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ABSTRACT

Image theory is used to develop the far field and
polarization equations for a ninety degree corner reflec-
tor antenna. These equations are in terms of spherical
coordinates, the length of the dipole element, the dis-
tance of the dipole from the corner of the reflector, and
the angle of tilt of the dipole element with the apex of

the corner.

The equations are simplified to give the far fields
in the vertical and horizontal planes for the special case
of a half-wavelength dipole. An expression to calculate
the distance of the dipole from the corner necessary to
give circular polarization broadside to the antenna in
terms of the tilt angle of the dipole is dexrived. This
distance is plotted against the tilt angle. Plots are made
of the far field in the vertical and horizontal planes for
various values of distance and tilt angle, maintaining

circular polarization broadside.
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I. INTRODUCTION

In certain applications an antenna is required to send
or receive circularly polarized radiation. This may be
done by several types of antennas, the turnstile being one,
the helical antenna another. Recently an engineer at
McDonnell Aircraft Corporation discovered that rotation of
the dipole element of a corner reflector antenna resulted
in elliptically polarized radiation. By adjusting the dis-
tance of the dipole element from the corner, circular polari-

zation was obtained.

The corner reflector antenna provides a simple means of
obtaining circular polarization. It is easier to construct
than the helix and does not require the complicated feed of
the turnstile antenna. Adjustments are simple, as any de-
gree of polarization may be attained by merely rotating the
dipole element or changing the distance between the dipole

and the corner.

The purpose of this thesis is to develop the far field
and polarization equations for a dipole element of any
length in front of a ninety degree corner reflector. These
equations are then used to investigate the field patterns
of the antenna when the dipole element is a half wave in
length and ié adjusted to give circularly polarized radiation

in the broadside direction.



IT. REVIEW OF LITERATURE

The first work on corner reflector antennas, published
by Kraus,l’2 applies image theory to a dipcle parallel to
the apex of a corner reflector. Field patterns and gain are
discussed. Other authors have investigated this type of
corner reflector antenna quite thoroughly. For example
Wilson and Cottony3 have done extended work in measuring the

field patterns of a finite size corner reflector antenna.

Most theoretical investigations on reflector antennas
are based on the concept of images. Javid and Brown4 have
given a discussion of this concept in connection with Green's
function. Kraus® discusses it strictly from the view of sat-

isfying boundary conditions.

Kraus5 has also given a thorough discussion on methods

of determining elliptical polarization.

The earliest work on a corner reflector antenna in which
the dipole element was tilted with respect to the apex of the
corner was done by Woodward6 and KlopfensteinT. Woodward
demonstrated that circular polarization could be obtained
from a corner reflector antenna and compared plots of power
gain to other types of antennas. Klopfenstein analized the
antenna for any position of the dipole element relative to
the corner and any angle to the apex of the reflector. How-

ever, both assumed a very short dipole.



ITTI. THEORY
A. Image Theory

The analysis of the dipole backed by a corner reflector
may be simplified by assuming infinite, perfectly conducting,

grounded planes and using image theory.

According to image theory the reflector will have the
same effect on the field as three image elements spaced so
that they, together with the real element form the corners
of a square. This is illustrated in figure 1. An analysis

of the resulting four element array will give the required

Image elements Real element

Figure 1. Corner reflector antenna showing the position
of the three image elements.
field patterns. The justification of image theory is given

in the following paragraphs.

If an electric charge is situated at a point fr' above
a perfectly conducting grounded plane at z = 0 as in figure 2,

the potential from the charge is

v ' - (1)
T are|T-E | dmelx-x")® + (y-y")© +(z-zn) 177
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Figure 2. A point charge above a perfectly conducting
grounded plane and its image charge.
However, the potential at the grounded plane is zero. A

second point charge q; is to be placed so that its potential

together with V& gives zero everywhere on the xy plane with

the conducting sheet removed. Let Vi be the potential from
the second charge. Then at z = 0
V_+ V, =0
r i
V. = =V = 2z qr & Z.1L/2 (2)
i x dpe [(x—=x")" + (y-y")" + (2")7]
Thus q; = —9, and may be located at either x', y', and +2',
or X', y', and -z' but must agree with physical conditions.

If +z' is chosen, the position of d; coingides with that of
Qs giving zero field everywhere. As this does not agree
with the physical condition the other solution must be
chosen, i.e. g5 is located at x', y', and -z2'. The second
charge is then equal to the negative of the original charge

and located at a point directly opposite of the conducting

plane as if it were a mirror image.

This idea may be extended to two conducting planes



meeting at an angle as in figure 3. The charge must be

projected to the opposite side of each plane. If it is pro-

Figure 3. Images caused by an electric charge
near two conducting planes.
jected first through the ¢=0 plane, both the charge and its
first image must be projected through the plane ¢=a. But
now there is no longer charge equilibrium about the ¢=0
plane, so the last two images must be projected through that
plane, and so on. When o is a submultiple of 180°, a finite
180

number of images may be used. If n = - the number of

images equals 2n-1.

Now consider a moving point charge such as would be

found in an antenna current. The complex electric field

€ = —V& - jmi caused by the moving charge must have no com-
ponents tangent to the boundary of any conductor within the
field. This is the same as saying that the components of
vvand X tangent to conducting boundaries must disappear.

& is a function of charge density p and A a function of cur-

rent density 7. According to image theory a charge moving

near a conducting plane has an image charge as in figure 4.
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Figure 4. A moving point charge and its image.

The potential resulting from the real and image charges is

zero along the plane, making the tangential component of the

gradient of V zero. The velocity Er of the real charge is
Yr T Y5%n € Ytan®tan (3)
where u, and u, ., are normal and tangential components of
velocity respectively and an and atan are unit vectors normal
and tangential to the conducting plane. The wvelocity ﬁi of
the image charge is
Ui ¥ 7Uh @n ¥ Ytan %tan (4)
The total current density is
- + Cal a - _.
J J+ + 7 q u.-q u;
-9 Y %n +tq Ytan %tan = “n %n T Ytan®tan
T - (5)
= 2q v, 3,

It can now be seen that the tangential component of J and thus
of A is.zero. Hence the component of E tangent to the bound-
ary of the conducting plane is zero and image theory may be

applied to antenna currents.



B. Elliptical Polarization Theory.

When the electric field vector E of an electromagnetic
wave rotates in a plane normal to the direction of travel,
the wave is said to be elliptically polarized. A wave of
this type may also be considered as the sum of two out of
phase linearly polarized waves normal to each other. Thus

i Ee = E sin (wt + 51) and E = E and E

¢ © ¢
are normal. Further, if 51 # 52 the sum of the two waves is

sin (wut + 6,), E

an elliptically polarized wave. The general form of the
equation of an ellipse with arbitrary orientation, but cen-

tered at the origin is

ax® - bxy + cy® = 4 (6)
If the major and minor axes of the ellipse coincide with the

axes of some coordinate system, the equation may be written

. S A | (7)

where Sl and 82 are the semimajor and semiminor axis (not
necessarily respectively). Figure 5 shows an elipse with
its major and minor axes at an angle T with the x and y
axes. For any phase angle, the two electric fields Ee and

E¢ may be written in the form

Ee = Eel cos wt + Ee2 sin wt

= i 8
E¢ E¢l cos wt + E¢2 sin ot (8)

These two equations may be solved simultaneously and the



Figure 5. An ellipse with arbitrary orientation. The semi-
major and semiminor axes and the tilt angle
are labeled Syr S, and 1T respectively.

result put in the form of equation (6). If the axes are

then rotated, the form of equation (7) may be obtained.

The ratio of the semimajor and semiminor axis is called
the axial ratio. If the form of equation (7) is used, the

axial ratio may be found by the eguation

AR = (57) (9)

Some authors use the larger divided by the smaller so AR goes
from one to infinity. Others divide the smaller by the
larger, thereby limiting the values of AR to the range be-
tween zero and one. The latter will be chosen here to sim-

plify plotting later on.

To completely specify elliptical polarization, the
direction of rotation of the E vector must be included, that
is, whether the rotation is clockwise or counterclockwise as

the wave approaches. Figure 6 shows that if Ee leads E¢ by



™ .
g wt=5 EB=E9cos(wt)=Ee 51n(wt+%)
j,. E,=E,sin (vt)
¥ wt=0
ts l
Figure 6. Direction of polarization. The phase

of E4 leads E¢ by ;

% in phase, the rotation will be in the direction from 58

to 5¢ where a_ and §¢ are unit vectors in the g and ¢ di-

rections respectively. This is the counterclockwise direc-

tion. The fields may be written as the complex quantities

. _ & _Jlet + D)

Ee Es e 2

- e X jot (10)

E¢ E¢ e
Now form the ratio of Ee to E¢

™
= J(wt + ) " "
Eg Eg e z o +5L . . Eg
R = = M7= 5 Y (11)
é E¢ e E¢ E¢
TE Ee lags E¢ by % the polarization is in the opposite
direction and the ratio of Ee to E¢ is
. i o £

. = t—— E BE

E Ee el (w 2) p —jl "

8 = = — e "2 = j(- =) (12)

™ ] t E

E¢ E e’ o ¢
Now E, may be written in the form E, cos ot where E = tﬁe
= é ejnTr and n = 0 or 1. The same holds true for E¢.

3]
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If E, and E, have the same sign, the ratio ES/E¢ = ﬁe/ﬁ¢

6 ¢

is positive. If Eg and E¢ have opposite signs the ratio
EB/E¢ = —ée/ﬁ¢ is negative. Egquations (11) and (12) may
then be rewritten as the one equation

2 = g2y (13)
“ B4

Thus it can be seen that if the ratio ES/E¢ is positive,
polarization is counterclockwise approaching (or Ee rotated
toward 5¢). 1L EG/E¢is negative, rotation is clockwise.
If the axial ratio AR is defined as (Ee/Ed))il instead of
(ﬁe/ﬁ¢)il, i.e. AR is permitted to take on negative values,

then the direction of polarization may be determined from the

sign of AR.
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IVv. FAR FIELD EQUATIONS FOR THE GENERAL CASE

A. General Field Eguations.

The antenna under consideration consists of a single
dipole in front of a 90° corner reflector. The dipole is
rotated to an angle B with the apex of the corner reflector
and in a plane parallel to the apex. The analysis is best
carried out using spherical coordinates with the e=d axis
coinciding with the apex of the corner. The axes ez%, $=0
(¥ axis) coincides with a line perpendicular to the apex
and bisecting the antenna element. The antenna may be repre-

sented by an array of the real element and three image ele-

ments as shown in figure 7.

The far field of the array is found by summing the far
fields of each individual dipole. When a single dipole in
free space is lined up with the 6=0 axis, it has the far

field pattern

s _ cos (% cos 8) - cos (%) it
E=a,l leA (14)
sin 6
where £ = the complex field
_ . . . 2nxlength
L = length of dipole in radians or Wwavelength

The problem then is essentially trigonometry, i.e. writing
the field of each element in terms of its own private
coordinate system, changing to the coordinate system of the

array, and finally adding the four fields. The total



Figure 7.

Corner reflector array showing spherical coor=-
dinates. The arrows on the dipoles point in
the direction of current.

12
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complex field is

" 4 "
E= 2> E (15)
n=1 = _
where %n= én(e'¢’8' 56, E¢, wt) = ée (en, wt) 58
n g o

The variables 6 and 58 refer to the private coordinate

n
system of the nth element.

To f£ind the instantaneous values of the fields, one
must take either the real or imaginary part of the complex
fields. It is the usual practice to take the real part
and this is the convention used here. The mathematical de-

tails are carried out in Appendix A, the results are stated

below. E stands for the instantaneous value of electric

field.
Eé = A cos wt + B sin wt
(16)
E¢ = C cos wt + D sin ot

where A= [Mi (=b)+ Ma (a+B)] cos ¥
—[ My Cav )+ M, (a-c)__]cos f
B=[-M (a~b)+ Ma (2+8)] sin ¥
— [ Ms G+ =My G- sin ¥
C= (Ma=M)d cos ¥ + (Ms=Me)& cos Ya
D= (Mat M) d sin ¢ +(Mst Mg sin ¥
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. [.é_:. [sin € sin g sinf — cos o cos ﬁ)]-— cas(—é)

Mlﬂ |]— (sin © sin # sing + cos & cas B)°

cCos

L
[’E%' (COS & Cos 5’-“5:::9 sin ’ ;f,,g)]—— Co;[—z-

M, =

|]— (cos & cos8 — sine sing n}«ﬁ)"

cos[‘ié (5in® cos @ sinf —cos & cos i)J-— cw(-é)

| —(sine cos # 5in@— cos & cas &)

. . y
Cos E-—é’j (im & cos & sing + <os & coﬁﬂ')]‘- cos a-)

M, =

. 2
[ —(5in 6 cos @ sinB+ cose cosd)

where

a = sin 6 cos B

b = cos 8 sin g sin g

C = cos 6 cos ¢ sin B

d = cos ¢ sin B

g = sin ¢ sin B

¥y = dr sin & cos ¢

¥, = dr sin 6 sin ¢

L = lenght of dipole in radians or %%%%%%%%th

dr = distance of dipole from origin in radians or
2rdistance
wavelength

The equations apply only to the area in front of the corner

reflector, that is, the quarter space 02637, —%;eg%. Due

to the reflector the fields are zero everywhere else.
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B. Polarization Equations for the General Case

The polarization equations for the cornexr reflector
antenna may be developed from the instantaneous far field

equations. The equations from page 13 are

E8 = A cos wt + B sin wt

E¢ = C cos wt + D sin wt (17)

If these equations are solved simultaneously to eliminate
wt, the result is in the form of equation (6) on page 7,

that is

2 2 _
Q Eg” — 2REgE, + SE,” =T (18)

2 2

where = C” + D

2 2

Q

R = AC + BD
S =A" +B
T

= (AD-BC) 2

and A, B, C, and D are as defined starting on page 13. This
is the general equation of an ellipse. The details in going

from equation (17) to (18) are in Appendix B.

The cross product term of equation (18) may be elimin-
ated by rotating the axes to coincide with the major and
minor axes of the ellipse. This may be done by several
methods, Lagrange's for one and a method using matrix vec-
tors for another. The latter method is given in Appendix B,

the result is
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a

a
/ /
Ee g E¢ -
oy AT (19)
A S +1/(a-~57 +4R°* 4/&—5)‘ +4R"

Since this is in the same form as equation (7) on page 7,

the peak values of the fields in the new coordinate system

are

At 1T %
Ee =[Q+s+ v (a-—.f)‘—f-z;g:}

(20)
4
E-' _ LT 2
Pl Q+s—/(a—s)*+48*
The equation for the axial ratio is then
E .1
AR = (—) (21)
E'l
¢
where the plus or minus exponent is chosen so that ARS1. It

should be noted from eguation (18) that if R is zero then
the major and minor axes of the ellipse are already parallel

s

to the coordinate axes and so Eé = Ee and E
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V. FAR FIELD EQUATIONS FOR A HALF-WAVE ELEMENT
A. Antenna Parameters for Circular Polarization

Equations for the far field of an arbitrary length cor-
ner reflector antenna have been developed. Now they will
be applied to investigate the fields of a half-wavelength
element. The investigation will be restricted to the planes

vertical and horizontal through the center of the dipole

Since circular polarization is the objective of this
antenna, the equations producing circular polarization
broadside from the antenna will be developed first. Substi-

. LS . . .
tution of L=7, &=% and ¢=0 into equation (19) gives the

polarization equation

2 2
EB . . E¢ -
_ cos (% sin ) g ; 2

4 [cos B cos dr - ]2 4 (sin R sin dr)

cos B8 .
i o _ 2 cos (3 sin B)
with Ee = 2 cos B cos dr T s
E¢ = 2 sin g sin dr

The details are carried out in Appendix C. Circular polari-
zation occurs when the denominators of (22) are equal.
13 i
cos (3 sin ) 2

4 [cos R cos dr - ] = 4 (sin B sin dr)2
cos B

(24)
Solving for dr (See Appendix C)

2Tt .
1 . : cos” (» sin B)
dr = cos [cos (E cos RB)*sin B 1 - 5 1(25)

cos g
This equation shows that for any 8 there are four possible
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values of dr between zero and one wavelength that will give

circular polarization.

Figure 8 shows the distance dr of the dipole from the
apex of the corner plotted against the angle g of the dipole
from the vertical. The range of g is —%-to + % radians.
Except for the direction of rotation, the graph is symmetri-
cal with respect to the B=0 axis and the dr = .5 wavelength
axis. Equation (25) shows that if the graph were extended
for distances greater than one wavelength, the four branches

would be repeated at one wavelength intervals. The direc-

tion was determined from the axial ratio equation, i.e.

Ey &
Ar = (_E)'l = *] (26)

¢
As was shown on page 10 a positive AR indicates counter-
clockwise rotation (wave approaching) while a negative AR

indicates the opposite.

Figure 9 shows the magnitude (or peak wvalue) of the
unnormalized electric field and dr plotted simultaneously
against B8. The range of B is 0 td % radians and that of
dr is 0 to .5 wavelengths from the corner. The maximum of
ﬁ-for the lower branch is .164 and occurs at 8 = 54.9 de-
grees and dr = .0160 wavelengths. The maximum of E for
the second branch is 1.482 and occurs when B = 52.7 degrees
and dr = .309 wavelengths. Both of these curves are peri-
odic with distance, occurring along with the branches at

distances of 2mn*dr from the corner (where n is an
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integer). The first branch is purely theoretical as it is
too close to the corner to permit placing a physical element
between the walls of the reflgctor. However, the results
of this branch apply to corresponding branches at greater

distances from the corner.
B. Far Field Patterns in the Vertical and Horizontal Planes

To calculate and display on a graph the far field
patterns oé an antenna everywhere in space would be an im-
mense undertaking. Therefore, it is common practice in the
literature to plot the field patterns in two planes, the
vertical and the horizontal planes through the bore axis,

T
¢=0 and 8=3.

The equations for the vertical plane fields are ob-
tained by substituting ¢=0 and L=r into equations (16).
For the horizontal plane fields, 6=%, L=7 were substituted
into the same equations. The details are shown in Appendix C,

the results are given below.

For the vertical plane

E 2 cos (;f cos & cos Q)
=) | — cos* 0 cos*g
cOs [11?- cos (9 -ﬁd)] c,o.s[‘;E =05 (‘9"'#9)]
= 5in (6 +4) it sin (6—8) e

Sine cosp cos(drsing)

E _ ¥ 5 co_s(% Cos & Co.f.é’)
=

|— 05?8 cos* &

sin 2 .:ﬁv(:£»5ﬁgg)
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For the horizontal plane

Es = 2[ 22 13 AR Ty cos (dr cos #)
1= sin*P sin*g

5 (& cos Z sin
o (a cos ¥ sing) zas 1 ﬁ)]cm/y

[~ cos® d Fin ?d'

/‘cos (1‘2 Sing 5in @) # (,/ ) (28)
Cos Sin(drcos @

Eg =

[— sin*yg sing

cos C"--‘r" Cos ¢ffﬂi)
+ s < sin F Sin (d;— sinff )] sin &
{~ cos*yg sin’g

Figures 10 through 29 show plots of the vertical and
horizontal field components and axial ratios in the vertical
and horizontal planes for branches 2 through 5 of figure 8.
The plots are for every 15° of rotation of g between 0 and
90° and use the values of dr from figure 8 to obtain cir-
cular polarization along the bore. In addition, the fields
at the maximum values of E on the bore from figure 9 were
included in these plots. The plots of like fields (ﬁe or
é¢, vertical or horizontal) are displayed on the same graph
to show the change in fields as the angle g increases.

Each set of fields is normalized so that the maximum value

of ée and E, in both planes together is approximately equal

¢
to one for each set of parameters.

Inspection of these plots shows that as the dipole is

moved farther from the corner, side lobes begin to appear.
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Along the third branch the side lobes begin to dominate,
and in the fourth and fifth branches the main lobe virtu-
ally disappears. The side lobes do not all have the same
direction of polarization. The third, fourth, and fifth
branches are useless if circular polarization is desired
in a strong, main lobe broadside. The ideal pattern would
have a single lobe with circular polarization throughout
this lobe. The lower anglés of B in the first branch (and
consequently the smallest values of dr) give the best pat-
terns and the most nearly uniform axial ratios. Thus the
smaller distances of the dipole from the corner give the

best all around field patterns.
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VI. CONCLUSIONS
A. Results

Image theory was used to derive the far field eguations
for a ninety degree cornexr reflector antenna. The equations
were in terms of the spherical coordinates of the point of
observation, the angle of tilt of the dipole element with
respect to the axis of the corner, the distance of the ele-
ment from the cornerxr, and the length of the dipcle. The
instantaneocus forms of these equations were solved simultan-
eously to derive the equation of an ellipse. The axial ratio
and the magnitude of the normal linear components of the

elliptical wave were obtained from the elliptical equatiocn.

These equations were used to investigate the far field
of a corner reflector antenna with a dipole length equal to
a half-wave. It was found that for any given angle of tilt,
circular polarization may be obtained at four different
distances between zero and one wavelength of the dipole
from the corner. A plot of these distances is symmetric
about the distance of one half wavelength and recurs with

a period of one wavelength.

The fields in the vertical and horizontal planes
through the bore of the anténna were investigated for four
dipole distances at fifteen degree intervals of dipole
tilt. It was found that the best patterns occurred when

the dipole element was near the corner. As the dipole was
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moved away, high side lobes developed and completely domin-

ated the main lobe.

B. Suggestions for Further Development

There are several important areas of work on the cor-

ner reflector
gation of the
than one half

The radiation

antenna that remain to be done. An investi-
far field patterns for dipole lengths greater
wavelength might give interesting results.

resistance and input impedance are other im-

portant gquantities that should be known. A comparison of

this antenna with other circularly polarized antennas would

show advantages and disadvantages of this method of obtain-

ing circular polarization. Thus gain plots relative to,

for example,

a turnstile antenna or an isotropic source

would be useful. Then lastly, a theory that takes into ac-

count the effects of the finite size reflector of the actual

physical situation rather than the ideal infinite reflector

would be helpful.
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APPENDIX A

DERIVATION OF THE FIELD EQUATIONS FOR A CORNER REFLECTOR

ANTENNA

On page 11 it was shown that the far field of the cor-
ner reflector antenna is equal to the sum of the field from
the real element and the three images, or

[ians 4 =
= 2:: Ex (LA)

N=l|
where E,, e Zn (9, 2,8, ﬁﬂ,ﬁ’)z EOA (‘9".) joﬁ,

The pattern factor for the nth dipole in a coordinate sys-

tem in which the €=0 axis is along the dipole is

E = [C” (% <o 9“)— CMC;)] da (23)
n

sin Sa

This must be rewritten in terms of the array coordinates

as shown in figure A-1.

-——

| ’
=1 T

N
d

(a) top view

= =z
3*!
#’T T#: #Jl e #4
Y I X y
P N
(b) Left side view (c) Front view

Figure A-1l. Front, top, and side views of the array
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Figure A-2.

Dipole #1 coordinates superimposed
on the array coordinates
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The first step in determining the general field equa-
tion is to détermine the complex field of the real dipole.
First the field of the element will be determined as if it
were at the origin, then the effect of the displacement of
the element from the origin on the complex field will be

considered.

The electric field for dipole #1 in terms of its own

coordinate system is

4

L (L -
cos [ = cos 6,) _ o
Ee, = C:m = 2 = E, (8 2.8, 3,, 2;) (3a)

This system together with the array coordinates is shown in
figure A-2. R is the position vector to some point in

space, El is in the direction of the dipole current and has

—

the same length as R, and P is a vector perpendicular to

the plane of A, and R. The quantities a and 0, must be

1 8
_ _ i 3
found in terms of 6, ¢, B, ae, and a¢. The following

transformation equations from rectangular to spherical

coordinates will be useful.

X = r sin 6 cos ¢

y = ¥ sin 6 sin ¢

Z = r cos 6
ax e Er sin & cos ¢ + EB cos 6 cos ¢ - 5¢ sin ¢ (43)
Ey = a_ sin ¢ sin ¢ + a, cos 6 sin ¢ + 5¢ cos ¢
a =a cos 6 — a_ sin 8

z r 8
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The vector R may be written

R’= z;fﬁz‘ixX'ﬂha}y“+ az Z

= : o : = (5n)
= dx V¥V 5In® cos g + 3y rsine sing + Az/case
Likewise vector A; may be written
Al = ‘i:'r: ng'f'ﬁyy“f'a‘zz
(6R)

=@V 5ine cosp + A Vs5ine sing+ Azrcos e
But El is a specific vector with coordinates 6=8 and ¢=7.

Thus

A= AuF¥sing cosZ t3, ¥ sinf sinZ + Az P cos @

- . (7A)
= QAyfsing + QzV cos F
Now the vector dot product of R and Ay is
R'A:::RA] cos &
or cos 6, = ﬂ — ¥~ sin e "_/"'ﬁs;"f*r";co:er”,ﬂ
RA, 4
= Sine sia  sin @ + cos O Co.f/ (8A)
; .2 2
And since sin el + cos el = 1
A
2
srn &, .-r.[/— (sine sin § sin B+ cos & cosy)i] (92)

Let vector P be the vector cross product of R and El’ that

is, P = R x il' Then P is normal to the plane of R and }.‘11
and thus perpendicular to every vector in that plane. The

unit wvector Ee is normal to R, but since it is in the
1

Plane of R and A; it is also normal to P. Hence

R x P = RP sin (angle between R and D) Ee (10R)
1



5%

And since the angle between R and P is %

RxP _ Rx (RxA)

e, = = s (11a)
RP R (Rx4,)
Making use of the vector identity
A wlBoiYs (R.PIB = (A-BJE
Ax(Bxe)= (A-0)B— (A-B) iz

results in
5, = (RAIR— (RR)4
RR 4, sin 6

2
= (." Fin® sing _s'in‘,é’ -+ /';Ca?; & Cos ﬂ))"Q,—

—~ r* (3, sing+22Vcos B

r? sin 6

Substitution of Ey and Ez from equations (4A) and sin 81

from (94) gives

R o= Qe (ﬂ'n & cosF— cos & ;fa;#ﬁki)-'é}cosﬂ singl o
9' o )

[/= (sin © sin g 5in&+ cos & co:d)’]-’;'

Equations (82), (%A), and- (13A) are the desired results.

The complex electric field is a function of time t,

frequency w, and phase ¥. If ?l is the difference in phase

between the dipocle and a reference at the origin, the

complex field is

E-.-I': Eo’.ée‘ j'(wf‘l"s?)

(14R2)
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Figure A-3. Difference in path between the origin and the
center of dipole #1 to a point in space

In figure A-3, R and R' are the distances from the origin

and dipole #1 respectively to a distant point in space.

The point is assumed to be far enough away that R and R

may be considered parallel. Taking the origin as reference,
the path from the dipole to the distant point is less than
the path from the origin by an amount ¥;. Figure A-3 shows
that ¥, is the length of the projection of the directed
line segment dr from the origin onto the path R. Both

dr and ¥, are in terms of radians, or distance divided by

wavelengths.

dr R d 3 (GuXx +%yy+3c2)

R :

drX _ dr sin ®@ cos & (15A)
=

|

I




A

The phase leads the reference and so is positive.

Equations 3A, 8a, 92, 13A, 142, and 15A together give

the far field pattern of dipole #1l. The complex field is

— - 'Gde'%9
E, =Ee 3, e’ (16A)
where Ee‘ = <os (% cos @) — Cos ('%)
sin &,
: . : ; 74
Sth ©, = [!-- (sin ©@ sin Fsinf + cos & cosﬂ)]
cos & = (in esingd sinf + cos o ca.r;é’)-
Ao = de (5in 8 cos # — cos SinF SinB)—Fy cosf sins
o
[7— Cstne sin P sinff+ cos o ca.s,d')jé
(/{ = o(r_sin e cos &
Combining equations (16A) results in
~— cos [-‘3- (5Mesing singtcos & cas,@)]-— <os5 ("(:)
— * *
/= (Sine sinf sin @+ cos @ cos,8)*
X [ﬁ'e (ﬁn & cos @~ cos& 3/n P s:n B
" jcw{'-ﬁ'cfl Fin & <o F
= Cos5 g 5in ]
dp o5 g sind| € (172)

The field equation of the real element may be used to
obtain the fields of the image elements if a suitable change

in variables is made.

The development of the field egquation for element #2
is aided by comparing sketches of various views of elements
#1 and #2. Denote the variables 8, ¢, and B for element #2

by a double prime.
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Figure 4 shows that the rear and top vies of element #2

are identical to the front and top views of element #l.
.

z
8 B
X Y Y X
(a) Front view of element #1 (b) Rear view of element #2
x
. T~
R ¢ z ¢|’l'|
¢!I=¢|+'ﬂ' j
Y “pe-
¥
(c) Top view of element #1 (d) Top view of element #2

Figure A-4. Sketches comparing views of elements #1 and #2

Thus equations (16A) and (17A) hold for element #2 if the
zero azimuth angle (¢''=0) is taken to be the negative
x—axis. Part (d) of figure A-4 shows that to change to the
coordinate system of the real element, merely set ¢''=0¢+m.
Then the following relationships are substituted into equa-

tions (16A4)

sin ¢'' = sin (¢+7) = - sin ¢
cos ¢'' = cos (¢+m) = - cos ¢
'Y = B

611 = o | (182)
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These substitutions together with the identiy cos (-6)

= cos 0 give the results

E = Eex 391 € j Lot )

(19a)
£ — [.!:.
where EO,_= =ae ("‘- 23 91) £ 2)
sin &,
Cos €, = - sin @sin@sinff +cos o cOsF
4
Sin 62 = [/ —~(—35/h @ sing sinf + cos 5'.::&5,9)73
; do (5in® cos @ + cos o singsinf)+aApcosP sink

de, = -
2 [/"'"‘C""’f.h o f}‘hﬁ’f‘nﬁ-ﬁ cos 94’03;&)"]"%

% = —dr sine cos ¥
Combining equations (194) gives the field of element #2 as
:é - CO0s5 ["g_'.'— C""' 5’"‘95;&&'5‘}&.5 +Co5 & f'o.i.ﬂﬂ" Co_s&)
B

I=(-%ine sin g sind + cos 6 coss)?
X [39 (sin 6 cos,8 + cos & 5in g sind8

+ 3y cos § sind] @9t~ sin® cas #) (202)

The fields of the third element may be found in a man-
ner similar to the method used to find éz- Figure 5 shows
that the top and left side views of element #3 are similar
to the top and front view of element #1. If 6, ¢, and B are

denoted by a triple prime, the equations (16A) and (1l7A)

will apply to element #3. To express these equations in
terms of the same parameters as in El set B''' = 7-8,
p"'' = ¢+%, and 6''' =8.

Then sin g8''' = sin (m-8) = sin B

cos B'"'"'" = cos (wm—-8) - cos B
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Z
g
¢ X
x Y
(a) Front view of element #1 (b) Left side viey of ele-
ment #3 i
. R
y
Ty ET__
Y = } X
P ¢
> = P
X
(c) Top view of element #1 (d) Top view of element #3

Figure A-5. Sketches comparing views of elements #1 and #3
sin ¢'''" = sin (¢+§) = cos ¢
. (21Aa)
cos ¢'''" = cos (¢+7x) = - sin ¢

Substituting equations (21A) into eguations (16A) results

in

é = E a ej(mt + T3)

3 83 83
cos (E cos 83) - cos (%) (22A)
where E8 = p
3 sin 83

cos 65 = sin 6 cos ¢ — cos 6 cos B

sin 6y = [L - (sin 8 cos ¢ sin B - Ccos 6 cos 3)211/2
_ Es (-sin 6 cos B—cos B8 cos ¢ sin RB) + a, sin ¢ sin B
B ® 2.1/2

3 [1 = (sin 6 cos ¢ sin B8 - cos 6 cos B) ]
y_ .= — dr sin 8 sin
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Combining these equations gives

$ _ cos [£(5n0 cos prinf~ cos cons)]=<o3(%)
3

[— (s5/n6 cos @ sin G —<osp ro:,z?}a

X [:'_2:9 (sim @ cos G + cos & Cos £ sin )

_ - (wf— »r Sin ,A
+ 2y S‘ind'f}qﬂ]ej( deiiniey wadhd (238)

A similar procedure will show that the equations for
the fourth element are the same as those for the third ex-
cept that ¢ is replaced by ¢+7 and thus sin ¢ and cos ¢ are
replaced by - sin ¢ and - cos ¢ respectively. So equations

(22A) become for element #4

— - i(wt+%
Elfg Ea'*aa“e.’w '9)

(24n)
Z £
where Ee,, —ed ('5: o5 B) ~ cos (‘i)
' Sin 8y P
2732
sin 91.——-' [/"‘ (—-s;‘ns’ cos F sin@ — cos & c'o_r,.d)]
COS Oy= — S/n® cos § s5rnF —cos & cos

564 — ’:?‘o ("' 5;"9 C'Of/ —+ Cos & <oF ; I‘;‘Iﬁ)" 5‘ f;&ﬂ’j/‘f[ﬂ
. 7
[/-F””QCOfﬂfr'!ﬂ-—case ca:d_)?]}

%7—: a’r -’-/‘ﬂﬁf}ﬂﬂ

Combining these equations results in
= cos [£(5ine cosgsind + cos® cos@)]~cos(4)

L, =

| — (3/ne cos Fs5inF 4 cos o (65.6)2
X [5, ("‘" srne Cos 3 + cos & coas & rz'lr.é’)

— Qg Sin 0 .finﬁ]ej(“"t*"’f""” & sin f) (25a)

The total field is equal to the sum of the fields from

the individual four dipoles.
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% B E. + %

E=E 2 3 4

1

where El’ 52, E3, and ]‘2’4 are given in equations (173a),
(20a), (23a), and (25A). To simplify the addition make the

following substitutions:
co,[—.—i— (sine sing sinB+ cose ra.wﬂ- 605('9
Let Mn =

I— (3in 9 sin @ 5/ + cos @ :oid)z

M _ Co§ [—% (-s5ine singfsinfB+ cose c’é:,d)]—:os(&)
. |— (—~3ine sind sinf+cosé cosd’

cos[£(sine cos f sinp—coso cosg))—cos(3) (263)

[— (5ch © <osf sing — cos& coss)

fﬂ31=

M co)['zé (5/n & cos P sinp+ cose foiﬁ)]"""’("é)
o —_—

| = (35/768 cos @ 5/28 +cos & ‘ﬂsﬂ)"

Then £= M [ﬁa (f.r'n € Cosd ~<Cos8 sirp ﬂ‘ﬂ/’)"‘; (aﬁff/‘a,é’]

i (wit+dpsing cos ¢) .
i ~+ M2 [30 s/ine Cdﬁﬂ-ﬁ'fdfﬂ}‘i&f}?@d)

+ 5" sin & ff‘»‘lﬂ]-ef' (wt—dy sine Co”’?—/“;[f/‘/va(,,ﬁ
) i (Wt —of 5788 $iaP)
+ Cos & cos f sinB)— 3o 5in ¢f/m5_79’ . ’

——//14[“’59 (5/n6 cosg— cosd cos & 5in3)
_ ) Jj (Wt +dr /70O 5/0 &)
-f-a,; S/in p’:mﬂ]e

(271)
Make the further substitutions
a = sin 6 cos B8
b = cos 8 sin ¢ sin g
C = cos 0§ cos ¢ sin B (28A)
d = cos ¢ sin B

&€ = sin ¢ sin B



29

and recall that

Tl = dr sin 6 cos ¢ (16A)

¥4 = dr sin € sin ¢

b - '[a/f*»ﬁa
then L' = m, [To (a—b)— 3y d]e’

7 > %} '

4‘/Wa.£§§ (a—fé0'+‘§¢uijf?jfiw )
_ _ (wi — %)

M 3o Ge)— Tl T

-, [é—e (E =bY-p 3:0¢Je j(wz‘-f%)

= (wi+#) (wt—4
— a@ [/Mr (3—3).917( 1 ‘f'/{z(a't‘b)ef w )

- (wt—¥% (Wt
— M (3"‘%)9’( )-"M«ﬁfa-—C)fj( +¥>]

= (wi+ Y (wt—¢
_pa@[‘“/ﬂ,a{ef(w +¢—/—/?/za/€’(w /

+'/%G'f‘E’j(h/f_fgﬁgL_/kﬂ‘956:?[%v14‘ﬁ2j7

(29A)

Eia ié:'f' iz%.gg

To change the complex values EG and E¢ to instantaneous

values Ee and E¢, the real part of the respective field

(24Rn)
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must be taken. Thus

Ee= R ﬁg =M, (3“b)ca:(~f+e’) + Mo (a+h) cos (wi~§)

—~ M3 (a+¢)cos (wi-— %) My (3~c) cos (Wit %)

=M, @-b)cos Wt cos¥— M, (a-8)sin ot sin ¥

+ M2 (3 +b)cos wt cos¥ + M2 (atb) srnwt sin ¥
— /Mg (a“")‘fos &t casﬁf — A, (a-ﬁ:);;aui sia ¥l

— My (R=¢) cos wt cos% + My (a-c) sin a¥ sin ¥
- {[M. (A=) + M2 @+8)] sin Y — [ M5 (2+0)

+ My (a-c_]] Cos 9‘;} coswl + [[-/M, (a-b) +/’?;(=%L)]f/'n 4
-""[M'b (a +C)"-/’?q.('2-—c)j Sin %} sin w? (30R)

5;; '-""-'&Ep = — M, dcos (WC+ ﬁ’)'f'/”a d cos(wt —4)

+ My f cos (wt—¥,) — My F cos(wt+t)
= — M, d cos Wb cos ¥+, of sinert sin &
+ Mad cos wt cos Y + Madsin ot sin & 10y fcosat cos
+Ms E sinwl sinly — My cos aleos Py sinat sin b
= [(Ma—m) c/c;,, W+ (M —My) & cos ] cos ot

t [ CMatAddsin )+ P1stM) & 5:n¥e] sin o2

(3132)
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The final results are stated in equations (26n), (28n),
(30A) and (31A). It should be kept in mind that these
results apply only to the quarter space 0s=¢<y and —%§¢§g.
These limits are the boundaries of the reflector. The

6
of the far field of the array are listed below.

field is zero everywhere else. The E_ and E¢ components

E. = A cos pt + B sin wt

® (322)
E¢ = C cos wt + D sin pt
where
A = [Ml (a=-b) + M2 (a+b)] cos Wl - [M3 (a+c) + M4(a—c)]cos ¥

B = [-M;(a-b) + M,(at+b)] sin ¥, ~M3(a+ce) - M (a-c)] sin ¥,

e - - y
C (M2 M d cos Wl + (M3 M4) Z cos 4

l)
D = (M2 -+ Ml) d sin Wl+ (M3 + M4) £ sin W4

c:o.s[’é (5in@ sin@ 5B+ cos o Cau,d))—- Sos (?Lr.)

M=

- ' 2
/— (Sine )’Md TInB + €058 cosss)

405[%‘. (5in @ sind 5/nB — cos58 "”/53_7“‘”(%.)

mm‘-‘-

! —(5/18 sirg 5inf — co58 cos58)”

: £
<05 [‘ff' (5/n & co5 J sind — cos ﬂc‘a:ﬂ)]-— Cos(-i)

/V]:&‘-'--"

[~ (Sin 6 cos § 57208~ €258 cosa)”

Cas[.{.(;‘;‘h @ cos f 5/ng + cos & Cosﬂﬂ* CPI[—i)

/]44: 3

=z
/ —(5/n0 cosd 5INB + €05 8 co32)

4



W A0

|_l.

sin

cos

cos

cos

sin

¢
¢

Ccos

sin ¢ sin B8

cos
sin

sin

8

¢ sin B
B
B

dr sin 6 cos ¢

dr sin 6 sin ¢
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APPENDIX B

DETERMINATION OF THE POLARIZATION EQUATIONS

FOR THE GENERAL CASE
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The results of Appendix A (equation (32A)) state that

the instantaneous far fields are

Ee = A cos wt + B sin wt

E¢ = C cos wt + D sin wt

Cramer's rule may be used to solve these egquations simul-

taneously for cos wt. Thus

Ee B
E D ED - E. B
® 6 ¢
cos wt = =
A B AD - BC
c D
. 2 . 2
Since cos’ wt + sin® wt = 1
ED- E,B
v 2 _ _ 2 _ _ 8 ¢ 2
sin® wt = 1 cos” wt = 1 ( A5 = BC )

The first of equations (1B) may be written

Ee — A cos wt = B sin wt

Squaring gives

: :
Ee - 2 Ee A cos wt + A2 c052 wt = B2 sin2 wt

Substitute equations (2B) and (3B) into (4B)

2 E.D - E,A , E;D - E,B 5

¢ )2 - g2 - B (2

E.D -

2 |8 ®
E .~ 2E A AT

\ AD - BC / AD - BC AD -

(1B)

(2B)

(3B)

(4B)
E¢B)2
BC

(5B)
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Clearing the fractions, expanding, and collecting terms
yields the result
2,2 _ 2
£,% (c%+0?) - 2E,E (ac+BD) + £2 (A7¥B7) = (AD-BO)T  (6B)
This has the form of an equation of an ellipse with arbitrary

orientation. To simplify the notation, let

Q = c? + p?
R = AC + BD (7B)
s = a% + B2
T = (aD - BC)?
Then E 20 - 2 EgEy R + E¢2 S =T (8B)

To get this into the canonical form, that is to eliminate

the cross product term, (8B) is written as a matrix equa-

tion.
r%'
Q -R 5
T = [g, €] =E'WE (9B)
-R S E
"¢
Q -R
where W is the matrix and E is the matrix vector
-R S
-
EG
. According to matrix theory the canonical form may
E
¢—

be realized by using the characteristic values (or eigen-

values) as the coefficients of new variables, thus

1 2 1 2 10B
o't Ay Ey (10B)

Now, the characteristic wvalues ) must be found.

T = Xy E
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Q~ -R
[P“‘ A;Ilzzcﬁz :=|QS'-(Qfdaq.PA1_,R2
[ ~R s—A |
X —=A(e+S)+(Qs—RY)=0 (11B)

Using the quadratic formula

S B#F 2+ —4 (0 5— V)
2

Q+5 1 /(a~s)+4R*
2

Then A, = & €5 1 J0a-5"r 4z2
7 4

I

(12B)

Q+ 5T/ (Q—DH*+ R*
2

;i1:=

Substituting (12B) into (10B) and dividing through by T

yields

a
r" /

JEG 4 £¢ — /

ES 3 2T
%l-; ‘_";/(aws)-g-ch‘ Aﬁ'* (Q-8)“r4r* (13B)

This is the equation of an ellipse with the major and minor

axes in line with the cooxrdinates Eé and E& The peak values

A'I Al T —
Ed and E¢ are 1/T/Al and }fT/Az respectively. If R=0 the

matrix P is a diagonal matrix and equation (8B) is already

in canonical form and E'=E.

The boundary conditions of the original problem, the
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corner reflector antenna, require that E8=O at the con-

ducting planes. Thus if the Eé and E$ fields are evaluated

at, for example, 8=%, ¢=%, and L=%, it will be seen that

Eé and E' go into ée and E respectively, and the plus sign

¢ ¢

must be chosen for Ay to make E_ vanish at that point. This

5]
forces the choice of the minus sign for Aoy Equation (13B)

then becomes
x ! 2

Lp

2 ) _,
2T xT e
A Ve~ 4 R* /H — fo-5)"+414

(14B)

Equation (14B) is the final result. The A's are always
positive for a real symmetric matrix and T = (AD - BC)2 is
also positive since A, B, C, and D are real. Thus the de-
nominators of (1l4B) are always equal to or greater than

zero, and so the peak wvalues Eé and E$ are real.
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POLARIZATION EQUATIONS FOR A HALF-WAVELENGTH ELEMENT

For the special case of a half-wavelength element (L=w)

the equations of Appendices A and B may be simplified.

To

obtain the polarization equation broadside, set 8:%, L=mw,

and ¢=0 in equations (32A), (7B), and (14B).
cos B
sin B
c =g =0
dr
0
M2 = 1 ;
cos (z sin B)
My, ~= p)

n W < u w

cos® B i
cos (= sin B)]

2 [cos B cos dr -
cos B

cC =20

2 sin B sin dr
. 2 B

4 sin® B sin dr

O m™
cos (7 sin B) 5
4 [cos B cos dr - ]
cos B

cos (& sin 8)}2

16 [cos B cos dr -

cos B

sin

Thus

2

B sin2 dr
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Il
o
-
m

Since R
2T 2T

8
QO+ S + A (Q-—s)2 Q+ S+ Q ~ 8 0

cos (%—sin B)

>
e}
| H

= 4 [cos B cos dr - ] (1g)
cos B
£2. — y i I
¢
Q + 8 = af (Q—S)2 Q+S-Q+ s S
= 4 sin2 8 sin2 dr : (2C)
The polarization equation then becomes
Ee2 £ 2
P _
T * T 2 =
cos (5 sin B) 5 4 sin® R sin® drx
4 [cos B cos dr - ]
cos B (3C)
When ﬁsz = ﬁ¢2 equation (3C) become the equation of a circle
of radius [E, | = |E¢|. Thus circular polarization occurs
when
cos (% sin B)
4 [cos B cos dr - = ]2 = 4 sin2 B sin2 dr
cos B
2 2 ;|
cos”™ B cos” dr - 2 cos dr cos (3 sin B)
‘ cos? (% sin B) 2
- 2 = sin® B sin” dr (4C)
cos B
o B 2
But sin“*dr = 1 - cos” dr (5C)

Substitute (5C) into (4C).
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605.:(? cos? a’;— —~ 2 cos5s dr cos (I{ 5('1?/3)

- 1 "
o Jin 4 — 5/1!15 cosds

. cos*(Lsing
ca;"c/r —~2 cosds :o;(%’: sin8)+ a; (; )'—' Sr4 =0 i
os

Solve (6C) for cos dr using the guadratic formula.

2 ‘a" ,
2z z:of(—gffnﬂ).f;//.’z(o;‘(gf;ﬂﬁ]_ g (3 rld)-f-‘.’“ffb'}d’

cos dr <os 8

i

2

= Cos5 (Ig 5‘1'11;5)2"}'/‘/7,&//“ cg,acfzg Srrd)
Cos iz (7C)

or dy = cofﬁycas(%‘;W]f 5'/3”51//- <0s(Z sins)
cos 3

To arrive at the equations for the electric fields

in the vertical plane for the half-wavelength element

substitute L = 1 and ¢ = 0 into the equations (323).
Thus |

a = sin 6 cos B

c = cos 6 sin B

d = sin B

b=¢g=0



M

/j/} __ <Cos %cosacosﬂ)
1 —

/- ""515’605"5

cos [F cos (6]

M,‘:—-‘
sin? (e _bg)
M ca;[‘g’ cos (6’-—,3)]
;.f =
sin* (& -a)
IC cos 6 2)
- 2 cos ( z €0 cos 5in 8 cosd “’-‘@'ﬂkﬁ)
_ /— cos*® cos’?
_. <cos [%_ cos (9+/9)] - cos [ B cos(65)]
sin (6+3) 5/a (02
B=c=o0
lrca}’ S cos/pB
D = % il ) sin 3 sin(drsin8)
/ —cos’e cosiz
Then

5ine cos2(dr sin e)

E. = [2 cos (% cos & cos8)
&

/— cos*® <oz

__ cos [’;‘r cos (B'Mﬂ _ 405[%? {”[9"’)] cosw?
sin (643 5/0( ©3)

E [ 2 cos (Z cos ©cosB)
g | — cos*o cos 2

s/nAB 5in (4’»- 5in 9_)] 5/y &7
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(8C)



To obtain the horizontal field equations substitute

L =17 and 8§ = % into equations (32&).
a = cos B
b =c¢c=20
d = cos ¢ sin B
g = sin ¢ sin B
?1 = dr cos ¢

¥4 = dr sin ¢

cos (zzt 5in #ff'ﬂ.d)

My =a = [— s5in3g s5sin3g

cos (111.” cosd sin3)
! — <os5*d 5/213F

L s; 2
A= 2 Co;ﬂ/m’ & ;m¢fh'g2 coslds cos £)
/ — Sm*g 5/a%z

1447’=/ﬁ9::

. 2as T iy S tink Cdf(aﬂ-:‘hﬁ)]

! — cos'p sin*s

B=cCc=70

Cos@n‘h & 5in4)
! = s5/n*gZ 5in3Z

D= 2 5/n2 cos f sih(drcos #)

cos (H cos ¢ 5inp)
| — <€o0s5*@ s5ins

- sing Sin @ S5/ p)/

71
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h
en cos( T sin § 5in3)

= 2 cos
Ee & [~ 5in3F s5in38

cos (C{r (05@)

_ COSCEZ' cos ¢ 5in3z) Cos(c/rsfﬂﬂ)] cos wl
/ ——6051@’ s/nis

(9C)

g1 in /n
,E'p = 7_)’/'/1,5[ €93 (zﬁ alhd Ay cos ﬂ/fz)i(a’pcosﬁ)
/"'" ff.ﬂzﬂl 5:‘&%

CO}(IZ‘Z CO’p ’:"'d)
/] — cos*g sia7Z

-+

sind sin (dr sin p’)]s‘/'h wl

Inspection of equations (8C) and (9C) shows that in

both cases Ee is a function of cos wt and Ed) is a function

of sin wt. This means that Ee and E, are in phase quadra-

¢
ture in both the vertical and horizontal planes. Thus the
fields are elliptically polarized with the major and minor
axes parallel to the coordinate axes. The axial ratio is

P
then simply (EG/EQ) with the sign of the exponent chosen

so AR<1.
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