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ABSTRACT 

Infrared reflectivity measurements have been made on 

single crystal CdS. Classical dispersion analysis has been 

used in an analysis of the data to obtain the index of 

refraction, the extinction index, and the dispersion para­

meters. These are compared with previously published 

results. The procedure used in this analysis has been out­

lined for future reference. 

Also, the shallow donor impurity theory has been used 

to numerically calculate the d+l levels for Si and Ge. The 

theory is extended for the case of the impurity in the bulk 

semiconductor and the d 0 , d+ 2 and, for high n, the s, p 0 , 

and p+l levels are found. Generalized energy equations, 

trial wave functions, effective Bohr radii, and some relative 

electric-dipole transition probabilities are given. 

In addition, the longitudinal optical phonon-plasmon 

interaction theory of Varga is compared with experiment for 

several concentrations of Ga doped CdS. Phonon damping is 

introduced in the Varga dielectric function resulting in a 

more realistic reflectivity over the entire resonance reg1on. 

Finally, transmittance measurements have been made on 

"Cer-vit" glass-ceramic between 0.1920 and 1200 micrometers. 

The index of refraction is calculated from the observed 

channel spectra in the region between 200 .and 1200 micro­

meters. 
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FAR INFRARED OPTICAL CONSTANTS 

IN CADMIUM SULFIDE 
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I. INTRODUCTION 

Classical dispersion analysis is commonly used as a method for deter-

mining the optical properties of non-conducting materials in the region of their 

absorption bands and has been defined(!)~ in general, as 11the full specification 

of the oscillators required to give agreement with reasonably accurate optical 

data extending over some wavelength range. fl The main results of such an 

analysis are a determination of the optical constants of the material. These 

2 

are the index of refraction,n , and the extinction index, K, which are, respectively, 

the real and imaginary parts of the complex index of refraction n = n . + iK. 
c 

The extinction index, K, is a measure of the absorption of incident radiation 

with the depth of penetration, x, in the material. It is related to the absorption 

coefficient, a, by the relation a = 47TK/A. which appears in the exponential law 

of absorption(2) Ix = r0e -ax and A. is the wavelength in vacuum. The theory 

to be developed will show that in the region of absorption resonances, n and K 

are not constants, as their title implies, but are rapidly varying functions of 

wavelength. The purpose of this study is the determination of these optical 

constants for cadmium. sulfide in the region of its main infrared absorption 

-1 -1 
band, 200 em -- 480 em . 

Because of the complex nature of this type of analysis, it is not very 

practical without the use of high speed computers. Consequently, little work 

was done in this area until a few years ago when the necessary computers 

became available. However, the validity of this form of analysis was demon­

strated quite some time ago by the work of Czerny(l) on NaCl. More recently, 
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dispersion analysis has been applied to SiC(3), Zn0(4), GaP(5), MgF 2 and 

ZnF 2 (
6), BN and BP(7), quartz(!), and CdS and ZnS(S). Verleur and Barker(9), (lO) 

have performed a similar type analysis on GaAs P1 and CdSe s1 alloys 
y -y y -y 

using a harmonic oscillator model developed to account for the significant 

features of the spectra of those particular alloys. 

The dispersion analysis, by itself, yields the values of four dispersion 

parameters which are then used to obtain the optical constants. These parameters; 

the resonance frequency (w rrl· the resonance strength (p), resonance width (r), 

and low frequency dielectric constant ( E 0) are determined by a curve fitting 

procedure which involves the trial and error adjustment of the four parameters 

until the dispersion theory best fits the reflectivity data. The curve fitting 

procedure will be explained and the resulting optical constants and dispersion 

parameters compared with those obtained by Balkanski(S) and Collins(ll). 
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II. THEORY 

Classical dispersion theory evolves from a consideration of the motion 

of a single elastically bound electron of an atom in a lattice and which has a 

resonant frequency w T" It applies equally well to the modes of vibration in an 

ionic crystal which has some degree of ionicity, such as CdS. The remainder 

of the theoretical development will be presented in this context. The motion 

to be considered is caused by some incident electromagnetic radiation which 

is assumed to be monochromatic and plane with frequency w • The electric 

field at the ion sites can be expressed in complex notation as 

.- -- -iw t 
E = E 0 e (1) 

so that the driving force causing the motion of the ions is represented by 

-- ... -iwt 
F = -e E e 

0 
(2) 

Even though the electric and magnetic fields of the incident radiation are .. --equal in magnitude, the force due to the magnetic field (-e S x B)/Cis neglected 

because the ion velocity is very small in comparison to the velocity of light. -The value S will be considered as the displacement distance of an ion from its 

equilibrium position. 

The other forces considered as acting on the ions are an elastic force 

--2.-~o. dS 
of Hooke's law type. -mw T S, and a viscous drag force, -mr dt due to the 

effect of neighboring ionic charges on the motion of the ion. Combining these 

forces results in a differential equation of motion 

.... 
dS 2.- e-- -iwt 

= - r dt - w T S - m E 0 e (3) 



which has been divided through by m, the reduced mass of the ionso 

so that 

Assuming a solution of the form 

..- -- -iwi. 
S = S e 

0 

--dS -- -i w-t --= -iwS0 e = -iwS 
d·t 

2- -iwt 
- -w s0 e 

2-= -w S 

and substituting into the equation of motion gives 

_.. 
-(e/m) E 0 

2 2 _ r> 
(wT - w - lW 

The solution of Maxwell's equations for monochromatic plane waves 

existing in a homogeneous medium (l2) yields an equation 

2 
il.c 

• 41f' p.a = E:JL + 1_..___ 
w 

where JL is the magnetic permeability, e is the dielectric constant, a is the 

conductivity, and n is the complex index of refraction defined by ,c 

n = n +iK 
c 

5 

(4) 

(5) 

(6) 

(7) 
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with n the refractive index and K the extinction index. 

For all non-magnetic media at very high frequencies, the electric 

field has a much greater effect than the magnetic field so the magnetic per-

meability will be taken as unity. By considering a non-conducting medium, 

the conductivity can be considered as zero, so that the second term in equation 

(6) is eliminated. This results in 

= (8} 

with E compleat. 

An e:xpression for € is given (12} as 

E = 1 +41l'Na (9) 

where N is the number of ionic dipoles per unit volume and a is the polariza-

bility. The value of the high frequency dielectric constant, E 00 is taken as one 

here since E - 1 as w- oo • However, at ultraviolet and visible light frequen-

cies, the core electrons respond to incident photons and make a contribution. 

It is customary to add this core electron contribution and label the resultant 

€ giving 
00 

E = E +41l'Na (10} 
00 

it s~d be pointed out :bere that several (l), ( 3), (S) of the papers in the 

field speak of the dielectric constant in terms of wavelength and, therefore, 

use E 00 as the low frequency or static dielectric constant and € 0 as the high 

frequency dielectric constant. 

N th d-t ..... 1~ t_...P. • b (14) ow, . e. ....._.,Q.-.. m.QiBlen: l.S g~.ven . y 



~ --p =a E 

and the dipole moment of the ionic pair(l3) is 

-- --p = -es 

Comparison of equations (11) and (12) results in 

...... 
Substituting the value of S, found as a solution of the equation of motion, into 

equation (13) gives 

2 -e /m a = ~~~----------
2 2 

w -wT +iT'w 

Combining equations (8), (10), and (14) yields 

2 
_ { 4 "7" Ne )/m 

2 2 . 
w -wT +1rw 

or, using equation (7) 

2 2 . 2 n - K +1 .nX 
2 

(4'7TNe )/m 
2 2 

w -w +i rw 
T 

7 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Separating the expression on the right into its real and imaginary parts results 

in 

2 2 . 2 n _- -K +1 n.K 
2 2 2 

_ (47rNe /m) (w · - wT ) 

2 2 2 2 2 
(w - wT) +r w 

2 
i(47T Ne r,,,/m) 

+ 2 22 22 
<w -wT) +r w 

(17) 

Equating real and imaginary parts and rearranging results in 



.2 K2 
n -

2 2 2 
(47rNe /mwT ) [1- (cd w~ ] · 

2 2 
(47rNe /mwT) (wlwr_r> <rlw-.r> 

2hJK = ----------2~2--------2------~2-
[ 1 - (w!w ~ ] + (f' lw rr> (wlw rr> 

The oscillator strength,p, is given by 

2' 
Ne 

p = ---2 
mwT 

8 

(18) 

(19) 

{20) 

Tbis p differs from the expression given by Spitzer, Kleinman, and Walsh (3) 

by a factor of l/411" 2 because they used a coefficient of 21rmrinstead of mr in 

the viscous drag term in the equation of motion. According to them 

E = E + 41fX 
0 00 

(21) 

and 

(22) 

where X is the susceptibility. In the limit as w goes to zero, X goes to p so 

that 

€ =€ +47rp 
0 00 

(23) 

Equations (18) and (19) can. how be written 

(24) + . 2 2 2 2 
[ 1- (w!wr_r> ] + {r lwrr> (w/w~ 



2nK = 
2 2 2 2 

[ 1- (wlwrr> ] + (I'!wrr> (wlwr:r> 

Now let 

A = E 00 + 2 2 2 2 
[1- (w/w ~ ] + (r !w rr> (w/w rr> 

B = 2 2 2 2 
[ 1-(wlw.J] +(r!wrr> (w!wrr> 

and solve for n and K in terms of A and B 

then 

n·2-~ = A 

n ·K = B 

n = B/K 

(B/K)2- K2 .;: A 

K4+~-B2 = 0 

2 
K 

= -A +(A 2 + 4B2)1/2 

2 

2 
n._ 

2 
=A +K 

The sign of the radical is taken as positive so that K will be positive. 

9 

(25) 

(26) 

(27) 

(28) 

(29) 

Values of A and B can be obtained for a range of frequencies by guessing 

values of E 0 , w 0, and r withE 00 being taken from available literature. From 

these values of A and B, the optical constants, n and K, can be calculated. 

The reflectivity at (14) normal incidence 

•• < 2 2 
R = (. J:l - K) + K 

2 2 
(n+K) +K 

(30) 



over the range of frequencies can now be calculated and compared to experi­

mental values of reflectivity in the sam.e range. The dispersion param.eters 

are successively adjusted until the best fit of the calculated reflectivity to 

experimental reflectivity is obtained. 

10 
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m. EXPERIMENT AND RESULTS 

A single crystal of high purity cadmium sulfide was polished by standard 

optical polishing procedures with the c-a.xis perpendicular to the polished sur-

face. 

Reflectivity measurements were made at room temperature at near 

normal incidence from 200 em -l to 480 em -l with a Beckman m-12 spectro-

photometer. The sample compartment was purged with dry air to eliminate 

the atmospheric water vapor absorption bands. The reflectivity of a highly 

polished sample of bulk aluminum was measured for use as a reference since 

aluminum has a reflectivity of 96% (2) in this region. Both of these measure-

ments were made with unpolarized radiation. 

A computer program was developed to perform the trial and error 

variation of the dispersion parameters necessary to fit the dispersion theory 

to the cadmium sulfide reflectivity data, which was adjusted to the aluminum 

reflectivity as a reference. This program is given in Fig. I. 

The treatment of dispersion analysis given is only for plane electro-

magnetic waves which are transverse so the resonant frequency, UT' of the 

ion refers to the transverse optical phonon resonance. This is pointed out by 

Kittel(l5), who also shows, by an analysis of the real part of the dielectric 

constant, the existence of a forbidden frequency region 

2 2 
WT (;W<WL 

where w L is the upper bound of the f~rbidden band of frequencies and is the 



longitudinal optical phonon frequency. This treatment leads to the Lyddane­

Sachs-Teller relation (lG) 

~= 
wL2 

E (oo) w 2 
T 

12 

(31) 

which is useful in determining a starting value of E 0 for the dispersion analysis. 

The value wT can be estimated quite closely as the steepest point on the long 

wavelength side of the reflectivity curve. The value of w L can be estimated 

as the value of w where the experimental reflectivity goes to zero. The value 

of E can be obtained from the literature or from reflectivity data in a high 
00 

frequency region where there is no absorption for which K goes to zero so 

that 
1/2 

E = n (32) 
00 

. 2 
and R ~ - li - ll 

( .n + 1)2 
(33) 

Other criteria for the initial determination of the dispersion parameters 

are given by Spitzer, Kleinman, and Walsh. (3) 

A value for E of 5. 2 was obtained(l7) from the work of Piper and Mar-
00 

ple. (IS) Values of E 0 and w T were estimated using the procedure outlined 

above. A value for r was picked at random and tried. Since the values of 

E 
00

, E 0 , andw T were considered to be fairly accurate, the value of r was 

varied by itself to determine its effect on the theoretical curve. It was found 

that the value of r had the effect of varying the height of the !eflectivity peak 

as well as the halfwidth of the peak. As the value of r was decreased below 
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a certain range of values, it was found to have very little further effect on the 

peak maximtun. value but still caused changes in the halfwidth. A final value 

of r = 4. 0 em -l was chosen to best fit the halfwidth of the experimental data. 

In all cases, the calculated reflectivity peak was less than the experimental 

peak. 

The initial value of wT chosen was 242 em -l which was quite accurate 

-1 
and was used throughout the analysis. It agrees with the value of 241 em 

of Balkanski, et. al.. (S), 241 em - 1 by Gollins(ll) and 242 em -l by Tell, Da:men, 

and Porto (19) using Raman techniques. 

The initial value of EO was found to be a little high and was finally 

adjusted to a value of 8. 2 7. As might be e::xpected from the theory, changing 

the value of E 0 , changes the position of the reflectivity minimum. with smaller 

values moving the mi:nim.mn toward smaller wavenumber or longer wavelength. 

This value of E 0 = 8. 27 is somewhat lower than the value of 8. 6 of Balkanski 

and 9. 3 of Collins. 

It should be pointed out that the value of E 00 = 5. 2 was not varied and 

is lower than the values reported by Balkanski, Collins, and Verleur and 

Barker. (IO) It is suggested, that if further work is done in this area, that the 

value of E 00 also be adjusted to determ.ine its ,effect on the data fit. 

As a further attempt to better fit the data, a computer program was 

written for a system using two harmonic oscillators instead of one. It was 

not considered as successful in this case because the fit obtained was not any 
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better than that using the single oscillator model. The best fit to the data 

using the double oscillator model was obtained with the resonant frequencies 

quite close together indicating the liklihood of only one oscillator. 

The fit obtained between the reflectivity data and the theoretical curve 

is shown as Fig. 2 and the resulting curves of n and K are given as Fig. 3. 

The general shape of the curves closely approximate the results of Balkanski, 

et. al. (S) 

It is seen that the data fit near the peak of the resonance is not very 

accurate. In fact, the shape of the two peaks are somewhat assymetric. An 

effect of this nature has been explained by Kleinman and Spitzer(5) as being 

due to the polishing of the reflectivity surface. They speculate that the 

polishing of the surface in some way damages the crystal surface so that the 

reflectivity observed is not the reflectivity characteristic of the bulk material. 

The effect of etching after polishing is seen to change the shape to more gener-

ally coincide with the shape of the theoretical peak. 

As a final note, it should be stated that the values of n and K should 

be obtained from equations (28) and (29). If the value of n is obtained from the 

relation n = B/K, it is found to be very erratic because the values of K are,. 

in general, so small that the computer program. becomes quite inaccurate. 



c SINGLE RESONANCE .CADMIUM SULFIDE ~ . 

DOUBLE PRECISIDN · GAMMA,GNU,Sl,ART, WAVE,DWAVE, 
* RATIO, ANT, BILL, CAT, DOO, FIGHT, A, B, CAYSQR, ENSQR, 
* CAY,EN,R,DSQRT ,ElNF, EDIFF, EZERO 

ElNF=5. 2 
EZER0=8.27 
EDIFF=(E ZERQ-ElNF) 
GAMMA=4. 
GNU=242. 
Sl=GAMMA/GNU 
ART=Sl*Sl 
WAVE=200o 
DWAVE=5. 
DO 1 I=l,lOl 
RATIO=WAVE/GNU 
ANT=RA TIO*RA TIO 
BILL=l. -ANT 
CA T=BILL*BILL 
DOG=ANT*ART 
FIGHT=CAT+DOG 
A=ElNF+( ( BILL*EDIFF)/FIGHT) 
B=(EDIFF*RA TIO*S1)/FIGHT 
ENSQR=(A-fDSQRT(A*A+B*B))/2 
EN=DSQRT(ENSQR) 
CAYSQR=(DSQRT(A*A-f-4. *B*B))/2 
CAY=DSQRT( CA YSQR) 
R=(ENSQR-2. *EN +L +CA YSQR/ 

* (ENSQR+2. *EN+l. +CAYSQR) 
WRITE (3,100)WAVE,R,EN, CAY 

1 WAVE=WAVE+DWAVE 
STOP 

100 FORMAT(F6.1, 3FIO. 6) 
END 

/DATA 

Figure 1: Computer Program for Classical Dispersion Analysis 
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I. INTRODUCTION 

In a recent article by Levine (l)the shallow donor impurity problem was 

theoretically treated for the case for which the impurity is located at the semi-

conductor surface. In Levine's theory it is assumed that the work function is 

infinite compared to the impurity ionization energy, that the Bloch functions 

hold right to the surface and that the ion is exactly at the clean surface. The 

principal results for the surface problem obtained by Levine are that a state 

cannot exist unless 1 + m is an odd integer and that both 1 and m must differ by 

+1 in an electromagnetic transition. 1 and mare respectively the "orbital" and 

nmagneticn quantum numbers in the hydrogenic-like approximations. For the 

case of the impurity nuclei at the semiconductor surface, one then finds that 

the ground state becomes the 2p level since no s levels can exist. Also the 
0 

first states to which a transition might be observed in absorption are the 3d+l 

and 4d+l states. 

As part of an experimental program of studying the energy level struc-

ture for shallow donor impurities when the nucleus is at the surface, the d+l 

level values are calculated for silicon and germanium. The trial wave function 

is given, and some of the details of the variational calculation are presented. 

Another shallow donor problem is to extend the calculation of the eigen-

values of p 0 and p +l levels for the case when the impurity is in the bulk semi­

conductor. Recent infrared experiments (2)(3)(4)have located the 4p , 5p , 
0 0 

4p +l, and 5p +l levels and it is of interest to see the comparison between 

experiment and theory for these levels. 
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Also these recent experiments have shown some weak transitions which 

as yet have not been accounted for. (S), (4) An attempt to correlate these lines 

with the first order forbidden ls to d , d 1, and d 2 levels seemed worthwhile 
0 + + 

in light of the fact that Is to 2s transitions have been observed(3) though· those 

transitions are also forbiddeno 



II. TRIAL WAVE FUNCTIONS, ENERGY EQUATIONS, 
AND TRANSITION PROBABILITIES 
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Much work in the mid 1950's was done by Kleiner, (5) Lampert, <6>, Kohn 

and Luttinger, (7) Kittel and Mitchell{B) and by Kohn(9 ), (lO) on the choice of trial 

wave functions for the bulk shallow donor :impurity problem. The work culminated 

when Lampert, (6) Kleiner(S) and Kohn(IO) gave for the Is state the trial function 

2 1/2 2 2 2 2 2 1/2 
'lr = (A B/7r} exp (-[A (x +y) +B z ] ) (1) 

for the anisotropic effective mass problem. This was given as a trial function 

to be compared with an isotropic effective mass wave function (ll) of 

3 1/2 
'lr = (lhr a ) e:xp (-r/a ) 

0 0 
(2) 

In these equations 1/ A and 1/B are two constants- Heffective" Bohr radii 

- to be determined from variational calculations (IO) and a is the Borh radius. 
0 

However, the details of the variational calculation itself were left out of press. 

For the excited state problems Br0wn, Kleiner, and Lax(l2) reported at Cam­

bridge, Massachusetts meeting some information and Lax(l3) later gave in print 

an indication of the form of the trial functions. Since these normalized wave 

functions are not completely and explicitly set down anywhere with the normal-

izing constants it seems worthwhile to give some exam.ples in Table I. In obtain-

ing the trial functions the following substitutions in the isotropic mass hydrogen 

atom wave functions were made: 

(3) 



in the normalization and in the functional variation: 

r 2 2 2 2 ;] 112 
r/a0 =LA (x + y ) + B z J 

(r/a ) sin e cos cp = xA 
0 

(r/a ) sine sin¢= yA 
0 

(r/a ) cos 0 = zB. 
0 

One point which is important is that these trial functions are normalized. 
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(4) 

(5) 

(6) 

(7) 



State 

ls 

2p 
' 0 

3d 
0 

Table 1 

Sample Trial Wave Functions 

Trial Wave Function, [ •.. ] = [ p 2 A 2 + z2 B 2 ] 

A2 B l/2 1/2 
(-} exp { - [ .•. ] } (a) 

7f 

A 2 B 1/2 1 1/2 
(-- ) zB exp { - -2 [ ... ·] } 

32 7f 

2 
A B 1/2 . ) A . 1 [ ] l/2 ( 647r ) (X + lY exp { - 2 . . • } 

A 2 B 1/2 2. 2 2 [ . { _ 13 [ ••• ] 1/2 } 
( G1r{Sl)) { 3B z - •.• ]} exp 

2 
( A ~ ) l/ 2 (x _:t iy) AzB exp { - ~ [ ... ] 1/ 2} 

(81) 7f 

25 

A 2 B 1/2 2 2 2 . 2 . 1 1/2 
( ) { (x - y ) A _ + 1 (2xy) A } exp { - 3 [ .. ·] } 

(162)2 7T 

(a) See reference {6) 
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m. CALCULATION OF THE 3d +l EIGENVALUE 

From Table 1 it is seen that the trial function for the 3d +I level can be 

written as 
.· . J/2 

ir = (A 2B/ (81) ~ )l/2 (zB) (x + iy)A eX}) t - [~ } (8) 

The normalization for all A and B was proved by making the substitutions 

2 2 2 l/2 
p' = pA = {(x + y ) A ) = R sine (9) 

and · 

Z 1 = zB = R cos (} (10) 

(after having noted the cylindrical symmetry in "'ll*'f!), letting 

dp' d z' = Rdr de~ (11) 

and noting that the limits on (} are zero and 1r (not 27r). Effectively, one needs 

integrate only in the upper half plane. 

To obtain the eigenvalues, the trial wave function in rectangular coor­

dinates was operated on by the Hamiltonian (IO) 

i 2 02 82 -i\ 2 02 2 2 2 2 1/2 
H = - ..!L_ ( ~ + 2 ) - ( 2 ) - e /K(x + y + z ) (12) 

2mt ax ay 2~ ez 

and inserted in 

(E) = f f J 'lr * H 'it" dxdydz (13) 

to ebtain the eigenvalue via the variational calculations. In the above equations 

m1 and mt are the longitudinal and transverse effective masses found by cylo­

tron(lO),(l4),(lS) resonance and Zeeman(IG) experiments, e is the electronic 

charge, and K is the dielectric coastant of the semiconductor. (lO) It was noted 

that cylindrical · sym.metry exists, and so the integral was converted to cylindrical 
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coordinates. Then the substitutions ,of equations (9), (10), and (11) separates 

the integrals into the product of cme integral in () and another in R in all cases. 

All of the integrals encountered were simple and readily yielded: 

<E> = !. · { 2-t.2 A2 + at2B2 Hi e2 AB 
9 7mt 14m1 4K (B2 -A 2)1/2 

(14) 

} 

where: 

(15) 

It should be noted that the level is degenerate as it should be in m = ~ 1. 

All the other energy equations were found in a similar fashion and the 

results are tabulated in Table 2. It is worth noting that the results obtained 

by explicitly; calculating the Is, 2s, 3s, 2p , 4p , 5p 2p 1, 4p 1, 5p +l' 3d, 
0 0 0 + + 

3d +l' 4d +l' and 3d +2 levels can be expressed in a series of l/n2• 

The minllnum value of (E) was then taken as the eigenvalues for 

both germanium and silicon. The minimum <E >value was obtained at different 

A and B values for the different type levels. Table 3 summarizes the results 

for all levels calculated for the solution of these problems. 

Tables 4 and 5 summarize the numerical results found for silicon and 

germanium respectively. The results show that the energy levels have been 

correctly identified in the experimental papers, (2), (3), (4) that the d levels are 

not involved in the unidentified weak transitions, (3), (4) that the 2s level is 

calculated for germanium for the first time, and that Kleiner(5) was accurate 

in his early calculations. 



In addition, some relative electric-dipole transition probability calcu­

lations(l7) were made and the results are tabulated in Table 6. It is found for 

the 5p level that the transition would be very difficult to observeo 
0 
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Type State 

s 

d 
0 

Table 2 

Variational Energy Equations 

I i\2A2 
2 { s:r:n 

n t 

Energy Equation 

. 2 2 2 2 - 2 1/2 
+ !_ 1\ B _ ~ [ AB . -1 ((B -A ) ) ] 

6 m 1 K (B2 -A2)1/2 sm B } 

3e2 AB A B 2 

2K(B2 -A 2l/2 [ - (B2 -A 2)1/2 + B2 -A 2 

. -1 I 27 2 3 2 1/2 
x s1n (a) - ( 4 a - 2 ) (a -1) ] } 

29 
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Table 2 continued 

AB 2 3 4 _ __;,;;;;...._...,._ [ ( a -- a ) 
(B2 -A 2) 1/2 4 

. -1 1 . 3 2 l 2 l/2 
x sm (- ) + ( - a - - ) (a - 1) ] } a 4 2 

. -1 1 3 2 3 2 1/2 
X SID ( a ) - ( 4 a - 2 ) (a - 1) ] } 
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Table 3 

Effective Bohr Radii 

Silicon 

Type State l..<A.> A .!.<X> B 

s 24. 8 (a) 13. 9 (a) 

Po 18.6 11. 0 

p+1 28.0 16.8 

d 20.7 10.5 
0 

d 
+1 

22.3 13.7 

d 
+2 

29.5 18.3 

Germanium 

s 64.6 (a) 22. 8 (a) 

Po 40.3 15.4 

p+ 1 79.8 32.3 

d 45.6 14.3 
0 

d+l 56.0 23.2 

d+2 86.8 37.0 

(a) See reference (10) 
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Table 4 

Silicon Eigenvalues 

State Theoretical Eigenvalue (meV) 
P(c) As(c) Li(d) LiO(d) 

Is -28. 6 (b) -45.3 -53.5 -32.5 -39.2 

2s - 7.15 {b) - 7.3 

3s - 3.18 

4s - 1. 79 

5s - 1.14 

6s - 0.79 

2po _ -10.7 (b) -10.9 -10.8 -11.0 

3p - 4.74 (b) - 4.9 - 4.9 - 4.9 - 5.0 
0 

4p - 2.68 
0 

5p - I. 71 
0 

6p - 1.19 
0 

2p+1 - 5. 81 (b) - 5.8 - 5.8 - 5.8 - 5.9 

3p+l - 2.58 (b) - 2. 6 - 2.6 - 2. 6 - 2.6 

4p+1 - 1.45 - 1.6 - 1.5 - 1.6 - 1. 6 

5p+l - 0.93 - 0.9 - 0.9 - 0.9 

6p+1 - 0.65 - 0.3 
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Table 4 continued 

3d - . 4.5.() 
0 

4d - 2.53 
0 

5d - 1.. 62 
0 

Gd - 1.12 
0 

3d - 3.56 
+1 

4d - 2.00 
+1 

5d - 1.28 
+1 

6d - o. 29 
+1 

3d - 2.38 
+2 

4d+2 - 1. 34 

5d - 0.86 +2 

6d ~ 0.60 
+2 

(b) See reference (5) 

(c) See reference (2) 

(cl) See reference (3) 
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Table 5 

Germanium Eigenvalues 

State Eigenvalue (me V) State Eigenvalue (meV) 

Is -9.02 (a) 3d -1.87 
0 

2s -2.25 4d -1.05 
0 

3s -1.00 5d -0.67 
0 

4s -0.56 6d -0.47 
0 

5s -0.36 

6s -0.25 3d+l -1.16 

4d+1 -0.65 

2p -4.38 (a} 5d +I 
-0.42 

0 

3p -1.94 (a) 6d +1 
-0.29 

0 

4p -1.09 
0 

5p -0.70 3d+2 -0.62 
0 

6p -0.49 4d +2 -0.35 
0 

5d+2 -0.22 

2p+1 -1.59 (a) 6d +2 -0.16 

3p+1 -0.70 (a) 

4p+l -0.40 

5p+1 -0.25 

6p+1 -0.18 

(a) See reference (10) 
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Table 6 

Calculated Optical Relative Radiative Transition Probabilities (Silicon) 

Transition 

Is to 2p 
0 

Is to 3p 
0 

ls to 4p 
0 

Is to 5p 
0 

Is to 6p 
0 

Is to np 
0 

Is to 2p+I 

Is to 3p+l 

Is to 4p+1 

Is to 5p +1 

Is to 6p +1 

Is to np +I 

2p to 3d 1 0 + 

2p0 to 4d+l 

2p to 5d 1 0 + 

2p to 6d 1 0 + 

2p to nd 1 0 + 

Theoretical 
Relative Intensity P(b) 

0.39 (a)~ (b) 0.43 

0.062 (a)~ (b) 0.17 

o. 021 (b) 

0. 010 

0.0056 

-1/2 
exp (14.I5 n - 10. 97) 

1. 00 (a), (b) I. 0 

o .. I6 (a), (b) 0.66 

0.055 

0.026 

0. 015 

-I/2 
exp (14.I5 n - 9. 94) 

4.79 

0.80 

0.23 

0.094 

-I/2 
e:xp (23. 29 n - 11. 88) 

As(b) Li(c) LiO(c) 

0.34 0.35 

0.13 0.17 0.10 

1.0 1.0 1.0 

0.56 0.55 0.45 



Table 6 continued 

(a) See reference ~(10) 

(b) See reference (2} 

(c) See reference (3) 
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IV. CONCLUSION 

Normali~,ed trial wave functions for the anisotropic effective mass shal-

low donor theory have been given. A method of calculating the eigenvalues in 

closed form is given, and d levels are calculated for the first time, and for 

high n the s, p , and p 1 1evels are located. The anisotropy dependent values 
0 + 

are ,expressible in l/n2 series for the first time. 

With a 2p ground state<7> in the Levine theory(!) and using the 3d 1 0 + 

energy value from Tables 4 and 5 the first observable transition energy for 

the surface ion problem will be about 3 .. 2meV or equivalently about 390 microns 

wavelength in germanimn. Jn silicon the same transition will be at about 7.lmeV 

or 180 microns wavelength with a large relative transition probability (see Ta-

ble 6). 

These 2p to d 1 transitions will be sought in submillimeter wavelength 
0 + 

absorption experiments on heavily surface doped n-type silicon and germanium 

samples at liquid helium temperatures. Since the transition energies are now 

known in the Levine theory both wavelength discrimination and impurity depth 

control can be used in these experiments to check Levine's theory and any pos-

sible departures can be positively confirmed and used for higher order approx-

imations. 

Since Levine's theory has so many approxinlations in it, one has to 

proceed with caution. One alternative to the approach used by Levine is to 

include the s levels in a ncentral cell" type calculation for the ions at the sur-

face. However, this is a very difficult calculation for the surface problem and 
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the possibility is probably best cheolred first by experiment. One would vary 

the type of group V impurity at the surface and observe the change in the ioni-

zation energy. The "central cenn effect would show a changing ionization 

energy with changing .impurity and Levine's theory predicts the same ionization 

energy. Also the "central cell" might be expected to produce a larger ionization 

energy than that found in Levine's theory and predicted in these calculations. 

For wave functions other than the ls, 2p , 2p , and 3d . -like wave 
0 + + 

functions the approximations are so drastic that results involving them are of 

questionable significance. However, to do better may involve considerable 

effort, so that the results may, nevertheless, be of some value in comparing 

with experiment. The questionable approximations, in particular the fact that 

the energy eigenfunctions not listed above are not orthogonal to those listed, 

is thus pointed out. 
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ADDENDUM 

In the anisotropic case the six 100 equivalent directions are normal 

to the semiconductor surface, the wave functions are multiplied by 2112 for 

half-space normalization, and the (} integral limit is 1r/2 for the surface 

problem. 
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L INTRODUCTION 

It is the purpose of this article to show that (l) the reflectivity versus 

wavelength data in the infrared of Piper and Marple(l) for doped CdS can be 

fairly well approximated by the theory for longitudinal optical phonon - plasmon 

interaction by Varga; (2) (2) there is need for further infrared experimental 

work to examine a second reflectivity minimum predicted by Varga;(2) and (3) 

the reflectivity mi.niinum associated with the reststrahl peak can be reasonably 

accounted for over the entire range of impurity concentrations. 

These experiments of Piper and Marple (l) were on the free carrier 

absorption in semiconductors; however, they published their actual data of the 

reflectivity versus wavelength. The concentration level and range of Ga doping 

in their CdS samples allows one to use their data to extract information con­

cerning plasma interactions in solids. 

With concentrations of free carriers in CdS in the range of 1018 cm-3 or 

greater, one might expect plasma effects in the solid. In particular, plasmon -

phonon interactions are present as will be shown in the next section. This 

interaction will be with the longitudinal optical phon.ons since in the electrostatic 

approximation used by Born and Hu.ang(3) the electric field is equal to zero 

everywhere for transverse optical phonons but not for longitudinal optical phonons. 
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II. REFLECTIVITY VERSUS WAVELENGTH 

In Figure l-3 the data represented by circles are the reflectivity data of 

Piper and Marp1e(1) for Ga doped CdS. In Figure 1, in addition to the data of 

Piper and Marple, the undoped data of Collins ( 4) is plotted as x' s and Balkanski, 

et al. (5) is plotted as 0 's.. These data are all from near normal incidence. 

The solidlines are from the theoretical work of Varga. Varga's 

predictions are obtained from the reflectivity, R, given by 

where 

1/2 
(E T(O,w")) · - 1 2 

R == [ '1/2 ] 
(ET(O,w)) + 1 

E T(O,w) == E 
00 

wp 2 
-{-) 

w 

and the plasma frequency, wp' is given by 

2 
wp == 

2 
47rNe 
m*E 

00 

E 
00 

(1) 

(2) 

(3) 

In these equations E == 5. 2 is the high frequency dielectric constant obtained 
00 

from the zero wavelength intercept (16%) of Piper and Marple's reflectivity 

data (1) using 

1 + (R )1/2 2 

E ==[ 00 ] 

1- (R )1/2 00 

00 

(4) 

E 0 = 9. O(G) is the danq~ed dielectric constant, m* = 0. 20 m (7), (B) is the effective 
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electron mass, n is the density of carriers, e is the electron charge, and 

Wt = 4. 56 x 1013 sec -I is the transverse optical phonon frequency. (9) E T(O,w) 

is the total dielectric constant. 

The Varga theory as such has been verified by Mooradian and Wright(lO) 

from Raman spectra in GaAs. As far as reflectivity data are concerned the 

free-electron dam.ping has a strong influence on reducing the reflectivity 

from the rrs,qu.areH undamped results· found by Varga. (2) The two minimum 

reflection regions found by Singwi and Tosi and Varga are partially filled and 

the peaks become skewed. However, Singwi and Tosi(lO) still indicate a result 

that shows a region near the: phonon resonance frequency in which the reflectivity 

is one hundred perc.ent. This is unrealistic because, as they point out, phonon 

damping is neglected in their calculation. 

The reflectivity can be reduced from one hundred percent when phonon 

and electron damping are included in the phonon-plasmon interaction. Assuming 

that dielectric constants are additive, (lO) one may write a total dielectric 

constant, E T' as 

E T = E 00 + E DL + E DE (5) 

where E is the high frequency dielectric constant 
00 

• ~ . 1' • € . = 
DL 

(6) 
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is the complex dielectric constant representing the damped harmonic oscillator, (ll) 

El DE - -
2 

Wp € oo 

2 1 
w +­

'r2 

+ i 

is the damped free electron or plasmon term as given by Pines. (l2) In these 

eKJ)ressions, w is the frequency of the radiation, r is the damping factor for 

(7) 

the phonons and, 1:" is the free carrier damping term expressed as a lifetime. 

In practi,oo one would determine r, w t' E: 0 , and e 
00 

from a fit of the 

reflectivity data from a sample with very low carrier concentration. (For 

-1(5) 
Gd.S, r = 7. 74 em • ) Then on.e would compare theory and experiment with 

deped samples to determine "r. 

With 

E: T = (n2 - ~) + i( 2nK) (8) 

and the reflectivity, R,. given by 

= (n- 1)2 + J!' 
R 2 2 

(n + 1) + K 
(9) 

where n is the index of refraction and K is the extinction index, one can use 

this dispersion fit to obtain 1:. This reflectivity will differ from the Singwi 

and Tosi case in that it will result in the more realistic case where reflectivity 

peaks do not reach one hundred percent and appear even more skewed. T.he 

result of two reflectivity minimums will still remain with not too small a value 



for?;'. 

Figures 2 and 3 show this proceedure applied to the data of Piper and 

Marple. However, "'r is set equal to oo since not enough data are available for 

a curve fit. 

R~flectivity data available from doped samples of Mg2Sn (13) suggest 

that a second mitt:ima may be found from the curve fitting done at shorter 

wavelengths using the diel~ctric function of Varga but with phonon damping 

and finite plaS1llon lifetime. Complete reflection data and analysis are given 

for ZnTe (l4) where finite lifetimes are used for the plasma oscillations of 

47 

both light and heavy boles. The minima are washed out in ZnTe because of the 

extreme damping. 

' . 
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m. REFLECTIVITY MINIMA 

In a previous publication (l6) the reflectivity minimum wavelength was 

studied from the viewpoint of Murry, et. al. (17), who treated the dielectric 

constant as the sum of a frequency independent lattice term and a frequency 

dependent plasmon term.. This necessarily fails when the plasma frequency 

51 

approaches the longitudinal optic frequency, since no such terms appear. 

Their results in CdS are plotted as a dashed line in Figure 4 using E = 5. 2(l) 
00 

instead of 4. 6 as used in publication(l6) based on Collins data(4). The short 

and long wave length minima predicted by Varga may be shown to be 

W p 2 Wp 2 2 W P 2 1/2 
€ 0 (1 + <-.-) ) - 1 + ( [ E 0 (1 + (-) ) -11 - 4(-) € 0 ( € 00 -1)) 

2 w 1 WJ. WI 
CiJ min = 

€ - 1 
00 

2 ( 
2 

) 

wt 
(10) 

where the short wavelength ( + sign) is more valid than the long wavelength 

(- sign) since the extinction index K has been assumed zero. These wave 

length minima have been plotted as Varga's Theory (using the Lyddane-Sachs­

Teller relation) in figure 4 and the circles from the data of Piper and Marple (l) 

show •· quite good agreement even as w p -w 1 at low concentration. 
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IV. DISCUSSION 

The fact that the Varga theory has predicted so well the reflection 

minima versus impurity concentration in Cd.S, particularly at smaller levels, 

should be investigated further since the required condition for a degenerate 

electron gas obviously fails. Note that the degeneracy ratio , 

Varga is given by(2) 

r 
s 

= 

d 
e-e 

a' 
0 

-6 
10 em 

~ 8 

r ' s 
from 

where the distance between carrier electrons, d , divided by the effective 
e-e 

Bohr radius, a~ , is not less than 1 at concentrations of 1018 Icc. For cases 

where r is less than I, the self consistent field theory(lS) is applicable and 
s 

(11) 

the polarizabitities of the electrons and ions may be taken as additive. Varga's 

results are then derived for r < 1 from the equations of motion of Born and 
s 

Huang<19) and the Poisson equation. 
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Recently, Owens-Tilinois(l) introduced a new family of materials under 

the trade name "Cer-Vit11 which has a coefficient of thermal expansion of less 

-7 than 10 per degree centigrade. This material may be ideal for optical parts 

when extremely low thermal expansion is required, and it is presently being 

used in a telescope at the University of Toledo (2) and has been selected for 

use at several other installations. 

This letter gives the transmittance of ncer-Vit" material, type C-101, 

between 0.1920 and 1200 micrometers and the index of refraction between 200 

and 1200 micrometers. Measurements were made on L 125 + 0. 005 and 0. 290 
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+ 0. 005 mm thick samples of this material between 0.1920 and 2. 7 micrometers 

with a Perk:iD-Elmer 450 spectrophotometer and between 2. 5 and 50 micrometers 

with a Beckman IR-12 spectrophotometer. These data are given in Figure I. 

The transmittances of 0. 290 + 0. 005 and 0. 49 + 0. 02 mm thick samples were 

measured on a vacuum submillimeter spectrometer. This is a single beam, 

f/2. 2, echelette grating instrument covering the range of 40 to 1200 micrometers 

wavelength with a resolving power of about 100 to 200 using a Golay cell detector. 

Its source and output are similar to those of Russell and Strauss(3), its chopper 

is similar to that of Bell and Gilmer(4), its monochromator is similar to that of 

Richards(5), and its filtering is as by Bell, et a1(6). These data are shown in 

Figure 2. No transmission was observed between 6. 5 and 200 micrometers. 

The gap between 420 to 500 micrometers is due to poor grating overlap where 

the transmitted intensity was too low to obtain meaningful results. This is 

indicated by a single averaged datum point with appropriate error bars. 
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Note that the channel spectra were observed in the 200 to 1200 micro­

meter range enabling the index of refraction to be calculated from the relation (7) 

2 n d 
m = A. cos ~ where m = order number, n = index of refraction, d = sample 

thickness, cp = angle of refraction, and A. =wavelength. Since the angle of 

refraction was calculated to be less than 4 degrees, cos cp was taken as I. The 

values of index of refraction using the first 5 order peaks of the 0. 29 mm thick 

sample are given in Table l. 

It is to be noted that smoothing out the transmittance data results in a 

transmittance curve similar to that of other glassy materials as obtained by 

McCubbin and Sinton(S) and Dianov, et al(9). 

The authors wish to thank Miss B. Brooks# for assisting in the sample 

preparation, and Mr. J. Blea for assistance in obtaining data. 

#NSF Undergraduate Research Trainee 



Order 
number 

1 

2 

3 

4 

5 

TABLE 1 

Index of refraction 

Wavelength 
(Micrometers) 

1160 

630 

440 

340 

265 

Index of 
refraction 

2. 0 

2. 2 

2. 3 

2.3 

2.3 
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