{size 1}\right)^{expon}$$
(9)

Taking logarithms of (9),

$$\ln (\text{cost 2}) = \ln (\text{cost 1}) + (\text{expon}) \times \ln \left(\frac{\text{cost 2}}{\text{cost 1}} \right)$$
(10)

Solving (10) for exponent

$$expon = \frac{\ln (\cos t 2) - \ln (\cos t 1)}{\ln (\cos t 2/\cos t 1)}$$
(11)

Thus, one can calculate the exponent for use in equation 8.

Returning to the costs that are computed in the program, Table II indicates the options available for the cost calculations previously mentioned. In addition, the functional dependence of each cost is indicated. Notes are provided to explain the table.

D. Optimization Theory

There are an infinite number of combinations of pipe size and number of pipes that can transport fluid at a given rate. The principles of linear algebra can be used to describe the manner that the optimum size and number of pipes can be computed.

The first problem is to identify the independent variables that one can have. Certainly the mass flowrate, the number of pipes and the size of piping are independent variables. There are other independent variables (e.g. length), however, it is assumed that these variables are specified to fit the problem under consideration³. The result is that one has a three dimensional space in flowrate, number of pipes and size of pipes. This three dimensional space is not an infinite space. There are physical limitations imposed that reduce the space to a finite size. For example, the maximum pipe diameter commercially available is a finite number; the minimum

^{3.} For example, to get from the reactor to a building there are many conceivable paths of different lengths. However, one is going to select the one that is the most acceptable for the particular situation, and thus will specify the length and length will become a constant rather than a variable.

TABLE II

COST CALCULATIONS OPTIONS

	Cost Price Index	Table Cost vs. Size	Exponent Method	Extrapolated Exponent Method	Direct Input Method	Functional Relationship
Pump Cost	Yes	Yes	Yes	Yes	Yes	N*Q ^{.98} **
Pipe Cost	Yes	Yes	Yes	Yes	Yes	N*L*D ^{1.15}
Excavation Cost	Yes	No	No	No	Yes	VOL*COST/VOL VOL=(2+N*D)(3+D) ***
Manhole Cost	Yes				Yes	L*DEPTH*HOLE COST/ # of ft. per hole
Insulation Cost	Yes				Yes	N*L*D*COST/ft.
Conduit Cost	Yes	Yes		Yes	Yes	N*L*D.6
Pumping Cost	Yes				Yes	N*H*p*Q/CONST

****** Exponents taken from reference

*** Assumes pipes side by side with 3 feet of earth on top

number of pipes to be considered may be set by reliability criteria; the flowrate may be a specified flowrate.

In this problem, the constraints are chosen as follows:

- 1. Flowrate is fixed.
- 2. A maximum and minimum pipe diameter is specified.
- 3. A minimum number of pipes is specified.
- 4. A maximum velocity of fluid is specified. (This is not an independent variable. However, to define a finite region of interest in three dimensional space, a combination of three complete restraints is required. The flowrate is one restraint. The minimum and maximum diameter is a second restraint. The maximum fluid velocity and the minimum number of pipes combine to make the third restraint.)

Figure 8 shows a sketch of this three dimensional space and how these restraints define an operating line.

There are many dependent variables that could be chosen for an optimization scheme. Some of these could be:

- 1. minimize installation cost
- 2. minimize operating expense
- 3. minimize maintenance expense
- 4. minimize shut down time (maximize reliability)
- 5. minimize total costs
- 6. maximize profit

or

7. a combination of some or all of the above.

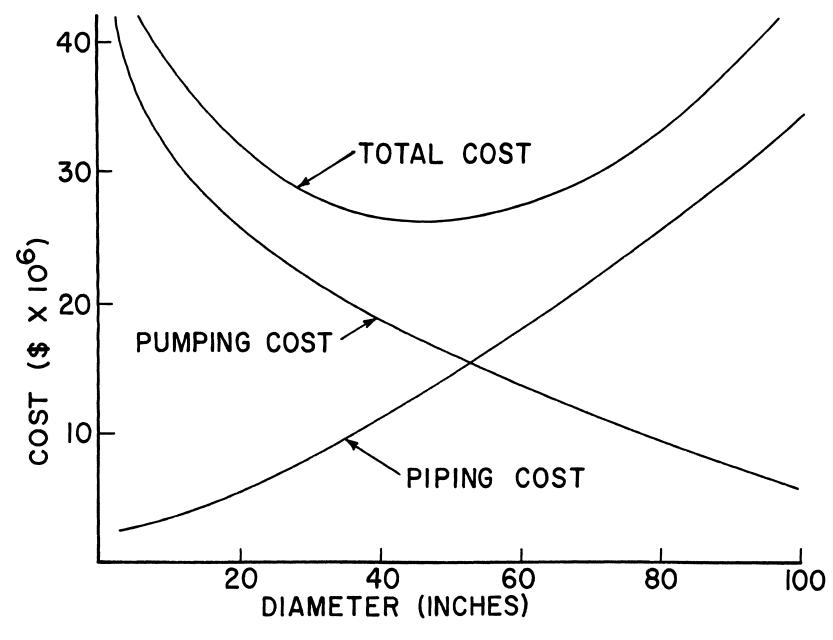


FIGURE 9. GENERAL COST CURVE

Two different schemes are available to be selected which will optimize the network as is described $below^4$.

The first of these schemes is an optimization based on the minimization of the cost of installing the network and the cost of operating the network for a specified period of time. The minimization of installation cost alone was not chosen as a basis for optimization due to the effect of operating expenses on the economic analysis⁵. Total cost was not chosen since the installation and operating expenses are the most important terms in the total cost analysis. The period of time for this optimization was chosen to be one year since the other economic considerations (depreciation, taxes, etc.) are annual charges. The user has the ability to change this time period if he desires. A description of the methods used to optimize the network using this technique follows.

Using the input data of flowrate (W), length of piping (L), and building loss (BLOSS), and the limits of pipe size to be considered, the program calculates the number of pumps and pipes required and the cost of the pumps, piping, excavation, insulation, manholes, conduits and any supplemental installation costs for a given piping diameter. It also calculates the pumping power cost for the specified period of time and pipe diameter as previously mentioned. The total of these cost items is then computed and stored in memory. In addition, the user can input right of way cost data and can input the

^{4.} These schemes were selected by consideration of recommendations contained in reference [29].

^{5.} Further details can be found in reference [26], pg 4-8 and pg 135-167.

economic advantage of installing the piping in rivers or lakes where no right of way expense is incurred.

The general form of the cost of installation and pumping cost is illustrated in Figure 9. As one can see, the total cost curve has a broad minimum that one should be able to find quite readily. However, the real world is not so simple. For the flow rates required by a heating system of the size under consideration, the economic feasibility and reality of the problem requires that a limit be placed on the velocity of fluid flowing in the pipes. This limiting velocity is input specified and determines the number of pipes and pumps required to move the quantity of fluid required. Thus, as the diameter varies, so does the number of pipes, pumps, etc. The result of this is the curve shown in Figure 10. As one can see, the curve is now discontinuous. (The discontinuities are caused by changing the number of pipes.)

One method of finding the minimum would be to take the range of pipe sizes under consideration, start at the smallest and proceed through to the largest in a step-by-step manner (hereafter referred to as a march-out technique). The optimum size would be the smallest total cost found while conducting the march-out technique. This method, however, can be very costly in computer time and a better technique has been found.

Referring to Figures 9 and 10, the cost is computed for the maximum size, the minimum size and the medium size (K1,K2, and K3 on Figure 10). A smooth curve is then fit to the points and the curve is analyzed for shape. Three possible shapes exist and are shown in Figure 11. If the curve orientation is as in Figure 11A, then

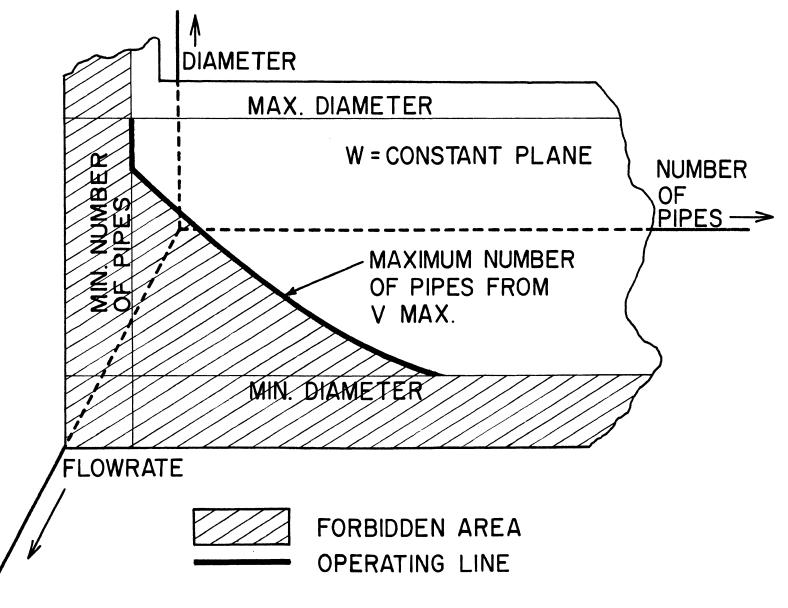
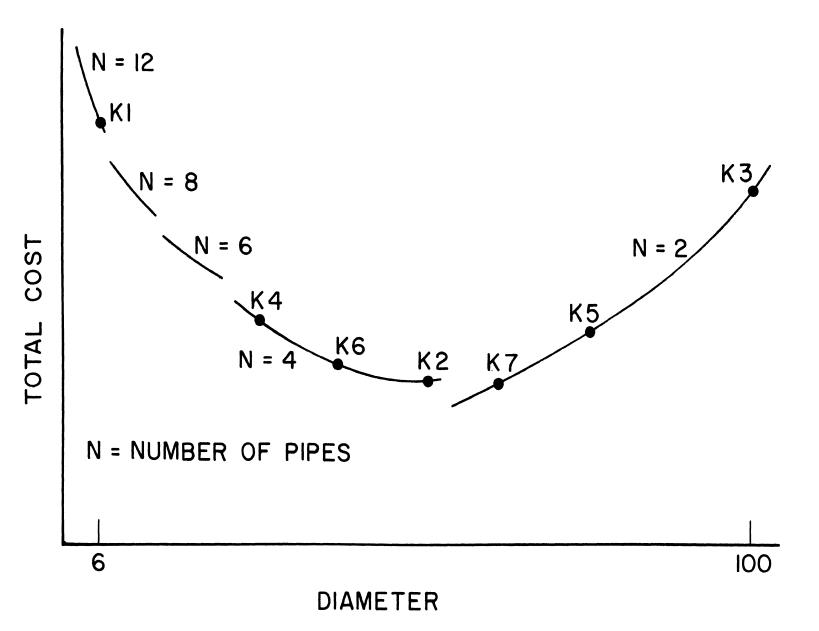



FIGURE 8. THREE DIMENSIONAL OPTIMIZATION SPACE

•

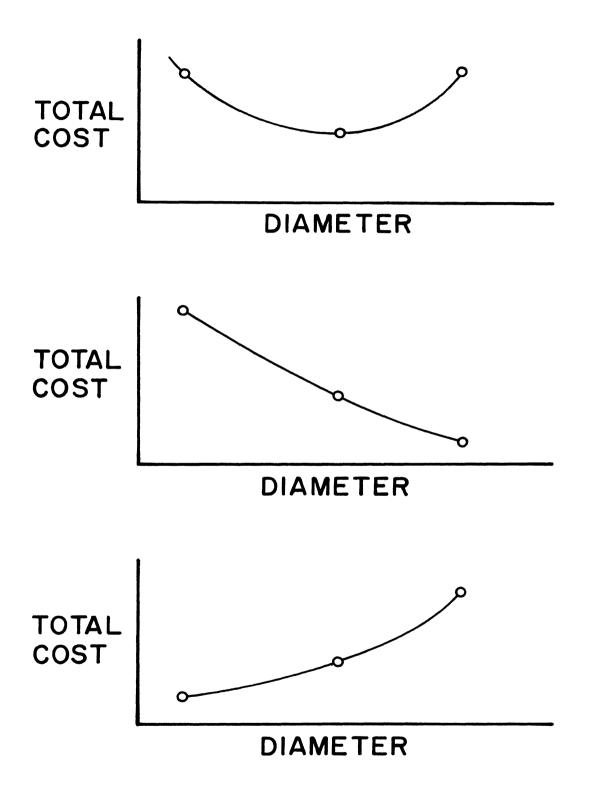


FIGURE 11. THREE POSSIBLE CURVE SHAPES

costs for sizes K4 and K5 are computed. The shape of the curve that fits through K4,K2 and K5 is then checked. If the shape is as in Figure 11A, the process is repeated (K6,K7 of Figure 10) until the orientation changes to 11B or 11C, or until K2 is found to be the minimum. When the orientation changes to either 11B or 11C (as it does in Figure 10 using points K6,K2, and K7), then the march-out procedure is used from a little before the smaller diameter to a little beyond the larger diameter. Thus, one finds the minimum using considerably less computer time than a straight march-out technique.

The second method of optimization is to maximize the profit that can be made. This is done by calculating the hourly financing cost, operating and maintenance costs, the pumping costs and then comparing these values with the hourly gross income from the sale of heat for a march-out of the pipe diameters. The maximum net income is found from this march-out technique. This is then taken to be the optimum size for maximum return or investment and a full set of cost calculations and cost analysis is performed.

E. Economic Analysis

The economic analysis is a basic discounted cash flow type of analysis. This type of analysis is a summary of all cash assets and liabilities as either cash inflows or as cash outflows on an annual basis. A net cash flow is the algebraic sum of the cash inflows and the cash outflows. The net cash flow for each year is then adjusted to the plant start-up time for the time value of money by applying an appropriate adjustment factor. This factor is obtained from a continuous interest table or from the equation

factor =
$$e^{-rt} \left[\frac{e^r - 1}{r} \right]$$
 (12)

In principle, this type of analysis is quite easy. The result of this analysis is the return on investment rate, r, which appears in the factor term in a rather complicated fashion requiring a trial and error type of solution.

The elements of the cash flow analysis are the fixed capital investment (assumed to be expended one year before start-up), operating and maintenance expenses, financing charges, insurance, taxes, overhead, taxes, miscellaneous annual expenses and the gross income from the sale of heat.

In the proposed system, there is a possibility that the system may not be a profitable investment. There are situations, however, which may justify the use of a non-profitable investment. Consider, for example, the situation that is developing in the field of electrical generation. At the projected rate of growth, the available cooling water supply that can be used without severely disturbing the ecological balance will soon be exhausted [24]. The use of rivers, lakes and streams for cooling of the generating facilities will therefore be precluded.

Continuing with the example, local legislation may forbid the use of cooling towers due to the severe fog and mist problems associated with cooling towers. Further, similar difficulties could be encountered in the other possible methods of heat rejection. The extreme case would be that the district heat rejection method would be the only acceptable method of heat rejection. Thus, as previously asserted, the use of a non-profitable system could be justified. To make a meaningful analysis of the district heating system of heat rejection, an analysis of the cost of this system versus the cost of the alternative system must be made. The ultimate test of the district heating system can be stated as follows: Is the district heating system of heat rejection the least expensive method compared to the alternative methods (if any)? The method chosen to answer this question is described below.

Consider a district heating system that is not profitable. Adjustments to the cost of installation of the district heating system are made by computing the cost of construction and operation of a selected alternative system. This cost is then subtracted from the district heating systems cost. In addition, a factor can be specified to account for the intangible benefit of no thermal pollution. If, by repeating the cash flow analysis, the district heating system can then be shown to be profitable, the district heating system should be installed. Further, even if this adjusted system analysis does not show a true profit, but does yield an acceptable pay out time⁶, the district heating system should be installed.

The adjusted economic analysis can reveal that the installation of a district heating system will not be profitable nor will yield an acceptable pay out time. However, the decision to install this system could still be made for better public relations or to gain technology in the field. To encourage this, the program calculates

^{6.} As used here, pay out time is the number of years to regain the capital investment.

the incremental increase in selling price of heat or selling price of electricity that would be required to pay off the plant in the specified lifetime.

F. Safety

A discussion of a project using nuclear reactors in any manner is not complete until a safety analysis of some sort is performed. It is assumed that the reactor plant and its' associated equipment meets the requirements set forth in Title 10 of the Code of Federal Regulations. With this assumption, the only safety analysis required is just the analysis of the district heating system.

The primary safety concern of a nuclear reactor is the release of radioactivity to the environment in such a manner that would be detrimental to the general population. The general criterion set forth in the federal regulations is that at least two barriers against release of radioactivity be provided.

Consider a boiling water reactor with a district heating system installed. (This reactor type is chosen because the possibility of radioactivity in the condenser is greatest for this type reactor.) The only source of radioactivity to the fluid in the system would be leakage from the condenser into the district heating system fluid. The tube walls of the condenser serve as the first barrier. The second barrier is a potential barrier. The condenser is operated in a slight vacuum while the district heating system is pressurized to about 200-300 pounds per square inch at the condenser. Thus, any leakage that would occur in the condenser tubes would be <u>from</u> the district heating system <u>into</u> the condenser. Further, the district heating system piping would serve as a third barrier. A periodic or continuous monitoring of the district heating system fluid for radioactivity would serve as an independent control.

The other serious problem (Maximum Credible Accident) is the effect of a major rupture in the district heating system. Since the reactor is protected against a loss of cooling system, all that need be considered is the effect on the district heating system. Since the major portion of the piping is underground, the effect of this accident would be slight if the rupture occured in a portion of the piping that is underground. However, one might consider the rupture of the pipe line inside a building. As one can readily see, this accident is the determining factor in the choice of fluid that is If steam were used, this accident would be very serious because used. of the high temperatures and high internal energy of the steam. Further, isolation of a steam system will not stop the steam flow from the rupture. However, since water is used, the rupture would cause an almost instantaneous depressurization of the system. This would then lead to hot (170-180 degree) water being pumped into the building at low pressure. With automatic isolation capabilities sensed by a severe pressure transient installed, the effect of this accident is only that a small quantity of fairly high temperature water is sprayed into a building. This hot water could cause some damage; however, the probability of this accident being serious is fairly low.

IV. COMPUTER PROGRAM FLOW DIAGRAM

Figure 12 shows a block diagram which indicates the flow control of the computer program. The figure consists of a flow diagram for the main program, a flow diagram for each of the three path types (series, parallel and series-parallel) and a flow diagram for the two optimization schemes (minimization of installation cost and pumping cost, and maximization of the rate of return on investment).

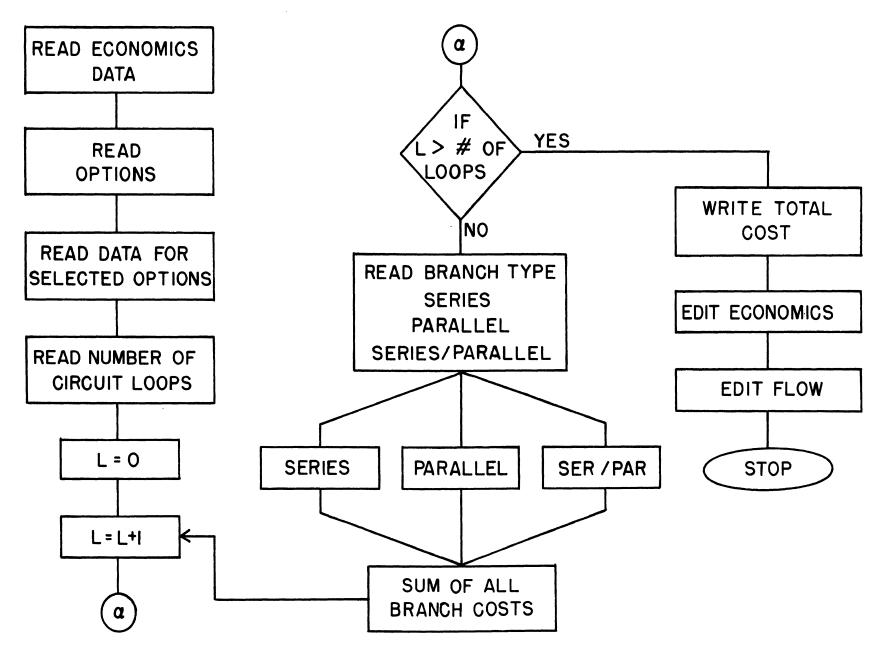


FIGURE 12. COMPUTER PROGRAM FLOW DIAGRAM

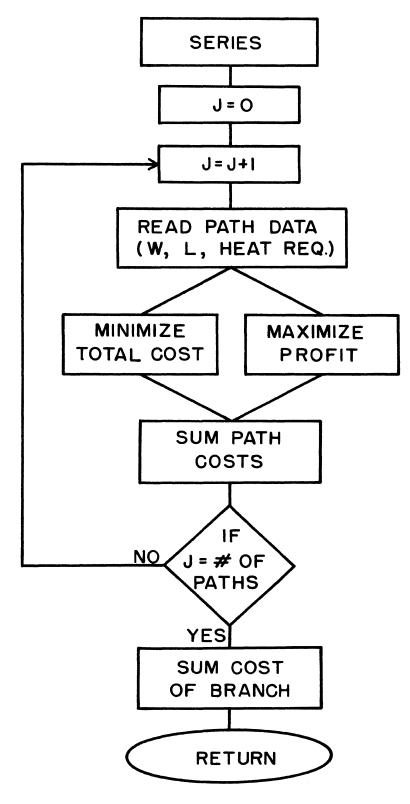


FIGURE 12. (CONT'D)

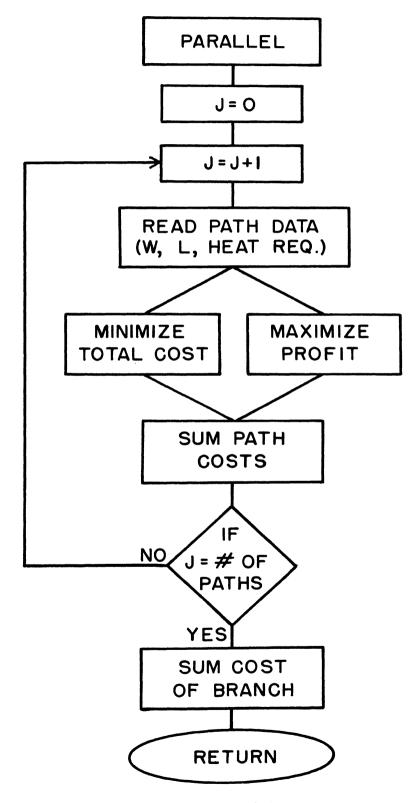


FIGURE 12. (CONT'D)

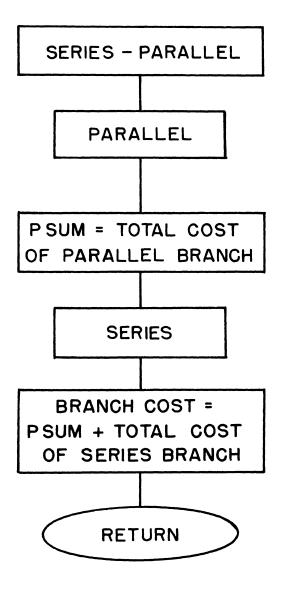


FIGURE 12. (CONT'D)

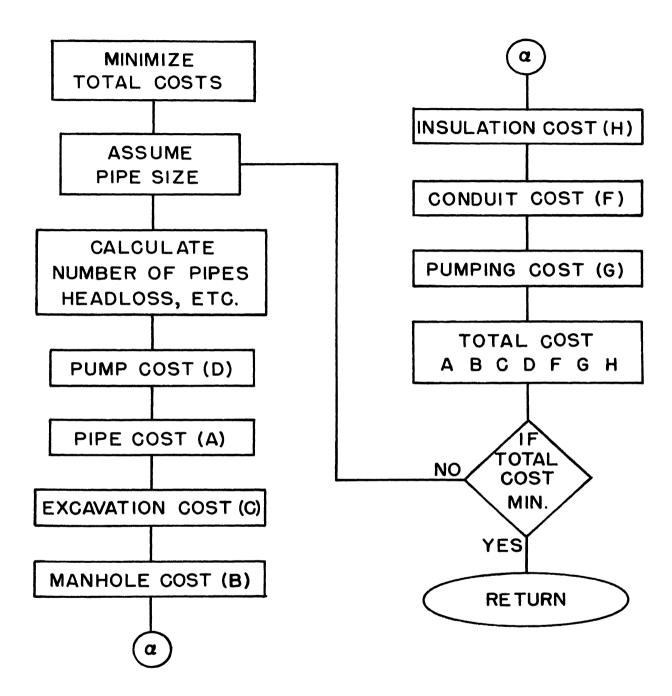


FIGURE 12. (CONT'D)

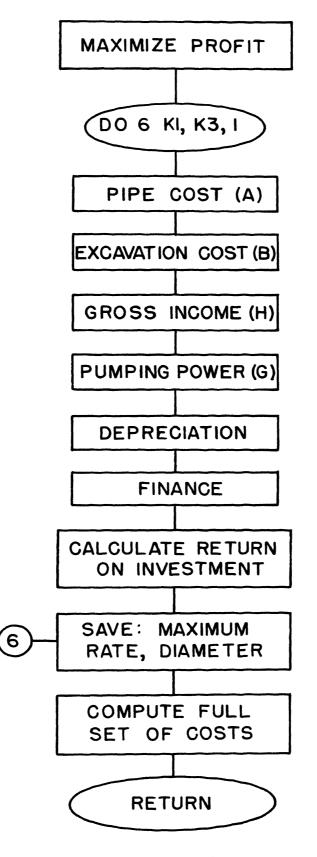


FIGURE 12. (CONT'D)

V. TYPICAL PROBLEM AND RESULTS

The following paragraphs will give the statement of a typical problem of the type that can be solved by OPTUMR.

Suppose it was desired to heat the buildings shown in Figure 5 and simulated by Figure 6 using the waste heat from a nuclear reactor. The objective is to find the installation cost, the operating cost, and the profit or loss potentials of such a system in sufficient detail to determine the feasibility of starting the preliminary design phases.

It is assumed that the following data is given:

- 1. The effective lifetime of the plant is 30 years.
- 2. The effect of pumping power cost determines the shape of the optimization curve (see Figures 9 and 10). For the optimization in the problem, a basis of 600 days is chosen at a cost of 1.1¢ per kilowatt-hour.
- 3. An overall plant load factor of 0.8 is specified.
- The selling price of heat at 170 degrees F at the buildings is \$1.37/million BTU.
- 5. Due to reliability requirements, no less than two pipes are permitted in any flowpath.
- 6. Due to reliability requirements, 150% of the number of pumps required will be purchased and installed.
- 7. The maximum velocity in any pipe is 12 ft/second.
- The cooling medium is water (density is 62.4, viscosity is 0.000292.)
- 9. The plant's salvage value at the end of thirty years is 5%.
- 10. Depreciation is to be calculated by the sum of the years digits method.

- 11. The operating costs are 2% of the total installation charges.
- 12. Working capital is 10% of the annual pumping power cost.
- 13. The basic plant overhead is \$1000.00 per month.
- 14. The cost of the conduit drainage system is 10% of the insulation cost.
- 15. The minimum and maximum diameters to be considered are 6 and 100 inches respectively.
- 16. It is desired to minimize the capital investment and operating expenses.
- 17. All costs are to be corrected to 1975 dollars. To accomplish this, use the following values for cost price indices:

Pumps	1.83	Pumping Power	1.28
Excavation	1.44	Insulation	1.39
Manhole	1.26	Piping	1.28
Conduit	1.33		

- 18. There is an engineering service charge of \$200,000.
- 19. The company will borrow 50% of the investment cost at 7% interest.
- 20. The federal income tax rate is 50%.
- 21. The county tax rate is 1¢/\$100 of capital investment.
- 22. Insurance costs are \$7,623 dollars per year.
- 23. There is a paving cost of \$2.00 per foot of piping that is installed.
- 24. The following cost data is supplied:

Pump Cost	Un	ıknov	m				
Pipe Cost	Α	10"	pipe	costs	\$30.00	per	foot

Conduit Cost	A 36" conduit costs \$14.00 per
	foot; a 72" conduit costs \$46.00
	per foot
Insulation Cost	\$1.50 per foot
Manhole Cost	\$38.00 per foot of depth; one
	hole every 500 feet

25.	The	building	requirements	are	as	follows:

Building	Length To & From (ft)	Heat Requirement (BTU/hr)	Flow (lbs/hr)	Building Loss (ft)
2	300	107	4. x 10 ⁵	30
3	300	5X 10 ⁷	2. X 10 ⁶	40
5	400	2X 10 ⁸	1. $\times 10^7$	50
7	200	5X 10 ⁷	2. x 10 ⁶	40
8	200	107	4. x 10 ⁵	30
9	200	8x 10 ⁷	4. x 10 ⁶	45

26. The piping from the reactor site to buildings 2 & 3 is five miles.

27. The distance from building 2 & 3 to building 5 is 1/2 mile.

28. The distance from building 5 to buildings 7, 8, & 9 is 1000 feet.

29. The right of way costs are \$1.00 per foot.

30. For comparative analysis, use:

Cost of physical plant	\$5,000,000.00
Savings	50%
Flowrate of conventional plant	36,800 gal. per min.

Pumping cost	\$1,000,000.00
Piping cost	\$1,000,000.00

The input data describing this problem is given in Table III. (See also Appendix D.) Table IV shows the computer output for this problem. (The computer program computes an annual balance sheet for the life of the plant. Table IV contains only the balance sheet for the lst year for the non-adjusted and the adjusted economic analyses; Appendix E contains the balance sheets for years 2-30.)

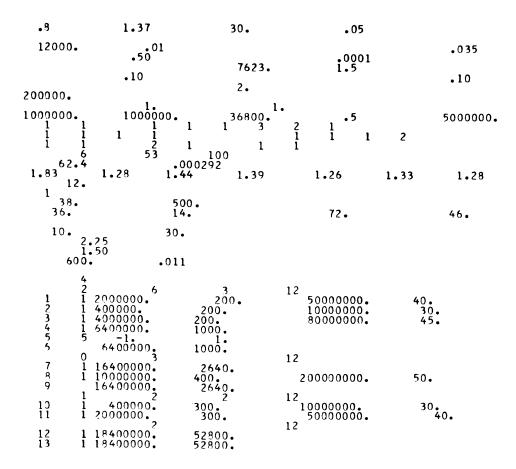


TABLE III. INPUT DATA FOR TYPICAL PROBLEM

TABLE IV. COMPUTER PROGRAM RESULTS FOR DATA IN TABLE III

ΙŻ Ω THE INPUT DIAMETER LIMITS ARE 6 53 100 INPUT DENSITY AND VISCOSITY ARE: 62.3999939 0.0002920 COST PRICE INDICES ARE: 1.8299999 1.2799997 1.4399996 1.3899994 1.2599993 1.3299999 1.2799997 LIMITING VELOCITY IS : 12.0000000 THE MIN # OF PIPES IS : 2 MANHOLE COST IS : \$ 38.0000000 A MANHOLE IS INSTALLED EVERY 500.000000FEFT INPUT DATA BASE COSTS BASE FLOW RATE PUMP COST BASE PIPE SIZE PIPE COST EXCAVATION INSULATION BASE DAYS 0.0 0.0 10.000 30.000 2.250 1.500 600.000 \$\$/KWH 0.011

COST OPTIMIZATION OF A DISTRICT HEATING PIPING NETWORK

PATH NO.	# DF PIPES	DIA.	PUMP COST	PIPE E Cost	COST	INSULATION COST	MANHOL E COST	CONDULT COST	PUMPING COST
1	2	9	0.0	13607.23	8505.00	625.50	172.37	3207.42	30362.38
2	2	6	0.0	8536.20	6804.00	417.00	172.37	2723.44	4296.41
3	2	12	0.0	18943.02	10367.99	834.00	172.37	3724.00	67299.25
4	2	15	0.0	122423.81	61964.97	5212.49	861.84	21361.80	36821.38
6	2	15	0.0	122423.81	61964.97	0.0	861.84	21361.80	36821.38
7	2	24	0.0	554890.88	256607.81	22017.59	2275.25	80538.50	155989.19
8	2	19	0.0	54266.86	30689.97	2641.00	344.74	10103.49	188932.06
9	2	24	0.0	554890.88	256607.81	0.0	2275.25	80538.50	155989.19
10	2	6	0.0	12804.30	10205.99	625.50	258.55	4085.16	4384.20
11	2	9	0.0	20410.84	12757.49	938.25	258.55	4811.13	31807.47
12	2	26	184506.25	6083923.00	2798923.00	238523.63	22752.56	863833.00	1476410.00
13	2	26	0.0	6083923.00	2798923.00	0.0	22752.56	863833.00	1476410.00

TOTAL COST IS: \$\$\$ 30563344.000000

TABLE IV. (CONT'D)

TABLE IV. (CONT'D)

(14) FACTOR SAL 0.80010	F PRICE OF HEAT 1.37000	EFFECTIVE LIFE 30.00000	SAL VAGE VALUE 0.05000	SINKING FUND RATE
TI-TS VALUES ARE	••0	1. 0	0.0	0 . 1
12000.00000	0.01000	0.0	0.0	0.03500
T11-T15 VALUES A 0.0	NRF: 0.50000	0.0	0.00010	0.0
T16-T13 VALUES A 0.0	NRE: 0.0	7623.00000		
U1-J5 VALUES ARE 1.57000	· · · · ·	0.0	0.10000	0.0
U6-U10 VALUES AF 9.0	0.10000	0.0	0.0	2.00000
U11,U12,U13 VALU 0.0	UES ARE: 0.0	200000.00000		
U14-U13 VALUES A 0.0	ARE: 1.00000	1.00000	0.0	0.0
U19-023 VALUES 4	RE:			
1000000.00000	1000000.00000	36800.00000	0.50000 50	00000.00000

FCONDMIC INPUT DATA

COST DATA AND TOTALS

PATH #	PUMP	PIPF	EXCAVATION COST	INSULATION COST	MANHOLE COST	CONDUIT COST	PUMPING COST INC	GROSS OME/HOUR
1 2 3 4 6 7 8 9 10 11 12 13	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13607.23 8536.20 18943.02 122423.81 122423.81 554990.98 64266.96 55490.88 12804.30 20410.84 6083923.00	8505.00 6804.00 10367.99 61964.97 61964.97 256607.81 30689.97 256607.81 10205.99 12757.49 2798923.00	$\begin{array}{r} 625.50\\ 417.00\\ 834.00\\ 5212.49\\ 0.0\\ 22017.59\\ 2641.00\\ 0.0\\ 625.50\\ 938.25\\ 238523.63\\ 0.0\\ \end{array}$	172.37 172.37 172.37 861.84 861.84 2275.25 344.74 2275.25 258.55 258.55 258.55 2752.56	3207.42 2723.44 3724.00 21361.80 21361.80 80538.50 10103.49 80538.50 4085.16 4811.13 863833.00 863833.00	30362.38 4296.41 67299.25 36821.38 155989.19 188932.06 155989.19 4384.20 31807.47 1476410.00	$54.80 \\ 10.96 \\ 87.68 \\ 0.0 \\ 0.0 \\ 219.20 \\ 0.0 \\ 10.96 \\ 54.80 \\ 0.0$
TOTALS	- 184606 - 25	13661042.00	6314321.00	271834.94	53158.24	1960121.00	3665522.00	438.40

TABLE IV. (CONT'D)

YEAR I	OUTFL	OWS	INFLOWS	
		(
THE TOTAL INSTALLATION COST IS :	\$\$ 2	6897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1648576.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:		294061.19	

TABLE IV. (CONT'D)

A CASH FLOW SUMMARY FOLLOWS

TOTALS -21455536.00 -23527488.00 -25122192.00 -26468592.00 -27678704.00 -28812848.00 -29905776.00	YEAR NET CASH FLOW -27581776.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30	$\begin{array}{c} -28288784.00\\ 286830.44\\ 279336.25\\ 273069.13\\ 266521.19\\ 260184.38\\ 254050.94\\ 248113.56\\ 242365.13\\ 236798.88\\ 231408.06\\ 226186.56\\ 221128.25\\ 216227.31\\ 211478.13\\ 206413.69\\ 198088.25\\ 193894.25\\ 198987.00\\ 185882.06\\ 182055.31\\ 178342.50\\ 174739.63\\ 171243.06\\ 167949.00\\ 159154.31\\ 140983.38\\ 123482.38\\ 106623.31\\ \end{array}$	$\begin{array}{c} -29019856\cdot00\\ 279836\cdot25\\ 266521\cdot19\\ 254050\cdot94\\ 242365\cdot19\\ 231408\cdot06\\ 221428\cdot31\\ 21128\cdot31\\ 211478\cdot19\\ 202413\cdot69\\ 193894\cdot25\\ 185892\cdot13\\ 178342\cdot50\\ 171243\cdot50\\ 171243\cdot50\\ 171243\cdot50\\ 171243\cdot50\\ 178247\cdot63\\ 158247\cdot63\\ 1012666644\\ 387666\cdot00\\ 76966\cdot44\\ 65817\cdot00\end{array}$	-29776304.00 273069.13 254050.94 236798.88 221128.31 206875.31 193894.25 182055.31 171243.06 161354.56 152298.19 143991.94 136362.88 122881.69 116313.88 122881.69 116313.88 101592.13 97211.00 93140.25 89352.38 82529.25 79451.75 76572.13 71449.94 62335.61 53813.94 45833.61	$\begin{array}{c} -30558624\cdot00\\ 266521\cdot19\\ 242365\cdot13\\ 221128\cdot25\\ 202413\cdot69\\ 185882\cdot06\\ 171243\cdot06\\ 158247\cdot56\\ 146682\cdot00\\ 136362\cdot88\\ 127132\cdot19\\ 118853\cdot75\\ 111410\cdot19\\ 104700\cdot06\\ 98635\cdot44\\ 93140\cdot25\\ 88148\cdot31\\ 83602\cdot13\\ 79451\cdot75\\ 75653\cdot38\\ 72168\cdot81\\ 68964\cdot63\\ 66011\cdot56\\ 63283\cdot77\\ 60758\cdot597\\ 54392\cdot86\\ 47365\cdot76\\ 58415\cdot97\\ 54392\cdot86\\ 47365\cdot76\\ 58415\cdot97\\ 54392\cdot86\\ 47365\cdot76\\ 58417\cdot97\\ 54392\cdot86\\ 47365\cdot76\\ 40823\cdot37\\ 34719\cdot24\\ \end{array}$	5% -31368096.00 260184.38 231408.13 206875.31 185882.13 167849.00 152298.19 138834.88 127132.19 116918.81 107969.25 100095.44 93140.25 86972.06 81480.38 76572.13 72168.81 68203.88 64621.01 61372.02 58415.97 55717.75 53247.17 50978.32 43689.89 38019.96 32750.02 27839.96 32750.02 27839.96	30 -32205712.000 221128.31 193894.25 171243.06 152298.19 136362.88 122881.69 111410.19 101592.13 93140.25 85822.81 79451.75 73874.06 68964.63 64620.99 60758.56 57307.54 54209.83 51417.07 48888.72 46590.666 44494.11 42574.611 40811.333 39186.477 36448.122 31710.811 27310.444 23212.58	35% 248113.56 211478.13 182055.31 158247.56 138834.88 122881.69 109667.56 98635.44 89352.38 81480.38 74754.19 68964.63 63945.89 59565.61 55717.73 52316.75 49293.27 46590.66 44162.50 41970.44 39982.62 38172.46 36517.68 34999.40 33601.66 31250.55 27186.81 23412.92 19899.04
		90379.33 -21455536.00	55272.90 -23527488.00	38348.49	29012.38	23254.71	19387-25	16619.23

TABLE IV. (CONT'D)

A LISTING OF THE NET YEAR AFTER START-UP	CASH FLOW	FOLLOWS:
YEAR AFTER START-UP	1	NET CASH FLOW 294061-19
	2	294061.19
	3	294061.19
	4	294061.19
	5	294061.19
	5	294061.19 294061.19
	, k	294061.19
	ý	294061.19
	10	294061.19
	11	294061.19
	12	294061.19 294061.19
	14	294061.19 294061.19
	1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 11 2 3 4 5 1 1 2 3 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 1 1	294061.19
	16	294061.19
	17	294061.19
	18	294061.19
	20	294061.19 294061.19
	21	294061.19
	22	294061.19
	23	294061.19
	24	294061.19
	18 120 21 223 224 225 226 227 28 29 30	294061.19
	27	284411.89 256935.63 229459.38 201983.13
	28	229459.38
	29	201983.13
	30	174506.81

THE PAY OUT TIME AT CURRENT RATE IS: 9.1470154E 01

TABLE IV. (CONT'D)

YEAR 1		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1308292.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		60010.50		

TABLE IV. (CONT'D)

A CASH FLOW SUMMARY FOLLOWS

YEAR -1	NET CASH FLOW -21888592.00		23029840.00	5% -23630160.00 ²	0% 24250992.00	5 % -24893376.00	30 % -25558096•00	35%
-1	1 2 3 4 5	1334656.00 1281361.00 1230126.00 1180866.00 1133498.00	1302111.00 1220392.00 1144453.00 1073839.00 1008133.69	1270623.00 1163291.00 1066735.00 979745.81 901256.25	1240155.00 1109782.00 996142.56 896827.69 809798.88	1210669.00 1059610.00 931935.75 823581.69 731237.50	1182129.00 1012539.69 873458.19 758720.88 663490.00	1154502.00 968351.81 820126.13 701142.19 604836.75
	6 7 8 9	1087939.00 1044115.69 1001953.31 961383.00 922337.69	946952.69 889945.88 836791.50 787194.00 740882.00	830326.38 766128.25 707929.88 655085.75 607024.50	733325.69 665939.94 606393.13 553621.63 506718.69	652196.94 584247.19 525572.69 474680.44 430339.94	583956.06 517112.69 460577.13 412455.19 371234.94 335705.44	526224.50 461505.00 407765.44 362763.00 324761.44
	10 11 12 13 14 15 16	884754.06 848571.69 813730.94 780176.88 747856.31 716718.56	697606.50 657139.13 619268.06 583801.00 550559.50 519380.56	607024.50 563240.63 523287.69 486767.94 453330.31 422662.81 394488.00	464909.63 427532.69 394019.06 363882.13 336702.94 312120.81	430339.94 391534.50 357422.31 327303.00 300594.19 276809.00 255539.63	304893.19 278011.19 254421.75 233605.50 215137.50	292409.31 264649.38 240648.31 219747.13 201420.13 185246.25
	16 17 18 19 20 21	686714.50 657797.56 629923.38 603049.19 577134.69	519380.56 490113.44 462619.13 436770.44 412449.38 382548.00	368559.38 344657.19 322585.75 302170.88 283256.56	289824.44 269544.69 251048.69 234134.13 218625.25	236443.19 219230.50 203657.38 189516.38 176631.13	198668.56 183910.00 170622.75 158607.50 147697.31 137751.75	170885.44 158061.50 146549.19 136162.81 126749.13
	18 19 20 221 22 23 224 25 26 27 28 29 30	552140.44 528029.13 504765.13 482314.56 460644.50 439723.75	367966.00 347611.38 328398.75 310250.00 293092.44 276958.96	265703.56 249387.38 234196.19 220030.19 206799.50	204368.81 191231.13 179095.13 167858.38 157430.63 147732.63	164850.88 154046.50 144106.94 134936.69 126452.75 118583.31	137751.75 128652.13 120297.63 112602.38 105492.75 98905.19	18180.19 110349.25 103166.06 96554.44 90449.25 84795.00
	28 29 30	419522.06 400011.38 381164.13	276858.94 261487.56 246921.19 233106.69	206799.50 194423.19 182828.69 171950.75 161730.06	138694.25 130253.75 122356.13	111265.69 104445.19 98073.88	92785.13 87085.00 81763.31	79543.56 74653.81 70089.56
TOTA	LS	1404426.00	-4014007.00	-7729589.00	-10510034.00	-12735397.00	-14610953.00	-16255642.00

TABLE IV. (CONT'D)

сл СЛ

A LISTING OF THE NET	CASH FLOW	FOLLOWS:
YEAR AFTER START-UP		NET CASH FLOW
	345	1346497.00 1324692.00 1302887.00
	67	1259278.00 1237473.00
	9 10	1281083.00 1259278.00 1237473.00 1215668.00 1193863.00 1172058.00
	11 12 13	1128449.00
	14 15 16	1106644.00 1084339.00 1063034.00 1041229.38
	17 18 19	
	20 21	975814.87 954009.88 932205.00 910400.31 888595.38
	23	866790.38
	123456789 111234567890123456789 11121456789012322222222222222222222222222222222222	844985.44 823180.69 801375.94 779570.69
	28 29 30	779570.69 757765.94 735961.19

THE RETURN ON INVESTMENT IS : 3 PER CENT

THE PAY OUT TIME AT CURRENT RATE IS: 1.4944779E 01

TABLE IV. (CONT'D)

FLOW EDIT

РАТН #	# ∩F PIPES		LENGTH	BUILDING LOS	S DELTA T	Q	HEAD LOSS
1 2 3 4 5 7 9 10 11 12 13	222222222222222222222222222222222222222	0.2000000E 07 0.4000000E 07 0.6400000E 07 0.6400000E 07 0.1640000E 08 0.1640000E 08 0.1640000E 08 0.1640000E 08 0.1640000E 08 0.1640000E 08 0.4000000E 06 0.2000000E 05 0.1840000E 08	0.2000000E 03 0.2000000E 03 0.2000000E 03 0.1000000E 04 0.2640000E 04 0.2640000E 04 0.3000000E 03 0.2640000E 03 0.3000000E 03 0.2640000E 05	0.4000000E 02 0.3000000E 02 0.4500000E 02 0.0 0.0 0.50000000E 02 0.0 0.3000000E 02 0.4000000E 02 0.0 0.0	0.2500000F 02 0.2500000F 02 0.2000000F 02 0.0 0.0 0.20000000F 02 0.0 0.25000000F 02 0.2500000F 02 0.2500000F 02 0.2500000F 02 0.0	0.4451570E 01 0.8903134F 00 0.8903137E 01 0.1424502F 02 0.1424502F 02 0.3650284F 02 0.3650284F 02 0.3650284E 02 0.3650284E 02 0.46903134E 00 0.4095441E 02 0.4095442E 02	0.4420813E 02 0.3127321E 02 0.4999443E 02 0.1675392E 02 0.2769794E 02 0.2769794E 02 0.2769794E 02 0.3191733E 02 0.4631221E 02 0.2336607E 03 0.2179092E 01

TABLE IV. (CONT'D)

տ Ծ

VI. CONCLUSIONS

Thermal pollution from nuclear reactor electrical generating facilities is a serious problem <u>now</u>. The most important consideration affecting the use of a district heating rejection method is the siting consideration. For example, the Palisades reactor, located along the shore of Lake Michigan, has a court injunction against operation due to thermal pollution of Lake Michigan. Use of the district heating rejection scheme is not feasible because the closest urban center is about thirty miles distant.

The conservationist group that backed the injunction has demanded that the returning coolant enter the lake with not more than one degree temperature rise from inlet to outlet. Consumers Power Corporation, the owner, is faced with the installation of cooling towers of the closed type⁷. The cost of the delay while cooling tower construction takes place is about \$33,000.00 per day. The solution of this reactor's problem is still unresolved [30].

Table V is a summary of the results of the computer programs solutions for various distances from the reactor to the urban area. In compiling the data for the table, all of the input parameters except distance remained as in the typical problem described on page 40. As one can see from the table, a distance from the reactor to the urban center of greater than 5 miles yields a system that does not show a profit and greater than 8 miles yields a system whose gross income will not meet the annual operation expenses.

^{7.} Closed cooling towers installation cost is 2.6 times the cost of open cooling towers. Open towers cannot be used at Palisades because of the proximity of an interstate highway.

TABLE V

COST DATA VERSUS DISTANCE FROM REACTOR TO URBAN AREA

Distance (Miles)	Installation* Costs	Annual** Financing Costs	Annual** Operating & Maintenance	Annual ** Taxes	Return on Investment (Per Cent)
1	5.23	183.	517.	1363.	23
2	9.33	326.	770.	1033.	14
3	13.3	464.	1020.	713.	9
4	17.3	606.	1276.	386.	6
5	21.3	747.	1538.	60.	3
6	25.7	900.	1780.		0
7	29.8	1042.	2038.		-3
8	33.9	1186.	2291.		-9
9	38.0	1329.	2398.		.54&&
10	42.0	1473.	2799.		.73&&

* Millions of dollars

****** Thousands of dollars

&& Incremental cost increase to pay off plant in 30 years, $\$/10^6 BTU$

As previously mentioned, the district heating system must have a back-up method of supplying heat to the buildings. Dual reactor sites can provide this reliability especially if the scheduled shutdowns for maintenance and refueling are conducted at times of low heat demand. If a dual reactor site is not possible, an additional expense that is not included in the computer program would be incurred for a back-up system.

The population of the United States is facing a critical decision. A critical shortage of available fossil fuels is just starting to be apparent. To meet the energy demand requirements, the use of nuclear energy seems to be the only plausible solution. The shortage of cooling water, as exhibited in the Palisades case, is critical now. The question that the public must answer is: Does the severity of potential danger of nuclear reactors (thermal pollution and radioactive pollution, in particular) warrant the cessation of increasing the electrical power consumption? This question raises a direct conflict when applied to a nuclear reactor supplied district heating system. This system would minimize the thermal pollution. To be efficient, however, the reactor must be sited close to an urban center. The potential damage from a gross fission product release accident increases as the distance to an urban center decreases. The cost of electrical power generation will increase, in any case, as the anti-pollution legislation increases.

The ability to choose reactor sites close to cities that would meet the safety requirements with regard to radioactive pollution is the first problem that must be solved. Once this problem is solved, then use of the district heating rejection system will resolve the thermal pollution problem. Perhaps the Palisades case will cause

increased investigation and experimentation in proximity siting and district heating. The computer code presented here is a tool for the utility to use for comparative analysis with other heat rejection systems. If the current trend in legislation is a valid trend, certainly this program will receive extensive use.

VII. APPENDICES

APPENDIX A

SYMBOLS USED

Standard abbreviations [12] are used throughout.

Valve Turbine Generator Pump Heat Exchanger (Condenser or Steam Generator) Summing Junction G Amplifier õ Feedback Gain \sim Resistor Current Source Voltage Source Mass flow rate, 1bs./hr. W Density, 1bs./ft.³ ρ Area normal to flow, ft.² А Average velocity of fluid, ft./sec. v Volumetric flow rate, ft.³/sec. Q Head loss, ft. of water H_Q Pressure drop, 1bs./ft.² Δp f Friction factor, dimensionless \mathbf{L} Length of piping, ft. D Diameter of piping, ft. Gravitational constant, 32.17 ft-lb mass/lb force sec.² g_c Reynolds number, dimensionless R_E Viscosity, ft/lb-sec. μ log Logarithm, base 10

BLOSS	Building loss, ft. of water
K1,K2,K(I)	Piping sizes, inches
r	Return on investment rate, years $^{-1}$
t	Time, years
BTU	British thermal unit

CCM MON / A6/ COM MON/A8/J1 COMMON/A9/T COMMON/A10/ COMMON/A11/T COMMON/A12/B COMMON/A13/H COMMON/A13/H COMMON/A15/J COMMON/A16/ COMMON/A16/ COMMON/A18/ COMMON/A18/ COMMON/A19/ COMMON/A22/F COMMON/A23/Y COMMON/A25/U COMMON/A25/U	10, PD IS NY 11 (7) 11 (7) 11 , NJ2, NJ3, NJ4, NJ5 KK , J2, J3, J4, J5, J6, J7, J8, J9, I1, I2 PIPE(100) PUMP(100) ASEW, BASEP, BASEE, BASEV, BASED, BASE\$, BASEW\$, BASEP\$ OLCST, HOLFT VELLIM, NNN 10, J11, J12, J13, J14, J15, J16, J17, J18, J19, J20 NODE(13), TCOST(100) N, Q, H, DD, D, ZL, ZCOST, ZCOST, ACOST \$2(4), \$1(4), X1(4), X2(4) J1, J2, J3, JJ4, JJ5, JJ6, JJ7, JJ8, JJ9 CTRLD, BASEH\$ EARS, SALVA\$, FRINTR, T1, T2, T3, T4, T5, T16, T17, T18 1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12, U13 INSULT	
DATA NIN,NOU 1 FORMAT(110) 2 FORMAT(110) 23 FORMAT(110,11 23 FORMAT(12,8E 25 FORMAT(6F10. 107 FORMAT(0,10,7 647 FORMAT(0,10,7 10,750,750,750,750,750,750,750,700,700,70	315) 9.2) 1 TJTAL COST IS: \$\$\$',F20.7,//) 1 JJTAL COST IS: \$\$\$',F20.7,//) 1 STRICT HEATING PIPING',/,T59,' NETWORK',/,'!') H # 0F DIA.',4X,'PUMP',T35,'PIPE',T46,'EXCAVATION',T ION',T78,'MANHOLE',T94,'CONDUIT',T107,'PUMPING',/, 5',T21,' COST',T35,'COST',T50,'COST',T65,'COST',T80, COST',T110,'COST',//) 208,260,-2,1) 27 208,260,-2,1) 27 11(1000,40,U,K400)	
DEFINE FILE DEFINE FILE DEFINE FILE CALL DRECON CALL DREAD CALL VELIN CALL VELIN CALL EXPOIN READ(NIN,23) CALL TLREAD CALL TLREAD CALL PKICEI READ(NIN,25) BRCST=0.0 L=0	12(1000,40,U,K400) 13(1000,40,U,K400) 14(1000,40,U,K400) 15(1000,40,U,K400) N,Q,H,DD,D,ZHL,ZCOST,ZZCOST,ACOST	

B1

6	READ(NIN,1) NBRANH WRITE(NOUT,705) WRITE(NOUT,701) L=L+1 SMCST= 0.0 IF(L.GT.NBRANH) GO TO 69 READ(NIN,10) INDIC,NPATHS,NPLLP,MONY IF(INDIC-EQ.0) GO TO 77 IF(INDIC-EQ.1) GO TO 91	59 60 61 63 63 65 66 67
77	IF(INDIC,EQ.2) GO TO 89 CALL STRTFL((NPATHS+1),ZZCOST,ZHL,KK) SMCST=SMCST+ZZCOST GO TO 106	68 69 70
91		71 72 73
89		74 75 76 77
106		78 79
69 10	WRITE(NOUT,107) BRCST	80 81 82 83 84 85

C C	SUBROUTIN THIS ROU	E DREAD TINE READS & WRITES INPUT DATA
	COMMON/A1 COMMON/A2 COMMON/A3 COMMON/A3	/K1,K2,K3 /RH0,PDIS /CPI(7) 6/ KK
		/J1,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 5/J10,J11,J12,J13,J14,J15,J16,J17,J18,J19,J20 0/JJ1,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9 NOUT /1,3/
	READININ, READININ, READININ, IF(JI.GT.	2) J1,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 2) J10,J11,J12,J13,J14,J15,J16,J17,J18,J19,J27 1) JJ1,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9 1) WKITE(NOUT.3)
	IF(J2.GT. IF(J5.GT. IF(J6.GT. IF(J3.GT.	1) WRITE(NOUT,3) 1) WRITE(NOUT,3) 1) WRITE(NOUT,3) 3) WRITE(NOUT,3) 3) WRITE(NOUT,3)
	IF(J4.GT. IF(J8.GT. IF(J9.GT. IF(J7.GT.	2) WRITE(NDUT,3) 1) WRITE(NDUT,3) 3) WRITE(NDUT,3)
	IF(J11.GT IF(J12.GT IF(J13.GT	•1) WRITE(NOUT,3) •1) WRITE(NOUT,3)
	IF(J14.GT IF(J15.GT IF(J16.GT IF(J17.GT IF(J18.GT	•1) WRITÉ(NÖÜT,3) •1) WRITE(NOUT,3) •1) WRITE(NOUT,3)
	IF(J19.GT IF(J20.GT WRITE(NOU	• L) WRITE(NOUT, 3) • 2) WRITE(NOUT, 3)
	WRITE(NOU READ(NIN, IF(J11.FQ	1,8207) JJ1,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9,I1,T2 5) K1,K2,K3 •1) #PIT5(N°UT.6) K1.K2.K3
	IF(J12.50 READ(NIN, IF(J13.60	7) < 40, POIS • 1)
	RETURN 1 FORMAT(9) 2 FORMAT(1)	5) 115)
	5 FORMAT(31	10) • THE INPUT DIAMETER LIMITS ARE .3110)
מ מ	P FORMAT(// P FOPMAT(7F	,' INPUT DENSITY AND VISCOSITY ARE:', 2620.7) 10.5) ,' COST PRICE INDICES ARE: ',/,7615.7)
	1J12 J13 27 FORMAT(1 /,1115) END	JI J2 J3 J4 J5 J6 J7 J9 J9 J10 J11 J14 J15 J16 J17 J19 J20) JJ1 JJ2 JJ3 JJ4 JJ5 JJ6 JJ7 JJ9 JJ0 T1 T2*,

В3

C C C C C		147 148
č c	SUBROUTINE PLLP(INDIC, NODEN, ZCOST, ZHL, KK) THIS ROUTINE CONTROLS PARALLEL FLOW PATHS	149 150 151
U	LUMMUN/45/ NJ1,NJ2,NJ3,NJ4,NJ5 COMMON/A7/LQ	152 153 154
	COMMON/A8/JI,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 COMMON/A15/J10,J11,J12,J13,J14,J15,J16,J17,J18,J19,J20 COMMON/A16/ NDDE(13),TCOSt(J00)	155 156
	COMMON/A16/ NODE(13), TCOST(10) COMMON/A18/ BCOST, CCOST, DCOST, ECOST, FCOST, GCOST COMMON/A19/ \$2(4), \$1(4), X1(4), X2(4)	157 158 159
	ČOMMON/A20/JJI,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9 Common/A27/ Insuli DATA NIN,NOUT /1,3/	160 161 162
	J=0 ZZHL=0. SUM=0.	163 164
1	J=J+1 IF(J20.E0.0) GD TD 1410	165 166 167
1411	IF(J20.EQ.1) GO TO 1411 IF (J20.EQ.2) GO TO 1412 READ(NIN,1413) KK,INSULI,ZL,QHEAT,BLOSS	168 169 170
	W=QHEAT/30. DELTA=30. GO TO 1414	171 172
1412	READ(NÎN,982) KK,INSULI,W,ZL,QHEAT,BLOSS DELTA=QHEAT/W	173 174 175
1410 1414	GO TO 1414 READ(NIN,982) KK,INSULI,W,ZL,BLOSS,DELTA LQ=KK	176 177 178
	ŴŔITÊ(NJI*KK) W,ZL,BLOSS,DELTA IF(JJ3.EQ.O) CALL COPTIM(KK,W,ZL,BLOSS,DELTA,ZCOST,ZHL,DD) IF(JJ3.EQ.I) CALL TEMOP(KK,W,ZL,BLOSS,DELTA,ZCOST,ZHL,DD)	179 180
	SUM= SUM+2CUSI IF(ZHL.GE.ZZHL) ZZHL=7HI	181 182 183
	IF(ZHL•LT•ŽŽHĽ) ŽŽHĽ≖ŽŽHL IF(J•EQ•INDIC) GO TO 67 IF(J•LT•INDIC) GO TO 1	184 185 186
67	ZCOŚT=SUM ZHL=ZZHL RETURN	187 188
982 1413	FÖRMAT(215,4F15.7) Format(215,3F15.7)	189 190 191
	END	192

Β4

C C		193
C	SUBROUTINE STRTFL(NODEN,ZZCOST,ZZHL,KK) THIS ROUTINE CONTROLS SERIES FLOW PATHS	194 195
	COMMON/A5/ NJ1,NJ2,NJ3,NJ4,NJ5 COMMON/A7/LQ	196 197
	COMMON/A8/JI, J2, J3, J4, J5, J6, J7, J8, J9, I1, I2 COMMON/A15/J10, J11, J12, J3, J4, J5, J6, J7, J8, J9, J1, J2	198 199
		200 201
	COMMON/A18/ BCOST, CCOST, DCOST, ECOST, FCOST, GCOST COMMON/A19/ \$2(4),\$1(4),\$1(4),\$2(4) COMMON/A20/JJ1,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9	202 203
	COMMON/A27/ INSULI DATA NIN,NOUT /1,3/	204 205
	J=0 SUM=0.0	206 207
1	ŠŪMLOŠ=0.0 J=J+1	208 209
	ĨF(JŽO.EQ.O) GO TO 1410 IF(JŽO.EQ.1) GO TO 1411	210 211
1411	IF (J20.E0.2) GO TO 1412 READ(NIN,1413) KK.INSULT.71.OHEAT.BLOSS	212 213 214
	DELTA=30.	215 216
1412	GO TO 1414 READ(NIN,982) KK,INSULI,W,ZL,QHEAT,BLOSS	217 218
	GO TO 1414	219 220
1410	ŘĚAD(NÍN,982) KK,INSULI,W,ZL,BLOSS,DELTA LQ=KK	221
	WRITE(NJ1'KK) W.ZL,BLOSS,DELTA IF(JJ3-EQ-0) CALL COPTIM(KK,W.ZL,BLOSS,DELTA,ZCOST,ZHL,DO) IF(JJ3-EQ-1) CALL TEMONIKK,W.ZL,BLOSS,DELTA,ZCOST,ZHL,DO)	223
	SUM= SUM+7COST (COST (CONDECTOR)	225
	SÚMLOŠ= SÚMĽŎŚ+ZHL ĮĘ(J•EQ•(NODEN-1)) GO IO 67	227 228
67	IF(J.LT.(NODEN-I)) GO TO I ZZCOST=SUM ZZHL=SUMLOS	229 230
992	ETURN FQRMAT(215,4F15.7)	231 232
1413	FORMAT(215,4F15.7) FORMAT(215,4F15.7) END	233 234
		235

ВS

С С С
Ç

		236
		237
	SUBROUTINE COPTIM(KK,W,ZL,BLOSS,DELTA,ZCOST,ZHL,DD) THIS ROUTINE OPTIMIZES BASED ON INSTALLATION & PUMPING COST	239
	COMMON/AI/KI,K2,K3 COMMON/AI/KI,K2,K3 COMMON/A2/RHO,POIS	240 241
		242 243
	COMMON/44/MONY COMMON/45/ NJ1,NJ2,NJ4,NJ5	244
	COMMON/AR/J1,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 COMMON/A9/TPIPE(100)	245 246
	C9MMON/410/TCNDT(200)	247 249
	COMMON/A11/TPUMP(100) COMMON/A12/BASEW,BASEP,BASEE,BASEV,BASED,BASE\$,BASEW\$,BASEP\$	249 250
	COMMON/A13/HOLCST, HOLFT COMMON/A13/HOLCST, HOLFT COMMON/A14/ VELLIM, NNN	251
	COMMON/A15/110.111.112.113.114.115.116.117.118.110.100	252 253
	$C \rightarrow M(N) A B A B COSL (COST D) COST ECOST CCOST$	254
	COMMON/A19/ \$2(4),\$1(4),\$1(4),\$2(4) COMMON/A19/ \$2(4),\$1(4),\$1(4),\$2(4) COMMON/A20/JJ1,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9	256
	ČOMMON/4277 INSULI DATA NIN,NOUT /1,3/	257 258
		259 260
	LL=-1 ¥=)	261 262
121	K=K1 L=L+1	263
	$\vec{\mathbf{N}} = \vec{\mathbf{N}} + \vec{\mathbf{I}}$	264 265
117	IF(W.LT.0.) GD TO 1001 D=FLOAT(K)/12.	266 267
	CALL FLOCIC (W, ZL, D, BLOSS, Q, N, H) CALL CPUMP(N, Q, D, ACOST)	268
	CALL CPIPE(N,D,ZL,BCOST) CALL CEXCAV(N,D,ZL,CCOST)	270
	$1 + (1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 \times 1 \times 1 \times $	271 272
	IF(INSULI.NE.0) CALL CINSUL(N,D,ZL,DCOST) CALL CMNHOL(N,ZL,FCOST)	273
	CALL CCUNPT(N,D,7L,FCOST) CALL PUMOST(H.D.N.COOST)	275
	CALL SUPCET (ACOST, BCOST, CCOST, DECOS, ECOST, FCOST, GCOST, D, ZL, Q, N, HCO - 1ST)	276 277
	$\overline{IF}(KK \cdot NE \cdot MONY) = ACOST=0.0$	278 279
	IDIAM=D#12.+0.5 TCDST(K)=_ACOST+BCOST+COUST+COST+ECOST+FCOST+GCOST TF(K)=_ACOST+BCOST+COUST+COST+COST+FCOST+GCOST	290
	IF(IL:E0.0) 60 10 804 IF(IL:E0.1) 60 TO 804	282
	IF(LL.EQ.2) GG TH X73 IF(M.FQ.1) K=K2	294
	IF(M.FQ.2) K=K3	285 286
	ÎF(M.EQ.3) GO TO 581 IE(M.GT.3) GO TO 673	287 288
591	GC TO 100 KK1=K1	289
•	K (2) = K 2 K (3) = K 3	290 291
	SA TO 673	292 293
		-

В6

673 R= FLOAT(K3-K1)/(2.0**L) 294 IF(((ABS(TCDST(KK1)-TCDST(KK2))).LT.50.).AND.((ABS(TCDST(KK2)-TCD 295 1ST(KK3))).[T.50.]) GD TO 678 296 IF((TCOST(KK1).GT.TCOST(KK2)).AND.(TCOST(KK2).GT.TCOST(KK3))) 297 1 CALL WRONG(KK1, KK2, KK3, R, KK5, KK6, KK7, 6807) 298 IF((TCOST(KK3).GT.TCOST(KK2)).AND.(TCOST(KK2).GT.TCOST(KK1))) 299 1 CALL WRONG(KK3, KK2, KK1, R, KK5, KK6, KK7, 6807) IF((TCOST(KK3), GT. TCOST(KK2)).AND.(TCOST(KK1).GT.TCOST(KK2))) 300 301 1CALL STANDD(KK1, KK2, KK3, R, KK5, KK6, KK7, 8802) WRITE(NOUT, SOI) POLEORMAT(//, *****ERROR*** THE COST OF THE CENTER POINT IS GREATER 1 THAT THE LIMIT POINTS. THIS INDICATES A DISCONTINUOUS COST FUNCT 2.10N. 1//, PERUN PROBLEM WITH LIMITS SET BY 50% DIFFERENT FROM 30 Ž 303 304 305 306 3THÍS PPOBLEM! 307 GC TC 69 309 302 K=KK5 309 11 = 0310 60 fo 100 311 303 K=KK6 312 LL=1313 50 TO 100 314 804 K = KK71 315 LL=2 IF((LABS(KK5-KK6)).LT.2) KK2=KK6 316 317 IF((IABS(KK5-KK6)).LT.2) GO TO 678 IF((IABS(KK5-KK7)).LT.2) KK2=KK6 IF((IABS(KK6-KK7)).LT.2) GO TO 678 318 319 320 KK1 = KK5321 **KK2=KK6** 322 KK3 = KK7 323 GO TO 121 324 578 ZCOST=TCOST(KK2) 325 DD = KK2326 741 = 4 327 GC_10 1003 328 307 DO 808 J=KK5,KK7 329 D=FLOAT(J)/12. CALL FLOCLC(W,ZL,D,BLOSS,Q,N,H) CALL CPUMP(N,D,D,ACOST) CALL CPIMP(N,D,ZL,BCOST) CALL CPIPE(N,D,ZL,BCOST) CALL CEXCAV(N,D,ZL,CCOST) 330 331 332 333 334 IF(INSULI.FO.0) DCOST=0.0 335 IF(INSULI.NE.O) CALL CINSUL(N,D,7L, OCOST) 336 CALL CMNHOL (N, ZL, FCOST) 337 CALL CCONDT (N.D.ZL, FCOST) 338 CALL PUMCST(H, Y, N, GCNST)' CALL SUPCST(ACUST, BCDST, CCOST, DECOS, ECOST, FCOST, GCDST, D, ZL, Q, N, HCO 339 340 1ST341 IF(KK.NE.MONY) ACOST=0.0 342 ŤĊŃST(J)= AČŃŚT+BCŇST+ČČOST+NCŃST+ECŃST+ECŃST+GCŃST 343 IF(J.FQ.KK5) GO TO 808 344 $\begin{array}{c} \text{IF(J,EO,(KK5+1))} \quad JJ=KK5 \\ \text{IF(ICOST(J),LT,TCOST(JJ))} \quad SAVE=TCOST(J) \\ \text{IF(ICOST(JJ),LE,ICOST(JJ))} \quad SAVE=TCOST(JJ) \\ \text{IF(ICOST(JJ),LE,ICOST(JJ))} \quad SAVE=TCOST(JJ) \\ \end{array}$ 345 346 347 IF (TCOST(J).LT.TCOST(JJ)) JJ=J 348 909 CONTINUE 349 DD = JJ350 D=JJ/12. 351

1003 CALL FLOCLC(W,ZL,(DD/12.),BLOSS,Q,N,H) CALL CPUMP(N,Q,D,ACOST)	352
CALL CPIPE(N,D,ZL,BCOST)	353 354
IF(INSULI.FQ.0) DCOST=0.0	355 356
IF(INSULI.NE.O) CALL CINŠUL(N,D,ZL,DCOST) CALL CMNHOL(N,ZL,ECOST)	357
CALL ČCONDŤ(N, Ď, ŽL, FČOST) CALL PUMCST(H,Q,N,GCOST)	358 359
CALL SUPCST (ACOST, BCOST, CCOST, DCOST, FCOST, FCOST, GCOST, D. 71, O. N. HCO	360 361
IF(KK.NE.MONY) ACOST=0.0	362
PRINCP=ACOST+BCOST+CCOST+DCOST+ECOST+FCOST+HCOST ZCOST=PRINCP+GCOST	363 364
CALL HEAT\$(W,ĎĖĽŤÁ,\$SOLD)	365 366
IF(DELTA.LT.0) GO TO 707 GO TO 708	367
707 RETINV=0,0 708 WRITE(NJ4'KK) PRINCP,\$SOLD,ACOST,BCOST,CCOST,DCOST,FCOST,FCOST,GCO	369
1ST, HCOST DD=JJ	370 371
ŽHL=H	372
IDIAM=JJ WRITE(NOUT,712) KK,N,IDIAM,ACOST,BCOST,CCOST,DCOST,ECOST,FCOST,GCO ST	374
GO TO 1002	376
1001 ZCDST=0. ZHL=0.	377 378
	379 380
1002 RETURN 712 FORMAT(//,315,7F15.2)	381 382
69 STOP END	383
	384

- - - - -

SUBROUTINE TEMOP(KK, W, ZL, BLOSS, DELTA, ZCOST, ZH	
THIS ROUTINE OPTIMIZES BASED ON MAXIMUM PROF	IT
COMMON /41/K1,K2,K3 COMMON/A4/MONY	
COMMON/A5/ NJ1 .N.12 .N.13 .N.14 .N.15	
[!!MMUN/A8/J]+J2+J3+J4+J5+J6+J7+J8+J9+T1+T2	
COMMON/A12/BASEW, BASEP, BASEE, BASEV, BASED, BASE COMMON /A20/JJ1, JJ2, JJ3, JJ4, JJ5, JJ6, JJ7, JJ8, J	19 24HA2FM24RA2FH2
UMMUN/AZZ/FUIRLU,BASEHS	
COMMON/ 423/YEARS, SALVAS, FRINTR, T1, T2, T3, T4, T5 COMMON/ 427/ INSULI	,16
COMMON/A28/U14,U15,U16,U17,U18,U19,U20,U21,U2	2,023
DATA NIN,NOUT/1,3/ IF(W.LT.0) GD TO 146	
CALL HEAT\$(W,DELTA,\$SOLD)	
00 29 LM=K1,K3 CALL FLOCLC(W,ZL,(FLOAT(LM)/12.),BLOSS,Q,N,H)	
DIAMEFLUAI(LM)/12.	
CALL CPIPF(N,DIAM,ZL,BCOST) CALL CEXCAV(N,DIAM,ZL,CCOST)	
CALL PUMCST(H,Q,N,GCOST)	
PRINCP=(BCOST+CCOST)/YEARS	
CALL FINAN(PRINCP,FIN\$) CALL DANDM(PRINCP,RETINV,OANDM\$)	
GGC/IST=PRINCP+(IANDM\$+FIN\$+GC/IST	
CALL HEAT\$(W,DELTA,\$SOLD) TE(LM-EQ-K1) GO TO 27	
IF(GGCOST.LT.SAVE) GO TO 27	
GO TO 29 27 SAVE=GGCOST	
PR ÍSAVE=LM	
29 CONTINUE DIA=FLOAT(ISAVE)/12.	
$D = D I \Lambda$	
CALL FLOCLC(W,ZL,DIA,BLOSS,Q,N,H)	
CALL PUMCST(H,Q,N,GCÁSŤ) GO TO 118	
6 RETINV=0.0	
R CÁLĽ ČMŇHOL(N,ZL,⊆COST) ČALL CPUMP(N,Q,DIĂ,ACOST)	
CALL CPIPE(N.DIA.7L.BCOST)	
CALL ČEXCAV(Ň, ŘIÁ, ŽL, ČCŘSŤ) IE(INSULI.EQ.O) DČRST=0.0	
TE(INSULI-NE-O) CALL CINSUL(N-D-71-DCOST)	
CALL CCONST(N, SIA, ZL, FCOST) CALL SUPCST(ACOST, BCOST, CCOST, DCOST, ECOST, FCO	
151)	31,00031,072210,4100
	061
PRINCP=ACOST+BCOST+CCOST+DCOST+FCOST+FCOST+HC ZCOST=PRINCP+GCOST	0.51
IDIAM=ISAVE	
WRITELISTICE, FIZE KK, N. LITEAM, AFOLE DEDEL FEDEL	りしりろ下すたしひろ下すたしいろ下すらしり
WRITE(NOUT,712) KK,N,IDIAM,ACOST,BCOST,CCOST, 1ST OB_WRITE(NJ4'KK) PRINCP,\$SOLD,ACOST,PCOST,CCOST,	

C C C

В9

	7HL=H	443
	Δ] O = C [Δ	444
	PETURN	445
146	ZCOST=0.	446
	74L=0.	447
	·) =) •	448
	RETURN	449
712	FORMAT(//,315,7F15.2)	450
	END	451

Č	SUBROUTINE VELIN
С	THIS ROUTINE INPUTS VELOCITY & # OF PIPES
	COMMON/A8/J1,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 COMMON/A14/ VELLIM.NNN
	COMMON/A15/J10,J11,J12,J13,J14,J15,J16,J17,J18,J19,J20
	COMMON/A20/JJ1,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9 DATA NIN,NOUT /1,3/
	IF(J1.EQ.O) VELLÍM=10. IF(J1.GT.O) READ(NIN,10) VELLIM
	IF(J19-EQ-1) WRITE(NÓŬŤ-13) VĚLLIM
	IF(JJ1.FQ.1) READ(NIN,11) NNN IF(JJ1.EQ.0) NNN=0
	IF(JJ2.EQ.1) WRITE(NOUT,18) NJ RFTURN
	10 FORMAT(F20.7) 11 FORMAT(15)
	13 FORMAT(/, LIMITING VELOCITY IS : . F20.7)
	18 FORMAT(//, ' THE MIN # OF PIPES IS :', 15) END

B10

		476
		477
	SUBROUTINE ANHLIN	478 479
	THIS ROUTINE INPUTS MANHOLE DATA	479
	COMMON/A8/J1, J2, J3, J4, J5, J6, J7, J8, J9, 11, 12	481
	COMMON/A13/HOLEST, HOLET	482
	COMMON/A15/ J10, J11, J12, J13, J14, J15, J16, J17, J18, J19, J20	483
	DATA NIN, NOUT /1.3/	484
	IF(J7.EQ.O) RETURN	485
	ĨF(Ĵ7-EQ-1) GO TO 1	486
	IF(J7,FQ,2) GO TO 3	497
	IF(J7.FQ.3) GO TO S	488
1	READ(NIN, 10) HOLCST	489
	HDLFT=1000.	490
	GO TO 19	491
3	READ(NIN,10) HOLFT	492
	HDLCST=38.	493
_		494
.5		495
19		496
	RETURN	497
10		498
11	EORMAT (2F20.7)	499
17	FORMAT(/, MANHOLE COST IS : \$ ', F20.7,' A MANHOLE IS INSTALLED	500
	1EVERY ',F15.7,'FFET')	501
	END	502

С С С

ſ		
C C		
C.		SUBROUTINE TLREAD
Ŀ.		THIS ROUTINE INPUTS TABLE DATA COMMON/A8/J1,J2,J3,J4,J5,J6,J7,J8,J9,[1,[2
		COMMON/A11/TPUMP(100) COMMON/A15/110 111 112 112 114 115 114 117 118 110 120
		COMMON/A15/J10,J11,J12,J13,J14,J15,J16,J17,J18,J19,J20 DATA NIN,NOUT /1,3/
		IE(J4+EQ+2) GO IO 3
	4	IF(JR.EQ.1) GO TO 5 RETURN
	1	IF(J16.EQ.1) WRITE(NOUT,44)
	-	00 43 J=1,100
		READ(NIN, 10) N, SPUMP
		IF(J16.EQ.1) WRITE(NOUT,45) N,\$PUMP TPUMP(N)=\$PUMP
	43	CONTINUE
	-	GO TO 2
	3	IF(J14.EQ,1),WRITE(NOUT,46)
		DO 20 J=1,100 READ(NIN,10) N,\$PIPE
		IF(J14.EQ.I) WRITE(NOUT.45) N.SPIPE
		TPIPE(N) = \$PIPE
	20	CONTINUE
	5	G9 T0 4 TF(J15.EQ.1) WRITE(NOUT.47)
	,	J = 1,50
		READ(NIN, 10) N. SCNDUT
		IF(J15.EQ.1) WRITE(NOUT,45) N,\$CNDUT TCNDT(N)= \$CNDUT
	30	CONTINUE
	50	RETURN
	10	EORMAT(15, F20.7)
	44	FORMAT('1',' PUMP COST DATA') FORMAT(15,F20.7)
	46	FORMAT('1',' PIPE COST DATA')
		FORMAT('1';' CONDUIT COST DATA')
		END

END

B12

SUBPOUTINE PRICET THIS ROUTINE INPUTS COST DATA COMMON/AP/JI,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 COMMON/A12/9ASE#,BASEF,BASEF,BASEF,BASED,BASE\$,BASEW\$,BASEP\$ COMMON/A12/9ASE#,BASEF,BASEF,BASEF,BASED,BASE\$,BASEW\$,BASEP\$ COMMON/A12/J10,J11,J12,J13,J14,J15,J15,J17,J18,J19,J20 DATA NIN,MOUT /1,3/ BASE#= 0.0 RASEF = 0.0 RASEF = 0.0 RASEF = 0.0	55555555555555555555555555555555555555
RASED = 0.0 RASEB = 0.0 RASEB = 0.0 IF(J3.EQ.1) GD TC 1 2 IF(J4.EQ.1) GD TC 3 4 IF(J5.EQ.1) GD TC 7 8 IF(J9.EQ.1) GD TC 7 8 IF(J9.EQ.1) GD TC 7 1 F(J17.EQ.1) WRITE(NDUT,40) RASEW,BASEW,BASEP,BASEP,BASEP,BASEP 1.RASEV,BASED,RASES DETURN 1 READ(NIN,11) BASEW,BASEW 1 READ(NIN,11) BASEW,BASEW	55556655555555555555555555555555555555
G() T() 2 3 READ(NIN,11) BASEP,BASEP\$ GD TO 4 5 READ(NIN,10) BASEP GD TO 6 7 READ(NIN,10) BASEV GO TO 8 9 READ(NIN,11) BASED,BASES IF(J17.50.1) #RITE(NOUT,40) BASEW,BASE#\$,BASEP,BASEP\$,BASEF, 18ASEV,BASED,BASE\$ PETURN 10 FOPMAT(220.7) 11 FOPMAT(220.7) 12 FOPMAT(220.7) 13 FOPMAT(220.7) 14 FOPMAT(220.7) 15 FOPMAT(220.7) 16 FOPMAT(220.7) 17 FOPMAT(220.7) 17 FOPMAT(220.7) 18 FOPMAT(220.7) 18 FOPMAT(220.7) 19 FOPMAT(220.7) 10 FOPMAT(220.7)	571234555555555555555555555555555555555555

C C C

С

C	
	587
	588
SUBROUTINE FLOCLC(W,7L,0,BLOSS,0,N,H)	5 9 9 5 9 0
C THIS ROUTINE CALCULATES HEAD LOSS AND # OF PIPES	591
COMMON/AZ/RHO, PILS	592
COMMON/A5/ NJ1+NJ2+NJ3+NJ4+MJ5	593
UMMUN ZA6Z KK	594 595
	596
COMMON/A8/JI,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 	507
COMMON/A19/ \$2(4),\$1(4),\$1(4),\$2(7)	593
5 MMUR/A20/JJL+JJ2+JJ3+JJ4+J15+116+117+118, 110	599 600
DATA NIN, NOUT/1, 37 GC=32.17	601
IF(JJ1.EQ.0) N=0	602
IF(JJ1.GT.O) N=NNN	503
20 N=N+1	504 605
WT= W/ FLOAT(N) A= 3.14159*D**2/4.	606
V = WT/(RH0*4*3600.)	607
IF(V.GT.VFLLIM) ĠŎŤTO 20	508
RF= D*V*RHC/POIS	609 610
Ω=Δ≠V IE(Rf•LT•2100•) F=16•/RF	611
IF((RF.GT.2100).ANO.(RF.LT.1. F5)) F=0.1860025*AL0G10(RF)	612
エントへにゃってゃしゃ ビウナ ドディリリノカ	613
1L=4.0*F*ZL*V**2/(2.0*GC*0)	614 615
IF(810SS.LT.0.) GOTTO 95157 IF(J2.EQ.1) GOTTO 35	615 516
BLDSS= 0.4*+1	617
	618
9515 BLOSS=Ö+O 35 H=HL+ BLOSS	619 620
УУ Ч=ПЦ+ ЭСЛУУ WRITF(NJ2ЧLЭ) N,Э,Н	621
	622
END	623 624
	074

.

C C C			625 626
с		SUBROUTINE CPUMP(NPUMP,0,D,ACOST) THIS ROUTINE CALCULATES PUMP COST	627 628
•			629
		COMMON/A8/J1+J2+J3+J4+15+16+17,19,10 11 12	630
			631
		COMMON/A12/BASEW, BASEP, BASEE, BASEV, BASED, BASE\$, BASEW\$, BASEP\$	632 633
		COMMON/A19/ \$2(4),\$1(4),X1(4),X2(4) DATA_NIN,NOUT/1,3/	634
		IF(J3.EQ.0) GO TO 1	635
		IF(J3.EQ.1) GO TO 2	636
		IF(J3.EQ.2) GO TO 3	637
С		IF(J3.EQ.3) GO TO 4 TOTAL INSTALLED COST OF THE DUMOS	638 639
U.	1	TOTAL INSTALLED COST OF THE PUMPS WBASE= 400.0/(60.0*7.48)	640
	-	RATIO = O/WRASE	641
		ACOST= CPI(1)*RATIO**0.98*1185.0*NPUMP	642
	2	GO TO 5 RATIO= Q/BASEW	643 644
	2	ACOST= CPI(1)*RATIO**0.98*BASEWS*NPUMP	645
			646
	3	NO=D*12.+.5	647
		ACOST=CPI(1)*TPUMP(NO)*NPUMP	648 649
	4	GO TO 5 DIA=12.*D	650
	•	CALL_CPOLE(1,DIA, \$\$\$)	651
			652
	~	GO TO 5	653
	5	RETURN	654 655
		END	656

659 SUBROUTINE CPIPE(NPIPE, D, ZLENTH, BCOST) THIS ROUTINE CALCULATES PIPE COST COMMON/A3/CPI(7) COMMON/A8/J1,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 COMMON/A8/J1,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2 COMMON/A8/J1,J2,BASEP,BASEP,BASEE,BASEV,BASED,BASE\$,BASEW\$,BASEP\$ COMMON/A19/ \$2(4),\$1(4),X1(4),X2(4) DATA NIN,NOUT/1,3/ IF(J4.EQ.0) GO TO 1 IF(J4.EQ.0) GO TO 2 IF(J4.EQ.1) GO TO 2 IF(J4.EQ.3) GO TO 4 1 RATIO = 1.2*D PCOST= NPIPE*RATIO**1.15*ZLENTH*CPI(2)*30. COMMON/A10 = 12.0*D/BASEP С 674 676 2 RATID = 12.0*D/BASEP BCOST=NPIPE*RATIO**1.15*ZLENTH*CPI(2)*BASEP\$ GO TO 5 3 NO=D*12.+.5 BCOST= NPIPE*ZLENTH*CPI(2)*TPIPE(NO) 682 GO TO 5 4 DIA=12.*D CALL CPOLE(2,DIA,\$\$\$) BCOST=_NPIPE*ZLENTH*CPI(2)*\$\$\$ GO TO 5

5 ŘETUŘNÍ

END

B16

	SUBROUTINE CEXCAV(NPIPE, D, ZLENTH, CCOST) THIS ROUTINE CALCULATES EXCAVATION COST COMMON/A3/CPI(7) COMMON/A8/J1, J2, J3, J4, J5, J6, J7, J8, J9, I1, I2 COMMON/A12/BASEW, BASEP, BASEE, BASEV, BASED, BASE\$, BASEW\$, BASEP\$ DATA NIN, NOUT/1, 3/ IF(J5.EQ.0) GO TO 1 IF(J5.EQ.1) GO TO 2 WIDIH= 2.0+NPIPE*D DEPTH = 3.0+D VOL= ZLENTH*WIDTH*DEPTH CCOST= CPI(3)*VOL*2.0 GO TO 5 2 WIDTH= 2.0+ NPIPE*D DEPTH= 3.0+D VOL= ZLENTH*WIDTH*DEPTH CCOST= CPI(3)*VOL*BASEE GO TO 5 5 RETURN END	690 692 693 694 695 695 697 702 702 702 704 705 706 707 708 709 711 712
--	--	--

SUBROUTINE CINSUL(NPIPE, D, ZLENTH, DCOST) THIS ROUTINE CALCULATES INSULATION COST COMMON/A3/CPI(7) COMMON/A3/J1, J2, J3, J4, J5, J6, J7, J8, J9, I1, I2 COMMON/A12/3ASEW, BASEP, BASEE, BASEV, BASED, BASE\$, BASEW\$, BASEP\$ DATA NIN, NOUT/1, 3/ IF(J6.EQ.O) GO TO 1 IF(J6.EQ.O) GO TO 2 OCOST= CPI(4)*NPIPE*ZLENTH*BASEV*D GO TO 5 PCOST=CPI(4)*NPIPE*ZLENTH*BASEV*D GO TO 5 RETURN FND	713 714 715 716 717 718 719 720 721 723 724 725 724 725 726 727 728 729
	1 6.7

C C SUBROUTINE CMNHDL(NPIPE, ZL C THIS ROUTINE CALCULATES MA CDMMON/A3/CPI(7) COMMON/A3/CPI(7) COMMON/A13/HOLCST, HOLFT DATA NIN, NOUT/1,3/ IF(J7.EQ.0) GO TO 1 IF(J7.EQ.1) GO TO 2 IF(J7.EQ.2) GO TO 3 IF(J7.EQ.2) GO TO 4 1 DEPTH=9.+(NPIPE-2)*0.5 ECOST= CPI(5)*ZLENTH*DEPTH GO TO 5 2 DEPTH=9.+(NPIPE-2)*0.5 ECOST=CPI(5)*ZLENTH*DEPTH GO TO 5 3 DEPTH=9.+(NPIPE-2)*0.5 ECOST=CPI(5)*ZLENTH*DEPTH GO TO 5 3 DEPTH=9.+(NPIPE-2)*0.5 ECOST=CPI(5)*ZLENTH*DEPTH GO TO 5 4 DEPTH=9.+(NPIPE-2)*0.5 ECOST=CPI(5)*ZLENTH*DEPTH GO TO 5 5 RETURN END	ANHOLE COSTS 734 735 735 J6, J7, J9, J9, I1, I2 736 738 738 739 740 741 742 742 743 743 745 *H0LCST/H0LFT 746 *H0LCST/H0LFT 750 *H0LCST/H0LFT 751 751 752	
---	---	--

ſ		757
C C		758
C	SUBROUTINE CCONDT(NPIPE, D, ZLENTH, FCOST)	759 760
C.	THIS ROUTINE CALCULATES CONDUIT COST	761
·.	COMMON/A3/CPI(7)	762
	ČÓMMON/ÁR/J1,J2,J3,J4,J5,J6,J7,J8,J9,11,I2	763
		764
	CŇMMOŇ/A19/ \$2(4),\$1(4),X1(4),X2(4)	765
	DATA NIN,NOUT/1,3/	765
		767
	IF(J8.EQ.1) GO TO 2	768 769
	IF(J8-EQ-2) 60 TO 4 1 DIA=2-0*D+ (NPIPE=2)*D/2-	770
	$\frac{1}{2} \frac{1}{2} \frac{1}$	771
	FCOST=CPI(6)*RATIO**0.6*2LENTH*14.	772
		773
	$2 \text{ ND} = (12 \cdot \text{*D} + 2 \cdot)/4 \cdot$	774
	$N^{-}(0) = 4 \neq N(0)$	775
		776
	ECOSTECPI(6)*7LENTH*TCNDT(NOO)	778
	GO_TO_5 4_DTA=(2.0+D+(NPIPE-2)*D/2.0)*12.	779
	$\begin{array}{c} 4 & 01 \text{A} = (2 \cdot 0 + 0 + 0 + 0 + 0 + 1 + 0 + 2 \cdot 0 + 1 + 1 2 \cdot 0 \\ \text{CALL CPOLE(3 \cdot 0)[A, $$$} \end{array}$	780
	FC()ST=CPI(6) * Z1ENTH* \$ \$ \$	781
	50 To 5	782
	5 ŘĚTŮŘNÍ	783
	END	784

B18

Ç		795
5	CURRENTING DUNCETING AND DE COOSTA	796 797
c	SUBROUTINE PUMCST(DELTAP, Q, NPIPE, GCOST)	799
С	THIS ROUTINE CALCULATES PUMPING POWER COST	799
	COMMON/A2/RHJ,PDIS	
	COMMON/A3/CPI(7)	790
	COMMON/A8/J1, J2, J3, J4, J5, J6, J7, J8, J9, [1, [2]	791
	COMMON/AL2/BASEW,BASEP,BASEE,BASEV,BASED,BASES,BASEW\$,BASEP\$	792
	DATA NIN, NOUT/1, 3/	793
	HP=DELTAP*PH0*Q/(550.0*0.4)	794
	ZKW= HP/0.74548	795
	IF(J9.E3.0) 30 IO 1	796
	IF(J9.EQ.1) GO TO 2	797
1	HRS= 300.0*24.	798
	WTHRS = ZKW*HRS	799
	TTLKWH = NPIPE*WTHRS	900
	GC1)ST= 0.010*CPI(7)*TTLKWH	801
	50 TO 24	902
2	ĤRS= BASED*24.	903
	WTĤRS= ŽKW¥ĤRS	904
	TTLKWH = NPTPE*WTHRS	805
	ĠĊŌŚŤ = BĂŚĖ\$ŦĊ₽I(7)ŦTLKWH	806
	G0 T0 24	807
24	ŘĚTŮŘNÍ	ส์ อีล
۷. ۱	END	809

C	810
C	811
SUBRAUTINF CPOLE(M,VARI, \$\$\$)	812
CAMMON/A19/ \$2(4),\$1(4),X1(4),X2(4)	813
EXPON=(ALOGIO(\$2(M))-ALOGIA(\$1(M)))/ALOGIA(X2(M)/X1(M))	814
\$\$\$= \$1(M)*(VARI/X1(M))**EXPON	815
RETURN	816
END	817

	SUBROUTINE EXPOIN
	COMMON/A8/J1, J2, J3, J4, J5, J6, J7, J8, J9, I1, I2
	COMMON/A19/ \$2(4),\$1(4),\$1(4),\$2(4)
	DATA NIN, NOUT/1, 3/
	IF(J3.FQ.3) GO TO 1
2	IF(J4-EQ-3) GO TO 3
4	IF (J8.È0.2) GO TO 5
	RETURN
1	RĒAD(NĪN,8) X1(1),\$1(1),X2(1),\$2(1)
	G0 T0 2
3	ŘĚAD(NĪN,8) X1(2),\$1(2),X2(2),\$2(2)
5	ŘĒAD(NÍN,8) X1(3),\$1(3),X2(3),\$2(3)
	RETURN
8	FÖRMAT (4F20.7)
-	END

SUBROUTINE WRONG(KK1,KK2,KK3,R,KK5,KK6,KK7,*) C THIS ROUTINE CONTROLS WHEN CURVE ORIENTATION IS WRONG 8	36 37 38 39 40
C THIS ROUTINE CONTROLS WHEN CURVE ORIENTATION IS WRONG 8	38 39 40
	39 40
	40
	41
	42
	43 -
	44
	45
	46
	47
1/1/ () · · · · · · · · · · · · · · · · · ·	48
	49
	50
	51
	52
	53
END 8	54

c c c	SUBROUTINE STANDD(KK1,KK2,KK3,R,KK5,KK6,KK7,*) THIS ROUTINE CONTROLS WHEN CURVE ORIENTATION IS RIGHT KK5=KK2 -IFIX(R)/2 KK6=KK2 KK7=KK2 + IFIX(R)/2 RETURN 1 END	855 856 858 858 859 860 861 863 863 864
CCC	SUBROUTINE HEAT\$(W,DELTA,\$SOLD) COMMON/A20/JJ1,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9 COMMON/A22/FCTRLD,BASEH\$ RETINV=SSOLD=COST IF(W.LT.0.) \$SOLD=0. IF(W.LT.0.) GO TO 5 IF(JJ4.EQ.1) GO TO 1 IF(JJ4.EQ.2) GO TO 2 1 \$SOLD=W*FCTRLD*DELTA*.23/100000. GO TO 5 2 \$SOLD=W*DELTA*FCTRLD*BASEH\$/1000000. END	865 866 8667 8869 870 871 873 874 875 874 8778 8778 8778 878 878 879 879 879 879
CC C	SUBROUTINE DRECON THIS ROUTINE READS ECONOMIC DATA COMMON/A5/ NJ1,NJ2,NJ3,NJ4,NJ5 COMMON/A22/FCTRLD,BASEH\$ COMMON/A22/FCTRLD,BASEH\$ COMMON/A23/YEARS,SALVA\$,FRINTR,T1,T2,T3,T4,T5,T6 COMMON/A24/ T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17,T18 COMMON/A25/U1,U2,U3,U4,U5,U6,U7,U8,U9,U10,U11,U12,U13 COMMON/A27/U14,U15,U16,U17,U18,U19,U20,U21,U22,U23 DATA NIN,NOUT/1,3/ READ(NIN,1) FCTRLD,BASEH\$,YEARS,SALVA\$,FRINTR READ(NIN,1) T1,T2,T3,T4,T5 READ(NIN,1) T16,T7,T8,T9,T10 READ(NIN,1)T16,T17,T18,U10,U2 READ(NIN,1)U16,T17,T18,U10,U2 READ(NIN,1)U16,U17,U18,T15 READ(NIN,1)U3,U4,U5,U6,U7 READ(NIN,1)U3,U4,U5,U6,U7 READ(NIN,1)U3,U4,U5,U6,U7 READ(NIN,1)U3,U4,U5,U6,U7,U18 READ(NIN,1)U14,U15,U16,U17,U18 READ(NIN,1)U14,U15,U16,U17,U18 READ(NIN,1)U3,U4,U5,U6,U7,U12,U22,U23 READ(NIN,1)U3,U4,U5,U6,U17,U18 READ(NIN,1)U3,U4,U5,U6,U17,U18 READ(NIN,1)U3,U4,U5,U6,U17,U18 READ(NIN,1)U3,U4,U5,U6,U17,U18 READ(NIN,1)U3,U4,U5,U6,U17,U18 READ(NIN,1)U3,U4,U5,U6,U7,U13,U22,U23 READ(NIN,1)U3,U4,U5,U6,U17,U18 READ(NIN,1)U3,U4,U5,U6,U7,U13,U22,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U22,U23 READ(NIN,1)U3,U4,U5,U6,U7,U14,U15,U16,U17,U18 READ(NIN,1)U3,U4,U5,U6,U7,U18 READ(NIN,1)U3,U4,U5,U6,U7,U18 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U14,U23 READ(NIN,1)U3,U4,U5,U6,U7,U15,U17,U18 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U6,U7,U13,U23 READ(NIN,1)U3,U4,U5,U13,U23 READ(NIN,1)U3,U4,U5,U14,U5,U14,U33 REA	882 882 8883 8885 8887 8887 8887 88992 8992 89945 89967 89967 89967 90012 9004 9004 90057 90057

В21

CCC	SUBROUTINE SUPCST(ACOST, BCOST, CCOST, DCOST, ECOST, FCOST, GCOST, D, ZL, 10, N, HCOST) COMMON/A25/U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12, U13 HCOST=U1*ACOST+U2*BCOST+U3*CCOST+U4*DCOST+U5*ECOST+U6*FCOST 1+U7*GCOST+U9*D+U13+U10*ZL+U11*Q+U8+U12*N RETURN END	908 909 911 912 913 914 915 915 917
		917

<pre>SUBROUTINE DEPREC(M, PRINCP, DEPRE\$) COMMON/A20/JJ1,J2,J3,J4,JJ5,JJ6,JJ7,JJR,JJ9 COMMON/A22/FCTRLD, BASEH\$ COMMON/A23/YEARS, SALVA\$, FRINTR, T1, T2, T3, T4, T5, T6 I=0 IF(JJ5.E0.0) GO TO 1 IF(JJ5.E0.1) GO TO 2 IF(JJ5.E0.2) GO TO 3 IF(JJ5.E0.2) GO TO 4 1 DFPRE\$=(PRINCP*(1SALVA\$))/YEARS GO TO 5 2 K=IFIX(YEARS) DO 7 J=1,K 7 I=I+J DEPRE\$=(2.0*(YEARS-FLOAT(M)+1.)*PRINCP*(1SALVA\$))/(YEARS*(YEARS+ 11.)) GO TO 5 3 DEPRE\$=(PRINCP*(1SALVA\$)*FRINTR)/((1.+FRINTR)**M-1.) GO TO 5 4 IF(M.E0.1) DEPRE\$=PRINCP*2.0*(1./YEARS) IF(M.E0.1) DEPRE\$=PRINCP*2.0*(1./YEARS) IF(M.E0.1) GO TO 5 5 FR=2.0*(1./YEARS) VA=PRINCP*(1SALVA\$)*(1FR)**(M-1) DEPRE\$</pre>	9189 92212 9922456 992226 992226 992228 99999 99999 99999 99999 99999 99999 9999
FR=2.0*(1./YEARS)	941

c

	SUBROUTINE_DANDM(PRINCP,RETINV,OANDM\$) COMMON/A24/ T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17,T18 OANDM\$=T7*PRINCP+T8*RETINV+T9 RETURN END	946 947 948 949 950
C C	SUBROUTINE SUPPCS (PRINCP, RETINV, OANDM\$, FIN\$, DEPRE\$, SUPP\$) COMMON/A23/YEARS, SALVA\$, FRINTR, T1, T2, T3, T4, T5, T6 SUPP\$=PRINCP*T1+RETINV*T2+OANDM\$*T3+FIN\$*T4+DEPRE\$*T5+T6 RETURN END	951 952 953 954 955 956 957
CCCC	SUBROUTINE FINAN(PRINCP,FIN\$) COMMON/A24/ T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17,T18 FIN\$=T10*PRINCP+T11 RETURN END	958 950 961 962 964 965 965
COC	SUBROUTINE RTOWAY(KK,RTWAY\$) COMMON/A5/ NJ1,NJ2,NJ3,NJ4,NJ5 COMMON/A28/U14,U15,U16,U17,U18,U19,U20,U21,U22,U23 ZLT=0. DO 1 J=1,KK READ(NJ1'J) W,ZL,BLOSS,DELTA IF(W.LT.O.) GO TO 1 ZLT=ZLT+7L 1 CONTINUE RTWAY\$=(ZLT-U14)*U15 +U18 RETURN RETURN END	967 969 970 971 972 973 974 975 976 976 978 978 980 981

2.2.3 2.08

	SUBROUTINE ADJUST(XX1,XX2)	
	THIS ROUTINE COMPUTES THE ADJUSTMENTS TO BE APPLIED	982 983
	THIS ROUTINE COMPUTES THE ADJUSTMENTS TO BE APPLIED COMMON/A8/J1,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2	<u> 984</u>
	LUMMUN/A28/U14,U15,U16,U17,U18,U19,U20,U21,U22,U23	985
	IF(I2.EQ.0) GO TO 1 IF(I2.EQ.1) GO TO 2	986
1	IF(I1.EQ.0) GO TO 3	987 988
-	IF(II.EQ.1) GO TO 4	989
	IF(II.EQ.2) GO TO 5	<u> </u>
3	XX1=U21*15.0+U23	991
	ZL=5280. W=500.0*U21	992 993
	BLOSS=0.0	994
		<u> 995</u>
	CALL FLOCLC(W,ZL,D,BLOSS,Q,N,H)	996
	CALL PUMCST(H,Q,Ň,ĠLČOŠŤ) XX2=GLCOST/2.	997
	GO TO 6	998 999
4	XX1=U21*20.0*0.5+U23	1000
5	ZL=5280.	IOOI
	W=500.0+U21	1002
	BLOSS=0. D=4.	1003 1004
	CALL FLOCLC(W,ZL,D,BLOSS,Q,N,H)	1004
	CALL PUMCST(H,Q,N,GLCOST)	1006
	XX2=GLCOST	1007
	IF(II.EQ.1) GO TO 6 A=U21*7.3	1008 1009
	V=5.0*A/1.5	1010
	XX1=V+2.079.0+U21+7.5+A+0.25	iŏiĭ
-	GO TO 6	1012
2	XX1=(1U22)*U19+U23	1013
6	XX2=(1U22)*U20 RETURN	1014 1015
0	END	1016

С

B24

SUBROUTINE WRITED(KK)	1017
THIS IS THE OUTPUT AND ECONOMICS CONTROL ROUTINE	1018
COMMON/A1/K1,K2,K3	1019
COMMON/A2/RHO,POIS	1020
COMMON/A3/CPI(7)	1021
ČÓMMÓN/A4/MÓNÝ	1022
COMMON/A5/ NJ1,NJ2,NJ3,NJ4,NJ5	1023
COMMON/A8/J1,J2,J3,J4,J5,J6,J7,J8,J9,I1,I2	1024
COMMON/A9/TPIPE(100)	1025
COMMON/A10/TCNDT(200)	1026
COMMON/A11/TPUMP(100)	1027
COMMON/A12/BASEW,BASEP,BASEE,BASEV,BASED,BASE\$,BASEW\$,BASEP\$ COMMON/A13/HOLCST,HOLFT COMMON/A14/ VELLIM,NNN COMMON/A16/ NODE(13),TCOST(100) COMMON/A16/ N,Q,H,DD,D,ZL,ZCOST,ZCOST,ACOST	1027 1028 1029 1030 1031 1032
COMMON/A18/ BCOST,CCOST,DCOST,ECOST,FCOST,GCOST	1033
COMMON/A20/JJ1,JJ2,JJ3,JJ4,JJ5,JJ6,JJ7,JJ8,JJ9	1034
COMMON/A22/FCTRLD,BASEH\$	1035
COMMON/A23/YEARS,SALVA\$,FRINTR,T1,T2,T3,T4,T5,T6	1036
COMMON/A24/ T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17,T18	1037
COMMON/A25/U1,U2,U3,U4,U5,U6,U7,U8,U9,U10,U10,U12,U13	1038
COMMON/A28/014,015,016,017,018,019,020,021,022,023	1039
DIMENSION PVALUE(7),PSS(7)	1040
DATA NIN,NOUT/1,3/	1041
DATA SP,SA,SB,SC,SD,SE,SF,SG,S\$/0.,0.,0.,0.,0.,0.,0.,0.,0./	1042
FIND(NJ1'1)	1043
FIND(NJ2'1)	1044
FIND(NJ3'1)	1045
SH=0.	1046
ILLK=0	1047
IF(JJ8.EQ.0) GO TO 13	1048
WRITE(NOUT,204)	1049
12 WRITE(NOUT,14) FCTRLD,BASEH\$,YEARS,SALVA\$,FRINTR WRITE(NOUT,15) T1,T2,T3,T4,T5 WRITE(NOUT,16) T6,T7,T8,T9,T10 WRITE(NOUT,17) T11,T12,T13,T14,T15 WRITE(NOUT,17) T16,T17,T18 WRITE(NOUT,19) T16,T17,T18 WRITE(NOUT,19) U1,U2,U3,U4,U5	1050 1051 1052 1053 1054 1055
WRITE(NOUT,20) U6,U7,U3,U9,U10	1056
WRITE(NOUT,21) U11,U12,U13	1057
WRITE(NOUT,22) U14,U15,U16,U17,U18	1058
WRITE(NOUT,22) U19,U20,U21,U22,U23	1059
G0 T0 13	1030
13 IF(JJ6.EQ.0) G0 10 1	1061
5 IF (JJ6.EQ.0) GO TO 6	1062
IF(JJ6.EQ.2) GO TO 6	1063
1 WRITE(NOUT.2)	1064
DO 3 L=1,KK	1065
READ(NJ1'L) W.ZL.BLOSS.DELTA	1066
RĒAD(NJĀ+L) PRĪNCP,\$SŌLO,ĀCOST,BCOST,CCOST,DCOST,ECOST,FCOST,GCOST	1067
1,HCOST	1068
IF(W.LT.O.) GO TO 3	1069
WRITE(NOUT,4) L,ACOST,BCOST,CCOST,DCOST,FCOST,FCOST,GCOST,\$SOLD	1070
SA=SA+ACOST	1071
SB=SB+BCOST	1072
SC=SC+CCOST	1073
SD=SD+DCOST	1074

С

3 2832	SE=SE+ECOST SF=SF+FCOST S\$=S\$+\$SOLD SG=SG+GCOST SP=SP+PRINCP SH=SH+HCOST CONTINUE WRITE(NOUT,205) SA,SB,SC,SD,SE,SF,SG,S\$ IF(ILLK.EQ.2) GO TO 2322 IF(ILLK.EQ.2) WRITE(NOUT,207) IF(ILLK.EQ.1) WRITE(NOUT,207)	1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	MMIS=TFIX(YEARS+0.5) DO 220 M=1,MMI5 WRITE(NOUT,221) M IF((ILLK.FQ.1).AND.(M.EQ.1)) CALL ADJUST(SPA,SGA) IF((ILLK.FQ.1).AND.(M.EQ.1)) SP=SP-SPA IF(SP.LT.O.) SP=0. WRITE(NOUT,206) SP WRITE(NOUT,2557) SH IF((ILLK.EQ.0).AND.(M.EQ.1)) S\$=S\$*360.0*24. WRITE(NOUT,208) S\$ CALL DEPREC(M,SP,DEPRE\$)	1086 1087 1088 1099 1090 1091 1092 1093 1094
-	WRITE(NOUT, 223) SUPPS CALL DIANDM(SP,S\$,OANDM\$) WRITE(NOUT,211) OANDM\$ CALL FINAN(SP,FIN\$) WRITE(NOUT,209) FIN\$ IF((ILLK.EQ.1).AND.(M.EQ.1)) SG=SG-SGA IF((J9.EQ.1).AND.(M.EQ.1)) SG=SG*360.0/BASED WRITE(NOUT,222) SG CALL SUPPCS(SP,S\$,OANDM\$,FIN\$,DEPRE\$,SUPP\$) WRITE(NOUT,223) SUPP\$	1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	WRITE(NOUT,223) SUPP\$ TX SL=(T14+T15)*SP WRITE(NOUT,228) TX SL PIS=T16*SP+T17*SP +T18 WRITE(NOUT,224) PIS CALL RTOWAY(KK,RTWAY\$). RTWY\$=RTWAY\$/YEARS WRITE(NOUT,256) RTWY\$ PRFTBD=S\$-OANDM\$-FIN\$-SG-SUPP\$-PIS-TX SL-RTWAY\$ IF(PRFTBD.LT.0.0) WRITE(NOUT,225) YEARS IF(PRFTBD.LT.0.0) GO TO 240	1107 1108 1109 1110 1111 1112 1113 1114 1115
c c	REACH HERE IS ONE IS GOING TO MAKE SOME SORT OF PROFIT WRITE(NOUT,226) PRFTBD PRFTAD=PRFTBD-DEPRES IF(PRFTAD.LT.0.) CSFLNT=DEPRES IF(PRFTAD.LT.0.) GO TO 6111 REACH HERE IS ONE IS REALLY GOING TO MAKE MONEY TXBLI=PRFTAD TXSF=(T12+T13)*TXBLI	1117 1118 119 1120 1121 1122 1123 1124
	WRÏTE(NDŪT,229) TXŠĖ CSFLNT=(1.0-(T12+T13))*TXBLI+DEPRE\$ WRITE(NJ5'M) CSFLNT CDNTINUE WRITE(NDUT,230) DD 231 MMP=1,7 RATE=0.05*MMP	1125 1126 1128 1129 1130 1131 1132

B26

	T1ME=-1.	1133
	FACTUR=(EXP(RATE)-1.0)/(EXP(RATE*TIME)*RATE*EXP(RATE))	1125
	PVALUE(MMP)=-SP*FACTOR PSS(MMP)=PVALUE(MMP)	1135
231	CONTINUE	1137
	WRITE(NOUT, 232)(PVALUE(MMP), MMP=1,7)	1138
	MMI5=IFIX(YEARS+0.5) DO 233 MMQ=1,MMI5	1139 1140
	DO 234 MMR=1,7	1141
	READ(NJ5'MMQ) CSFLNT	1142 1143
	RATE=0.05*MMR TIMF=MMW	1145
	FACTOR=-(EXP(-(RATE*TIME))-1.)/(RATE*TIME)	1145
	PVALUE(MMR)=CSFLNT#FACTUR	1146
234	PSS(MMR)=PSS(MMR)+PVALUE(MMR) CONTINUE	1147
	₩RİTĖ(ŇĴUT,235)MMQ,(PVALUE(MMT),MMT=1,7)	1149
233	CONTINUE WRITE(NOUT+267) (PSS(MMU)+MMU=1+7)	1150 1151
	WRITE (NOUT, 6100)	1152
(1 0 7	JINX=-51	A1153
6107	J[NX=J[NX+1 IF(J[NX-E9.0) FACTOR=1.0	81153 C1153
	ÍF(JÍNX-ÉQ-Ô) GO TO 6ÌÙÀ	D1153
	IF(JINY.EQ.100) WRITE(NUUT,6110)	E1153
	IF(JINX.+0.100) GD TO 2321 RATE=0.01*JINX	F1153 1154
	TIME=-1	1155
6108	FACTOR=(FXP(RATE)-1.0)/(EXP(RATE*TIME)*RATE*EXP(RATE)) PART=-SP*FACTOR	1157
0100	PARTY=-SP*FACTOR	1158
	MM15=IFIX(YEAPS+0.5)	1159
	DO 6102 J=1,MMI5 IF(JINX.EQ.O.) GO TO 6112	1160
	FACTOR=(EXP(RATE)-1.)/(EXP(PATE+J)+RATE+EXP(RATE))	
6112	READ(NJ5'J) CSFLNT QUART=FACTUR*CSFLNT	1163
	PART=PART+QUART	1164
6102	CONTINUE	1165
6101	IF(PART.LT.O.) GO TO 6103 GO TO 6107	1166 1167
6103	DO 6105 L=1, MMI5	1168
	PFAD(NJ5'L) CSFLNT WRITE(NOUT,6106) L,CSFLNT	1169 1170
6105	CONTINUE	1171
	KRITE(NOUT,6207) JINX	1172
240	GN_T1)_241 DEPRE\$=SP/YEARS	1173 1174
	RQDINC=ABS(PRFTBD)+DEPRE\$	1175
	IF(U16.GI.O.) GO TO 242 IF(U16.LT.O.) GO TO 243	1176 1177
242	IF(JJ4.EQ.1) QSOLD=S\$/0.23	1179
	IF(JJ4.EQ.0) QSOLD=S\$/0.23 IF(JJ4.EQ.2) QSOLD=S\$/BASEH\$	1179
	SINCR=RODINC/OSOLD	1180 1181
	WRITE(NOUT,244) YEARS,5INCR	1182
247	GO_TO_2321 \$ \$INCR=R0DINC/(350.0*24.0*U17*1000.)	1183 1184
273	ATHOR WANTHOLFDAGEN. TAGA ATL. TAMASI	1154

WRITE(NOUT,246) \$INCR GO TO 2321 241 RJDYRS=SP/PRETHO	11
WPITEINNUT,245) ROMARS 1321 ILLK=ILLK+I 60 TO 2932	11 11 11
1322 [F(JJ6.EQ.1) 30 TO 250 [F(JJ6.FQ.0) 30 TO 5 6 WRITE(NOUT, 8)	
00 43 L=1,KK READ(NJ1°L) W,ZL,RLOSS,DFLTA READ(NJ2°L) N,Q,H	11 11 11
ТЕ(4.LT.0.) 50 TC 43 #RITE(4.UT,441 L,N,W,ZL,RLOSS,DELTA,Q,H 43 CDNTINUE	11 11 11
250 RETURN 2 FRAMAT('1',//,T40,' COST DATA AND TOTALS',///,' PATH #',4X,' PUM 1°',T30,'PIPE',T40,'EXCAVATION',T54,'INSULATION',T71,'MANHOLF',T86,	11 12 12
2 'CONDUIT', TIOI, 'PUMPING', TII3, 'GROSS', /, TI4, 'COST', T30, 'COST', 3T40, 'COST', T54, 'COST', T71, 'COST', T86, 'COST', T101, 'COST', T108, 'INCO 4ME/HOUR', //)	12 12 12
4 FORMAT(15,T3,F12,2,2F15,2,2F14,2,2F15,2,F12,2) 8 FORMAT(11,T43, FLOW EDIT:///, PATH # OF FLOWRATE, T30, 1 LENGTH',T45, BUILDING LOSS',T50, DELTA T', T75, Q',T90, HEAD LOSS	12 12 12 12
14 FORMAT(LOAD FACTOR SALE PRICE OF HEAT EFFECTIVE LIFE SALVAGE	12
15 FURMAT(* 11-15 VALUES ARE :*,/,5F15.5,//) 16 FURMAT(* 16-110 VALUES ARE:*,/,5F15.5,//) 17 FURMAT(* 111-115 VALUES ARE:*,/,5F15.5,//)	12
19 FORMAT(' 16-113 VALUES ARE:',/,3F15.5,//) 19 FORMAT(' U1-U5 VALUES APE:',/,5F15.5,//) 20 FORMAT(' U6-U10 VALUES ARE:',/,5F15.5.//)	12
21 FORMAT(* UI1.UI2.UI3 VALUES ARE:*,/,3F15.5) 22 FORMAT(//,* UI4-UI8 VALUES ARE:*,/,5F15.5) 23 FORMAT(//,* UI9-U23 VALUES ARE:*,/,5F15.5) 44 FORMAT(215,5E15.7)	12 12 12
204 FORMAT(11),// 205 FORMAT(' TOTALS',/.TR,F12.2,2F15.2,2F14.2,2F15.2,F12.2) 206 FORMAT(//, THE TOTAL INSTALLATION COST IS :: 158,158,158,158,158,20,2)	12 12 12
INT 1///	12 12 12
208 EDRMAT(//, THE GROSS ANNUAL INCOME IS : ', T90, F20.2) 209 FORMAT(//, 'THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS: 	12
210 FORMAT(//,' THE DEPRECIATION IS :', T60, F20,2) 211 Format(//,' The Annual operating and maintenance expence is :', T60 1, F20,2)	12 12 12
221 È DRMAÏ ('1',//,' YFAR',I3,T65,'DUTELOWS',T90,'INELOWS',//) 222 E DPMAT (//,' THE ANNUAL PUMPING COST IS:',T60,F20.2) 223 E DRMAT (//,' THE ANNUAL SUPPLEMENTARY COSTS ARE:',T60,F20.2) 224 E DMAT (//,' THE ANNUAL SUPPLEMENTARY COSTS ARE:',T60,F20.2)	12
224 FURTAT(///, THE ANNUAL INSURANCE CHARGES ARE:', T60, F20, 2) 225 FURMAT(///,T20,' THE SUM OF THE ANNUAL DEPARTING EVDENCES IS COEA	12 12 12
ITER , /, T20, THAN THE GROSS INCOME, THUS THERE WILL ALWAYS BE ANY, 2/, T20, "OPERATING EXPENSE FOR THIS SYSTEM. THE FOLLOWING ',/,T20, 3' WILL BE AN ANALYSIS OF THE REQUIREMENTS TO JUST PAY',/,T20, "OFF	12 12 12
4 THE PLANT IN , FIO.O, YEARS') 226 FORMAT(//,' THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	124

-

APPENDIX C

SUBROUTINE LISTING

The digital computer program is written in the Fortran IV, level G language for the IBM 360-50 computer system. The program consists of a main program and 31 subroutines.

Follo	owing is a listing of the	subrouti	ne names, the	e functions of	
the subroutines, the subroutines that are called and the subroutines					
that call the named subroutine. (I/O means input or output device.)					
Name	Function	Subrout Called	ines	Subroutine Called By	
MAIN	Flow Control;	STRTFL	PLLP		
	1/0	DRECON	DREAD		
		VELIN	ANHLIN		
		EXPOIN	PRICEI		
		TLREAD	WRITEO		
STRTFL	Flow Control of	COPTIM		MAIN	
	Series Circuit	TEMOP			
PLLP	Flow Control of	COPTIM		MAIN	
	Parallel Circuit	TEMOP			
COPTIM	Optimization by	FLOCLC	CINSUL	STRTFL	
	minimizing in-	CPUMP	CMNHOL	PLLP	
	stallation and	CPIPE	CCONDT		
	pumping costs	CEXCAV	PUMCST		
		SUPCST	WRONG		
		RIGHT	HEAT\$		

TEMOP	Optimization by	HEAT\$ FLOCLC	STRTFL
	Maximization of	CPIPE CEXCAV	PLLP
	Annual Rate of	PUMCST OANDM	
	Return	FINAN CMNHOL	
		CPUMP CINSUL	
		CCONDT SUPCST	
DRECON	I/O Economics		MAIN
	Data		
DREAD	I/O OPTIONS		MAIN
VELIN	I/O Velocity &		MAIN
	Number of Pipes		
ANHLIN	I/O Manhole Data		MAIN
EXPOIN	I/O Exponent Data		MAIN
TLREAD	I/O Table Data		MAIN
PRICEI	I/O Cost Data		MAIN
FLOCLC	Pressure Drop;		TEMOP
	Number of Pipes		COPTIM
			ADJUST
CPUMP	Pump Cost	CPOLE	TEMOP
			COPTIM
CPIPE	Pipe Cost	CPOLE	TEMOP COPTIM
			ADJUST
CEXCAV	Excavation Cost		TEMOP COPTIM
			ADJUST
CINSUL	Insulation Cost		TEMOP COPTIM

CMNHOL	Manhole Cost		TEMOP	COPTIM
CCONDT	Conduit Cost		TEMOP	COPTIM
PUMCST	Pumping Cost		TEMOP	COPTIM
			ADJUST	
SUPCST	Supplemental Cost		TEMOP	COPTIM
WRONG	Curve Orientation		COPTIM	
STANDD	Curve Orientation		COPTIM	
HEAT\$	Income from Sale		COPTIM	TEMOP
	of Heat			
OANDM	Operation and		TEMOP	WRITEO
	Maintenance Cost			
FINAN	Financing Charges		TEMOP	WRITEO
CPOLE	Computes Exponent		CPUMP	CPIPE
	for Cost Extrapol-		CCONDT	
	ation			
WRITEO	Output; Flow	ADJUST DEPREC	MAIN	
	Control;	OANDM FINAN		
	Economics	SUPPCS RTOWAY		
ADJUST	Computes Adjustment	FLOCLC	WRITEO	
	and Comparative Cost	PUMCST		
	Data			
DEPREC	Calculates		WRITEO	
	Depreciation			
SUPPCS	Supplemental		WRITEO	
	Annual Costs			
RTOWAY	Right-of-Way		WRITEO	
	Costs			

The program can compute optimum sizes for as many as 999 flowpaths and piping diameters from one inch to 100 inches. Five tape or disk storage units are utilized, each containing 1000 records of 40 words each. 130,000 bytes of core storage are required in the execution of this program.

The program consists of some 1200 computer cards. Compilation time for the program is on the order of 3 minutes. The example problem computation required 5 minutes of computer time; a problem with 999 flowpaths executed in 50 minutes.

C4

APPENDIX D

INPUT INSTRUCTIONS

The input data is separated into four sections: economic data, fixed point and mandatory data, optional data and flow path data. In each case, the required format is given. All data that is mandatory is coded (M) and optional data is coded (0).

A. ECONOMIC DATA

Card Ol	Colum	n 1–15	Overall plant load factor. If
			not available, input 0.8. (F15.5)(M)
	Col	16-30	Selling price of heat, \$/10 ⁶ BTU
			(F15.5)(M)
	Col	31-45	Effective plant life, years
			(F15.5)(M)
	Col	46-60	Salvage value of plant as
			a fraction of the initial
			investment. A value from
			0.00 to 0.25 is recommended.
			(F15.5)(M)
	Col	61-75	Sinking fund interest rate.
			Required only if sinking fund
			depreciation is selected. (F15.5)(M)

The next six data values are used in a supplemental cost routine for cash flow analysis. This permits the investigator to change varying interest rates on the capital cost, return on investment, operating and maintenance costs, financing costs, depreciation costs, and an independent supplemental cost. Thus, a cost such as operating capital

(which is n	not in	cluded	elsewhere) could be input as a percentage of
the invest	nent;	labor	cost as an	independent cost, etc.
Card 02	T1	Colum	in 1–15	Supplemental cost, fraction of
				installation cost. (F15.5)(0)
	т2	Col	16-30	Supplemental cost, fraction of
				gross income. (F15.5)(0)
	т3	Col	31-45	Supplemental cost, fraction of
				operating and maintenance costs
				(F15.5)(0)
	т4	Col	46-60	Supplemental cost, fraction of
				financing costs. (F15.5)(0)
	Т5	Col	61-75	Supplemental cost, fraction of
				depreciation cost. (F15.5)(0)
Card 03	т6	Col	1-15	Supplemental cost, independent.
				(\$/year) (F15.5)(0)
	т7	Col	16-30	Annual operating and maintenance
				costs, fraction of installation
				costs. (F15.5)(0)
	Т8	Col	31-45	Annual operating/maintenance costs-
				fraction of installation costs.
				(F15.5)(0)
	т9	Col	46-60	Operation and Maintenance costs,
				<pre>independent input. (\$/year)(F15.5)(0)</pre>
	T10	Col	61-75	Annual financing charge interest
				rate (expressed as a fraction).
				(F15.5)(0)

\$ ₁₂

Card 04	T11	Colur	nn 1 - 15	Financing cost, independent. (\$/year)
				(F15.5)(O)
	T12	Col	16-30	Federal income tax rate (fraction).
				(F15.5)(O)
	T13	Col	31-45	State income tax rate (fraction).
				(F15.5)(0)
	T14	Col	46-60	County tax rate (computed considering
				investment costs only). (fraction)
				(F15.5)(0)
	T15	Col	61-75	City tax rate (computed considering
				investment costs only). (fraction)
				(F15.5)(O)
Card 05	T16	Col	1-15	Liability insurance rate (computed
				on investment cost only). (fraction)
				(F15.5)(O)
	T17	Col	31-45	Independent insurance costs (annual).
				(F15.5)(0)

The remainder of this card and the next few cards are used to input percentages of the component costs. This can be used, for example, as a reliability input by using 1.5 or 2.0 for the pump cost. (Note: The effect of these inputs are added to the total installation costs for computing the total installation costs.) Supplemental cost-fraction of the Card 05 Column 46-60 U1 (cont'd) pump cost. (F15.5)(0) Supplemental cost-fraction of U2 Col 61-75 piping cost. (F15.5)(0)

Card O6	U3	Colum	in 1–15	Supplemental cost-fraction of
				excavation cost. (F15.5)(0)
	U4	Col	16-30	Supplemental cost-fraction of
				insulation cost. (F15.5)(0)
	U 5	Col	31-45	Supplemental cost-fraction of
				manhole cost. (F15.5)(0)
	U6	Col	46-60	Supplemental cost-fraction of
				conduit cost. (F15.5)(0)
	U7	Col	61-75	Supplemental cost-fraction of
				pumping cost. (F15.5)(0)
Card 07	U8	Colum	n 1-15	Supplemental cost-independent.
				(F15.5)(O)
	U9	Col	16-30	Supplemental cost-multiple of
				diameter. (F15.5)(0)
	U10	Col	31-45	Supplemental cost-multiple of
				length. (F15.5)(0)
	U11	Col	46-60	Supplemental cost-multiple of
				volumetric flowrate. (F15.5)(0)
	U 12	Col	61-75	Supplemental cost-multiple of
				the number of pipes. (F15.5)(0)
Card 08	U13	Col	1-15	Supplemental cost-independent.
				(F15.5)(0)

The following data is used to input right of way costs, easement costs, and an indicator for adjustment calculations. Card O9 U14 Column 1-15 Input length of pipe installed in lakes, rivers (no right of way costs for this length), ft. (F15.5)(0)

U16	Col	31-45	If greater than 0, computes any
			increase in selling price in terms
			of \$\$/10 ⁶ BTU increase. (F15.5)(0)
			If less than 0, computes the increase
			in selling price required in \$\$/Kilo-
			watt-hour. (F15.5)(0)
U17	Col	46-60	Megawatt electrical rating of the
			plant. (F15.5)(0)

U18 Col 61-75 Easement costs, \$/year. (F15.5)(0)

The next card contains the data required for the adjusted cost analysis. The input data determines the type of conventional system for the comparative analysis.

Card 10	U19	Column 1-15		Installation cost of the piping
				of the conventional condensing
				system. (F15.5)(0)
	U20	Col	16-30	Annual pumping cost, \$\$/year (for
				condensing system). (F15.5)(0)
	U21	Col	31-45	Flowrate of conventional cooling
				system in gallons per minute.
				(F15.5)(0)
	U22	Col	46-60	Fractional cost expenditure
				required (fraction of size of
				conventional equipment and operating
				cost). (F15.5)(0)

U23 Col 61-75 Cost of installation of conventional condensing system (physical plant). (F15.5)(0)

B. FIXED POINT AND MANDATORY DATA

The following data cards are the control cards for the program. Most of the data in this section must be supplied.

Card 1	J1	Column 5		<pre>Input=0::limiting velocity is 10 ft/sec</pre>
				Input=1::limiting velocity is supplied
	J2	Col	10	Input=0::building loss is calculated
				Input=1::building loss is supplied
	J3	Col	15	Input=0::pump cost is calculated
				(1962 dollars)
				Input=1::base size, base price to
				be input for exponential
				Input=2::100 values of pipe size,
				pipe cost to be supplied
				Input=3::input two sizes, two costs
				for exponential fit
	J4	Col	20	Input=0::pipe cost is calculated
				(1962 dollars)
				Input=1::input base size, base price
				for exponential
				Input=2::100 values of pipe sizes and
				costs to be supplied
				Input=3::input two sizes, two costs
				for exponential fit
	J5	Col	25	Input=0::excavation cost is calculated

Input=1::input BASEE, \$/ft³ excavated Col Input=0::calculates insulation cost J6 30 (1962 dollars) Input=1::input BASEV, \$/ft insulation cost J7 Co1 35 Input=0::calculates manhole cost (1962 dollars) Input=1::input the hole cost (\$/ft. depth) Input=2::input the hole cost and the hole spacing (feet) J8 Col 40 Input=0::calculates the conduit cost (1962 dollars) Input=1::50 values of size, cost of conduit to be supplied Input=2::input cost, size for exponential J9 Co1 45 Input=0::calculate pumping power cost (1962 dollars) Input=1::input BASED and BASE\$ (base days and base cost of electricity, \$/KWH) Input=0::a standard condenser is the Τ1 Co1 50 comparison base Input=1::a cooling tower is the comparison base Input=2::a cooling pond is the comparison base Input=0::use program calculations 12 Col 55

D7

				<pre>Input=1::calculates for system</pre>
				characterized by Il
		For	:mat(11	LI5), all (M)
Card 2	J10	Colum	nn 5	Input=0::the input fixed point data
				is not printed
				Input=1::the input fixed point data
				is printed
	J11	Col	10	Input=0::the limiting radii are not
				printed
				Input=l::the limiting radii are printed
	J12	Col	15	Input=0::density and viscosity are not
				printed
				Input=1::density and viscosity are
				printed
	J13	Col	20	Input=0::the cost-price indices are not
				printed
				Input=1::the cost-price indices are
				printed
	J14	Col	25	Input=0::no pipe table cost data output
				Input=1::pipe data table is output
				(this option only available if
				J4=2)
	J15	Col	30	<pre>Input=0::no conduit table cost data</pre>
				output
				Input=1::conduit cost data is output
				(this option only available is
				J8=1)

J16 Col 35 Input=0::no pump table cost data output Input=1::pump cost data table is output (this option only available if

```
J3=2)
```

- J17 Col 40 Input=0::base values from optional data cards are not printed
 - Input=1::base values from optional data cards are printed
- J18 Col 45 Input=0::manhole cost data not printed Input=1::manhole cost data is printed
- J19 Col 50 Input=0::limiting velocity is not printed Input=1::limiting velocity is printed
- J20 Col 55 Input=0::flow rate, length, building loss, and building delta temperature for each path are input

Input=1::length, heat requirement (BTU/hr)

and building loss for each path are input

Input=2::flow rate, length, heat

requirement and building loss for each path are input

Format(1115), all (M)

Card 3 JJ1 Column 5 Input=0::finds true optimum

Input=1::finds optimum for specified

minimum number of pipes

JJ2 Col 10 Input=0::the minimum number of pipes is

not output

D9

			Input=1::the minimum number of pipes is
			output
JJ3	Col	15	Input=0::minimizes the installation and
			pumping cost for a specified
			time interval
			Input=1::maximizes the rate of investment
			return
JJ4	Col	20	Input=0::uses \$0.23/10 ⁶ BTU as the selling
			price of heat
			Input=1::input sale price of heat
JJ5	Col	25	Input=0::straight line depreciation
			Input=1::sum of the years digits
			depreciation
			Input=2::sinking fund depreciation
			Input=3::declining balance depreciation
J J 6	Col	30	Input=0::outputs economics and flow edit
			Input=1::outputs economic edit only
			<pre>Input=2::outputs flow edit only</pre>
JJ7	Col	35	Input=0::sale price required to break
			even not computed
			Input=1::sale price required to break
			even is computed
JJ8	Col	40	Input=0::economics input data is not
			printed
			Input=1::economics data is printed
	Format	-(1175)) all (M)

Card 4	K1,K2,K3	Input the lower limit, mean and upper limit
		on pipe sizes under consideration
		(integers, inches) (3I10)(M)
Card 5	Rho, Pois	Input the density and viscosity of the
		fluid under consideration (lbs/ft ³)
		(1bs/ft-sec) (2F20.7)(M)
Card 6	CPI(7)	Input the cost price indices (7) in the
		following order:
		1 Pump
		2 Pipe
		3 Excavation
		4 Insulation
		5 Manhole
		6 Conduit

7 Pumping cost

These values are used to adjust the program values of 1962 dollars (or the value of costs that the programmer inputs) to the year the programmer desires. For example, if CPI(1) is input as 1.36 and J3 is 0, then the 1962 dollars used in the program are adjusted to about the 1970 cost of the pump. (7F10.5) (M)

C. OPTIONAL DATA

Card 1 If Jl is 0, this card is not used. If Jl is 1, input limiting velocity (ft/sec) (F20.7)(0) Card 2 If JJl is 0, this card is not used If JJl is 1, input (minimum pipes -1) (I5)(0)

Card 3	If J7 is 0, this card is not used
	If J7 is 1, input the hole cost (\$/ft. depth)
	(F20.7)(0)
	If J7 is 2, input the hole spacing (feet)
	(F20.7)(O)
	If J7 is 3, input the hole cost and hole spacing
	(2F20.7)(0)

Card(s) 4 (4A) If J3 is 3, input lower diameter in inches, lower cost, upper diameter and upper cost of <u>pumps</u> for exponential fit. (4F20.7)(0)

(Maximum

- of 3 (4B) If J4 is 3, input lower diameter in inches, lower cards) cost, upper diameter and upper cost of <u>piping</u> for exponential fit. (4F20.7)(0)
 - (4C) If J8 is 2, input lower diameter in inches, lower cost, upper diameter in inches, and upper cost of <u>conduit</u> for exponential fit. (4F20.7)(0)

Card 5	Blank	(M)			
Card(s) 6	If J3 is 2, input 10	00 cards with values of pump			
(Marrissa)	size and pump cost (l inch to 100 inches).			
(Maximum of 250	(15,F20.7)(O)				
cards)	If J4 is 2, input 10	00 cards with values of pipe			
	size and pipe cost (1 inch to 100 inches).			
	(15,F20.7)(0)				
	If J8 is 1, input 50	values of conduit cost			
	(from 4 inches to 20	0 inches by 4 inch increments).			
	(15,F20.7)(0)				

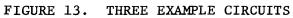
Card(s) 7 (7A) If J3 is 1, input base pump size (ft³/min) and base pump cost. (2F20.7)(0)

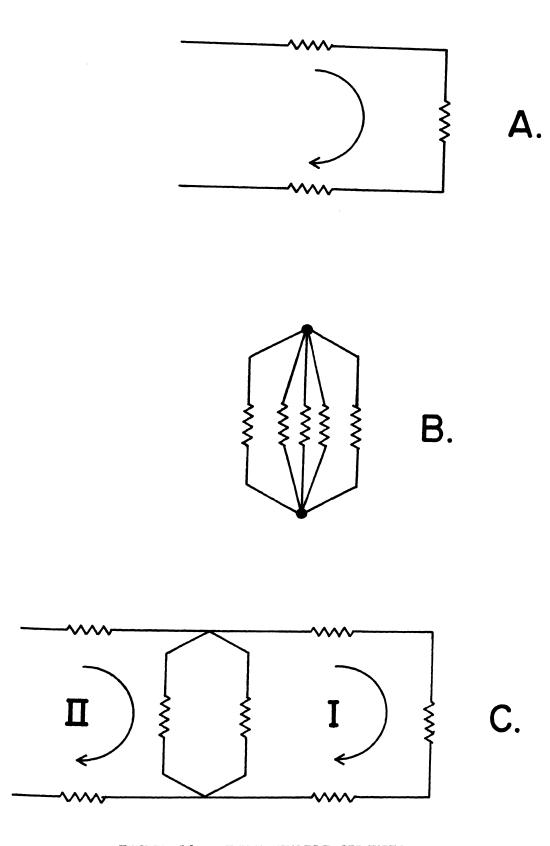
(Maximum of 5 (7B) If J4 is 1, input base pipe size and base pipe cost cards)

- (inches). (2F20.7)(0)
 - (7C) If J5 is 1, input base excavation cost $(\$/ft^3)$. (F20.7)(O)
 - (7D) If J6 is 1, input base insulation cost (\$/ft).
 (F20.7)(0)
 - (7E) If J9 is 1, input base days of operation for pumping cost analysis and base cost of electricity (\$/KWH). (2F20.7)(0)

Card 8 Blank (M)

Extreme care must be used in supplying the input data above. For example, if J3 is 2 and only 99 data cards are supplied, the program will not get correct results. (An error will result also.) D. FLOW PATH DATA


The input contained in this section is the most difficult to organize and is the most critical part of the program. To code this portion, it is recommended that an electrical analog be set up and the network reduced starting with the furthest point from the pumps (current source).


Card 1 Input the number of branches (I10)(M)

This card indicates to the program the number of sets of input data to follow. Each branch will be coded later as to the type of branch (series, parallel or series-parallel) and the number of paths in the branch. To clarify the input required, Figure 13 shows three example circuits. Circuit A has one branch, three paths and is a series circuit. Circuit B has one branch, five paths, and is a parallel circuit. Circuit C has two branches, I and II. Branch I is a series branch with 3 paths; branch II is a series-parallel branch consisting of <u>three</u> parallel paths and <u>three</u> series paths. (The third series path is the parallel network.)

The parallel network, when calculated in the series path, is coded with a negative flowrate to insure that duplicate calculations are not performed.

Card 2	Card 2 Column 10 Input=0::series circuit				
		Inp	ut=l::parallel circuit		
·		Inp	ut=2 ::series- parallel circu	ıit	
	Col	11-20 The	total number of paths in		
		the	branch.		
	Col	21-30 The	number of parallel paths		
		in	a parallel or series parall	lel	
		net	work.		
	Col	31-40 The	path number which contains	6	
		the	pumps.		
	Format (4	110),(M)			
1	This card for b	oranch I of c	ircuit C (Figure 13) would	read:	
Columr	n 10	20	30	40	
	0	3	0	33	
There	will be one ca	ard 2 supplie	ed for each branch.		
Card(s	s) 3 Flowpat	h data cards	3.		

The inputs on this card are variable depending on J20. The variables that may be input are:

KK The path number. Must be sequential from 1 to a maximum of 1000. The paths with negative flowrates must be coded in sequence. It is absolutely mandatory that the last data card input KK as the greatest value (equals the total number of paths analyzed) for this is the index on the Economic Analysis printout.
W The mass flowrate, 1bs/hr. If this is input as a negative value, no cost calculations are performed nor printout given for this path.

ZL The length of piping in the path (feet).

- BLOSS The building loss in feet of water head. If this is input as a negative number, there is no building on the leg of piping under consideration.
- DELTA The temperature drop across the building that is caused by the heat demand of the building. If this is input as 0.0, no heat is sold.
- QHEAT The amount of heat required by the building on the path, BTU/hour.
- INSULI Indicator to tell program if the path is to be insulated or uninsulated. (If = 0, path is not insulated, if = 1, path is insulated.)

These quantities are input in the following manner: If J20 is 1, input KK, INSULI, W, ZL, BLOSS, DELTA

(215,4F15.5).

D16

If J20 is 2, input KK, INSULI, ZL, QHEAT, BLOSS (215,3F15.5).

If J20 is 3, input KK, INSULI, W, ZL, QHEAT, BLOSS (215,4F15.5).

It is recommended that J20 equal to 2 be used.

The order of cards for this data set is:

Card 1

Card 2

Card(s) 3 For series flow, the number of cards equals the number of paths. For parallel flows, the number of paths equals the number of cards. For series-parallel, input the parallel paths first; then series paths. Total cards = total number of paths plus 1, the additional path having a negative flowrate.

Card 1

Card 2

Card(s) 3

etc. until there are as many card number 2 data cards as specified on card 1.

APPENDIX E

BALANCE SHEETS

The following pages show the annual balance sheets that the computer program calculated for the typical problem of section V. These are given from years 2-30 for the non-adjusted economic analysis and years 2-30 for the adjusted economic analysis.

YEAR 2		OUTELOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1593623.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:		294061.19	

/

Υ Ξ Δ ૨ 3		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1538671.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARF:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		294061.19	

YEAR 4		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :			378	7770.00
THE DEPRECIATION IS :		1483718.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST I	S:	941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.90		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION	1 15:		294061.19	

YEAR 5		OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00	
THE GROSS ANNUAL INCOME IS :			3787770.00
THE DEPRECIATION IS :		1428766.00	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST I	s:	941423.69	
THE ANNUAL PUMPING COST IS:		2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00	
THE PROPERTY TAXES ARE:		2689.78	
THE ANNUAL INSURANCE CHARGES ARE:		7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION	15:		294061.19

-

YEAR 5		OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	5 5	26897824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00	
THE GROSS ANNUAL INCOME IS :			3787770.00
THE DEPPECIATION IS :		1373813.00	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69	
THE ANNUAL PUMPING COST IS:		2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00	
THE PROPERTY TAXES ARE:		2689.78	
THE ANNUAL INSURANCE CHARGES ARE:		7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	5:		294061.19

ΥΕΔΆ 7	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 26897824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3737770.00
THE DEPRECIATION IS :	1318861.00	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	268978.13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS	5: 941423.69	
THE ANNUAL PUMPING COST IS:	2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2689.78	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION	15:	294061.19

YEAD 3		OUTELOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26397824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1263908.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-DF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		294061.19	

YEAR 9		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	25897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1208955.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:		294061.19	

· -

YEAR 10		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GPOSS ANNUAL INCOME IS :			3787770.00)
THE DEPPECTATION IS :		1154003.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS	:	941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-DF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION	15:		294061.19	

YEAR 11		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	5 S	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3797770.00
THE DEPRECIATION IS :		1099050.00		
THE ANNUAL OPERATING AND MAINTENANCE FXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-DF-WAY COST IS:		2056.00		
THE NET ANNUAL IN DME- REFORE TAXES AND DEPRECIATION I	s:		294061.19	

~

YEAR 12	OUTFL	.OWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$ 2	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1044097.88		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARF:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:		294061.19	

YEAR 13		OUTELOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$ \$	26997824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00	
THE GROSS ANNUAL INCOME IS :			3787770.00
THE DEPRECIATION IS :		989145.44	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69	
THE ANNUAL PUMPING COST IS:		2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00	
THE PROPERTY TAXES ARE:		2689.78	
THE ANNUAL INSURANCE CHARGES ARE:		7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:		294061.19

YEAR 14		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		934192.94		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION	15:		294061.19	

YEAR 15		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		879240.50		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		294061 19	

YEA3 16		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ <u>\$</u>	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		824287.75		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	:	941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:		294061.19	

YE AR 17		OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00	
THE GROSS ANNUAL INCOME IS :			3787770.00
THE DEPRECIATION IS :		769335.31	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69	
THE ANNUAL PUMPING COST IS:		2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00	
THE PROPERTY TAXES ARE:		2689.78	
THE ANNUAL INSURANCE CHARGES ARE:		7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:		294061.19

YEAR 13		UUTELOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$	25897824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00	
THE GROSS ANNUAL INCOME IS :			3787770.0
THE DEPRECIATION IS :		714382.81	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.59	
THE ANNUAL PUMPING COST IS:		2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00	
THE PROPERTY TAXES ARE:		2689 .7 8	
THE ANNUAL INSURANCE CHARGES ARE:		7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	s:		294061.19

YEAP 19		OUTELOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	55	26997824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		659430.38		5.01110.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:		294061.19	

YEAR 20		OUTELOWS	[NFL NWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26997324.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		604477.63		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	s:		294061.19	

YEAR 21		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		549525.19		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:		29/ 061.19	

YEAR 22		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		494572.69		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	S:		294061.19	

YEAR 23		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		439620.25		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		46 423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PPOPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	s:		294061.19	

YEAR 24		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	55	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3797770.00
THE DEPRECIATION IS :		384667.50		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:		294061.19	

YEAR 25		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :			378777(0.00
THE DEPRECIATION IS :		329715.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARF:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:		294061.19	

YEAR 26		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		274762.63		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		294061.19	
THE FEDERAL AND STATE INCOME TAXES ARE:		9649.28		

YEAR 27	OUTFLOWS		INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	26897824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		219810.13		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		268978.13		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST	15:	941423.69		
THE ANNUAL PUMPING COST IS:		2199313.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2689.78		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATIO	N IS:		294061.19	
THE FEDERAL AND STATE INCOME TAXES ARE:		37125.53		

YEAR 28	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 26897824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	164857.63	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	268978-13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	941423.69	
THE ANNUAL PUMPING COST IS:	2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2689.78	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:	294061.19
THE FEDERAL AND STATE INCOME TAXES ARE:	64601.78	

YEAR 29	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 26897824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	109905.06	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	268978.13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	941423.69	
THE ANNUAL PUMPING COST IS:	2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2689.78	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:	294061.19
THE FEDERAL AND STATE INCOME TAXES ARE:	92078.06	

YEAR 30	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 26897824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	54952.53	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	268978.13	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	941423.69	
THE ANNUAL PUMPING COST IS:	2199313.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2689.78	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:	294061.19
THE FEDERAL AND STATE INCOME TAXES ARE:	119554.31	

YEAR 2		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				
THE DEPRECIATION IS :		1264682.00		3787770.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		81815.50		

YEAR 3		DUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1221072.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS	:	747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	:\$:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		103620.50		

YEAR 3

YEAR 4		OUTELOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1177462.00		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-DF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		125425.50		

YEAR 5	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	1133853.00	
THE ANNUAL OPFRATING AND MAINTENANCE EXPENCE IS :	213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.75	
THE ANNUAL PUMPING COST IS:	1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2134.58	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	147230.00	

YEAR 6	OUTFLOWS		INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1090243.00		5101110.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	:	747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		169035.00		

YEAR 7		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1046633.94		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		190839.50		

YEAR 9	OUTFLOWS		INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		1003023.94		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		212644.50		

YEAR 9	OUTFLOWS		INFLOWS	
THE TOTAL INSTALLATION COST IS :	55	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		959414.19		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	:	747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:		1428313.00	
THE FEDFRAL AND STATE INCOME TAXES ARE:		234449.38		

,

YFAR 10	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	915804.44	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.75	
THE ANNUAL PUMPING COST IS:	1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2134.58	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	\$:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	256254.25	

1

YEAR 11	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824	• 00
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744	.00
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	872194	, 75
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.	.19
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103	.75
THE ANNUAL PUMPING COST IS:	1315456.	.00
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.	.00
THE PROPERTY TAXES ARE:	2134.	58
THE ANNUAL INSURANCE CHARGES ARE:	7623.	00
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.	00
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	278059.	13

YEAR 12	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770,00
THE DEPRECIATION IS :	828585.00	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.75	
THE ANNUAL PUMPING COST IS:	1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2134.58	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	299864.00	

YEAR 13	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	784975.25	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.75	
THE ANNUAL PUMPING COST IS:	1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2134.58	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	321668.89	

VEAP 13

YEAR 14		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		741365.50		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	s:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		343473.75		

YEAR 15		OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$	21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00	
THE GROSS ANNUAL INCOME IS :			3787770.00
THE DEPRECIATION IS :		697755.75	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75	
THE ANNUAL PUMPING COST IS:		1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00	
THE PROPERTY TAXES ARE:		2134.58	
THE ANNUAL INSURANCE CHARGES ARE:		7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:		365278.63	

YEAR 16		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				
THE DEPRECIATION IS :		654145.75		3787770.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.59		
THE ANNUAL INSUPANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-DE-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:		1429313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		397093.63		

YEA0 17		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		610536.31		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		408888.31		

YEAR 18		OUTFLOWS *	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :	:	566926.56		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		430693.19		

VEA0 19

YEAR 19	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824 . 0	0
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.0	0
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	523316.8	1
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.1	9
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.7	5
THE ANNUAL PUMPING COST IS:	1315456.0	0
THE ANNUAL SUPPLEMENTARY COSTS ARF:	12000.0	0
THE PROPERTY TAXES ARE:	2134.5	8
THE ANNUAL INSURANCE CHARGES ARE:	7623.0	0
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.0	0
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	S:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	452498.0	6

YEAR 20		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		479706.81		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		474303.06		

YEAR 21		OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				3787770.00
THE DEPRECIATION IS :		436097.06		5.001110.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		496107.94		

YEAR 22		OUTFLOWS	TNELDAS	
THE TOTAL INSTALLATION COST IS :	5 5	21345924.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				
THE DEPRECIATION IS :		392487.63		3797770.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-DF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, REFORE TAXES AND DEPRECIATION IS	:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		517912.69		

YEAR 23	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824.0)
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00)
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	348877.8	3
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.1)
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.7	5
THE ANNUAL PUMPING COST IS:	1315456.00)
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00)
THE PROPERTY TAXES ARE:	2134.5	3
THE ANNUAL INSURANCE CHARGES ARE:	7623.00).
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00)
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	S:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	539717.50)

、

YEAR 24		DUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				
THE DEPRECIATION IS :		305267.88		3787770.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.58		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		561522.50		

YEAR 25	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	261658.44	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.75	
THE ANNUAL PUMPING COST IS:	1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2134.58	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	583327.00	

YEAR 26	OUTFLOWS	INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824 . 00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00		
THE GROSS ANNUAL INCOME IS :		3787770.00	
THE DEPRECIATION IS :	218048.69		
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.75		
THE ANNUAL PUMPING COST IS:	1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00		
THE PROPERTY TAXES ARE:	2134.58		
THE ANNUAL INSURANCE CHARGES ARE:	7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:	1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:	605132.00		

YEAR 27	OUTFLOWS		INFLOWS	
THE TOTAL INSTALLATION COST IS :	\$\$	21345824.00		
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00		
THE GROSS ANNUAL INCOME IS :				
THE DEPRECIATION IS :		174438.94		3787770.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19		
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75		
THE ANNUAL PUMPING COST IS:		1315456.00		
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00		
THE PROPERTY TAXES ARE:		2134.59		
THE ANNUAL INSURANCE CHARGES ARE:		7623.00		
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00		
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:		1428313.00	
THE FEDERAL AND STATE INCOME TAXES ARE:		626937.00		

-

YEAR 28	OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$\$ 21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:	4452744.00	
THE GROSS ANNUAL INCOME IS :		3787770.00
THE DEPRECIATION IS :	130829.19	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :	213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	747103.75	
THE ANNUAL PUMPING COST IS:	1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:	12000.00	
THE PROPERTY TAXES ARE:	2134•58	
THE ANNUAL INSURANCE CHARGES ARE:	7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:	2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	5:	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:	648741.50	

YEAR 29	OUTFLOWS		INFLOWS
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00	
THE GROSS ANNUAL INCOME IS :			3787770.00
THE DEPRECIATION IS :		87219.44	
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:		747103.75	
THE ANNUAL PUMPING COST IS:		1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARF:		12000.00	
THE PROPERTY TAXES ARE:		2134.58	
THE ANNUAL INSURANCE CHARGES ARE:		7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION IS	:	1	1428313.00
THE FEDERAL AND STATE INCOME TAXES ARE:		670546.50	

¥E47 30		OUTFLOWS	INFLOWS
THE TOTAL INSTALLATION COST IS :	\$ \$	21345824.00	
THE TOTAL SUPPLEMENTARY INSTALLATION COST IS:		4452744.00	
THE GROSS ANNUAL INCOME IS :			2 707770
THE DEPRECIATION IS :		43609.73	3787770.00
THE ANNUAL OPERATING AND MAINTENANCE EXPENCE IS :		213458.19	
THE ANNUAL FINANCING AND SUPPLEMENTAL FINANCE COST IS:	:	747103.75	
THE ANNUAL PUMPING COST IS:		1315456.00	
THE ANNUAL SUPPLEMENTARY COSTS ARE:		12000.00	
THE PROPERTY TAXES ARE:		2134.58	
THE ANNUAL INSURANCE CHARGES ARE:		7623.00	
THE ANNUAL RIGHT-OF-WAY COST IS:		2056.00	
THE NET ANNUAL INCOME, BEFORE TAXES AND DEPRECIATION I	s:		1429313.00
THE FEDERAL AND STATE INCOME TAXES ARE:		692351.50	

VIII. BIBLIOGRAPHY

- Anonymous, "Guide for Economic Evaluation of Nuclear Reactor Plant Designs," NUS Corporation, Rockville, Maryland, January 1969 (NUS 531).
- [2] Anonymous, "Nuclear Energy Centers Industrial and Agro Industrial Complexes," Oak Ridge National Laboratories, Clearinghouse for Scientific and Technical Information, National Bureau of Standards, Springfield, Virginia, November 1968.
- [3] Anonymous, "Status of the Application of Nuclear Reactors in the Process Industries," Division of Reactor Development, Atomic Energy Commission, 1961.
- [4] Anonymous, "Sterilization of Sewage Containing Pathogenic Microorganisms. Nuclear Reactors," Addendum to <u>Report No. 9</u>, Chicago: Illinois Institute of Technology, May, 1956.
- [5] Anonymous, "Underground Stations Pondered in Sweden," <u>Nuclear</u> <u>News</u>, 13(6): 26, May, 1970.
- [6] Bygs, J.G., "Nuclear Station Waste Heat Can Extend the Saint Lawrence Seaway Season," Atomic Energy of Canada Limited, Clearinghouse for Scientific and Technical Information, U.S. National Bureau of Standards, Springfield, Virginia, November, 1967. (CONF 680601-25)
- Blomberg, Pehr and Vogt, Jan, "Agesta," <u>Nuclear News</u>, 13(2) 37-42, February, 1970.
- [8] Dietz, Albert G.H., "Proceedings of a Symposium/Workshop on Underground Heat Distribution Systems," Publication 1412, Washington: National Academy of Sciences, National Research Council, 1966.
- [9] Dillon, Robert M., et al, "Evaluation of Components for Underground Heat Distribution Systems," Publication 828, Washington: National Academy of Sciences, National Research Council, 1960.
- [10] Drobish, William E., et al, "Course Notes for Electrical Circuits and Applications," unpublished, U.S. Naval Nuclear Power School, Bainbridge, Maryland, January, 1963.
- [11] Frank, Howard and Frisch, Ivan T., "Network Analysis," Scientific American, 233(1): 94-106, July, 1970.
- [12] Gaum, Carl G., et al, Report Writing, New Jersey: Prentice Hall Incorporated, 1950.

- [13] Gerringer, Paul L. and Goodfuaid, Morton J., "Potential Application of Nuclear Energy for Process and Space Heat in the United States," New York: American Hydrotherm Corporation, 1958 (NYO 2332).
- [14] Glasstone, Samuel and Sisonske, Alexander, <u>Nuclear Reactor</u> Engineering, New Jersey: D. Van Nostrand, Inc., 1963.
- [15] Godfrey, Robert S., editor, <u>Building Construction Cost Data</u> -<u>1962</u>, Duxburg, Mass.: Robert Snow Means Co., 1963.
- [16] Govan, Francis A., <u>High Temperature Water for Heating and Light Process Loads</u>, Publication 753, Washington: National Academy of Sciences, National Research Council, 1959.
- [17] Hammond, S.B., <u>Electrical Engineering</u>, New York: McGraw-Hill Book Company, Inc., 1961.
- [18] Hendricks, James R., "Submarine Qualification Notebook," unpublished, 1968.
- [19] Jaske, R.T., "An Independent View of the Thermal Effects and Radioactive Pollution from Nuclear Power Plants." Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, Springfield, Virginia, 1969.
- [20] McCabe, Warren, L. and Smith, Julian C., <u>Unit Operations of</u> <u>Chemical Engineering</u>, New York: McGraw-Hill Book Company, Inc., 1956.
- [21] Mead, William B., "Fight is on Against Thermal Pollution," Associated Press New Service, Rolla Daily News, Rolla, Missouri, September 28, 1970.
- [22] Miller, A.S., "Space Heating in Urban Environments," Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, Springfield, Virginia, 1969.
- [23] Mitteman, Joseph, <u>Circuit Theory Analysis</u>, New York: Hayden Book Company, Inc., 1964.
- [24] Penman, H.L., "The Water Cycle," <u>Scientific American</u>, 233(3): 99-108, September, 1970.
- [25] Perry, John H., Editor, <u>Chemical Engineering Handbook</u>, Fourth Edition, New York: McGraw-Hill Book Company, Inc., 1963.
- [26] Peters, Max S., <u>Plant Design and Economics for Chemical</u> <u>Engineers</u>, New York: McGraw-Hill Book Company, Inc., 1958.
- [27] Sandstrom, S., "Operating Experience at the Agesta Nuclear Power Station," Artiebolajet Atomenergi, Stockholm, Sweden, September, 1966.

- [28] Siegel, Sideny, et al, "Application of Nuclear Energy to Large Scale Power and Desalting Plants," <u>Engineering Design</u>, 4(10): 225-232, October, 1966.
- [29] Tyler, Chaplin and Winter, C.H., <u>Chemical Engineering Economics</u>, Fourth Edition, New York: McGraw-Hill Book Company, Inc., 1959.
- [30] Wallace, Richard, Personnel Manager, Consumers Power Corporation, personal interview.
- [31] Wiostad, I., "ADAM A 75 MW Nuclear Energy Plant for House Heating Purposes," paper presented at the Second United Nations International Conference on Peaceful Uses of the Atom, Sweden, June, 1958.
- [32] Underwood, G., Estimating Construction Costs, New York: McGraw-Hill Book Company, Inc., 1930.

IX. ACKNOWLEDGEMENTS

The author wishes to thank Dr. D. Ray Edwards for his assistance and continued encouragement in the preparation of this thesis. The financial assistance provided by the Atomic Energy Traineeship has been greatly appreciated. The author also wishes to acknowledge the efforts of Dr. Henry Wiebe, who suggested the format of the economic analysis. Mr. Daniel Smith assisted by testing the computer program on a sample problem. Finally, the author wishes to express his gratitude to the understanding and the efforts (both in proof reading and in other endeavors) of his wife, without whom this thesis would not be completed.

X. VITA

James Richard Hendricks was born on December 20, 1942 in Selinsgrove, Pennsylvania. After completing his high school education in Selinsgrove, he attended The Pennsylvania State University from 1960 until 1964, when he received a Bachelor of Science degree in Chemical Engineering.

He received a commission in the United States Navy in September, 1964. From 1964 until December, 1969, he served in the Naval Reactors Power Program, attaining the rank of Lieutenant and qualifying as Chief Engineer for Naval Nuclear Propulsion Plants.

Upon his resignation from the Naval Service, he entered the University of Missouri-Rolla in February, 1970. He has held an Atomic Energy Traineeship while enrolled at the University.

Mr. Hendricks is a member of the American Institute of Chemical Engineers and the American Nuclear Society. He is married and has one daughter, age five.

190865