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ABSTRACT 

The electronic transition moments of many band systems have been 

found to be linear functions of the internuclear distance. However, 

some band systems exhibit a quadratic variation of the transition moment. 

In these quadratic cases, the plots from which the variation of the tran­

sition moment is determined are based upon the approximation of the second 

r-centroid by the square of the first r-centroid. The square of the 

first r-centroid does closely approximate the second r-centroid but a 

simple error analysis shows that the small difference between the two is 

not a quantitative measure of the error introduced into the transition 

moment when the exact equality of the two is assumed. For the first 

positive bands of N2 and the first negative bands of N2 +, the error in 

the transition moment is about an order of magnitude ~arger than the 

error in the second r - centroid. 
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INl'RODUCTION 

The use of the Franck-Condon factors and r-centroids in the inter-

pretation of intensities resulting from electronic transitions in diatomic 

molecules has been investigated by many. In several of the band systems 

studied, the electronic transition moment, R (r), has been found to be a 
e 

linear function of r, the internuclear distance (e.g., 1-~). However, 

other band systems exhibit quadratic variations of R (r) with r (e.g., 
e 

!_, 7-10). The form of these electronic transition moments has been deter-

mined from plots of 

f ]1/2 
I(n 1 v', m"v") i{n,m) 4 

( I tl) q v , v N (n I v' ) 

versus r1 (v' ,v"), the first r-centroid, where I (n 'v1 ,m"v'') is the measured 

relative band intensity, A(n,m) the average wavelength of the rotational 

lines observed in the band, q(v' ,v") is the Franck-Condon factor, and 

N(n'v') is the population of the excited level. Because the square of 

the first r-centroid closely approximates the second r-centroid, r2 (v' ,v")' 

it .has been thought that only a negligible error in a non-iinear R (r) 
e 

results when its form is determined from such plots. The content of the 

present paper is a simple error analysis which demonstrates that _ this is 

not the case. Using the first positive system of N2 and the first nega-

tive system of N2+ as exarnp1es, it is shown that the error is about an 

- 2 order of magnitude 1arger than r 1 (v' ,v") - r 2 (V 1 ,v"). 

A brief review of the equations required in the intexpretation 

technique precedes the discussion of errors in a quadratic R (r). 
e 

l. 



REVIEW OF THE EQUATIONS 

In the Born-Oppenheimer approximation (ll) the electrons adiabat-

ically f o llow the nuclei with the result bei.ng that the total diatomic 

eigenfunction separates into electronic and nuclear eigenfunctions where 

the electronic eigenfunction is a parametric function of the internuclear 

distance. In the absence of a significant vibration-rotation interaction, 

the nuclear eigenfunction further separates into vibrational and rota-

tional eigenfunctions but the electronic eigenfunction remains a para-

metric function of r. 

Let i designate an upper state where i represents the collection 

i 1 , v', J•, A', and M' where in turn i' represents the upper state elec-

tronic quantum numbers and the other symbols have their usual meanings 

as given, for example, in Herzberg (12). Letting j similarly designate 

a lower state, one may write for the transition moment of a transition 

from one vibrationally and rotationally perturbed electronic configuration 

to another 

-+ 
wh ere r is the position of the eth electron in a fixed system of axes 

e 

whose origin rests at the center of mass. The molecular rotations are 

described by the three Euler rotations (ex, ~, and y) of the fixed axes 

to a system of axes (primed coordinates) attached to the molecule such 

(1) 

that the z' -axis lies along the internculear axis • If the molecule were 

at a fixed ex, ~, andy orientation with respect to· the space axes, 

2 



. -
orthogonal transformations of in~ernal molecular coordinates from one 

set of axes to the other could be accomplished using the Euler matrix, 

D(aSy). However, in the adiabatic approximation, the rotations are much 

slower than the vibrational or electronic motion and the non-inertial 

nature of the two coordinate system may be ignored in the calculation of 

the electronic transition moment. The resulting simplification is that 

+' 
the transformation r 

e 

Eq. .(1) separable. 

+ = D(aBy)r leaves the rotational contribution in e 

M(i,j} = <(r.'A'M' I D(aBy) I ~"A"M'i~'v' ~~~~ j"v'> (2) 

the absolute square of the rotational term is sUimned over M' and M" 

giving the rotational strength factor or Honl-London factor, S(J.'A' ,J,"A"), 

whose evaluation will not be considered here. The vibrational. strength 

factor or band stren9th 1 S{n'v' ,m"v"), is the sum over electronic 

degeneracies of the absolute square of the el.ectronic-vibrational term 

where n • and m '' are the el.ectronic quantum numbers remaining after sum-

mation. That is, the transition strength is the product of two strength 

factors. 

S{n,m) = S(n'v',m"v") S(J'A',~"A") (3) 

Symmetric top eigenfunctions are good approximations for the rota-

tional eigenfunctions and the S (J_ •·A' , J_" A") can be directl.y cal.culated 

(e.g., see Rubin (13). For values of v' and v" not too large, Morse 

eigenfunctions (14-16) are satisfactory approximations of ~e vibrational 

eigenfunctions. The empirical e_igenfunctions resul. ting from numerical 

3 



solution of the vibrational Schrpdinger equation in which the Rydberg-

Klein-Rees potential is employed (.!_,~,17, and 18) are still better 

approximations. In short, the vibrational and rotational e.igenfunctions 

can be considered known. This is not the usual circumstance for the 

electronic eigenfunctions although the simplest are known and progress is 

being made for the more complex diatomic molecules. For example, Cade, 

Sales, and Wahl (19) have made significant progress with certain states 

The interpretation technique being described here in an 

approximation which is used when <:i'v' I;~ I j "v'> cannot be directly 

calculated. In this case, the electronic integrations are performed in 

principle. 

~'v' I;~ I j"'v" > = (v'IRe (r) lv") 

The result is a parametric function of r. The form of R {r) is to be e 

empirically determined and it is assumed that 

R {r) 
e 

Through relative intensity measurement the values of the constants 

c0 , c1 , c 2 , ••• are to be determined. R (r) is called the electronic 
e 

transition moment but, of course, M(i,j) is the electronic transition 

moment and R {r) only the most purely electronic part of M(i,j). 
e 

Substitution of Eq. {5) into Eq. (4) gives 

(4) 

(5) 

S(n'v',m"v") = q{v',v") [c0 + c1r 1 (v',v") + c2r 2 (v',v") ••• ] 2 (6) 

in which the Franck-Condon factor is defined as the square of the 

4 



so-called overlap in~egal 

(7) 

and the kth r-centroid is defined by 

rk(v',v") (8) 

The equation 'which defines the Einstein probability, A(n,m), in terms 

of the line str~ngth is now written, 

4 3 
64'71" \l(n,m) 

A(n,m) = --~3~----------
Jhc 9 (2J' + 1) . n 

S(n,m), 

where v(n,m) is the line frequency and q is the electronic degeneracy n 

(g = 2S' + 1 for A' - 0 and 2(2S' + 1) for A'+ 0). The equation for 
n 

spontaneous emission, I(n,m) ... h\l(n,m) A(n,m) N(n) · where N(n) . .is the 

population of the excited level, becomes 

4 4 

(9) 

I(n,m) = 64tr \l(n,m) 
S(n'v',m"v") S(~'A',J"A")N{n). (10) 

Equation (l.O) is now summed over al.l rotational l.ines in the (n 'v' ,m"v")-

band in order to obtain the . total band intensity. An average frequency, 

v(n,m), is defined for the rotational lines in the band and a Maxwellian 

distribution of the rotational levels in each excited vibrational. level is 

assumed. The absence of a significant vibration-rotation interaction has 

. ""' .... 
already been assumed. Hence, the total term val.ue can be written as the 

sum of electronic, T, vibrational., G(v), and rotational, F(J), term . e 

values and , .the Maxwel.l-Bol. tzmann £actor separates into independent 

5 



electronic, vibrational, and rotational factors. Then use of the rota-

tional sum rule 

L s (J' A I ,J."A") = 2J' + l (ll) 

Jll 

and summation of Eq. (10) over J' and J" gives the total band intensity. 

I (n 'v' ,m"v") = 
4 - 4 

64'IT v(n,m) 
3 

3c g 
n 

S(n'v',m"v") N(n) (12) 

Using Eq. {6}, ignoring all unnecessary constants, and converting to the 

experimentally more convenient wavelength, one arrives at the equation 

which relates the measured intensity to the unknown constants c0 , c1 •••• 

[ I(n'v',m"v")A(n,m) 4 ]
112 = 

C + C r (v' v") + C r (v' v") 
q (v' , v") N {n 'v' ) 0 l l ' 2 2 ' • • • 

{13) 

If some number L of the constants in Eq. {13) are significant, 

their values can be determined from L measured I (n 'v' ,m"v") and the 

solutions to L simultaneous equations. The N(n'v') are rarely known, 

and the process is restricted to bands with the same v' {i.e.,v"-

progressions). In what is apparently the first use of the r-centroids, 

Turner and Nicholls (20) found {as noted in the companion paper by 

Fraser (21)) that experimental scatter in I(n 'v' ,m"v") produced very 

large scatter in the values of the constants when they were determined 

as the solutions of simultaneous equations. Therefore, Turner and 

Nicholls plotted the term on the left of Eq. (13) versus r 1 {v' ,v") and 

then scal~d the values of N(n'v') until all v"-progressions best fitted 

a single curve. The resultant curve for the first positive system o£ 

- . 2 N2 was f q und to be non-linear but since r 1 (v' ,v''} . closely approximates 

6 



r (v' v") 2 I I the error introduced into the constants c0 , c1 , and c2 was 

considered negligible. As shown below, the small difference between 

- - 2' · ~· · 
r 2 (v' ,v") and r 1 (v' ,v") · is not a quantitative measure of the error re-

sulting in R (r) when the curve is non-linear. 
e 

ERROR IN A QUADRATIC R (r} 
e 

In the manner described above, Wallace and Nicholls (7) found that 

for the first negative system of N2+ 

R (r) .. const. (14.473 - 23.497r + 10.134r2 ) 
e 

for the following range of the first r-centroid. 

- 2 It is convenient to define t:.r2 (v' ,v") = r 1 (v' ,v") - r 2 (v' ,v"), 

(14) 

R = <v· lv"> [Co + Clrl (v' ,v") + c2ii.<v' ,v") 2 ], and I::.R as the approxi­

mate error produced in (v• IRe (r) I v•) when one incorrectly assumes 

that t:.r2 (v' ,v") is negl.igibly small. Then 

- (15) 
R R 

The Franck-Condon factors and the first two r-centroids were calcu-

lated by numerical integration of Morse eigenfunctions in the manner 

described by Nicholls (16). Table 1 is the result of applying Eq. (15) "to 

Eq. ,, (14). It is seen that"""'the~error in < v' IRe (r) I v•) , which is also 

an estimate of the error in R (r), is approximately an order of magnitude e 

larger than. the difference between the second r-centroid and the square 
. ..., . ; , ~ ' '" 

7 



of the .first. 

Jain and Sahni (~) have recently reapplied the plott~ng procedure 

to the N2 first positive data of Turner and Nicholls (20). Us~g RKR 

eigenfunotions, Jain and Sahni found 

R (r) = const. (1.0 
e 

2 
1.2550r + 0.4063r ), 

At the suggestion of James (22) they calculated S (n' ,v' ,m"v") by two 

(16) 

different methods. In their method (i), they directly substituted the 

constants of Eq. (16) into Eq. (6). In their method (ii), they calcu­

lated S(n' ,v' ,m"v") = <v• jRe(r) I v•":/' 2 by numerical integration. Their 

methods (i) and (ii) would be nothing but a computational check if 

- k r (v' ,v") = 
1 

rk (v',v") held. In th~ present study, the differences be-

tween methods (i) and (ii) were computed from the table given by Jain and 

Sahni (this could.not be done precisely) and compared with the errors 

predicted by Eq. (15). The error in S(n' ,v• ,m"v") is just twice the error 

in <v• !R (r)l v'~-e 
Because the present study employed Morse eigen-

functions and because of the inprecision with which the difference between 

methods (i) and (ii) could be taken from the table of Jain and Sahni, 

the comparison is not entirely successful but it is clear that approxi-

mately the same errors result regardless of the eigenfunctions used. In 

each instance the signs of the errors agree • 
. ~ .... 

Method (ii) of Jain and Sahni and Eq. (15) would yield identical 

results if identical eigenfunctions were used. However, instead of using 

their method (ii) it would appear to be more to the point to simply 

8 



calculate the second r-centroids while the Franck-Condon factors and 

first r-centroids are being calculated. One can then attempt to replace 

the plotting procedure with, for example, a least squares determination 

of R (r) in which the plot versus the first r-centroids is used only as 
e 

a starting point. 

9 



CONCLUSIONS 

i .. • 

To reiterate, the-:va.lues of the necessary constants were taken 

from the 1iterature and the quantity ( v' IRe (r) I v•) was calculated 

according to the much used approximation, 

Then the same va1ues of the constants were used in the exact equation 

IRe (r) I· v" ~ == ~·I vii" [C + c r -/ ~ "/ 0 · 1 1 (v' ,v11 ) + c2 r 2 (v' ,v")] (18) 

The result given by Eq. (18) was substracted from that given by Eq. (17) 

and this difference was then divided by the result of Eq. (17). Equation 

(15) is a convenient way of expressing this procedure. The procedure can 

be fairly described as simple and obvious. It demonstrates that the 

approximate equation predicts values of ~· jR (r) I e which differ 

significantly from those predicted by the exact equation. The error 

figures given in Tables 1 and 11 cannot be used as correction factor to 

be applied to values obtained from the approximate equation becuase the 

correct values of the constants are not known. Indeed, a conclusion of 

this paper is that the constants reported in the literature are in error. 

Jain and Sahni made a correct test of Eq. (17) when they computed 

their (ii) band strengths for the first and second positive systems of 

In their ear lies CO+ cement-tail. study (8) , they did not compute 

band strengths according to method (ii) • Using the values of the con..- . - ~ 

stants they report, one finds that the erro~: . in S (n • ;V' ,m .. v") is typically 

- ·. . . 2 
120 times larger than.:- 'tlle. difference r 1 (v' ,v") r2 (v' ,v") simpl.y 

10 



because c2 is typically 60 timeS l~rger than R. A method (ii) calcula­

tion for this band system would: give band strengths which differ from 

the method (i) strengths. given in Table 4 of Reference · (8) by 50 percent 

or more for about 25 of the 63 bands listed in ·: the table. 

The work critized has not been redone correctly because the writer 

has only Morse e.igenfunctions available at the present time. However, a 

preliminary study has been done for the N2+ first negative system and a 

determination of the constants by the solution of simultaneous equations 

was found to work reasonably well. If, with a particular set of inten­

sity data, one finds that no successful substitute for the plotting pro­

cedure can be found, one can only conclude that the data or the eigen­

functions are unacceptable. 

The writer wishes to acknowledge Dr. R. A. Anderson, Dr. J. L. Rivers, 

and Dr. J. w. L. Lewis for their many helpful s.~ggestions. 

11 
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TABLE I 

Errors introduced into the values of <v• !R (r) I v'> by the 
assumption that the square of the ' first r-centroid e~als the second 
r-centroid: First Negative System of N +. Constants in R(r) taken from 
Wallace and Nicholls. <IJ. Only observea bands (accordi.ng to Tyte · (23)) 
are listed. 

v'/v" 0 

0 

1 

2 

3 

4 

5 

a 
6.5094-1 

b 
1.1007 

c 
d-0.0874 
-1.21 

3.0143-1 
1.1529 
0.100 
1.58 

4.5369-2 
1.2188 
0.367 
6.17 

2.2473-3 
1..3226 
1.01. 

15.8 

a 
q(v',v") 

b­
r1(v',v") 

1 2 

2.5883-1 7.0163-2 
1.0529 1.0144 
0.135 0.291 
1.57 2.84 

2.2260-1. 2.8599-1 
1..1132 1.0588 

-0.379 0.0310 
-5.46 0.368 

4.0598-1 5.0645-2 
1.1615 1.1380 
0.00382 -1.00 
0.0612 -1.5.5 

1.0561-1. 4.1371-1 
1..2278 1.1709 
0.317 -0.106 
5.37 -1.73 

6.9344-3 1.6603-1 
1.3364 1.2371. 
1.03 0.266 

15.8 4.49 

c - 2 - -[r1 (v' ,v") - r 2 (v' ,v") ]/r2 (v' ,v") % 

d 
/:,R/R % 

12 

3 4 

1.5998-2 3.2973-3 
9.8017-1 9.4826-1 
0.446 0.621 
3.67 4.31 

1.3242-l 4.2727-2 
1.0192 9.8475-1 
0.222 0.389 
2.22 

.. 
3.27 

2.2901-1 1-6535-1 
1.0650 1.0239 

-0.0975 0".146 
-1.19 1.49 

2.1001-3 1.5566-1 
1.2926 1.0720 

-2.78 -0.262 
-47.0 -3.29 

3.7920-l 6.7262-3 
1..1814 1..0031 

-0.230 6.49 
-3.80 56.5 

3.3098-l 
1.1930 

-0.367 
-6.15 



• TABLE II 

Errors introduced into S{n'v' ,ro"v") by the assumption that the 
second r-centroid is well approximated by the square of the first r­
centroid: Comparison for the first positive system of N2 between the 
work of Jain and Sahni (l) and the present work. 

v'/v" 0 l 2 3 4 5 6 7 8 

0 
a 0.3 l. 2. 2. <5. <l.O. <30. <100. b-2. 
-1.9 0.16 .1.45 2.28 2.82 3.19 3.43 3.60 2.70 

1 4. -30. -3. <0.4 1. 2. 3. 3. <8. 
0.18 -54.3 -3.39 0.16 1.33 2.20 2.74 3.10 3.34 

2 5. -4. ~0. -10. -3. <5. l. 3. 3 .. 
3.84 -3.88 8.30 -16.4 -2.88 0.003 1 ... 38 2.19 2.70 

3 10. 2. -~0. 3. so. -a. -2. <0.5 1. 
10.3 1.40 -13.8 2.24 32.5 -9.14 -2.08 0.27 1.59 

4 <100. 10. -2. -20. -3. J.O. -30. -5. -1. 
21.1 8.42 -1 .. 89 -63.8 -2.26 9.14 -56.8 -5.90 -1.37 

5 <30. s. -7. 70. -a. 4. 20. -10. 
19.6 6.22 -6.22 42.2 -8.58 3.58 23 .. 6 -16.7 

6 ~0. 4. -20. 20. -20. -l. 10. 
~7.8 3.50 -14.1 16.0 -22.2 -0.68 9.60 

7 <100. 20. <2. -20. 9. -so. -4.86 
33.4 15.8 0.16 -28 .. 4 7.36 ;...109. -4.86 

8 so. 20. -3. -40. 2. so. 
31.6 13.4 -4.06 -70.0 1.02 57.6 

9 30. 20. -8. ? -6. 
29.4 10.7 -9.50 190. -5.73 

10 20. 9. -10. 300. 
27.1 7.68 -16.8 71. 

1.1. <1.00. 20. 5. -20. 
41.4 24.6 4.16 -27.1 

1.2 100. 20. 2. 
aS(method(ii)-S(method(i)) % 39.0 22.0 0.13 

S (method (i)) 
b 2ll.R/R 

13 
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