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ABSTRACT 

 

 Dielectrics in the Bi(Zn0.5Ti0.5)O3-BaTiO3 system (specifically 20BZT-80BT, in mol%) 

are promising candidates for high energy density capacitor applications due to broad temperature-

dependent dielectric constant maxima and a relatively field-independent permittivity.  Bulk 

samples require sintering temperatures ≥1180°C to reach useful densities.  Due to incompatibility 

of Bi with low-pO2 processing, BZT-BT-based multilayer capacitors must utilize noble metal 

electrodes that resist oxidation during sintering.  Sintering temperatures must be reduced to allow 

use of less expensive electrode materials (Cu, etc.).  This work studies the reduced temperature 

sintering behavior and dielectric properties of BZT-BT sintered with 30Bi2O3-30ZnO-40B2O3 and 

50Bi2O3-25B2O3-25SiO2 (mol%) liquid phase formers. 

 Dielectrics sintered with 1v% borate additions and 5v% additions of either the borate or 

borosilicate achieved relative densities ≥95% after sintering at 1000°C for four hours.  All 

compositions retained the relaxor behavior exhibited by pure 20BZT-80BT.  Increased borate 

additions led to greater dielectric constant reductions, while increased borosilicate additions 

yielded no clear trend in the dielectric constant reduction.  Energy densities were estimated 

between 0.3-0.5 J/cm3; smaller glass additions typically led to larger energy densities.  Dielectrics 

sintered with 1v% borate additions are of interest due to their high relative densities (≈96%) and 

energy densities of ≈0.5 J/cm3 under 100kV/cm electric fields. 

 Studies of BZT-BT/glass interfaces revealed the formation of crystalline interfacial layers 

≤10µm thick.  The borate formed a bismuth titanate phase (likely Bi4Ti3O12) during heating to 

700°C, whereas the borosilicate formed a barium silicate phase (likely BaSiO3) during processing 

to 800°C.  Similar phases are expected to be present in the liquid phase sintered dielectrics and 

likely affect the BZT-BT sintering and dielectric behavior.  
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1. INTRODUCTION 

 

 The research presented in this thesis was performed to improve the suitability of 

Bi(Zn0.5Ti0.5)O3-BaTiO3 (BZT-BT) ceramic dielectrics for high energy density capacitor 

applications.  Compositions in the BZT-BT binary system (specifically for BZT concentrations 

around 20 mol%) have been shown to exhibit relaxor ferroelectric behavior.  Relaxor behavior is 

characterized by a broad, frequency-dependent maximum in dielectric constant as a function of 

temperature, and by narrow/closed hysteresis in field-dependent polarization.  In the 20 mol% 

BZT-80 mol% BT system specifically, the dielectric constant remains high (≈2000) on heating 

from the temperature of maximum dielectric constant, Tm, to 175°C.  Tm ranges from 30°C (at a 

measurement frequency of 100Hz) to 100°C (at 100kHz), giving a broad range of operating 

temperatures for capacitors utilizing these dielectrics.  The dielectric constant for this system is 

also relatively field-independent for electric fields as high as 100kV/cm; this allows for storage of 

large quantities of energy at high field strengths, while narrow polarization-field loops indicate 

minimal dielectric loss.  These dielectrics are thus promising candidates for high field and high 

energy density capacitor applications.1 

 The specific focus of this research was to reduce the processing temperatures associated 

with BZT-BT dielectrics for purposes of cost reduction and mass production.  To survive electric 

fields ≥100kV/cm, the dielectric must be sintered to high densities (95-100% of theoretical).  Pure 

BZT-BT dielectrics must be sintered at 1180°C for 12 hours to reach suitable densities.1  

Electrodes in multilayer ceramic capacitors must be co-fired with the dielectric; to survive the 

BZT-BT sintering temperatures and high pO2 levels required for Bi processing, electrodes must 

be comprised of expensive noble metals (Ag/Pd or Pt).  Use of cheaper electrode materials (Ni, 

Cu, etc.) requires a reduction in sintering temperature, which in turn requires the addition of other 

materials into the ceramic to aid in sintering at reduced temperatures.  This work represents a first 
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attempt at selection and incorporation of sintering aids into BZT-BT dielectrics.  A primer on the 

important concepts that shaped the direction of this research and a review of current literature is 

given in Section 2.  Basic characterization of the selected sintering aids (30Bi2O3-30ZnO-40B2O3 

and 35Bi2O3-30ZnO-35B2O3, in mol%) and their interactions with the BZT-BT is described in 

Section 3.  Section 4 describes the microstructural evolution observed in the BZT-BT with 5 

vol% additions of the sintering aids, and Section 5 reports the effects of 1, 2, and 5 vol% 

additions of each sintering aid on the dielectric properties of the BZT-BT.  Conclusions and 

recommendations for additional characterization/analyses are given in Section 6.  The Appendix 

reports additional work on a third sintering aid composition, 35Bi2O3-30ZnO-35B2O3. 
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2. RESEARCH BACKGROUND  

 

 This section provides basic explanations of the electrical/material properties and 

processes fundamental to this research.  A brief introduction to capacitor terminology and 

operation, ferroelectricity, and relaxor ferroelectricity is given in order to indicate the principle 

properties important for high energy density and high power density capacitors. A current 

literature review describes the key beneficial properties and processing difficulties associated 

with the BZT-BT dielectric system for these applications.  Liquid phase sintering is presented as a 

potential solution to these difficulties, and the important criteria in selecting liquid phase 

additives are explained in the context of this research. 

 

2.1. CAPACITOR FUNDAMENTALS 

 Capacitors are common electronic devices capable of storing electrical energy through 

charge buildup from the application of an electric field.  In a capacitor (shown schematically in 

FIG. 2-1), two conductive electrodes are physically separated.  The application of an external 

voltage across the capacitor creates an electric field (E) between the electrodes, which induces 

charge buildup at the electrode surfaces.  Charge storage can be increased by insertion of a 

dielectric medium that prevents charge conduction between the electrodes and that may also 

polarize in response to the external electric field. 

 In the case of ceramic dielectrics, ions in the dielectric crystal lattice can shift slightly 

around their lattice sites in response to the field.  Ionic shifting creates an internal electric field in 

the dielectric that opposes the external field.  As a result, the net field across the dielectric is 

reduced; this allows application of a stronger external field and more energy to be stored in the 

capacitor. 
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FIG. 2-1. Capacitor schematic showing charge buildup on electrodes, electric field direction 
within the capacitor, and the corresponding positional shifting of ions in the dielectric. 

  

 

 Capacitors store charge only if an external voltage is being applied, or if the capacitor is 

electrically isolated.  When the external voltage is first applied to the capacitor, charge buildup on 

the electrodes occurs rapidly.  As the increasing charge on each electrode repels incoming 

charges, buildup slows and eventually halts as the electric field cannot drive more charges to the 

electrodes.  On discharge, the opposite sequence occurs; initially the discharge current from the 

capacitor is high, and decreases over time as the capacitor charge decreases. 

 

2.2. CAPACITOR PROPERTIES AND EQUATIONS 

 Capacitance (C, Farads) measures of the amount of charge stored by a capacitor at a 

given applied voltage.  For a parallel-electrode capacitor geometry,  

C=
Q
V
=
ε0KA
d

                                                                                                       (2-1) 

where: 

 Q = Charge stored in the capacitor (Coulombs) 

 V = External voltage applied to the capacitor (Volts) 

 ε0 = Permittivity of free space (8.854E-12 F/m)  
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 K = Dielectric constant/relative permittivity of the dielectric, also denoted as εr 

 A = Electrode surface area (m2) 

 d = Electrode separation distance (m). 

  

 The dielectric constant is defined as the ratio of the capacitance of a capacitor with a 

dielectric to the capacitance of a dielectric-free capacitor, and, in turn, the ratio of the (real) 

portion of permittivity to the vacuum permittivity, 

K=
C
C0
=
ε'
ε0
                                                                                                                                                                                                                                    (2-2) 

where: 

 C0 = Capacitance of an identical capacitor without the dielectric (Farads) 

 ε’ = Real portion of the relative permittivity 

  

 The dielectric permittivity is a complex quantity, made up of a real (ε’) component and 

an imaginary (ε’’) component.  Capacitors in alternating current (AC) and direct current (DC) 

circuits are modeled as a capacitor in series with a resistor whose resistance value is the 

equivalent series resistance, or ESR.  For an idealized capacitor, no current conducts or “leaks” 

through the dielectric; the ESR is infinite, such that the current and voltage are 90° out of phase.  

In an actual capacitor, however, some current leakage occurs, and the ESR is finite.  This causes 

the current and voltage to be shifted to less than 90° out of phase by some angle δ.  The leakage 

current represents dielectric loss, represented by ε”, while the real portion of the permittivity, ε’, 

reflects the capacitive portion of the dielectric constant.  The loss angle δ relates ε’ and ε”.  The 

dissipation factor, or loss tangent, is represented by  

Loss Tangent= tan 𝛿 =
ε''
ε'

                                                                                    (2-3) 
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where: 

 ε” = Dielectric loss (imaginary/resistive component of relative permittivity) 

  

 Energy density (energy stored per unit volume) is a quantity of particular importance for 

energy storage and power regulation systems.  The energy density Ed  (J/m3) of a capacitor is 

given by  

𝐸!   =
1
2
𝜀!𝐾E2                                                                                                 (2-4)  

where: 

 E = Applied electric field (V/m) 

 

The applied field E is thus an important quantity for capacitors intended for energy storage, as 

energy density varies directly with E2.  The dielectric constant is also important in determining 

the energy storage capabilities of a capacitor.  

 

2.3. CAPACITOR TYPES AND COMPARISONS 

 Different varieties of capacitor exist, each with differing discharge rate capabilities 

(power density) and energy storage capabilities (energy density) per unit volume.  FIG. 2-2 

compares different capacitor types and other energy storage technologies, such as batteries, in 

terms of energy and power density.  Ceramic capacitors rely on formation of electric dipoles 

caused by ions shifting away from their equilibrium (zero-field) lattice sites for charge storage.  

This dipole polarization occurs rapidly, and as such, ceramic capacitors have comparatively high 

charge/discharge rates.  They cannot, however, store much charge compared to other capacitor 

types or batteries. 

 Electrolytic capacitors use a metal foil (or foam) and a conductive liquid electrolyte as 

electrodes, separated by an oxide dielectric film on the metal.  This thin film dielectric (≈100nm 
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thick) yields high capacitance and energy density, at the expense of power density due to slow 

charge conduction through the electrolyte. 

 

   

 

FIG. 2-2. Ragone plot showing energy and power densities of various energy systems.  (Chart 
data from Abdullah.2) 

 

 

 Super- and ultracapacitors (both double-layer capacitors) utilize high surface area 

materials (typically porous carbon) and a liquid electrolyte to form an electrical double layer of 

ions that acts as a dielectric.  The small thickness (1-2 ions, 0.5-1.0 nm thick) of the double layer 

and the high surface area of the solid electrode allow supercapacitors to attain the greatest energy 

density values of any capacitor type.  Supercapacitors also exhibit the lowest power densities of 

all capacitor varieties due to the large distance charge must travel to exit the capacitor.3   

 Batteries, by comparison, have a much larger energy density than all capacitors, but have 

a much smaller power density due to the relatively slow chemical reactions utilized to generate 

current. 

 The high power density of capacitors relative to other technologies makes them useful for 

power stabilization applications.  During a power failure in any electrical system, from a small 
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circuit to a national electric grid, capacitors can readily provide energy in the initial phases of the 

outage while batteries, generators, and other generation mechanisms initialize and begin 

providing energy.  Ceramic capacitors, with their high power densities, would be ideally suited to 

power stabilization immediately after system failure.  A major limitation of ceramic capacitors 

lies in their energy density capabilities; energy densities must be improved in order for such 

capacitors to be potentially useful as stabilization devices.  Development of novel ceramic 

dielectrics capable of storing large amounts of energy at high electric field strengths will increase 

the energy density (and thus utility) of ceramic capacitors. 

 

2.4. FERROELECTRICITY IN CERAMICS 

 Most ceramics are classified as paraelectrics – materials that are polarized only in the 

presence of an electric field.  Upon removal of the field, polarization in a paraelectric returns to 

zero.  Ferroelectric materials, however, retain some polarization after removal of the electric 

field.  The defining feature of a ferroelectric is this spontaneous or remanent polarization under 

zero-field conditions (Pr); furthermore, the remanent polarization can be reversed by application 

of electric fields in the opposite direction of the polarization. 

 Ferroelectricity originates from the existence of polarization axes within specific crystal 

structures that allow polarization without an applied field.  These crystal structures must be non-

centrosymmetric and have multiple stable sites along the polarization axes that ions can occupy.  

Electric fields can move these ions from one stable location to another along the axis, thereby 

polarizing the crystal unit cells.   

 Of the 32 crystal classes, only ten exhibit polarization axes suitable for spontaneous 

polarizations, and only several of the ten have the reversible polarization of a ferroelectric.4  

Many common ferroelectrics, such as BaTiO3 and Pb(Zr,Ti)O3, fall into one of the ferroelectric 

structures, known as the perovskites (ABO3).  In these structures, such as the tetragonal BaTiO3 
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unit cell shown in FIG. 2-3, the B-site cation(s) lie within a distorted oxygen octahedron.  The 

distortion allows the Ti4+ ion to shift off-center along the [001] axis of the unit cell.   

 

 

 

FIG. 2-3. Tetragonal ABO3 structure of many ferroelectric ceramics; the B-site cation can 
polarize along the c-axis within the distorted oxygen octahedron. 

 

 

 On heating, ferroelectric crystals typically undergo a phase transition from a ferroelectric 

to a higher symmetry paraelectric structure.  The temperature at which this phase transition 

occurs is known as the Curie temperature (Tc).  The transition is accompanied by a spike in 

dielectric constant, due to structural instability between the ferroelectric and paraelectric phases 

near Tc.  A typical K versus temperature plot for single crystal BaTiO3, shown in FIG. 2-4, 

illustrates the sharp permittivity increase at the Curie temperature of ≈120°C.  Polycrystalline 

ferroelectrics exhibit broader permittivity peaks at Tc that are grain size-dependent.5 

 Ferroelectrics exhibit hysteretic behavior in polarization when measured as a function of 

electric field.  Adjacent crystalline unit cells in a ferroelectric will polarize in the same direction, 

forming larger regions, known as domains, with a net polarization.   
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FIG. 2-4. Dielectric constant vs. temperature plot for single crystal BaTiO3, as measured in the a- 
and c-directions.3 

 

 

 Prior to application of an external electric field, the polarization directions of the 

ferroelectric domains are set by the crystalline symmetry and orientation of individual grains.  For 

a sintered ferroelectric with ∞∞m symmetry, the bulk ceramic has a zero net polarization.  With 

application of a field, domain walls separating differently oriented domains shift to align 

polarization vectors with the field to create a non-zero net polarization in the bulk.  As the field 

strength increases, the ferroelectric will continue to polarize until reaching saturation, above 

which field strength increases cease to cause further dipolar polarization.  Saturation is 

represented by the linear section at each end of the polarization-field loop.  Decreasing the field 

decreases the polarization in the ferroelectric, as some domains reorient to minimize the internal 

energy of the crystal.  Some of the domains will remain polarized in the direction of the field, 

such that, under zero-field conditions, the ferroelectric retains a net remanent polarization (Pr).  

Reversing the field will cause the polarization to begin to reverse as the domain polarizations 

shift towards the opposite direction.  Once the coercive field (Ec) value has been reached, the net 

polarization becomes zero, and then increases in the opposite direction.  This gives rise to a 

dielectric hysteresis loop, shown in FIG. 2-5 for a single crystal and polycrystalline ceramic.  The 

single crystal exhibits a “square loop”; on reaching the coercive field value, (nearly) all domains 
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switch direction at once.  Polycrystals exhibit slanted loops, as the domains do not switch 

direction to match the field change as rapidly. 

 

 

 

FIG. 2-5. Generalized polarization-electric field plot showing hysteresis and reversible remanent 
polarizations typical of ferroelectrics and the linear behavior of paralectrics. 

 

 

2.5. RELAXOR FERROELECTRICS 

 Relaxor ferroelectrics (relaxors) are a special class of ferroelectrics that behave quite 

differently from “normal” ferroelectrics.  Relaxor behavior, shown in FIG. 2-6, is characterized 

by a diffuse maximum in the temperature-dependent dielectric constant, and by dispersion in the 

dielectric constant as a function of measurement frequency. 

 Relaxor behavior occurs in ceramic systems with several aliovalent cations substituted 

onto the A- and/or B-sites.6  Random cation substitution creates local electric dipoles within 

individual unit cells.  Unit cells adjacent to these dipoles polarize within a very small radius 
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(known as the correlation length), leading to the formation of nanodomains in the relaxor.  

Because nanodomain polarization is induced by lattice disorder, rather than structural distortion 

as in normal ferroelectrics, complex cubic perovskites can exhibit relaxor behavior.   

 

 

 

FIG. 2-6. Comparison of temperature-dependent dielectric constant behavior for a relaxor 
ferroelectric (0.93Pb(Mg1/3Nb2/3)O3-0.07PbTiO3) and a normal ferroelectric (BaTiO3).7 

 

   

 The electrical behavior of relaxor systems departs tremendously from the behavior of 

traditional ferroelectrics.  At the temperature corresponding to the maximum dielectric constant 

(Tm), no structural transition occurs, as is the case when normal ferroelectrics pass through the 

Curie temperature.  Since no structural change takes place, nanodomains persist above Tm up to 

the Burns temperature (Td), and the dielectric constant decreases smoothly from the maximum at 

Tm.  Frequency dispersion in the temperature-dependent dielectric constant arises from the large 

number of equivalent polarization directions in cubic lattices.4 

 Electric field-dependent polarization behavior also differs between relaxors and normal 

ferroelectrics, as shown in FIG. 2-7.  Instead of the “open” hysteresis loops seen in normal 

ferroelectrics, relaxors exhibit closed or “slim” loops with a near-zero remanent polarization 
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(FIG. 2-7a).  These slim loops result from the nanodomains returning to a random orientation 

following removal of the electric field.8 

 The dielectric constant, energy storage, and energy loss can be determined from the P-E 

loops.  The dielectric constant can be found at specific electric field strengths as the local slope of 

the loop.  Energy stored in the dielectric can be found from the area captured between the P-E 

loop and the polarization axis.  Energy loss can be measured from the area contained by the loop.  

Some relaxor systems maintain high dielectric constants under high field strengths and can store 

larger amounts of energy, relative to normal ferroelectrics and paraelectrics, with minimal loss (as 

indicated in FIG. 2-7b).  This P-E behavior, combined with high dielectric constant values over a 

wide range of temperatures, makes these relaxor systems ideally suited for high energy density 

ceramic capacitor dielectrics. 

 

 

 

FIG. 2-7. Polarization-electric field and energy storage behavior of a relaxor ferroelectric, 
polycrystalline normal ferroelectric, and paraelectric material. 
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2.6. CURRENT RESEARCH REVIEW 

 Many common relaxor compositions are based on Pb-containing solid solutions such as 

PMN (Pb(Mg1/3Nb2/3)O3) or PLZT ((Pb,La)(Zr1-xTix)O3).  Despite having useful dielectric 

properties, including high dielectric constants, pyroelectric coefficients, and piezoelectric 

coefficients, Pb-based dielectrics are also hazardous substances.6, 8  This classification created the 

need for environmentally-benign substitutes that still possess useful dielectric characteristics, 

particularly at high electric fields for energy storage applications.  Current research has focused 

on bismuth-based replacements.  Bismuth is a large, highly polarizable ion electronically similar 

to Pb, while possessing fewer health hazards. 

 Bismuth-based perovskite ceramics such as Bi(Zn,Ti)O3 (BZT), BiScO3 (BS), and BiInO3 

(BI) have been of particular interest.9, 10, 11  Many of these compounds unfortunately cannot be 

formed under ambient pressure conditions.  Creation of single-phase perovskites requires the use 

of hot pressing; attempts at synthesis under ambient pressures create mixtures of the end-member 

phases comprising each perovskite. 

 Incorporating the Bi-perovskites into a solid solution with another stable perovskite (such 

as PbTiO3 or BaTiO3) has allowed creation of stable ferroelectrics with altered properties relative 

to the parent ferroelectric.12  Current research has focused on using Pb-free perovskites as 

stabilizers.  BaTiO3 (BT) is a natural Pb-free choice, as it has good dielectric properties and is 

stable as a pure compound.  A variety of Bi-perovskite-BaTiO3 solid solutions, such as BZT-BT, 

BS-BT, and Bi(Mg,Ti)O3-BT (BMT-BT) have been studied with promising results, particularly 

for dielectric applications, as relaxor behavior occurs with sufficient additions of the Bi-

perovskite.13, 14, 15, 16, 17 

 Huang and Cann found that up to 33 mol% BZT can be stabilized in solid solution with 

BT.  BZT-BT solid solutions possess a room temperature phase boundary around 10 mol% BZT.  

Below 10 mol% BZT concentrations, BZT-BT exhibits the tetragonal perovskite symmetry of the 
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host BT, and transitions to a pseudocubic perovskite structure for higher BZT additions.18  With 

this pseudocubic structure comes relaxor dielectric behavior. 

 The strong relaxor behavior exhibited by the 20BZT-80BT composition (as shown in 

FIG. 2-8) is of particular interest for high energy density capacitor applications.  Tm ranged from 

30°C (100Hz) to 100°C (100kHz); the dielectric constant reached peak values from 1900 

(100kHz) to 2100 (100Hz) at Tm and remained above 1800 between Tm and 175°C.  The 20BZT-

80BT composition also exhibits the expected relaxor slim P-E loop with relatively little saturation 

in dielectric constant for field strengths up to 90kV/cm.  Dielectrics based on this composition are 

thus appealing for high field energy storage applications in environments subject to a broad range 

of temperatures (30-175°C).   

 

 

 

FIG. 2-8. Dielectric constant vs. temperature and polarization vs. electric field behavior for 
20BZT-80BT compositions.1 
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 One difficulty associated with BZT-BT and other Bi-perovskite solid solutions stems 

from the processing temperatures required for sintering to full density.  In the case of 20BZT-

80BT, the dielectric can be sintered to full density (~99% of theoretical) at 1180°C and higher.1 

Multilayer capacitors incorporating these dielectrics must utilize expensive noble metal electrodes 

(Pt or Ag/Pd) that do not melt at the required sintering temperatures.  Electrode selection for 

BZT-BT multilayer capacitors is also dependent on oxygen partial pressure; the electrodes must 

remain reduced to a metallic state at the pO2 conditions required to prevent reduction of the oxide 

dielectric during sintering at elevated temperatures.   

 A good approximation of viable temperature-pO2 combinations for a complex system like 

BZT-BT can be made by construction of an Ellingham diagram.19  The oxidation lines for each 

cation in the dielectric can be compared with the oxidation lines for candidate electrodes to 

determine an approximate temperature-pO2 processing window for the combined multilayer 

capacitor.  An Ellingham diagram showing the oxidation lines for the oxide constituents of BZT-

BT and several noble and base metals (silver, nickel, and copper) is shown in FIG. 2-9.  The 

oxidation line for 2Bi + 3/2O2 à Bi2O3 is located at much higher pO2 values than the lines for the 

other constituents of BZT-BT, indicating the likelihood of BZT-BT incompatibility with low pO2 

processing.  Comparison of the location of the Bi oxidation line relative to the electrode oxidation 

lines indicates that Ni is an unlikely candidate for sintering with BZT-BT.  Cu and Ag are 

possible electrode materials, provided that the BZT-BT sintering temperature can be reduced 

below the melting temperatures of the electrodes (1085°C for Cu, and 962°C for Ag). 

 Inexpensive electrode solutions such as Cu must be utilized to make BZT-BT capacitors 

viable for mass production.   Lower cost electrodes, in turn, facilitate the need for reduced 

sintering temperatures.  Cost reductions can also be realized from lower energy consumption with 

reduced sintering temperatures. 
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FIG. 2-9. Ellingham diagram showing oxidation lines for the oxide components of BZT-BT in 
relation to several electrode metals.  (Data from various sources.20, 21, 22) 

 

 

2.7. LIQUID PHASE SINTERING 

 Liquid phase sintering presents a possible solution to the problem of reducing sintering 

temperatures in BZT-BT dielectrics.  In this process, a second phase additive forms a liquid at 

temperatures lower than the solid-state sintering temperature of the bulk material.  The liquid 

phase then assists in sintering the bulk by increasing the matter transport rate associated with 

desirable sintering mechanisms.  This leads to densification of the bulk at lower temperatures and 

shorter times relative to solid-state sintering. 

 The key stages during liquid phase sintering are classified as follows:23 

• Stage 1: Particle rearrangement and liquid redistribution – The liquid phase wets particle 

surfaces and fills the interstices between the particles in the low-density microstructure.  

Some rearrangement of the bulk phase particles also takes place as densification begins.   
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• Stage 2: Solution-precipitation – The liquid phase dissolves the solid at the liquid-particle 

interfaces with high chemical potentials.  The dissolved material diffuses through the liquid 

and reprecipitates on other particle surfaces with lower chemical potentials.  As a result, 

grains coarsen and reshape into polyhedra with flattened faces. 

• Stage 3: Final densification – Interconnected grains trap the liquid phase into isolated pores.  

Grains coarsen further under solid-state diffusion conditions in regions where no liquid phase 

remains, while the trapped liquid assists in further densification where it exists. 

These stages overlap during densification of a ceramic microstructure.  The majority of 

densification and shrinkage occurs during Stages 1 and 2, as shown in FIG. 2-10. 

 

 

 

FIG. 2-10. Shrinkage behavior as a function of time for the various stages of liquid phase 
sintering.23 

 

 

 A number of important traits are required in an effective liquid phase sintering aid.  The 

liquid phase should form at a low temperature relative to the bulk solid-state sintering 

temperature, and have a low viscosity at such temperatures.  The liquid phase must also wet the 

bulk material (solid-liquid contact angle θ << 90°) to ensure that the liquid coats the bulk grains 
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for uniform dissolution and precipitation.  Also, the liquid phase former must be homogeneously 

distributed within the bulk particles to allow for uniform liquid phase sintering.   

 The cooling behavior of the liquid phase is of key importance to dielectric behavior.  One 

of three behaviors is desirable on cooling of the liquid phase: recrystallization into a second 

phase, incorporation into the bulk phase, or retraction into the triple points along the grain 

boundaries to become a discontinuous phase.  If the liquid phase remains continuous on cooling, 

the dielectric properties of the sintered material will be controlled by the continuous phase, which 

is likely to have a lower dielectric constant than that of the bulk ceramic, which in turn reduces 

the usefulness of the dielectric.  The composition of any incorporated or second phases is also 

important, as formation of electronically or ionically conductive phases in the dielectric will 

increase dielectric loss through leakage currents, especially at high field strengths. 

 

2.8. RESEARCH FOCUS 

 This research represents a first attempt at reducing the sintering temperature of 20BZT-

80BT via additions of discreet liquid phase formers.  Liquid phase sintering aids were chosen by 

finding glasses that were similar in composition to the BZT-BT bulk, exhibited low glass 

transition temperatures (Tg) and melting temperatures (Tmelt), and had high dielectric constants.  

As a starting point, glasses were selected that had been effective sintering aids for pure BaTiO3, 

due to the BZT-BT composition being comprised primarily of BaTiO3.  Huebner and Zhang 

reported success using a 50Bi2O3-25B2O3-25SiO2 (mol%) glass in conjunction with BaTiO3; the 

glass properties (Tg = 370°C, Tmelt = 645°C, K = 39.5) and composition were also in line with the 

initial criteria for BZT-BT liquid phase sintering aids.24  Glasses in the Bi2O3-ZnO-B2O3 system 

were also selected as sintering aid candidates, due to compositional similarities, and reports of Tg 

values between 360-420°C and K values of 21-33 for xBi2O3-xZnO-(1-2x)B2O3 (0.3 ≤ x ≤ 0.4).25 
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 Preliminary studies were conducted on one glass in the bismuth zinc borate system 

(30Bi2O3-30ZnO-40B2O3, mol%) and one in the bismuth borosilicate system (50Bi2O3-25B2O3-

25SiO2, mol%).  Thermal analyses, wetting angle studies, and dielectric measurements were 

performed on these glasses as screening studies to determine the viability of these glasses as 

sintering aids for 20BZT-80BT.  Density and microstructural evaluations were then performed on 

20BZT-80BT sintered with additions of 1, 2, and 5v% of each glass to determine any 

improvements in sintering and densification (i.e. reduced sintering temperatures) imparted by 

additions of the glasses.  Dielectric characterization was performed on parts that reached a 

relative bulk density of >89% after sintering, to determine the effects of glass additions on the 

dielectric properties of the 20BZT-80BT. 
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3. PRELIMINARY STUDIES 

 

  The 30Bi2O3-30ZnO-40B2O3 and 50Bi2O3-25B2O3-25SiO2 glasses were subjected to a 

series of initial analyses to characterize their bulk thermal and dielectric properties, as well as 

their interactions with 20BZT-80BT powders during sintering.  The results of these studies as 

reported in this section were used to determine the viability of each glass as liquid phase sintering 

aids for BZT-BT. 

 

3.1. DIELECTRIC AND GLASS FORMULATION 

 Dielectric powders comprised of 20mol% Bi(Zn1/2Ti1/2)O3-80mol% BaTiO3 (BZT-BT) 

were synthesized through a solid-state mixed oxide approach.  Bi2O3 (≥99.9%, Sigma-Aldrich), 

ZnO (≥99.0%, Sigma-Aldrich), TiO2 (≥99.0%, Strem Chemicals), and BaCO3 (≥99.0%, Sigma-

Aldrich) were batched stoichiometrically without assaying powders to measure absorbed water 

content.  Batches were ball milled in ethanol with stabilized ZrO2 media for 24 hours, followed 

by drying in a rotary evaporator to minimize phase separation.  The mixed oxides were calcined 

in filled and covered alumina crucibles.  X-ray diffraction (FIG. 3-1) indicated that calcination at 

850°C for 4 hours was insufficient for creating 20BZT-80BT with a phase-pure cubic perovskite 

structure; a second phase peak, attributed to Aurivillius-type Bi4Ti3O12 or BaBi4Ti4O15, appeared 

at 2θ = 30°.  Increasing the calcination temperature to 950°C for 12 hours yielded phase-pure 

powder. 

  The visual appearance of the powders in the crucible after calcination was non-uniform, 

despite XRD results indicating the powders were phase pure; notable color variations were 

present in the calcined powder compact from top to bottom and exterior to interior, as well as an 

aggregated, “crunchy” physical state present at the top of the powder bed.  Some non-uniformity 

of the bismuth partial pressure may have occurred despite having a filled and covered crucible, 
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resulting in the localized formation of point defects and/or second phases in concentrations below 

the detection limit of XRD. 

 

 

 

FIG. 3-1. XRD of multiphase 20BZT-80BT calcined at 850°C for 4 hours and single-phase 
20BZT-80BT calcined at 950°C for 12 hours. 

 

  

 The calcined powders were then ball milled in ethanol with stabilized ZrO2 media for 24 

hours to break apart sintered particle aggregates created during calcination.  The resultant 

powders had an average particle size of 800nm, determined by dynamic light scattering 

(Zetasizer, Malvern Instruments).  A representative SEM image (Supra, Carl Zeiss International) 

of the calcined powder is shown in FIG. 3-2; both soft agglomerates and hard aggregates can be 

seen, with the latter distinguished by the presence of necking and/or grain boundaries between 

particles.  Primary particles were generally equiaxed. 
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FIG. 3-2. Representative image of 20BZT-80BT particles after calcination at 950°C for 12 hours. 
 

  

 Two glasses, a bismuth-zinc-borate (30Bi2O3-30ZnO-40B2O3, in mol%) and bismuth 

borosilicate glass (50Bi2O3-25B2O3-25SiO2, again in mol%) were made by stoichiometric mixing 

of Bi2O3, ZnO, B2O3 (≥99.0%, Alfa-Aesar), and SiO2 (≥99.0%, Sigma-Aldrich); these powders 

were not assayed prior to use to determine any water absorbed from the ambient atmosphere.  The 

batches were melted in covered crucibles at 950°C for 2-3 hours with occasional stirring.  

Melting was performed in alumina crucibles, as attempts at using platinum crucibles resulted in 

the reduction of the melts and the subsequent formation of non-amorphous phases.  The glasses 

were poured and quenched between copper plates.  Visual observation of the glasses during 

pouring indicated that the borosilicate viscosity was higher than the borate viscosity.  On cooling, 

both glasses were transparent and yellow in color.  To reduce the average glass particle size to 

<800nm for homogeneous glass distribution within the 20BZT-80BT, the quenched glasses were 

crushed with a mortar and pestle; crushed powders were ball milled for 24 hours and attrition 

milled for 2 hours with stabilized ZrO2 media in ethanol.  Particle size measurements conducted 

by dynamic light scattering (Zetasizer, Malvern Instruments) indicated that this milling process 

yielded glass particles averaging several microns in diameter, which was larger than desirable.    
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 Gravitational sedimentation was employed to extract the finer glass particles.  Stokes’ 

Law calculations were performed to determine the minimum times required to settle out particles 

with diameters larger than 800nm.  Between 5-10g of the glass powders were dispersed in ethanol 

with 1wt% polyvinylpyrrolidone.  These particles were then added to the top of a sedimentation 

cone filled with ethanol, and allowed to settle.  After the calculated time had passed (several 

hours for >10cm sedimentation height), the supernatant was extracted with a syringe.  Dynamic 

light scattering analysis performed on particles dispersed in the supernatant indicated an average 

particle diameter of <600nm.  The dispersions were then dried to extract the glass particles. 

 

3.2. GLASS THERMAL CHARACTERIZATION 

 The 30Bi2O3-30ZnO-40B2O3 and 50Bi2O3-25B2O3-25SiO2 glasses were analyzed with 

differential thermal analysis (DTA) to obtain information on the glass transition temperature (Tg), 

and the formation and melting temperatures (Tx and Tmelt, respectively) of any crystalline phases 

formed.  Measurement of these key temperatures was used for initial screening of glass viability 

for liquid phase sintering.  The existence of any crystallization events might suggest the 

formation of a transient liquid phase during sintering with BZT-BT.  

 Powder samples of each glass were placed in alumina crucibles and heated in air to 

800°C at a rate of 5°C/min with a Netzsch STA409 DTA.  DTA was not performed at 

temperatures greater than 800°C, as higher temperatures led to the glasses wetting the crucibles 

so favorably that they could exit the crucibles and damage the DTA sample holder.  

 DTA scans for both glasses are shown in FIG. 3-3.  The borate glass shows an observable 

endothermic event on heating to 418°C associated with Tg.  This value agrees well with the 

414°C glass transition reported by Kim, et al. for the 30Bi2O3-30ZnO-40B2O3 composition.25  

Also, a sharp exothermic crystallization peak occurs at 620°C, followed by an endothermic 
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melting peak at 680°C.  The borosilicate shows a slope change (Tg) at 416°C, and no clear events 

associated with crystalline phase formation or melting up to 800°C.  This contrasts with the 

results from Huebner and Zhang, which indicated a Tg of 370°C for the same glass composition.24 

 

 

 

FIG. 3-3. DTA scans for the 30Bi2O3-30ZnO-40B2O3 and 50Bi2O3-25B2O3-25SiO2 glasses on 
heating to 800°C. 

 

 

 A cursory investigation of the phases formed during the crystallization of the 30Bi2O3-

30ZnO-40Bi2O3 glass was limited to the use of the ternary phase diagram for the Bi2O3-ZnO-

B2O3 system (shown in FIG. 3-4).  The borate glass composition lies within the Zn3B2O6-

ZnBi4B2O10-Bi3Bi5O12 phase field, suggesting that a mixture of the three phase field components 

would form on recrystallization.  More thorough investigations into the crystallization behavior of 

the glass itself were not performed in order to allow deeper study into the sintering behavior and 

dielectric properties of BZT-BT dielectrics sintered with additions of these glasses.  Also, visual 

observations indicated that the crystallization behavior of the glasses was affected by particle 
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size, as particulate samples tended to crystallize while solid bulk samples did not.  Further studies 

into the effect of particle size on crystallization behavior, however, were not undertaken.  

 

 

 

FIG. 3-4. Bi2O3-ZnO-B2O3 phase diagram showing phases likely formed during crystallization of 
the 30Bi2O3-30ZnO-40Bi2O3 glass. (Diagram from ACerS-NIST.26) 

 

 

3.3. GLASS WETTING BEHAVIOR ON 20BZT-80BT 

 For either glass to effectively assist in reducing the sintering temperature, the liquid 

phase(s) formed on heating must exhibit favorable wetting of the bulk 20BZT-80BT particles.  

The wetting behavior of each glass was characterized through in situ optical imaging and ex situ 

electron microscopy performed on glass fragments heated and cooled while in contact with a 

dense sample of BZT-BT.  In situ observations of the glass contact angle as a function of 

temperature macroscopically indicated the temperatures necessary for favorable wetting and, 

thus, effective liquid phase sintering.  Ex situ analysis allowed measurement of the final contact 

angle (post-cooling) and observation of the interactions that occurred at the glass/BZT-BT 
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interface.  Observation of these interactions indicated the formation of crystalline phases at the 

interface; these phases would also likely form and persist in a BZT-BT dielectric component 

liquid phase sintered with the glasses being studied. 

 3.3.1. In Situ Wetting Behavior.  The wetting behavior of the 30Bi2O3-30ZnO-40B2O3 

and 50Bi2O3-25B2O3-25SiO2 glasses was characterized in situ with optical photography.  A small 

piece (approximately 2mm on a side) of each glass was placed on top of a 12.7mm diameter 

20BZT-80BT pellet previously sintered at 1180°C for 12 hours (geometric pellet densities were 

>94% of theoretical) and rough ground to a 320 grit finish.  The pellet/glass samples were placed 

on an alumina D-tube in a tube furnace and heated in air at 3°C/min to 700°C for the borate glass 

and 800°C for the borosilicate.  A Nikon D5000 digital camera with a 300mm zoom lens was 

used to collect images during heating, with the corresponding sample temperatures measured 

using a Type K thermocouple immediately adjacent to the sample. 

 A series of photographs showing the change in shape of the 30Bi2O3-30ZnO-40B2O3 

glass sample is shown in FIG. 3-5.  Minimal changes occurred on heating to 511°C.  By 552°C, 

the glass had softened, allowing surface tension to reshape the sample into a droplet.  Between 

582°C and 670°C, the sample shape became asymmetric, possibly indicating the heterogeneous 

nucleation of a crystalline phase at the sample/BZT-BT interface that interfered with spreading of 

the glass.  Formation of a crystalline phase between 582-670°C was consistent with the 

crystallization exotherm observed at 620°C in the DTA scans shown previously in Section 3.2.  

Between 670°C and 685°C, the sample melted and completely covered the pellet surface and 

sides, confirming favorable wetting of the 20BZT-80BT; this, again, was consistent with the 

680°C melting temperature indicated by the borate DTA scan in Section 3.2.  The pellet reached a 

maximum temperature of 692°C before cooling to room temperature. 

 Images of the borosilicate on BZT-BT during heating (FIG. 3-6) indicated gradual 

softening and favorable wetting on heating to 800°C. 
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FIG. 3-5. In situ photographs showing wetting behavior of the 30Bi2O3-30ZnO-40B2O3 glass 
during heating on a BZT-BT pellet to 700°C. 

 

 

 

 

FIG. 3-6. In situ photographs showing wetting behavior for the 50Bi2O3-25B2O3-25SiO2 glass on 
a BZT-BT surface during heating to 800°C. 
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 The favorable wetting behavior exhibited by both glasses below 800°C suggested that the 

glasses would be able to spread throughout the grain boundaries and porosity in a low-density 

BZT-BT dielectric at temperatures well below the 1180°C sintering temperature used for the pure 

dielectric. 

 3.3.2. Ex Situ Characterization.  The glass/BZT-BT pellet samples used for in situ 

wetting angle observations were cut in cross-section and polished to allow imaging of the glass-

pellet interface via scanning electron microscopy with a Zeiss Supra SEM. 

 The 30Bi2O3-30ZnO-40B2O3 glass exhibited a contact angle of ≈6° after cooling from 

700°C, as shown in FIG. 3-7.  Backscatter electron imaging revealed that, in addition to thorough 

wetting of the BZT-BT pellet surface, the borate glass crystallized into a bright, high-Z (high 

atomic number) phase at the glass/BZT-BT interface (shown in FIG. 3-8).  This phase formed 

long columnar crystallites.  Furthermore, the liquid phase penetrated several grains below the 

pellet surface, as evidenced by the presence of “floating” grains near the surface. 

 

 

 

FIG. 3-7. Contact angle measurement of 6° made on the 30Bi2O3-30ZnO-40B2O3 glass after 
heating to 700°C on a BZT-BT pellet. 
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FIG. 3-8. Backscatter electron image showing crystallization layer formed at the interface 
between the 30Bi2O3-30ZnO-40B2O3 glass and BZT-BT pellet after heating to 700°C. 

 

  

 Energy dispersive spectroscopy element mapping (FIG. 3-9) indicated that the crystalline 

layer was approximately 10µm thick and contained bismuth, titanium, and possibly barium, while 

being deficient in zinc.  The glass itself was rich in bismuth and zinc only, and the dark 

amorphous phase between the crystalline phase and the 20BZT-80BT contained zinc, barium, and 

titanium.   

 The crystalline phase is suspected to be an Aurivillius-type bismuth titanate (Bi4Ti3O12, 

or similar) or barium bismuth titanate phase, based on the high-aspect ratio crystallite geometry, 

elemental composition, and evidence of these phases in BZT-BT pellets sintered with 

inhomogeneously distributed borate glass.27,28  However, a significant overlap exists between the 

EDS peaks for Ba and Ti; this overlap obscures the actual Ba or Ti content in the crystallites and 

makes accurate determination of the crystallite composition difficult. 

 The Bi2O3-TiO2 phase diagram, shown in FIG. 3-10, can be combined with the 

information gained from SEM/EDS analysis to indicate a potential reaction sequence leading to 

the formation of persistent Bi4Ti3O12 (BiT) crystals at the borate/BZT-BT interface.  During 
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heating, Ti is suspected to have diffused out of the BZT-BT into the borate glass, leading to the 

initial formation of BiT crystallites at the glass/pellet interface. 

 

   

 

FIG. 3-9. EDS element maps showing chemical composition of the high-Z crystallized phase at 
the interface between the 30Bi2O3-30ZnO-40B2O3 glass and BZT-BT pellet after heating to 

700°C. 
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 Formation of the BiT in turn removed Bi from the glass, leaving behind a Bi-deficient 

ZnO-B2O3 glass (dark amorphous phase near interface).  As the reaction progressed, the increased 

number and size of BiT crystals formed a barrier layer that hampered further Ti diffusion into the 

glass, stopping further nucleation of BiT crystals approximately 10µm from the final glass/BZT-

BT interface.   

 

 

 

FIG. 3-10. Bi2O3-TiO2 phase diagram.  (Diagram from ACerS-NIST.29) 
 

 

 Whether the glass actually dissolved portions of the BZT-BT surface is unknown, but the 

crystallites were observed to have grown into pores and voids on the BZT-BT surface.  The phase 

diagram for Bi2O3-TiO2 indicates that Bi-rich compositions near Bi4Ti3O12 do not begin to melt 

until heating above 865°C; as such, any BiT or similar compositions would remain after heating 

the wetting angle sample to 700°C.  BiT crystals are ferroelectric, and their presence in a liquid 
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phase sintered dielectric after cooling would be desirable for formation of a transient liquid 

phase.30  

 A contact angle of ≈10° was measured between the 50Bi2O3-25B2O3-25SiO2 glass and 

BZT-BT surface (FIG. 3-11).  The borosilicate melt also appeared to have penetrated the grain 

boundaries in the BZT-BT near the surface, as shown by backscatter electron imaging in FIG. 3-

12.  A crystallization layer approximately 5µm thick formed at the glass-pellet interface; the 

crystalline phase was a low-Z (dark) phase, as opposed to the high-Z phase formed by the 

30Bi2O3-30ZnO-40B2O3 glass.   

 

 

 

FIG. 3-11. Contact angle measurement of 10° made on the 50Bi2O3-25B2O3-25SiO2 glass after 
heating to 800°C on a BZT-BT pellet. 

 

 

 An EDS point spectrum collected on the low-Z phase, shown in FIG. 3-13, indicated the 

presence of Ba, Al, and Si, suggesting the formation of a barium silicate or barium 

aluminosilicate phase; Ti may also be present within the crystallites due to the EDS peak overlap 

between Ba and Ti discussed previously.  The presence of Al is attributed to glass contamination 
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caused by dissolution of the alumina crucibles used for melting, as no other sources of alumina 

contamination existed during material processing. 

 

 

 

FIG. 3-12. Backscatter electron image showing low-Z crystallized phase at the interface between 
the borosilicate glass and BZT-BT pellet after heating to 800°C. 

 

 

  

 

FIG. 3-13. EDS point spectrum from the dark crystalline phase at the interface between the 
borosilicate glass and BZT-BT pellet. 
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 A process similar to the suggested formation of BiT can be proposed for creating a 

barium silicate crystalline phase at the borosilicate/BZT-BT interface.  In this case, Ba must be 

transported from the BZT-BT surface and into the Bi-borosilicate glass.  Crystallites of a barium 

silicate (possibly BaSiO3 or, more generically, (Ba,Ti)SiOx) phase formed at the interface, 

slowing diffusion of the Ba into the glass and preventing further crystallite formation.  The higher 

viscosity of the borosilicate glass relative to the borate glass also likely contributed to slower Ba 

diffusion and thus formation of a thinner crystallization layer (≈5µm thick).  The BaO-SiO2 phase 

diagram, shown in FIG. 3-14, reveals that none of the possible barium silicate phases melt below 

1374°C; as such, the barium silicate crystallites that nucleate would persist at the interface during 

the wetting angle studies up to 800°C. 

 

 

 

FIG. 3-14. BaO-SiO2 phase diagram.  (Diagram from ACerS-NIST.31) 
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 Since both glasses exhibited wetting angles of ≤10°, attacked the grain boundaries of the 

BZT-BT near the interface, and crystallized at the glass/BZT-BT interface, these glasses were 

considered to be viable candidates for formation of a transient liquid phase useful for sintering at 

reduced temperatures.  

 

3.4. GLASS/BZT-BT POWDER MIXTURE THERMAL ANALYSIS 

 Following the discovery of crystalline layers at the glass/BZT-BT interfaces, differential 

thermal analysis was employed in an effort to determine the temperatures required for 

crystallization of the observed phases.  Measurement of exothermic transitions on heating or 

cooling would indicate the temperatures at which the crystalline BiT or BaSiO3 phases formed on 

the BZT-BT grains, while endothermic transitions would indicate the melting of these phases.   

 Each glass powder was mixed with 20BZT-80BT powder to form compositions 

comprised of 5v% glass.  Poly(propylene carbonate) binder (QPAC40, Empower Materials) was 

added in concentrations of 2-3 wt% by ball milling with stabilized ZrO2 media in acetone.  The 

powders were lightly packed into alumina DTA crucibles and subjected to differential thermal 

analysis in a Netzsch STA449 F1 Jupiter unit.  Samples were heated to and cooled from 1000°C 

in air at a heating/cooling rate of 5°C/min. 

 The DTA curves in FIG. 3-15 show several thermal events on heating of the 5v% glass + 

BZT-BT mixtures.  The dominant exotherms occurring in both samples from 200°C-400°C are 

associated with the decomposition and volatilization of the poly(propylene carbonate) binder.  

With further heating, a small exothermic rise appears for both glass-containing samples at 780°C.  

The 5v% 50Bi2O3-25B2O3-25SiO2 + BZT-BT glass sample curve shows several other small 

exotherms at 500°C and 570°C, which correspond to two small exotherms in the DTA curve for 

the borosilicate glass.  Notably absent are any strong exotherms or endotherms associated with 
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crystallization or melting of either glass, though such events may be obscured due to the small 

amount of glass present in the samples.  Mixtures of 50wt% glass-50wt% BZT-BT were initially 

used in an attempt to amplify the signals associated with any obscured events, but severe wetting 

of the crucibles by the glass-BZT-BT mixtures led to equipment damage and discontinuation of 

studies of mixtures with high glass concentrations. 

 On cooling (FIG. 3-16), the DTA curve for the sample containing 5v% 30Bi2O3-30ZnO-

40B2O3 shows a small exotherm at 880°C.  Neither DTA curve indicates any discernable thermal 

event associated with recrystallization of the either glass on cooling, but, again, the volume 

fraction of each glass (5v%) is sufficiently small that any such events are likely obscured. 

 

 

 

FIG. 3-15. Differential thermal analysis curves for heating of 20BZT-80BT samples containing 
5v% 30Bi2O3-30ZnO-40B2O3 or 50Bi2O3-25B2O3-25SiO2 glass. 
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FIG. 3-16. Differential thermal analysis curves for 20BZT-80BT samples containing 5v% 
30Bi2O3-30ZnO-40B2O3 or 50Bi2O3-25B2O3-25SiO2 on cooling from 1000°C. 
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4. DENSIFICATION AND MICROSTRUCTURAL EVOLUTION 

 

 After gaining a preliminary understanding of the interactions occurring between each 

glass and the BZT-BT dielectric, sintering studies were conducted on BZT-BT with small 

additions of each glass (≤ 5vol%) to study the effects of the glass additions on densification.  

Initial studies were conducted using a fixed sintering time (four hours) for simplicity at several 

temperatures to determine the lowest temperatures necessary for the glass-containing BZT-BT to 

reach useful density levels (≥95%) for high field dielectric applications. 

 

4.1. DENSIFICATION STUDIES 

 Densification studies were conducted by fabricating and sintering 20BZT-80BT pellets 

containing 1, 2, and 5 vol% of either the 30Bi2O3-30ZnO-40B2O3 or 50Bi2O3-25B2O3-25SiO2 

glasses.  Each glass was added to the 20BZT-80BT in appropriate amounts for each mixture; 

these powders were mixed in plastic bottles with 1-3 wt% poly(propylene carbonate) binder 

(QPAC40, Empower Materials) in acetone using stabilized ZrO2 media.  The mixtures were 

placed in a heated drying oven at 65°C and allowed to dry.  The dry powders were passed through 

a No. 20 sieve, and pressed into 12.7mm diameter pellets by uniaxial die pressing.  Cold isostatic 

pressing of the pellets to a pressure of 152 MPa yielded samples with geometric green densities of 

59-63% relative to 20BZT-80BT theoretical.  Two or three samples of each composition were 

sintered in sacrificial 20BZT-80BT powder beds at 700°C, 800°C, 950°C, and 1000°C for four 

hours at a heating rate of 5°C/min.  Temperatures were selected based on densification rate 

changes measured by dilatometry.  Bulk densities of the samples were measured with the 

Archimedes technique via vacuum infiltration with kerosene (results shown in FIG. 4-1). 

 Bulk densities for pellets sintered at 700°C are shown as a function of glass composition 

and concentration in FIG. 4-1a.  At 700°C, samples containing the 30Bi2O3-30ZnO-40B2O3 glass 
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obtained densities between 73-75%, representing a 2-5% improvement over pure 20BZT-80BT 

samples sintered at the same conditions.  The improvement is attributed to Stage I liquid phase 

sintering, as the molten borate glass began to fill the interstices between BZT-BT particles while 

also allowing BZT-BT particle rearrangement.  The 50Bi2O3-25B2O3-25SiO2-containing samples 

reached a lower density (≈67%) than the borate-containing samples, likely due to limited particle 

rearrangement and filling of porosity by the higher viscosity borosilicate glass.  The difference in 

relative densities between the glass-containing samples and non-glass containing samples was not 

due to differences between the pure glass and 20BZT-80BT densities.  The densities of the pure 

glasses (6.5-6.7 g/cm3, as measured by the Archimedes technique) were approximately the same 

as pure 20BZT-80BT (6.419 g/cm3, calculated from XRD lattice parameters). 

 FIG. 4-1b shows the relative densities of samples sintered at 800°C for four hours.  After 

sintering at 800°C, the 20BZT-80BT samples achieved higher relative densities than samples 

containing all glass compositions and concentrations.  As with the 700°C densities, the 

borosilicate-containing sample densities are slightly lower than for the borate-containing samples.   

Also, samples containing 1v% of each glass reached the highest relative densities of all of the 

glass concentrations.  All liquid phase sintered sample densities were slightly less than the 

densities of the pure 20BZT-80BT samples sintered at 800°C.  This could be due to the formation 

of the crystalline phases expected to form at the glass/BZT-BT interfaces (described in Section 

3.3.2); if formed on heating, these crystalline phases may actually hamper densification by 

interfering with matter transfer between the BZT-BT grains. 

 Relative densities achieved after sintering at 950°C are shown in FIG. 4-1c.  Samples 

containing the 30Bi2O3-30ZnO-40B2O3 glass reached higher densities than samples containing 

the borosilicate, though samples containing either glass at the 5v% concentration level obtained 

nearly equivalent densities.  The 2v% concentrations reached the lowest densities for both glass 

systems. 
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 FIG. 4-1d shows the relative densities of samples sintered at 1000°C for four hours.  

Samples containing all borate concentrations reached relative densities around 95%, while only 

the 5v% borosilicate samples reached the 95% relative density level; these densities represent a 

5% improvement over pure 20BZT-80BT.  As with the samples sintered at 950°C, the 

borosilicate sample densities lag behind those of the borate samples at the 1v% and 2v% 

concentrations.  Samples containing 2v% glass again exhibited the lowest densities of all 

concentrations for both glasses. 

 The relatively large increase in density (≈15%) of the borate-containing samples from 

800°C-1000°C was attributed to the melting of the bismuth titanate crystalline phase(s).  The 

phase diagram for the Bi2O3-TiO2 system (shown previously in FIG. 3-10) indicated that 

compositions between the Bi4Ti3O12 (BiT) and Bi8TiO14 compounds begin to melt at temperatures 

above 865°C.  If these crystalline phases indeed hamper sintering by interfering with diffusion 

and transport processes through the liquid phase, or at the very least reduce the amount of liquid 

phase available, sintering at temperatures above the crystal phase melting temperature would 

yield improved densification.  Such improvements were realized by the density increase between 

sintering at 800°C and 1000°C. 

 Similar reasoning also provided an explanation for the generally lower densities of the 

borosilicate-containing samples.  The formation of barium silicate crystalline phases such as 

BaSiO3 along the surfaces of the BZT-BT particles may also hinder densification by interfering 

with matter transport or reducing the amount of liquid phase available to aid in sintering.  None of 

the barium silicate phases on the BaO-SiO2 phase diagram (shown previously in FIG. 3-14) melt 

below 1374°C.  Sintering temperatures of 1000°C or less would thus be insufficient to melt the 

crystalline phases (unless a eutectic phase formed through reaction of the crystalline phase and 

BZT-BT), yielding reduced density improvements between 800°C-1000°C. 
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FIG. 4-1. Relative densities of 20BZT-80BT pellets containing 30Bi2O3-30ZnO-40B2O3 and 
50Bi2O3-25B2O3-25SiO2 glass sintered at 700°C, 800°C, 950°C, and 1000°C for four hours. 

 
 

 

 Since samples containing 5v% borosilicate achieved relative densities >95%, samples 

with higher initial glass concentrations may lie in a different phase field on the unknown BZT-

BT-borosilicate phase diagram, or may have a sufficiently high glass concentration that the 

relative amount of crystalline phase formed is small and does not drastically affect sintering.  
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Viscosity reductions with heating from 800°C to 1000°C could also be responsible for improved 

densification.  

 Since the samples containing 1, 2, and 5v% 30Bi2O3-30ZnO-40B2O3 and 5v% 50Bi2O3-

25B2O3-25SiO2 reached ≈95% theoretical densities after sintering at 1000°C for four hours, these 

four compositions and concentrations are believed to be promising candidates on the basis of 

densities alone.  These samples approached useful density levels for capacitor dielectrics at a 

temperature 180°C lower than the sintering temperature for pure 20BZT-80BT.  Further study of 

the impact of sintering time on the densities of these liquid-phase sintered parts could yield even 

more useful data, allowing parts to be sintered to full density (99% of theoretical) at 1000°C. 

 

4.2. MICROSTRUCTURAL EVOLUTION 

 Microstructural imaging was performed on sintered glass-containing pellets to observe 

liquid phase distribution and microstructural evolution as a function of sintering temperature.  

Samples with 5v% glass additions were chosen for scanning electron microscopy studies (S4700, 

Hitachi High Technologies America and Supra, Carl Zeiss Microscopy); such samples should 

contain the highest volume of liquid phase and allow easier observation of the liquid phase 

distribution. 

 Samples sintered at 700°C, 800°C, and 1000°C for four hours (not exposed to kerosene 

from the bulk density measurements) were mounted in epoxy and polished to a surface finish of 

0.25µm using a combination of SiC polishing papers and water-based diamond suspensions.  No 

solvents were used during the polishing process that could dissolve and smear the epoxy into the 

porous low sintering temperature samples.  Polished samples were then ultrasonicated in water 

and acetone and baked for 12 hours at 60°C to remove any possible contaminants prior to 

imaging. 
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 FIG. 4-2 shows the fractured surface of a pellet in the green state; all sintered pellets 

started in the green state with a relative geometric density of 59-64% of theoretical for 20BZT-

80BT.  Visible grains had an average grain size of approximately 750-800nm.  Some larger grains 

and sintered aggregates still remained, despite the ball milling procedures.  

 

 

 

FIG. 4-2. Green state microstructure representative of all pellet compositions studied. 
 

 

 Microstructures of polished pellets sintered at 700°C for four hours are shown in FIG. 4-

3.  In keeping with the bulk density trends, the microstructure of the 5v% 30Bi2O3-30ZnO-

40B2O3 sample (FIG. 4-3a) appeared to be more dense than the 5v% 50Bi2O3-25B2O3-25SiO2 

(FIG. 4-3b) and pure 20BZT-80BT (FIG. 4-3c) samples, as evidenced by the flat, polished 

“islands” present only in FIG. 4-3.  These islands, which were secure enough to survive the 

polishing process without grain pullout, were likely where particles of the borate glass had melted 

and locally aided in sintering and particle rearrangement; since the sintering temperature was only 

20°C above the glass melting temperature, the complete dispersal of the glass throughout the 

sample was unlikely. 
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FIG. 4-3. Secondary electron images of samples containing (a) 5v% 30Bi2O3-30ZnO-40B2O3, (b) 
5v% 50Bi2O3-25B2O3-25SiO2, and (c) pure 20BZT-80BT after sintering at 700°C for four hours.   

 

 

 The 50Bi2O3-25B2O3-25SiO2 and 20BZT-80BT samples lacked these dense regions 

consistent with reduced particle rearrangement and sintering.  Some regions in the borosilicate 
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sample show evidence of a glassy phase, indicating that the glass had softened but not spread 

throughout the sample.  As expected, more open porosity was apparent in the borosilicate sample, 

likely caused by hampering of solid state sintering by the more viscous borosilicate glass.   

 The microstructures of samples sintered at 800°C for four hours are shown in FIG. 4-4.  

The dense islands associated with localized densification were visible in all three sample types; 

however, the sample containing 5v% 30Bi2O3-30ZnO-40B2O3 (FIG. 4-4a) showed a significantly 

larger sintered (polished) area than either the 50Bi2O3-25B2O3-25SiO2 (FIG. 4-4b) or pure 

20BZT-80BT (FIG. 4-4c) samples.  By 800°C, a liquid phase film appeared throughout the 

borosilicate-containing sample, indicating more complete wetting of the sample as the glass 

viscosity decreased on heating.  Curiously, a liquid phase film was also widely apparent in the 

pure 20BZT-80BT sample.  The source of this film in the pure 20BZT-80BT sample is currently 

unknown; sample preparation (i.e. transfer of epoxy into sample porosity during polishing) was 

not responsible, given the extensive measures taken to prevent such contamination. 

The source of the film is likely from a liquid phase formed from the BZT-BT itself during 

heating, perhaps as a compensation mechanism for excess Bi.  This cannot be confirmed at this 

time, as no phase diagram exists for the pure BZT-BT system.  However, this film likely 

contributed to the greater density of the pure BZT-BT relative to the glass-containing samples 

after sintering at 800°C. 

 Sintering at 1000°C for four hours (FIG. 4-5) yielded dense microstructures for samples 

containing 5v% 30Bi2O3-30ZnO-40B2O3 (FIG. 4-5a) and 5v% 50Bi2O3-25B2O3-25SiO2 (FIG. 4-

5b) glass, as expected from the relative density measurements.  Images of the borosilicate-

containing sample revealed obvious dark regions containing a number of grains; these regions are 

expected to be areas of high glass concentration, perhaps porosity that the glass flowed into and 

filled during sintering.  These regions are less apparent in the borate-containing sample image.   
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FIG. 4-4. Microstructures of samples containing (a) 5v% 30Bi2O3-30ZnO-40B2O3, (b) 5v% 
50Bi2O3-25B2O3-25SiO2, and (c) pure 20BZT-80BT after sintering at 800°C for four hours. 

 

 

 In the less dense 20BZT-80BT (FIG. 4-5c) sample, grain growth and necking are visible; 

the film phase observed at 800°C in the pure BZT-BT sample may be responsible. 
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FIG. 4-5. Microstructures of samples containing (a) 5v% 30Bi2O3-30ZnO-40B2O3, (b) 5v% 
50Bi2O3-25B2O3-25SiO2, and (c) pure 20BZT-80BT after sintering at 1000°C for four hours. 

 

 

 As a preliminary attempt at identifying the distribution of phases present in the liquid 

phase sintered samples, backscatter electron imaging was performed on the dense glass-
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containing samples sintered at 1000°C.  These images, shown in FIG. 4-6, show mottled grain 

contrast characteristic of the BZT-BT bulk; it was not possible to obtain sharp images of these 

samples.  In both liquid phase sintered samples, high-Z and low-Z second phases appear via 

atomic number (Z) contrast in pockets between the grains, indicating that the glasses flowed into 

and filled porosity within the sample. 

   

  

 

FIG. 4-6. Backscatter electron imaging showing grain and atomic number contrast in the (a) 5v% 
30Bi2O3-30ZnO-40B2O3 and (b) 5% 50Bi2O3-25B2O3-25SiO2 samples sintered at 1000°C for four 

hours. 
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4.3. SUMMARY 

 From these densification studies, 5v% additions of both the 30Bi2O3-30ZnO-40B2O3 and 

50Bi2O3-25B2O3-25SiO2 glasses seemed to significantly contribute to densification after sintering 

at 1000°C for four hours.  Results indicated that this was likely due to melting of crystalline 

interaction phases and/or reductions in liquid viscosity.  After sintering for four hours at such 

temperatures, 20BZT-80BT dielectrics reached 95% relative density.  Further improvements may 

be realized by increasing sintering time so that greater densification occurs before cooling and 

solidification of the liquid phases.  The interactions between the glass additives and the BZT-BT 

bulk require further study; backscatter electron imaging appeared to indicate the presence of 

minority phases within the BZT-BT bulk, but these phases were not able to be clearly 

characterized. 
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5. DIELECTRIC BEHAVIOR 

 

5.1. GLASS DIELECTRIC PROPERTIES 

 Dielectric measurements were performed at room temperature on samples of each glass 

for use in modeling the dielectric constant of BZT-BT dielectrics with residual discontinuous or 

continuous phases (glassy or crystalline) after liquid phase sintering. 

 Cylinders of the 30Bi2O3-30ZnO-40B2O3 and 50Bi2O3-25B2O3-25SiO2 glasses were cast 

for dielectric measurement.  Samples of each glass were melted in alumina crucibles at 950°C for 

2-3 hours and cast into 10mm diameter steel cylinder molds.  The cylinders were immediately 

removed once solidified and annealed at 350°C for 30 minutes prior to cooling to room 

temperature.  Both cylinders were transparent, indicating no macroscopically observable 

recrystallization occurred during cooling and annealing.  The cooled cylinders were then cut into 

5-8mm thick wafers using a diamond saw lubricated with mineral oil; the top and bottom faces of 

the cylinders were subsequently polished to a 0.25µm surface finish with SiC and diamond papers 

and suspensions.  The polished surfaces were then electroded with colloidal silver paste (Ted 

Pella, Inc.).  Capacitance and loss tangent measurements were performed an Agilent 4194 

Impedance/Gain Phase Analyzer from 100Hz to 100kHz.  The dielectric constants of each glass 

were then calculated from the sample dimensions and capacitance measurements. 

 Across the selected frequency range, both the 30Bi2O3-30ZnO-40B2O3 and 50Bi2O3-

25B2O3-25SiO2 glasses maintained a frequency-independent dielectric constant of ≈37 and loss 

tangents below ≈0.005. Kim, et al. reported a much lower dielectric constant of 21 for the 

30Bi2O3-30ZnO-40B2O3 glass.25  Huebner and Zhang reported a dielectric constant of 39.5 for the 

50Bi2O3-25B2O3-25SiO2 glass, which agrees well with the value of 37 calculated in this work.24 
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5.2. GLASS-CONTAINING BZT-BT DIELECTRIC PROPERTIES 

 Dielectric studies were undertaken to assess the electrical performance of the liquid phase 

sintered components.  Of critical importance is the preservation of the relaxor ferroelectric 

behavior characteristic of pure 20BZT-80BT, with its relatively temperature- and field-stable 

dielectric constant.  Dielectric constant and loss versus temperature, and polarization-electric field 

measurements were employed to characterize the electrical properties of the liquid phase sintered 

components relative to pure BZT-BT in terms of dielectric constant and energy storage capability.  

Attempts to model the dielectric properties were also performed based on the previous analyses of 

interactions between the liquid phase formers and the BZT-BT bulk. 

 5.2.1. Dielectric Properties.  Pellets sintered with 1, 2, and 5v% additions of either the 

borate or borosilicate glass were studied to assess the dielectric effects of the liquid phase sintered 

parts.   Samples were prepared using the methods described previously in Section 4.1, and 

subsequently sintered at 1000°C for 4 hours in 20BZT-80BT sacrificial powder beds under 

stagnant air and ramp rates of ±5°C/min.  The sintering process yielded parts with bulk densities 

greater than 88% of theoretical for all pellets.  The pellets were then polished, coated with 

sputtered Cr/Au electrodes on the flat surfaces, and subjected to dielectric property tests to 

measure the temperature dependence of capacitance and loss tangent in a Thermotron 

environmental chamber using an HP4284A LCR meter with an oscillator magnitude of 1V.  

Polarization-electric field behavior was measured at 1Hz using a Radiant Technologies Precision 

Workstation connected to a Trek 10kV amplifier. 

 All compositions and concentrations retained the relaxor-type behavior exhibited by pure 

20BZT-80BT.  FIG. 5-1, a representative plot for the 1v% 30Bi2O3-30ZnO-40B2O3 glass, shows 

the frequency dispersion and diffuse maxima in dielectric constant and dissipation factor as a 

function of temperature characteristic of relaxor behavior. 
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 The temperature dependence of the dielectric constant and loss tangent is illustrated in 

FIG. 5-2 at 1kHz for each glass additive as a function of volume concentration.  Additions of the 

borate glass yielded an expected decrease in dielectric constant with increasing glass 

concentration, as the lower permittivity glass (and the phases subsequently formed by reaction 

with the BZT-BT) decreased the overall permittivity of the sample.  Additions of the borosilicate 

decreased the dielectric constant by nearly 40%, with no apparent trend between additive content 

and K.  The loss tangent values associated with each glass composition and concentration were 

nearly equivalent across all temperatures.  Losses for the glass-containing samples were lower 

than for pure 20BZT-80BT below Tm.  At temperatures above Tm (up to a maximum measurement 

temperature of 180°C), the loss tangent for all samples was less than 0.01. 

 

   

 

FIG. 5-1. Representative relaxor behavior in dielectric constant/dissipation factor vs. temperature 
exhibited for all additions of glass compositions/concentrations studied. 
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FIG. 5-2. Temperature-dependent permittivity and loss for each glass composition/concentration. 
 

 

 The behavior of the dielectric constant at temperatures above Tm was characterized in 

terms of the diffuseness of the dielectric constant maximum (δ).  The diffuseness was found by 
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fitting the observed K versus T behavior at 1kHz to the power law relation for relaxor 

ferroelectrics32: 

1
K
=
1
Kmax

+ 
(T-Tm)

γ

2Kmaxδ
γ         (1 ≤ γ ≤ 2)                                                                                                                                                                     (5-‐1) 

 The exponent γ and diffuseness δ were found using a least squares regression fitting 

Equation 5-1 to the measured data in terms of 1/K versus (T-Tm)γ.  These fit parameters are 

shown for pure 20BZT-80BT and each glass composition and concentration in Table 5.1.  The 

magnitude and similarity in the calculated δ values for all compositions (223 < δ < 256) is 

indicative of the highly diffuse transition, leading to good temperature stability of the dielectric 

constant at temperatures above Tm (up to ≈ 180°C).  At temperatures between Tm and 180°C, K 

decreased by less than 10% from Kmax in all cases (including pure 20BZT-80BT). 

 

 

Table 5.1. Fitted power law parameters γ and δ for each glass composition and concentration. 
Composition Tm (°C) Kmax γ δ 

BZT-BT 54 2090 1.63 256 
Borate     
1v% 67 1720 1.69 252 
2v% 73 1300 1.64 246 
5v% 73 1190 1.64 246 

Borosilicate     
1v% 73 1250 1.60 225 
2v% 77 1390 1.65 232 
5v% 67 1350 1.57 223 

 

 

 The polarization-electric field (P-E) behavior for each of the glass compositions (shown 

in FIG. 5-3) exhibits the superparaelectric behavior typical of a relaxor ferroelectric.  All curves 

have narrow/closed loops with a ≈0 remanent polarization. In all cases, the curves show that K 

remains relatively constant at fields as high as 100kV/cm.   
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FIG. 5-3. Polarization vs. electric field behavior for each glass composition and concentration. 
 

 

 The field-dependent K, shown in FIG. 5-4, was calculated using linear estimations of the 

slopes of the P-E curves; these calculations are equivalent to the low-signal K with a DC bias 

equivalent to the x-axis value.  The dielectric constant values for all liquid phase sintered samples 
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were less than or equal to that of pure 20BZT-80BT. However, K remained above 800 for all 

borate compositions and above 700 for the borosilicate-containing samples at fields of 100kV/cm.  

  

 

 

FIG. 5-4. Dielectric constant vs. electric field plots calculated from the polarization-field behavior 
of each glass composition and concentration. 
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 All samples were able to withstand fields of 100kV/cm without electrical breakdown.  As 

such, estimates of energy density (Ed) of these liquid phase sintered dielectrics were calculated 

from the dielectric constants at 100kV/cm with Equation 5-2: 

Ed=
1
2
ε0KE2                                                                                                                                                                                                                                                  (5-‐2) 

The calculated energy densities (at 100kV/cm field strengths) for pure 20BZT-80BT and all glass 

compositions and concentrations studied are given in Table 5.2.  As expected, pure BZT-BT 

exhibits the highest energy density; however, energy densities above 0.4 J/cm3 were still exhibited 

by the dielectrics sintered with borate glass additions, and above 0.3 J/cm3 for the borosilicate-

containing samples at only 100kV/cm fields.  Based on the observed K-E behavior, application of 

modestly higher field strengths (150-200 kV/cm fields) would likely lead to much higher energy 

densities that approach those of polymer film capacitors (1-2 J/cm3), while still preserving the 

high power density typical of ceramic capacitors.33  This is especially likely for 1v% additions of 

the 30Bi2O3-30ZnO-40B2O3 glass, as the dielectric constant of these samples remained above 

1000 for the 1v% composition at 100kV/cm field strengths. 

 

 

Table 5.2. Energy density estimates for 20BZT-80BT dielectrics with liquid phase sintering 
additives. 

Composition Ed (J/cm3) 
BZT-BT 0.6 
Borate  
1v% 0.5 
2v% 0.4 
5v% 0.4 

Borosilicate  
1v% 0.4 
2v% 0.3 
5v% 0.4 

  



 59 

 5.2.2. Dielectric Modeling.  X-ray diffraction studies were performed on the liquid phase 

sintered samples of each composition and concentration in an attempt to characterize the phases 

contributing to the observed dielectric behavior.  Post-sintering XRD patterns were inconclusive 

for minority phase identification; representative XRD plots for samples with 5v% glass additions, 

shown in FIG. 5-5, showed only peaks corresponding to the cubic BaTiO3 structure. 

 

 

 

FIG. 5-5. X-ray diffraction plots from crushed pellets containing 5v% of each glass and sintered 
at 1000°C. 

 

 

 Previous study of the macroscopic interfaces between these glasses and BZT-BT 

described in Section 3.3.2 suggested that the borate glass reacted with BZT-BT to form 

Aurivillius-type bismuth titanate (such as Bi4Ti3O12, BiT) or barium bismuth titanate phases 

detectable by backscatter SEM and XRD.  The borosilicate glass appeared to form a crystalline 

silicate phase (possibly BaSiO3, Ba2SiO4, or Ba2SiO5) when in contact with BZT-BT.   

 Based on these observations, some initial attempts to model the observed dielectric 

behavior were undertaken.  The Lichtenecker model for discontinuous second phases in a 

continuous primary phase is a simple starting point and a test to see if the measured dielectric 
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performance can be described by the presence of discontinuous glassy or crystalline phase within 

the BZT-BT bulk.   

 The Lichtenecker equation for a two-phase system is: 

ln (K')=V1 ln K1 +V2 ln K2                                                                                         (5-‐3)  

where K’ = the effective dielectric constant of the multiphase material, 

 V1 = volume fraction of Phase 1 

 K1 = dielectric constant of Phase 1 

 V2 = volume fraction of Phase 2 

 K2 = volume fraction of Phase 2. 

  

 For simplicity, the discontinuous second phase is assumed to be either glass, or all 

crystalline, such as Bi4Ti3O12 (K = 100)34 for the borate-containing samples or BaSiO3 (K = 7.9, 

calculated with the Clausius-Mosotti relationship for orthorhombic BaSiO3) for the borosilicate-

containing samples.  The dielectric constants for the glasses and pure 20BZT-80BT were 

measured as follows at ~21°C and 1kHz:  KBZT-BT = 1953; K30Bi2O3-30ZnO-40B2O3 = 37; and  

K50Bi2O3-30ZnO-35B2O3 = 37. 

 Using these values, the volume fractions of discontinuous glass or crystalline phase 

necessary to give the observed dielectric properties at ~21°C are given in Table 5.3.  In all cases, 

the calculated volume fractions are significantly greater than the volume fraction of glass added 

as sintering aids.  Dissolution of BZT-BT grains during reaction with the glasses may account for 

the greater fractions of second phases from the calculations. 
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Table 5.3. Amounts of glassy/crystalline second phase expected from Lichtenecker model 
calculations. 

Composition K VGlass Only VXtal Only 
Borate    
1v% 1600 5% 7% 
2v% 1190 13% 17% 
5v% 1100 15% 19% 

Borosilicate    
1v% 1150 13% 10% 
2v% 1270 11% 8% 
5v% 1270 11% 8% 

 

 

 Modeling was also attempted using brick wall-style calculations developed by Frey and 

Payne for continuous second phases and continuous grain boundary regions of different 

permittivities.5  The volume fractions and thicknesses of continuous glass and crystalline phase 

necessary to generate the observed dielectric properties were calculated using the following 

equations: 

1
K'
=
V1
K1
+
gV2
K2

                                                                                                        (5-‐4)  

where  K’ = dielectric constant of the multiphase material 

 K1 = dielectric constant of the bulk phase 

 V1 = volume fraction of the bulk phase 

 K2 = dielectric constant of the continuous second phase 

 V2 = volume fraction of the continuous second phase 

 g = geometric factor, equal to the fraction of the second phase interrupting electric field 

 passage. 

 

 Values of g are dependent on the bulk phase grain geometry.  Spherical grains correspond 

to g ≈ 1, but a value of g = 0.8 was obtained for BaTiO3-based dielectrics by Payne and Cross.5 
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 The volume fractions of each phase can be calculated from measurements of grain size 

and second phase thickness as follows: 

V1= 1+
d2
d1

-3

                                                                                                        (5-‐5)  

and 

V2=1-V1                                                                                                                                                           (5-‐6) 

where  d1 = width of the bulk phase grains (µm) 

 d2 = thickness of the second phase layer (µm) 

  

 Using these equations, the second phase volume fraction (V2) and second phase thickness 

(d2) of glass and BiT/BaSiO3 corresponding to the observed dielectric constant values were 

calculated; the results are shown in Table 5.4.  SEM measurements on the sintered glass-

containing parts indicated an average grain size of approximately 750 nm, and a value of g = 0.8 

was assumed. 

 

 

Table 5.4. Brick wall model calculations of second phase volume fraction and thickness. 

Composition K 
Glass Only Crystal Only 

V2 (%) d2 (nm) V2 (%) d2 (nm) 
Borate      
1v% 1600 0.5 1 1.5 4 
2v% 1190 1.6 4 4.4 11 
5v% 1100 1.9 5 5.3 14 

Borosilicate      
1v% 1150 1.7 4 0.4 1 
2v% 1270 1.3 3 0.3 1 
5v% 1270 1.3 3 0.3 1 
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 The brick wall model perhaps offers more reasonable second phase volume fractions than 

the Lichtenecker model calculations, but neither model clearly matches up with the volume 

fractions of glass used as liquid phase sintering aids.  The validity of these volume fractions and 

thicknesses cannot be confirmed directly due to limited understanding of the reactions, volume 

changes, and phase formation associated with the borate/BZT-BT interactions during sintering.  

Further study utilizing transmission electron microscopy is needed to characterize the presence, if 

any, of a continuous grain boundary phase/region as a function of initial glass concentration.  

 5.2.3. Summary.  Samples sintered with additions of ≤5v% 30Bi2O3-30ZnO-40B2O3 or 

50Bi2O3-25B2O3-25SiO2 retained the relaxor behavior characteristic of the host BZT-BT, and 

exhibited reduced dielectric constants relative to the pure material.  All samples also exhibited 

high dielectric constants (>700) under applied electric fields of 100kV/cm, suggesting that these 

samples would make useful high energy density dielectrics when subjected to 150-200 kV/cm 

fields.  Simple dielectric modeling using the Lichtenecker and brick wall models did not directly 

explain the dielectric performance characteristics observed based on the observed phases formed 

alone.  
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6. CONCLUSIONS AND FUTURE WORK 

 

6.1. CONCLUSIONS 

 The results of the studies detailed in this thesis indicated that reductions in the sintering 

temperature of 20BZT-80BT dielectrics could be realized through additions of both the 30Bi2O3-

30ZnO-40B2O3 and 50Bi2O3-25B2O3-25SiO2 (mol%) glasses.  Samples produced with 1v% borate 

additions and 5v% additions of either the borate or borosilicate reached relative densities in 

excess of 95% after sintering at 1000°C for four hours, versus 90% relative density for pure BZT-

BT sintered under the same conditions.  Higher densities can likely be achieved through 

optimization of the sintering time/rate at 1000°C, thus allowing these liquid phase sintered 

dielectrics to be produced at temperatures 180°C lower than the 1180°C used currently for pure 

BZT-BT. 

 Additions of the liquid phase sintering aids were accompanied by reductions in the 

dielectric constant as a function of temperature and electric field.  The reduction in K increased 

with increasing glass concentration for the borate glass, whereas additions of the borosilicate 

glass yielded no clear trend in dielectric constant as a function of volume concentration.  All 

samples, however, retained the relaxor behavior of the 20BZT-80BT bulk in the form of large, 

diffuse maxima as a function of temperature, and narrow polarization-electric field loops at field 

strengths as high as 100kV/cm. 

 The energy densities of the liquid phase sintered dielectrics were estimated to be between 

0.3-0.5 J/cm3 for all glass compositions and concentrations.  Higher energy densities were 

achieved by samples with lower glass additions.  Of particular interest are dielectrics with 1v% 

30Bi2O3-30ZnO-40B2O3; samples of this composition achieved relative densities of 96% and 

energy densities of ≈0.5 J/cm3 under electric field strengths of 100kV/cm.  The high sintered 

density of these dielectrics should allow application of higher fields in the range of 150-
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200kV/cm, but could not be tested due to limitations in the electrical testing equipment.  

Increasing in the electric field strength should boost the energy density of these dielectrics into 

the polymer film capacitor range, while maintaining the high power density of ceramic 

dielectrics.  These dielectrics thus show promise for high field, high energy density capacitor 

applications. 

 Study of macroscopic interfaces between BZT-BT and each of the glass additives 

indicated that thin layers (≤10µm) of crystalline phases formed along the interface.  An 

Aurivillius-type bismuth titanate phase (suspected to be Bi4Ti3O12) crystallized during reaction 

between the borate glass and a BZT-BT surface after processing at 700°C.  This phase was likely 

formed through diffusion of Ti from the BZT-BT grains into the surrounding borate glass.  A 

barium silicate phase (likely BaSiO3) crystallized at the borosilicate/BZT-BT interface after 

processing at 800°C, requiring diffusion of Ba out of the BZT-BT and into the glass.  Similar 

phases are expected to be present in the BZT-BT dielectrics sintered with additions these glasses, 

but these phases were not definitively detected and characterized in this study. 

 

6.2. FUTURE WORK 

 A number of important topics and questions developed over the course of this research 

remain unanswered and warrant further study, including: 

• TEM study of grain boundaries in liquid phase sintered dielectrics – Since the presence 

and composition of secondary phases in the grain boundaries of liquid phase sintered 

BZT-BT were not easily characterized, transmission electron microscopy is necessary to 

gain an accurate understanding of the identity and distribution of second phases within 

the grain boundaries and along grain surfaces for purposes of dielectric modeling. 

• Development of a Bi(Zn0.5Ti0.5)O3-BaTiO3 phase diagram – No phase diagram currently 

exists for the BZT-BT binary system.  Development of such a diagram would be useful in 
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understanding the role of Bi excess or deficiency in BZT-BT formation, electrical 

properties, and sintering behavior. 

• Sintering time/heating rate optimization – In these sintering studies, the sintering 

temperature was varied while fixing the sintering time (4 hours) and heating rate 

(5°C/min).  Study of the effects of sintering time and heating rate on densification could 

yield dense liquid phase sintered dielectrics at temperatures below 1000°C. 

• High electric field breakdown strength testing – In general, application of 100kV/cm 

electric fields was the highest achievable field strength due to equipment characteristics 

and sample thicknesses.  Preparation of dense liquid phase sintered samples for statistical 

breakdown strength testing would be useful in determining the maximum sustainable 

electric field strengths for the liquid phase sintered dielectrics.  Knowledge of these 

maximum fields, in turn, would allow better estimation of the highest possible energy 

densities for these dielectrics. 
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APPENDIX: 35Bi2O3-30ZnO-35B2O3 STUDY 

 

 Studies began on the use of a second bismuth-zinc-borate glass composition, 35Bi2O3-

30ZnO-35B2O3 (mol%), as a sintering aid for BZT-BT.  This glass composition was subjected to 

a subset of the analyses performed on the 30Bi2O3-30ZnO-40B2O3 and 50Bi2O3-25B2O3-25SiO2 

glasses. 

 

A.1. GLASS FORMULATION 

 The 35Bi2O3-30ZnO-35B2O3 glass was formulated and processed in the same manner as 

the 30Bi2O3-30ZnO-40B2O3 and 50Bi2O3-25B2O3-25SiO2 glasses described in Section 3.1.  The 

glass was fabricated by stoichiometric mixing and melting of Bi2O3, ZnO, and B2O3 (≥99.0%, 

Alfa-Aesar) in a covered alumina crucible at 950°C for three hours.  Samples for capacitance and 

loss tangent measurements were made by casting molten glass into 10mm diameter steel cylinder 

molds and annealing at 350°C for 30 minutes before cooling to room temperature.  The remaining 

glass was quenched between copper plates.  Both the annealed cylinders and quenched glass were 

transparent, indicating that no macroscopically observable crystallization occurred on cooling.   

 In preparation for distribution of the glass within the 20BZT-80BT, the quenched glass 

was crushed with a mortar and pestle.  The resultant powders were then ball milled for 24 hours 

and attrition milled for 2 hours with stabilized ZrO2 media in ethanol.  Dynamic light scattering 

(Zetasizer, Malvern Instruments) particle size measurements indicated the milled glass particles 

were larger than desired (≥800nm).  Gravitational sedimentation was subsequently employed to 

extract glass particles with diameters smaller than 800nm.  Small amounts of the glass powder 

(<10g) were dispersed in ethanol with 1wt% polyvinylpyrrolidone and added to the top of a 

sedimentation cone filled with ethanol.  After allowing time for particles larger than 800nm to 

settle out (several hours for >10cm sedimentation height, calculated via Stokes’ Law), the 
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supernatant was removed with a syringe and subjected to dynamic light scattering analysis.  DLS 

measurements indicated the average diameter of glass particles in the supernatant was <600nm.  

The supernatant was then dried to allow extraction of the glass particles. 

 

A.2. THERMAL CHARACTERIZATION 

 Differential thermal analysis and in situ wetting angle observations were again employed 

in an abbreviated study of the thermal behavior of the 35Bi2O3-30ZnO-35B2O3 glass itself and the 

interactions between the glass and 20BZT-80BT.  The glass DTA scan and wetting behavior on 

heating of this glass were similar to the behavior of the previously studied 30Bi2O3-30ZnO-

40B2O3 composition, suggesting that many of the interactions between the BZT-BT and the 

30Bi2O3-30ZnO-40B2O3 glass would be similar for this glass composition. 

 A.2.1. Glass Differential Thermal Analysis.  DTA was again used to measure the glass 

transition temperature (Tg), melting temperature (Tmelt) and any crystallization temperatures (Tx) 

on heating of the 35Bi2O3-30ZnO-35B2O3.  These temperatures were used as initial indicators of 

the viability of the glass as a sintering aid for BZT-BT.  A powder sample of the glass fabricated 

in Section A.1 was subjected to differential thermal analysis in a Netzsch STA409 DTA.  The 

sample was placed in an alumina crucible and heated in air to 800°C at a rate of 5°C/min.  (As 

mentioned in Section 3.2, analysis temperatures were limited to 800°C to prevent damage to the 

DTA.) 

 FIG. A-1 shows the DTA curve for the 35Bi2O3-30ZnO-35B2O3 glass, along with the 

curve for the 30Bi2O3-30ZnO-40B2O3 glass for comparison.  The 35Bi2O3-30ZnO-35B2O3 glass 

showed a sharp crystallization exotherm and melting endotherm below 800°C.  Tg was believed 

to be around 385°C, which was lower than the 418°C observed for the compositionally similar 

30Bi2O3-30ZnO-40B2O3 glass.  A crystallization event occurred at 550°C, nearly 70°C lower than 

the Tx observed for the 30Bi2O3-30ZnO-40B2O3 glass.  Melting of the crystalline phase occurred 
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just below the melting temperature of the crystals formed from the 30Bi2O3-30ZnO-40B2O3 glass 

(675°C).  

 Both borate glass compositions lie within the Zn3B2O6-ZnBi4B2O10-Bi3Bi5O12 phase field 

on the Bi2O3-ZnO-B2O3 ternary phase diagram (shown previously in FIG. 3-4), again suggesting 

that a mixture of the three phase field components formed at the observed Tx of 550°C.  As 

before, a more in-depth investigation into these recrystallized phases was not performed.  The 

effect of glass particle size on crystallization behavior was also not investigated. 

 

 

 

FIG. A-1. DTA curves for both borate glasses on heating in air to 800°C at 5°C/min. 
 

 

 A.2.2. In Situ Wetting Angles.  The wetting behavior of the 35Bi2O3-30ZnO-35B2O3 

glass was observed in situ with optical photography in the manner previously described in Section 

3.3.A.  A small piece (approximately 2mm on a side) of glass was placed on top of a sintered 

20BZT-80BT pellet in a tube furnace and heated at 3°C/min to 700°C.  The sample was 
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photographed at regular intervals during heating, and the corresponding sample temperature was 

measured with a Type K thermocouple placed next to the sample. 

 Photographs showing the change in shape of the 35Bi2O3-30ZnO-35B2O3 glass during 

heating are shown in FIG. A-2.  No shape changes occurred on heating to 410°C, but between 

410°C and 500°C, the glass softened, allowing surface tension to reshape the glass into a droplet.  

The droplet spread during heating to 675°C.  Between 675°C and 700°C, the glass reached the 

melting temperature indicated via DTA, and the glass completely covered the pellet surface and 

sides.  Complete wetting of the BZT-BT at/below 700°C confirms that the 35Bi2O3-30ZnO-

35B2O3 could also be a viable sintering aid candidate for BZT-BT. 

 

 

 

FIG. A-2. Photograph series showing wetting behavior of the 35Bi2O3-30ZnO-35B2O3 glass in 
contact with 20BZT-80BT during heating to 700°C. 

 

 

 The sample used for in situ wetting angle observations was destroyed during attempts to 

remove it from the alumina tube, as the 35Bi2O3-30ZnO-35B2O3 glass had fused the sample to the 

alumina surface so well that the sample fractured into multiple small pieces during removal.  As 
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such, ex situ interface observations were not performed for the 35Bi2O3-30ZnO-35B2O3 

glass/BZT-BT interface.  Based on the compositional similarity between the 35Bi2O3-30ZnO-

35B2O3 and the previously examined 30Bi2O3-30ZnO-40B2O3 glass, the formation of a similar 

interfacial crystallization layer of Bi4Ti3O12 was expected to occur during heating and cooling of 

the 35Bi2O3-30ZnO-35B2O3/BZT-BT sample (see Section 3.3.2). 

 

A.3. GLASS/BZT-BT DENSITIES AND MICROSTRUCTURES 

 Half-inch diameter pellets of 20BZT-80BT containing 1, 2, and 5v% 35Bi2O3-30ZnO-

35B2O3 glass were prepared by the same processes outlined in Section 4.1.  Three pellets of each 

concentration were sintered in 20BZT-80BT sacrificial powder beds at 950°C and 1000°C for 

four hours with a heating rate of 5°C/min, based on previous work with the other glass 

compositions that indicated that 1000°C was a useful sintering temperature.  The bulk densities of 

the pellets were again measured by the Archimedes method in kerosene. 

 The bulk densities of the 35Bi2O3-30ZnO-35B2O3-containing pellets sintered at 950°C 

and 1000°C are shown in FIG. A-3.  All volume concentrations of the 35Bi2O3-30ZnO-35B2O3 

yielded sample densities above the 90% relative density of the pure 20BZT-80BT sintered at 

1000°C for four hours.  Of particular interest is the 1v% 35Bi2O3-30ZnO-35B2O3 composition, 

due to its high density (>95%) and minimum level of additional phases that would likely reduce 

the dielectric constant of the 20BZT-80BT.   

 Due to compositional similarity with the 30Bi2O3-30ZnO-40B2O3 glass, the formation of 

a bismuth titanate-type crystalline phase was expected at the interfaces between the 35Bi2O3-

30ZnO-35B2O3 glass and BZT-BT grains.  This crystalline phase would likely have melted below 

1000°C, as detailed previously in Section 4.1; melting of the crystalline phase would enhance the 

densification of the BZT-BT dielectric by either removing barriers to matter transport or by 

simply contributing additional liquid phase to the sintering process.  As such, the high sample 
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densities after sintering at 1000°C for four hours matched well with previous results for the 

borate-containing samples. 

 As with the 30Bi2O3-30ZnO-40B2O3- and 50Bi2O3-25B2O3-25SiO2-containing samples, 

pellets containing 2v% of each glass were the least dense of any of three glass concentrations.  

This trend was, as before, possibly the consequence of the 5v% composition lying in a different 

phase field on the BZT-BT + Bi-Zn-borate phase diagram.  Since no such phase diagram exists, 

however, this explanation cannot be confirmed. 

 

 

 

FIG. A-3. Bulk densities of 35Bi2O3-30ZnO-35B2O3-containing pellets after sintering at 950°C 
and 1000°C for four hours. 

 

 

 Microstructural imaging of the sample containing 5v% glass after sintering at 1000°C 

was performed with secondary and backscatter electron imaging, as shown in FIG. A-4.  As with 

the samples containing 5v% 30Bi2O3-30ZnO-40B2O3, the sintered parts appeared to be dense, 
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though the occasional pore or grain pullout site can also be observed (FIG. A-4a).  Backscatter 

electron imaging (FIG. A-4b) shows the typical mottled grain contrast characteristic of 20BZT-

80BT, along with high-Z (bright) regions attributed to the expected BiT second phase. 

 

 

 

FIG. A-4. (a) Secondary and (b) backscatter electron imaging of a 20BZT-80BT sample 
containing 5v% 35Bi2O3-30ZnO-35B2O3 sintered at 1000°C for four hours. 

 

  

 Secondary phases were not detected by x-ray diffraction studies (Philips PANalytical 

X’Pert Pro).  The XRD pattern for the 5v% glass sample, shown in FIG. A-5, showed only peaks 

corresponding to the cubic perovskite structure. 
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FIG. A-5. Cubic perovskite XRD pattern of 20BZT-80BT + 5v% 35Bi2O3-30ZnO-35B2O3  
 

 

A.4. DIELECTRIC CHARACTERIZATION 

 The BZT-BT dielectrics sintered with additions of the 35Bi2O3-30ZnO-35B2O3 glass 

were expected to make useful high energy density dielectrics, since sintering at 1000°C for four 

hours yielded dielectrics with ≥93% relative densities.  Based on similar results for BZT-BT 

sintered with the 30Bi2O3-30ZnO-40B2O3 and borosilicate glasses, these dielectrics were 

expected to operate at electric field strengths of 100kV/cm or higher. 

 A.4.1. Glass Dielectric Properties.  The dielectric properties of the base glass were 

characterized for use during dielectric modeling calculations.  A transparent 10mm cast cylinder 

of 35Bi2O3-30ZnO-35B2O3 glass was cut with a diamond saw and polished to a 0.25µm surface 

finish using SiC paper and diamond suspensions.  Colloidal silver electrode paste (Ted Pella, 

Inc.) was brushed onto the disk faces prior to measurement.  Capacitance and loss tangent values 

were measured with an Agilent 4194 Impedance/Gain Phase Analyzer from 100Hz to 100kHz.  

The dielectric constant was then calculated from the sample dimensions and capacitance 

measurements. 

 The 35Bi2O3-30ZnO-35B2O3 dielectric constant and loss tangent was nearly frequency-

independent over the measured frequency range.  A dielectric constant of 30 was calculated for 
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the glass, while the loss tangent was measured below 0.002.  This value is lower than the 

dielectric constant calculated for the 30Bi2O3-30ZnO-40B2O3 glass (K = 37), but is closer to the K 

values reported for similar glasses in the Bi2O3-ZnO-B2O3 system by Kim, et al.25 

 A.4.2. BZT-BT/Glass Dielectric Behavior.  Pellets sintered at 1000°C for four hours 

with 1,2, and 5v% 35Bi2O3-30ZnO-35B2O3 additions were polished, coated with sputtered Cr/Au 

electrodes on the flat surfaces, and subjected to dielectric measurements in the manner described 

in Section 5.2.1.  The temperature-dependent capacitance and dissipation factor were measured in 

a Thermotron environmental chamber using an HP4284A LCR meter with a 1V oscillator 

magnitude.  Polarization-electric field behavior was measured at a frequency of 1Hz using a 

Radiant Technologies Precision Workstation connected to a Trek 10kV amplifier. 

  Dielectric constant and loss tangent values for the 1, 2, and 5v% 35Bi2O3-30ZnO-

35B2O3 glass concentrations measured at 1kHz from -55°C to 170°C are shown in FIG. A-6.  

 

  

 

FIG. A-6. Dielectric constant/loss tangent measurements as a function of temperature for 1, 2, and 
5v% additions of 35Bi2O3-30ZnO-35B2O3 glass. 
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 The diffuse dielectric constant maximum typical of relaxor behavior was again observed 

for samples containing all concentrations of the glass.  As with the 30Bi2O3-30ZnO-40B2O3 glass, 

increasing additions of the 35Bi2O3-30ZnO-35B2O3 led to larger reductions in dielectric constant.  

Above Tm, the loss tangent values were again below 0.01. 

 The diffuseness of the dielectric constant maximum (δ) was calculated by performing a 

least squares regression fitting the measured 1kHz data in terms of 1/K versus (T-Tm)γ to the 

relaxor power relation detailed by Uchino and Nomura:32  

1
K
=
1
Kmax

+ 
(T-Tm)

γ

2Kmaxδ
γ         (1  ≤ γ ≤  2)                                                                                                                                                     (A-1) 

The fit parameters γ and δ are listed in Table A.1 for 20BZT-80BT sintered with no glass, and 1, 

2, and 5v% additions of the 35Bi2O3-30ZnO-35B2O3 glass.  The similarity of the γ and δ values 

between the glass-containing samples, the pure 20BZT-80BT, and the 30Bi2O3-30ZnO-40B2O3- 

and borosilicate-containing samples studied in Section 5.2.1 showed that the additions of the 

glass (and whatever phases form through glass-BZT-BT reactions during sintering) merely 

decreased the dielectric constant values without altering the relaxor behavior of the BZT-BT.  

The large values of δ (227-256) indicated that the dielectric constant maximum was highly 

diffuse, leading to good temperature stability of K between Tm and 170°C. 

 

 

Table A.1. Fitted parameters γ and δ for each glass concentration. 
Composition Tm (°C) Kmax γ δ 

BZT-BT 54 2090 1.63 256 
35-30-35     

1v% 63 1580 1.66 241 
2v% 70 1440 1.59 233 
5v% 72 1250 1.61 227 
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 The polarization-field behavior for all concentrations of the 35Bi2O3-30ZnO-35B2O3 

glass is shown in FIG. A-7.  The loops for samples containing 1 and 2v% glass exhibited near-

zero remanent polarizations, whereas the 5v% sample loop captured some loss area.  The curve 

slopes for all samples are less than the pure 20BZT-80BT, reflecting the lower dielectric 

constants of the glass-containing samples.  Minimal saturation occurred up to 90-100kV/cm. 

 

 

 

FIG. A-7. Polarization-electric field curves for BZT-BT samples containing 1, 2, and 5v% 
35Bi2O3-30ZnO-35B2O3 glass. 

 

 

 The field dependence of the dielectric constant was calculated as a function of electric 

field strength using linear estimations of the local P-E curve slopes.  These K versus E curves, 

shown in FIG. A-8, were similar in shape to the K-E curves calculated in Section 5.2.1 for 

samples containing the 30Bi2O3-30ZnO-40B2O3 and 50Bi2O3-25B2O3-25SiO2 glasses.  As before, 
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the dielectric constant values of the glass-containing parts were below those of the pure BZT-BT.  

The 1 and 2v% compositions maintained K values above 1000 up to 90kV/cm field strengths. 

 

 

 

FIG. A-8. Electric field-dependent dielectric constant values of 20BZT-80BT samples containing 
1, 2, and 5v% 35Bi2O3-30ZnO-35B2O3. 

 

 

 The energy densities of these liquid phase sintered dielectrics were again estimated and 

compared to pure BZT-BT for applied fields of 100kV/cm using Equation (A-2): 

Ed=
1
2
ε0KE2                                                                                                                                                                                                                                  (A-2) 

The estimated energy densities for the 35Bi2O3-30ZnO-35B2O3-containing dielectrics are listed in 

Table A.2.  As expected, the pure BZT-BT dielectrics exhibited the highest energy density, but all 

of the liquid phase sintered dielectrics maintained energy densities above 0.3 J/cm3.  Of particular 

interest is the 1v% glass composition, which reached nearly full density after sintering at 1000°C 

for four hours while also having an energy density of 0.5 J/cm3 at 100kV/cm field strengths.  As 
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with dielectrics sintered with the other glass compositions, increasing the field strength to 150-

200kV/cm would likely boost the energy densities of these dielectrics into the polymer film 

capacitor range, while maintaining the high power density of ceramic capacitors (see Section 

5.2.1).  BZT-BT dielectrics sintered with ≤5v% additions of 35Bi2O3-30ZnO-35B2O3 are thus 

believed to be viable candidates for high field and high energy density capacitor applications. 

 

  

Table A.2. Energy density estimations for BZT-BT dielectrics sintered with 35Bi2O3-30ZnO-
35B2O3 additions. 

Composition Ed (J/cm3) 
BZT-BT 0.6 
35-30-35  

1v% 0.5 
2v% 0.4 
5v% 0.3 

 

 

 A.4.3. BZT-BT/Glass Dielectric Modeling.  Dielectric modeling was performed for 

BZT-BT sintered with additions of the 35Bi2O3-30ZnO-35B2O3 glass using the Lichtenecker 

model for discontinuous second phases and the brick wall model developed for continuous grain 

boundary phases.  The amounts of second phase required to generate the observed dielectric 

properties at room temperature were calculated using the processes outlined previously in Section 

5.2.2.  For simplicity, the second phase was assumed to be either all glass (K = 30) or all 

crystalline Bi4Ti3O12 (K = 100).34  

 The discontinuous second phase amounts calculated from the Lichtenecker model are 

listed in Table A.3.  The trend of increasing second phase amounts matched the trend of 

increasing glass additions, but the amounts of second phase were significantly higher than the 

amounts of glass actually added to the BZT-BT as a sintering aid.  The elevated second phase 
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concentrations could be explained by the glass dissolving some amount of the BZT-BT during 

sintering, but, as before, this explanation cannot be confirmed from the present results alone. 

 

 

Table A.3. Discontinuous glassy/crystalline second phase volume fractions expected from 
Lichtenecker model calculations. 

Composition K VGlass Only VXtal Only 
35-30-35    

1v% 1480 7% 9% 
2v% 1340 9% 13% 
5v% 1150 13% 18% 

 

 

 The second phase volume fraction and layer thicknesses calculated with the brick wall 

model for continuous grain boundary phases are given in Table A.4.  As with the Lichtenecker 

model calculations, the trend of increasing expected second phase volume fraction followed the 

general increase in glass additions prior to sintering, but does not directly match the amounts of 

glass added as a sintering aid. 

 

 

Table A.4. Expected continuous glassy/crystalline second phase fractions and thicknesses 
calculated with the brick wall model. 

Composition K 
Glass Only Crystal Only 

V2 (%) d2 (nm) V2 (%) d2 (nm) 
35-30-35      

1v% 1480 0.6 2 2.2 6 
2v% 1340 0.9 2 3.2 8 
5v% 1150 1.4 3 4.8 12 

 

 

 Given that neither the Lichtenecker nor brick wall model second phase amounts 

correlated directly with the amount of 35Bi2O3-30ZnO-35B2O3 glass added to the BZT-BT prior 
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to sintering, some additional study is needed to experimentally characterize the second phase 

amounts and distributions in the sintered dielectrics.  TEM analysis is ideally suited for 

determining if a continuous second phase resides in the grain boundaries, and, if so, for 

characterizing the second phase composition and thickness. 

 

A.5. SUMMARY 

 Although dielectric modeling was inconclusive in terms of accurately describing the 

distribution and volume fraction of a lower-K second phase in the liquid phase sintered BZT-BT, 

this abbreviated study nonetheless illustrated the utility of the 35Bi2O3-30ZnO-35B2O3 glass as a 

sintering aid for 20BZT-80BT.  Sintering at 1000°C for four hours yielded dielectrics with useful 

relative densities (≥93% of the theoretical density of 20BZT-80BT), representing a ≥3% absolute 

density improvement over 20BZT-80BT sintered under the same conditions.  As with the 

previously studied glass compositions, these liquid phase sintered dielectrics exhibited broad 

maxima in dielectric constant as a function of temperature with a relatively temperature-stable 

dielectric constant.  The dielectric constant also remained high (>500) at applied electric field 

strengths of 100kV/cm. 

 The 1v% 35Bi2O3-30ZnO-35B2O3 composition shows particular promise for high field, 

high energy density applications, as the composition reached the highest relative densities of any 

of the glass compositions and concentrations studied (above 96%) while maintaining high 

dielectric constant values as a function of field strength and temperature.  The energy density of 

these dielectrics was estimated at 0.5 J/cm3 at only 100kV/cm field strengths; application of 

stronger electric fields would, as before, likely increase the energy density to values competitive 

with polymer film capacitors. 
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