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ABSTRACT 

In the past ten years nanotechonology has not only evolved to play a prominent 

role in our economy but also increased the concern over potential adverse effects 

caused by nanomaterials to human health and the environment. Nanotoxicity is to 

understand the nature and origin of the toxicity imposed by nanomaterials. Studies from 

our laboratory have shown that nanoparticle induces oxidative stress, perturbs calcium 

homeostasis, alter gene expression, and produces pro-inflammatory responses. We also 

identified a trend of toxicity: TiO2 < Cr2O3 < Fe2O3 < Mn2O3 < NiO < ZnO < CuO. We then 

asked a question: what are physiochemical factors of transition metal nanoparticles that 

contributed to this increasing cytotoxicity.  

In this thesis I investigated the correlation between physicochemical properties 

and toxicity of the transition metal oxides in the 4th Period of the Periodic Table of 

Elements. Particle size, BET surface area, point of zero charge, metal dissolution, and 

degree of surface adsorption of transition metal oxide nanoparticles were measured. 

There were no increasing trends in both particle size and specific surface area. The point 

of zero charge showed an increasing trend as TiO2 < Cr2O3 < Fe2O3 < NiO < CuO = ZnO < 

Mn2O3. The number of available binding sites of nanoparticle showed an increasing 

trend as Cr2O3 > ZnO > CuO > NiO > Fe2O3 > Mn2O3 > TiO2. The degree of adsorption on 

the surface of nanoparticles showed an increasing trend with atomic number, with the 

exception of Cr2O3. The degree of dissolution of transition metal oxides increases with 

atomic number. In summary, the factors that contribute to cytotoxicity of transition 

metal oxides were a combination of point of zero charge, number of available binding 

sites on the surface of nanoparticles, and metal dissolution. This study advances our 

understanding in mechanisms of nanotoxicity, which may lead to safer design of 

nanomaterials.  
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1. INTRODUCTION 

1.1 OVERVIEW 

Nanotechnology is the study of the control of matter on atomic and molecular 

scales. Nanomaterials are materials that have at least one dimension in the range of 1-

100 nm [1]. Due to small sizes, they exhibit novel physical and chemical functional 

properties. Applications and production of new nanomaterials, especially metal oxides, 

are increasing in diverse fields [2], including cosmetic products [3], magnetocooling [4], 

optical and recording devices [5, 6], purification of enzymes and other biological 

materials [7], water purification devices [8], and biomedical research [9, 10]. Due to 

large production and demand, occupational workers and/or end product users may 

have exposure to nanomaterials via inhalation, dermal absorption, gastrointestinal tract 

absorption and injection of bioengineered nanomaterials. There is a growing concern 

that emerging nanotechonology may impose adverse effects to human health and the 

environment.  

The Health Effect Institute (HEI), established in 1980, is an independent and 

unbiased source of information on the health effects of motor vehicle emissions, and 

has supported research on all major air pollutants. In 2000, the research report from HEI 

stated that ambient particulate matters with various sizes and chemical compositions 

contain very small particles (less than 100 nm in diameter) that are particularly toxic 

[11]. Yet, the research conducted by Oberdörster and colleagues conducted an 

inhalation study and found that ultrafine particles showed no greater adverse effects, 

including inflammatory response and pulmonary dysfunction. On the other hand, a sudy 

with instillation showed size-dependent toxicity between ultrafine particles and fine 

particles [12, 13]. The ultrafine particle was not discovered to cause the adverse effect 

on the animal model until instilling ultrafine particles directly into the trachea of animal. 
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Later on, the ultrafine particles (diameter <100 nm) and transition metal containing 

particulate air pollutants were found to cause the adverse effects in vitro and in vivo 

[14-16]. In 1999, Li and colleagues found that ultrafine carbon black (14 nm) possesses 

greater lung inflammation and oxidant stress than fine carbon black (250 nm). Moreover, 

Wilson and colleagues investigated interactions between ultrafine particles and 

transition metals [16]. The result showed that ultrafine carbon black (14 nm) reduced 

the levels of Glutathione (GSH) in J774 cells (murine macrophage cell line) while addition 

of iron salts (FeCl3 and FeSO4) to carbon black could further decrease GSH. This evidence 

suggested that the ambient particles with different size, chemical composition and 

surface characteristics could cause various adverse effects, such as oxidative stress and 

inflammatory response both in vitro and in vivo. According to these studies, it became 

suspicious that the nanoparticles which had similar characteristics as ultrafine ambient 

particles may have potentially adverse effects. In order to guide the future design of 

safe nanomaterials, identification and characterization such as size distribution, shape, 

and physical and chemical properties of nanoparticles will be critical to address 

potential effects on human health and environmental implications [17-20]. 
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1.2 NANOTOXICOLOGY 

Donaldson and his colleagues described framework of nanotoxicology to address  

potential threats in support of the growth of a safe and sustainable nanotechnology 

industry [21]. Nanotoxicology encompasses physicochemical characterization, routes of 

exposure, biodistribution, molecular markers, genotoxicity, neurotoxicology, etc. While 

in vivo studies investigate health effects, in vitro studies can elucidate mechanisms of 

toxicity without influence of toxicokinetics and toxicodynamics.  

In our laboratory, we have investigated cytotoxicity, oxidative stress, 

perturbation of membrane integrity, alteration of gene expression, and imbalance of 

calcium homeostasis in human lung cells, both BEAS-2B and A549 [22]. Nanoparticles 

could cause dose-dependent and time-dependent effects on cytotoxicity. Also, the 

integrity of the cell membrane was compromised by measuring the LDH leakage, the 

oxidative stress was induced by measuring the reactive species, and oxidative-related 

gene expression was altered using pathway-specific DNA microarray. One missing piece 

of information is what factors contribute to the adverse effects. 
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1.3 CYTOXICITY OF TRANSITION METAL OXIDES 

Cytotoxicity of nanoparticles could be cell line dependent [23]. For instance, 

Syed and colleagues showed that nanoparticles such as TiO2, SiO2, MWNT, and MWCNT 

caused differential toxicity in 3T3 (fibroblast), hT (telomerase-immortalized human 

bronchiolar epithelial cells), and RAW 264.7 (murine macrophage) cell lines. Aside from 

differences in cell lines, toxicity of transition metal nanoparticles could be particle 

species-dependent [24-27]. For instance, TiO2 was known to be less toxic than CuO and 

ZnO in zebra fish [28], soil nematode [29], human cell lines (HEp-2 and keratinocytes) 

[30, 31], and marine species [18]. For instance, ZnO nanoparticles had smaller LC50 

value than TiO2 on nematode Caenorhabditis elegans. These studies indicated particle 

specific effects. Recently our laboratory identified a trend of toxicity of transition metal 

oxides of TiO2, Cr2O3, Fe2O3, Mn2O3, NiO, CuO, and ZnO: as atomic number increases, 

toxicity increases and we summarized an nanoparticle-induced cell death in Figure 1.1 

[32]. Synergistic interactions between intracellular [Ca2+] and oxygen species were 

potential factors which lead to cell death. As intracellular [Ca2+] and oxygen species 

could affect each other, they both could induce cell programmed death (apoptosis) by 

distinct pathways. While we have identified several inter-related cellular responses to 

nanoparticle exposure, it remains unclear what physicochemical properties of 

nanoparticles govern cytotoxicity.  
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Figure 1.1: Cell death induced by nanoparticle. The figure shows the relationships 

between nanoparticles, production of reactive oxygen species, and intracellular Ca2+ 

concentrations. (from [32])  
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1.4 CHARACTERIZATION OF NANOPARTICLES 

Characterization of nanoparticles is essential in nanotoxicity studies as particle’s 

properties may influence toxic outcome. Due to the unique characteristics of 

nanoparticles, such as small size (<100 nm) and corresponding large specific surface 

area (SSA), nanoparticles were thought to impose higher degrees of biological effects as 

cytotoxicity, oxidative stress, metabolism and homeostasis than their corresponding 

micro-sized particles [33-36]. Assuming equal particle mass, as particle sizes decrease, 

surface areas increased dramatically. Nanoparticles may possess higher bioreactivity per 

given mass when compared to micro-scaled particles. The property can be utilized for 

biomedical applications  such as contrast-enhanced MRI agent [37-39], molecular image 

[37, 40, 41], and drug delivery [42-44]. On the other hand, increased SSA may impose 

higher oxidative stress [4, 5, 25, 45-47], immune response [48-50], damage of 

intracellular molecules (e.g., DNA, proteins) [8, 47, 51, 52], and cell death. Additional 

reports showed that nano-sized metal oxides were more toxic than their corresponding 

macro-sized one in vitro and in vivo [29, 53-55]. For instance, two sizes of CuO 

nanoparticles (20~40 nm and 3000 nm) were treated in human alveolar type II-like 

epithelial cell line (A549) for 18 hr. Nano-size CuO caused greater cytotoxicity than 

micro- size one at same concentration [55].  

The physicochemical characterizations such as point of zero charge (PZC), and 

particle surface binding sites may also play a role in cytotoxicity. Point of zero charge 

describes a condition when electrical charge density on a surface is neutral. Based on 

the electrical double layer model and the Gouy-Chapman theory [56, 57], the PZC could 

be elucidated more clearly. A double layer is a structure that appears on the surface of a 

solid particle or a liquid droplet when exposed in an aqueous environment. The particles 

are surrounded by two layers of charge in an aqueous environment, (Figure 1.2). The 

First layer consists of adsorbed ions on the surface of particles. The second layer is 

called diffuse layer as it is loosely bound with the object rather than being firmly  
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Figure 1.2: The double layer theory. 
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anchored. The net electrical charge in the diffuse layer is equal in magnitude to the net 

surface charge, but with opposite polarity, hence making the entire structure electrically 

neutral. As the pH of the solution was equal to the PZC, the net charge of the surface 

was zero. The net charge of surface is positive as the pH of the solution is below the PZC 

because the proton would be adsorbed by nanoparticles. When the pH of the solution is 

above PZC, the net charge will be negative. The PZC of transition metal oxide is critical 

because it indicates the adsorption of ions and biological molecules. Once the PZC is 

determined, we can predict the charge associated with molecules which would be 

adsorbed by nanoparticles. The PZC measurements were carried out according to the 

method developed by J. Park and J.R. Regalbuto [58] and modified for use to measure 

PZC of nanomaterials in our laboratory.  

X-ray photoelectron spectroscopy was a quantitative spectroscopic technique to 

study the energy distribution of the electrons emitted from X-ray-irradiated materials 

[59]. The simplified instrumental setup was showed in Figure 1.3. The photoelectric 

effect, the basic concept of XPS, is a phenomenon in which electrons are ejected from a 

surface, when photons of adequate wavelength are incident. The electrons which 

absorb the energy from the photons with no loss of energy would eject from the surface 

of materials and exhibit the excess energy which would be converted into kinetic energy 

of electron. The measurement of kinetic energy of the escaped electron provided 

information for its initial atomic and molecular states. According to the article [59], the 

chemical shift of an atom shown that the electron binding energy was a function of the 

chemical environment of the atom. For instance, the spectrum of the carbon 1s level in 

ethyl- trifluoroacetate (CF3COOC2H5) had four peaks present -CF3, -COO, -CH2, -CH3, and 

these large chemical shifts in the carbon 1s level, due to different surrounding atoms, 

indicated the power of the XPS method in Figure 1.4.  
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` 

  

Figure 1.3: XPS instrumental setup 1.) The entry and exit of samples into the chamber 

took place through a series of sliding seals and gate valves. 2.) This was the ultra high 

vacuum chamber, where pressure in the order of 10-8 to 10-10 Torr . 3.) X-ray gun. 4.) 

X-ray source, which produced monochromatic X-rays. 5.) Double pass cylindrical 

analyzer, which analyzed the incoming photoelectrons. 6.) The turbo pump and 

roughing pumps were used to water cool the heat. 
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Figure 1.4: Carbon 1s photoelectron spectrum of ethyl trifluoroacetate (figure 

adapted from K. Siegbahn et al. ESCA; Atomic, Molecular and Solid State Structure 

Studied by Means of Electron Spectroscopy. Ser. IV, volume 20, 1967). 
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1.5 METAL ION RELEASED FROM TRANSITION METAL OXIDES 

In addition to the above-mentioned properties of nanoparticles, metals from 

oxide compounds may dissolve in aqueous environment. Studies have shown metal ions 

can cause toxicity in vitro and in vivo [15, 60, 61]. For instance, Martin R. Wilson and 

colleague demonstrated that metal ions adsorbed on carbon blacks are the main culprit 

of toxicity that included alteration of morphology, cell death, and inflammation [15]. 

Moreover, Xia and colleagues investigated toxicity caused by dissolution of ZnO and CeO. 

They concluded that dissolution of ZnO plays a critical role in contributing cytotoxicity 

[61]. The potential role of dissolved ions in toxicity was also highlighted in a study by 

George et al. [62]. In 2010, George et al. demonstrated that 1) cytotoxicity of ZnO was 

significantly reduced by doping ZnO with iron, and 2) the pure and decreased levels of 

Fe-doped ZnO nanoparticles released remarkably high levels of Zn2+ into aqueous 

solutions. The iron was proposed to stabilize the crystal structure of ZnO and thus 

decreased dissolution of ZnO. Moreover, Beck-Spider et al. showed that the adverse 

effect, such as increased neutrophil influx and cytokine (IL-6), was caused by soluble 

metal ions [60].  

To measure degree of metal dissolution from metal oxides, particles were 

weighed and placed in an aqueous solution for a designated period of time. The sample 

was then centrifuged at 120,000 rpm for at least 5-30 min to separate nanoparticles 

from metal ions. The supernatant containing metal ions is then analyzed using an 

inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic 

absorption spectrometry (GFAAS). The pH of the solution may not be constant during 

the experiments and the ultracentrifugation could not completely pull down 

nanoparticles. In this study, we have developed a method that takes these issues into 

account.  

Studies have shown that nanoparticles are internalized into cells via endocytosis 

and trapped in lysosome. The particles may be released from lysosome into cytosol at 

certain point in time. It is unclear whether there are differential degree of metal 

dissolution from metal oxides between cytosol and acidic lysosome. In this study, we 

http://www.anachem.umu.se/aas/gfaas.htm
http://www.anachem.umu.se/aas/gfaas.htm
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simulate the pH of cytosol and lysosome (7.4 and 4.5, respectively) to investigate the 

metal dissolution.  According to our pilot studies, we found that the nanoparticle could 

alter the pH of the solution to which it was exposed. Hence, we employed autotitration 

to maintain the pH condition. Moreover, we noticed that metal oxide nanoparticles 

could not be completely pulled down by ultracentrifugation, and the nanoparticle 

pellets could be easily disturbed during pipetting. Hence, we employed a dialysis 

membrane to separate oxide nanoparticles from metal ions. We then transferred 

samples into a dialysis membrane to allow for reaching equilibrium. The samples were 

finally analyzed by ICP-MS and GFAAS. 

  



13 
 

1.6 INDUCTIVELY COUPLED PLASMA MASS SPECTROSCOPY 

Inductively coupled plasma mass spectrometry (ICP-MS) is an analytical 

technique used for the qualitative and quantitative determination of elements in 

solution or liquid samples. ICP-MS was developed in the late 1980's to combine the easy 

sample introduction and fast analysis of ICP (Inductively Coupled Plasma) technology 

with the accurate and low detection limits of a mass spectrometer. The instrument is 

capable of tracing multi-element analysis, often at the part per trillion levels. An ICP-MS 

combines a high-temperature ICP source with a mass spectrometer. In general, the 

argon gas was heated and formed a plasma flame, and the plasma flame would convert 

the atoms of the elements in the sample to ions. These ions were then separated and 

detected by the mass spectrometer. The ion concentration of the samples can be 

determined through calibration with multi-element reference standards.  

1.7 GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY 

Graphite furnace atomic absorption spectrometry (GFAAS) is now considered 

one of the most reliable methods of measuring quantities of trace elements, and a type 

of spectrometry that is equipped with a graphite-coated furnace to vaporize solid and 

aqueous samples. The basic concept of GFFAS is based on the fact that ground-state 

atoms  are capable of absorbing energy, such as light, and the amount of the 

absorbance is linearly correlated to the concentration of analyte. Generally, a matrix 

modifier is added to the sample prior to heating so that the chemical form of the 

analyte is controlled during the heating sequence. Samples are deposited in a graphite 

tube, which can produce 3,000oC to vaporize and atomize the analyte. After the samples 

were atomized, the ground-state atoms will absorb ultraviolet light and transition to 

higher electronic energy levels. The absorbance would be recorded by spectrometry. 

Concentration measurements are determined by calibrating the instrument with 

reference standards.  

http://www.anachem.umu.se/aas/gfaas.htm
http://en.wikipedia.org/wiki/Spectrometry
http://en.wikipedia.org/wiki/Atoms
http://en.wikipedia.org/wiki/Light
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1.8 RESEARCH OBJECTIVE 

Accordingly, our research aims are 

1. Cytotoxicity of transition metal oxides in BEAS-2B and A549 

2. Physicochemical properties contributed to cytotoxicity 

a. Characterization of transition metal oxides including size, SSA and 

morphology 

b. Point of zero charge indicates the net charge on nanoparticle surface in 

aqueous environment 

c. The number of available binding sites on nanoparticle surface 

d. Metal dissolution of transition metal oxides 

3. Analyze the correlation among physicochemical properties and cytotoxicity 

using spearman’s rank correlation coefficient 

 

An increasing trend in cytotoxicity of 4th period transition metal oxide 

nanoparticles was observed in our lab [32] and the physicochemical factors which 

contributed to cytotoxicity were not clearly defined. The goal of my study was to 

investigate the various physicochemical properties of transition metal oxide 

nanoparticles: TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO and ZnO, and explore possible 

correlations between the physicochemical properties and cytotoxicity. The cytotoxicity 

of the transition metal oxides were measured using SRB assay on two cell lines regarded 

as A549 and BEAS-2B. The physicochemical properties such as particles size, specific 

surface area, point of zero charge, number of available surface binding sites, and 

dissolution were studied by various methodologies developed in our lab according to 

previous research. Transmission electron microscopy and ImageJ software would be 

used to identify the shape and size distribution of nanoparticles. Specific surface area 

measurements were measured by BET method. The available sorption on surface area 

of metal oxide would be quantified by XPS. PZC measurement was done based on the 

method designed by Park and Regalbuto [58]. The dissolution studies of transition metal 

oxide nanoparticles which were added into 0.01 M NaCl solution was measured at two 
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constant physiological conditions (pH4.5 and 7.4) and for time points of 6, 12, 18 and 24 

hr. This study was undertaken to delineate the various physicochemical properties of 

metal oxide nanoparticles which influence their cytotoxicity.   
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2. MATERIALS AND METHODS 

2.1 CHEMICAL AND MATERIALS 

Transition metal oxide nanoparticles, TiO2, Cr2O3, Mn2O3, NiO, CuO, and ZnO, 

were purchased from Nano structured and Amorphous Materials (99.9% purity; Los 

Alamos, New Mexico, USA) and stored in a cabinet supplemented with nitrogen gas to 

avoid moisture and oxygen. For sample preparation, dried nanoparticles were incubated 

at 100oC overnight to get rid of moisture, and then weighed in a sample vial using six 

digit analytical balances. The sample vials containing nanoparticles were stored in a 

cabinet supplemented with nitrogen gas for further usage, and could be stored no 

longer than 1 week.  

The human bronchoalveolar carcinomaderived cell line (A549) and immortalized 

human bronchial epithelial cells (BEAS-2B) were purchased from ATCC (Manassas, VA, 

USA). These continuously cultured cells are widely used as an in vitro model for studying 

the prevention of the development of human lung carcinomas, as well as for 

nanotoxicity tests [63, 64]. The culture medium for BEAS-2B contained 500 ml Bronchial 

epithelial cell basal medium (Lonza, USA), 0.5 ng/mL recombinant epidermal growth 

factor (EGF), 500 ng/mL hydrocortisone, 0.005 mg/mL insulin, 0.035 mg/mL bovine 

pituitary extract, 500 nM ethanolamine, 500 nM phosphoethanolamine, 0.01 mg/mL 

transferrin, 6.5 ng/mL 3,30,5-triiodothyronine, 500 ng/mL epinephrine, 0.1 ng/mL 

retinoic acid, trace elements (Cambrex, USA), and 5 mL of 10,000 unit/mL penicillin plus 

10,000 µg/mL streptomycin (MP, USA). The culture medium for A549 contained 445 mL 

Ham’s F-12 medium (Cellgro, USA) supplemented with 50 mL fetal bovine serum 

(Thermo, USA), and 100,000 units/mL penicillin and 100,000 µg/mL streptomycin (MP, 

USA). Phosphate buffer saline (PBS) was prepared with 8 g NaCl, 0.2 g KCl, 1.44 g 

Na2HPO4, and 0.24 g KH2PO4 in 1 mL ddH2O, autoclaved, and stored at 4oC. Trypsin-EDTA 

was diluted from 10X Trypsin (Nalgene, USA) in PBS and added EDTA with a final 

concentration at 0.53 mM.   
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2.2 CELLS AND TREATMENT WITH NANOPARTICLES 

Cells were grown at 37oC in an incubator with a 5% CO2 humidified environment. 

For cytotoxicity assay and pH change in medium assay, 100,000 cells were seeded into 

each well of a 24-well plate, and allowed to attach and grow for 24 hr at 80% confluence 

before any further treatment. The nanoparticles suspension was prepared freshly 

before each experiment. The appropriate amount of cell culture medium was added 

into sample vials containing nanoparticles to make 1 mg/mL stock nanoparticles 

suspension. The sample vials were sealed with parafilm and then sonicated for 15 min. 

The stock suspension was used to achieve various concentrations by series dilution and 

then the treatment was immediately applied to cells to minimize agglomeration. Cells 

not treated with nanoparticles served as a control group. 

2.3 CYTOTOXICITY OF TRANSITION METAL OXIDES IN BEAS-2B AND A549 
CELLS 

In 1990, Skehan and colleagues had developed a methodology, called 

Sulforhodamine B (C27H30N2O7S2, abbreviated as SRB) colorimetric assay, for large in 

vitro anticancer-drug-screening [65, 66]. The mechanism of SRB was based on its pH 

dependent ability to bind electrostatically on protein basic amino acid residues of 

trichloroacetic acid-fixed cells. It would bind to the amino acid under acidic 

circumstances and dissociate at basic conditions. The cell proliferation data testing with 

more than 25 compounds by SRB assay was nearly identical when compared with the 

data obtained by metabolic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay [66]. We decided to employ the SRB 

colorimetric assay to measure the cell proliferation rather than MTT or MTS assay 

because it had been reported that the superoxide or oxygen reactive species could 

compromised the cell viability data from MTS and MTT assay [67]. From this evidence, 

we chose the SRB assay to test the cytotoxicity of our transition metal oxides.  

To determine the cytotoxicity of seven transition metal oxides, BEAS-2B and 

A549 were treated with series concentration of metal oxides. Untreated cells served as 

http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sulfur
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a control group. After 24 hr treatment, the cells were fixed with trichloroacetic acid for 1 

hr in 4oC refrigerate. The cells were washed with ddH2O for 3 times and allowed to dry 

out completely. The cells were stained with 0.2% SRB in 1% acetic acid for 30 min. 0.2% 

SRB in 1% acetic acid was discard, and then the cells were washed with 1% acetic acid 

for 20 min, 3 times. The cells were incubated with 10 mM tris base for 20 min in room 

temperature. The 10 mM tris base was then transferred into a clean 96 well plates. The 

absorbance (510 nm) was determined by FLUOstar OMEGA (BMG LabeTech, USA).    

2.4 PARTICLE SIZE MEASUREMENTS ON TRANSITION METAL OXIDE 
PARTICLES 

Particle morphology and size were characterized using transmission electron 

microscopy (TEM) with a JEOL 1400 instrument operated at 120kV. Approximately 1 mg 

of each nanoparticle was placed in 1 mL of doubly distilled deionized water in an 

Eppendorf tube, sonicated and microliter aliquots were applied to 400-mesh carbon-

coated copper grids (Electron Microscopy Sciences) and allowed to dry in N2 

atmosphere prior to microscopy. TEM images were saved in TIFF file format and 

examined using ImageJ ver. 1.44 software (National Institutes of Health, Gaithersburg, 

MD) to measure individual particle sizes and generate resulting histograms. The 

diameter of single nanoparticle was measured. The size of nanoparticle with spherical 

shape was determined by diameter. The size of nanoparticle with rod shape was 

determined according to their total length. The particle size measurements of seven 

transition metal oxides were imported to Microsoft Excel and a size distribution table 

for each metal oxide was generated with various increments of diameter and frequency. 

A differentiation size distribution histogram was generated with log10-transformed size 

of the nanoparticles on the X-axis and frequency divided by the log10-transformed 

increments of size. The frequency is adjusted by the increments to give a relative 

frequency. This relative frequency indicated that the amount of nanoparticle at specific 

diameter. The fitted line was added according to the student’s t-distribution with n-1 

degrees of freedom. The student’s t-distribution used the sample standard deviation 
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instead of population standard deviation to estimate a normal distribution. This allowed 

us to construct a confidence interval that depends on estimable components.  

2.5 BET SURFACE AREA MEASUREMENT ON TRANSITION METAL OXIDE 
PARTICLES 

The specific surface area (surface are/unit mass) characterization of the 

nanoparticles generally followed the BET method [68]. In 1938, Stephan Brunauer, Paul 

Hugh Emment, and Edward Teller postulated the BET theory. BET theory illustrated that 

the physical adsorption of gas molecules on a solid surface, and the calculation of 

surface area and specific surface area of solids. Moreover, the gas molecules were 

physically adsorbed on solid layers and had no interaction between each adsorption 

layer. This methodology gave an idea of the physicochemical reactivity of nanoparticles. 

In this study, the specific surface area measurements of all the transitional metal oxide 

nanoparticles were made by Quantachrome Autosorb 1-C instrument using N2 as the 

probe molecule. The instrument was fully automated and the samples were outgassed 

to expel moisture and weighed to determine dry mass of the nanoparticles. Seventy-

eight data point complete gas adsorption isotherms were used to determine the specific 

surface areas. 

2.6 POINT OF ZERO CHARGE MEASUREMENT ON TRANSITION METAL 
OXIDE PARTICLES 

40 mL aliquots of pure water with various pH values ranging from 1 to 13 were 

prepared by adding HNO3 and NaOH, and nanoparticles which were dried in 100 oC oven 

overnight. 13 external thread cryogenic vials were labeled from pH 1 to pH 13 and then 

weighed 10 mg nanoparticles in each vial by 6 digits analytical balance. The 10 mg of 

nanoparticles is determined based on the pilot studies conducted in our lab. Moreover, 

the 2 and 4 mg of nanoparticles would disappear in extreme pH valued aqueous 

solutions, i.e. pH 1-4 and 11-13, and then became a transparent solution. After the 
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amount of nanoparticles was increased to 10 mg, nanoparticles could be seen at the 

bottom of vial. This might indicate that the nanoparticles would be eroded or dissolved 

in the extreme pH environment. Cautiously, an aliquot of 1.8 mL of pH 1 water was 

added into the first cryogenic vial, pH 2 water into the 2nd one, and then pH 3 pure 

water into 3rd one, etc. The vials were set on a table without violent vibration in room 

temperature for 16 hr. After 16 hr, the pH in the interphase between surface of 

nanoparticles and supernatant of solution is detected by the spear-tip combination pH 

probe (Cole Parmer, catalog number G-05988-20). A graph was plotted with initial pH of 

each vial on the x-axis and the final pH in the interphase on the y- axis. The PZC value 

was obtained from the curve. The pH at which there was plateau in the line was the PZC 

value of the transitional metal oxide particles.  

2.7 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) ON TRANSITION METAL 
OXIDE PARTCILES 

The transition metal oxide nanoparticles (TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO 

and ZnO) were reacted in a constant composition reactor, imitating the physiological 

conditions of pH 7.4. Metal oxide nanoparticles were dried in an oven overnight and 

weighed to 125.00 mg. The nanoparticles were dissolved in 25 mL of 0.01 M NaCl 

aqueous solution in a Nalgene plastic beaker. The 702 SM TiTRINO, METROHM AG CH-

9101 (Herisau, Switzerland) was employed to monitor the pH of the solution. The pH of 

the solution was maintained at 7.4 for 16 hr duration by adding HCl (0.05 M). After 16 hr 

of constant composition at pH 7.4, the nanoparticle solution was filtered on to a 45 µm 

size Teflon filter paper (MicronSep). The filter paper was allowed to dry completely. The 

dried filter paper with nanoparticles was cut into small square pieces, which were then 

mounted onto clean tantalum foil using double sided tape. The edges were trimmed as 

required. All the equipment required for sample preparation such as scissors and 

tweezers were sonicated with acetone for 5 min before use, to prevent contamination. 

All of the sample preparation had been employed for all the metal oxide nanoparticles.  
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The number of available binding sites of each metal oxide sample were 

quantified using a Kratos Axis 25 X-ray photoelectron spectrometer integrated peak area 

ratios of physisorbed-to-metal oxide oxygen, monitoring the O 1s orbital after a 16-hr 

constant composition (CC) reactions maintaining solution conditions at pH = 7.4. XPS 

used a beam of X-rays to irradiate the sample, and simultaneously measured the kinetic 

energy and number of electrons that escape the surface. Ultra high vacuum condition 

(10-8 to 10-10 Torr) are required for running the XPS experiments to avoid scattering of 

photoelectrons ejected from the sample,  travelling towards the detector. The XPS data 

were curved fitted using CasaXPS VAMAS software version 2.2 (Devon, UK). 

2.8 METAL DISSOLUTION OF TRNASITION METAL OXIDE PARTICLES 

The transitional metal oxide nanoparticles were added into 0.01 M NaCl solution 

with pH 4.5 and 7.4, respectively, while maintaining the pH value with the 702 SM 

TITRINO. The 0.01 M pH 7.4 NaCl solutions were used to imitate the pH value of cytosol 

environment, and the 0.01M pH 4.5 NaCl solutions were used to mimic the pH value of 

lysosome. The 702 SM TITRINO was employed to maintain the constant pH value as 4.5 

and 7.4, respectively.   

Reagents 

 Pure water 

 NaOH: trace metal grade 

 Stock HCl: trace metal grade 

 HNO3: trace metal grade 

 Centrifuge tubes 

 Beaker 

 Class B glass vials 

 Dialysis membrane 

Preparation of working solution and equipment 

1. 0.001 M NaCl: Dissolved 0.292 g NaCl in 400 mL pure H2O and then adjust pH to 4.5 

or 7.2 using NaOH and HCl. Make up to 500 mL with pure H2O. Store at 4oC. 

2. 3% HNO3: Add 30 mL HNO3 to 900 mL pure H2O and then make up to 1 L with pure 

H2O. Store at room temperature.  
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3. 1% HCl: Added 10 mL of stock HCl into 900 mL pure H2O and then made up to 1 L 

with pure H2O. Store at room temperature 

4. 5% HCl: Added 50 mL HCl stock into 900 mL pure H2O and then made up to 1 L with 

pure H2O. Store at room temperature 

5. Beakers, centrifuge tubes, glass vials, closures, stir bars, forceps, and scissors were 

acid wash with 3% HNO3 overnight. The caps of centrifuge tubes and glass vials, and 

the plastic closure were acid washed for 15 min since these items could not resist 

strong acid for a long time. After the acid wash, all instruments were rinsed with 

pure water to remove the acid. And the equipment was air-dried inside a chemical 

hood to avoid any dust attaching on it. 

6. Nanoparticles were dried in 100 oC oven overnight. 

7.  Gloves were worn during experimental operations to avoid contamination with 

organic residue. 

Procedures 

1. Weighed 250 mg nanoparticles in sample vials and then stored in chemical cabinet 

supplemented with nitrogen gas to avoid oxygen and moisture.  

2. Gently, transferred 250 mg nanoparticles from sample vials into 200 mL beaker and 

then rinsed the vials with 50mL 0.001 M NaCl solution to completely transfer the 

nanoparticles into the beaker. 

3. Forceps were used to move stir bars into the beaker and then opened the auto-

titration machine. 

4. Recorded the initial pH. 

5. Adjusted pH value to 4.5 or 7.4 by HCl or NaOH, and recorded the volume of HCl and 

NaOH usage. 

6. 702 SM TITRINO was then employed to mimic the constant pH value of 4.5 and 7.4, 

respectively.   

7. At each time point, 6, 12, 18 and 24 hr, the pH and the volume of HCl and NaOH 

usage were recorded, and then a serological pipette was used to transfer 4 mL of 
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solution from the beaker into a centrifuge tube. Store centrifuge tube at 4oC before 

further usage. 

8. After collecting samples at 4 time points, centrifuged samples at 4oC, 12,000 rpm for 

5 min. 

9. Measured the mass of empty glass vials and then added 25 mL pure water into glass 

vials. 

10. Measured the mass of water-contained glass vials. 

11. Serological pipette was used to transfer a 2 mL sample from the centrifuge tube into 

a dialysis membrane and then sealed the membrane by plastic closures.  

12. Transfer another 1 mL sample into a small glass vial and then acidified with stock HCl. 

Store at 4oC for further analysis. 

13. Transferred the dialysis bag into 25 mL water-contained glass vials and then 

measured the weight of whole glass vials. 

14. Put the glass vials on a shaker for 17 hr. The metal oxide would remain inside the 

dialysis bag while the metal ion which was released from metal oxide could diffuse 

through the dialysis membrane. 

15. After 17 hr, removed the dialysis bag with caution by forceps. Did not let the forceps 

contact or merge into the pure water in order to avoid any contamination. 

16. Weighed the glass vials, and then compared the record of weight in order to identify 

any leakage from dialysis membrane which may have happened. 

17. Acidified the sample with stock HCl for long time storage to avoid the adsorption of 

metal ions. Stored samples at 4oC for further analysis. 

2.9 ANALYSIS OF METAL DISSOLUTION OF METAL OXIDE NANOPARTICLES 
BY ICP-MS AND GFFAS 

Dissolved metal elements, Ti4+, Cr3+, Mn3+, Ni2+, Cu2+, and Zn2+ were detected using 

an Elan-DRCe ICP-MS (Perkin-Elmer) equipped with a cyclonic spray chamber, a 

Meinhard nebulizer, platinum cones, and a CETAC ASX-500/ADX-100 autosampler. The 

ICP-MS analysis conditions were as follow: RF power was 1,300 W, argon flow rates for 
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the plasma and auxiliary gas were 15 and 1.2 L/min, respectively, and samples were 

delivered at 1.0 ml/min by a peristaltic pump. Internal standards were added 

continuously online as a mixture. Fe was determined with a graphite furnace atomic 

absorption (GFAA) method. An Analyst 600 atomic absorption spectrometer 

(PerkinElmer) was used. The ICP-MS operational conditions were summarized in (Table 

2.1).   
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Table 2.1: ICP-MS operational conditions 

Parameter Operation setting 

ICP RF power 1300 

Plasma gas flow 15 L/min 

Auxiliary Gas 1.2 L/min 

Nebulizer gas flow 0.99 L/min 

Sample introduction 

system 

Cyclonic spray chamber with meinhard 

nebulizer 

Detector mode Single 

Auto Lens Enabled 

Lens voltage 6.5 V 

Analog stage voltage -1600 V 

Pulse stage voltage 850 V 

Sampler cone Platinum, 1.1 mm orifice 

Skimmer cone Platinum, 0.9 mm orifice 

Mass resolution 0.7 amu 

Operating vacuum 

pressure 6.2 x 10-6 torr 
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To ensure the good quality data, most of the QA/QC those recommended by the 

EPA methods were followed. Instrument responses were calibrated with standard 

solutions using a range of concentrations. The detection limits were calculated at 

signal/noise ratio 3 to 5. The linear ranges of the calibration were determined and used 

for the quantitative analysis of the samples. Good linearity (R2 = 0.9999 - 1) were 

obtained (Figure 2.1). The detection limits of Cu, Cr, Mn, Ni, Ti, and Zn were 0.02, 0.05, 

0.02, 0.04, 0.03, and 0.05 µg/L, respectively. Laboratory reagent blanks (LRBs) were 

prepared and measured using the same procedures as for the samples except absence 

of the samples. At least one LRB was prepared and measured for each batch of up to 20 

samples. One or more duplicated samples were analyzed for each type of sample and 

relative percent difference (RPD) was calculated to make sure good precision. RPDs 

ranged from 0 to 6%.  Water reference standards purchased from High Purity co. were 

analyzed for each batch of samples. Laboratory sample spikes were also performed for 

each type of sample for ICP-MS analysis to make sure acceptable accuracy of analysis. 

The spike recoveries were ranged from 93 to 123%. During analysis, calibration checks 

with standard solutions were also performed frequently (every 10 – 12 samples) to 

monitor the instrument performance. 
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Figure 2.1: Reference standard curve. A.) the reference of element for ICP-MS which 

includes Zn, Cu, Ni, Mn, Cr, and Ti uses series concentration as 0.1, 1, 10, and 50 ppb for 

each element. The linear relationship between observation and reference of each 

element is analyzed and R2 of each element is 1. B.) the reference of iron for GFFAS uses 

series concentration as 1, 2, 5, 10, 25, 50 and 100 ppb and the linear relationship 

between observation and reference of iron is analyzed. (R2 =0.98).  
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2.10 STATISTICAL ANALYSIS 

For cytotoxicity studies, three independent experiments were conducted, using 

triplicates for each treatment group.  Data are expressed as mean ± standard error. For 

correlation between cytotoxicity and variables, such as APS, SSA, PZC, the number of 

available binding sites and dissolution, we employed spearman’s correlation coefficient 

to analyze the relationship. All of the graphs were drawn by GraphPrism. Spearman’s 

rank correlation coefficient is a nonparametric technique for evaluating the degree of 

correlation between two different variables. The nonparametric statistic is powerful 

when the assumptions of other statistical method are not met. The spearman’s rank 

correlation coefficient does not depend on the size of sample, distribution of the 

population, and standard deviation of observations. Hence, it can be used with small 

sample size. Each variable is ranked from lowest to highest, such as 1, 2, 3, etc, and the 

difference between each ranked variable is calculated and squared. The spearman’s 

rank correlation coefficient is calculated based on the following equation: 

    
 ∑   

 
   

    
 

     rank of   value (   ranges from 1 to n, the smallest value is rank 1) 

     rank of    value (   ranges from 1 to n, the smallest value is rank 1) 

                         

  is the number of observation (sample size) 
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3. RESULTS 

3.1 TRANSITION METAL OXIDES CHARACTERIZATION 

Transition metal oxide nanoparticles, TiO2, Cr2O3, Mn2O3, NiO, CuO and ZnO, 

were purchased from Nano structured and Amorphous Materials (99.9% purity; Los 

Alamos, New Mexico, USA). The manufacturing company provided the size range and 

SSA of the nanoparticles which is summarized in Table 3.1. It was essential to 

characterize the nanoparticles, investigate their morphology, and determine the particle 

size. TEM images of transition metal oxides as TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, and 

ZnO were shown in Figure 3.1A to Figure 3.7A, differential size distribution histogram 

were shown in Figure 3.1B to 3.7B and the APS was summarized in Table 3.1. The TiO2 

nanoparticles were spindle-shaped particles with an APS of 46 ± 20 nm which matched 

the information provided by the company (Figure 3.1). The Cr2O3 nanoparticles were 

spherically shaped with an APS of 63 ± 34 nm which agreed with the supplier (Figure 

3.2). The Mn2O3 nanoparticles were spherical shape with an APS of 82 ± 31nm (Figure 

3.3) which did not match the commercial size as 30-60 nm. Interestingly, most of the 

Mn2O3 nanoparticles were 75 to 100 nm with some particles located around 150 nm, yet 

APS was still within the 100 nm. The Fe2O3 nanoparticles were spherical in shape with an 

APS of 48 ± 13 nm (Figure 3.4). The NiO nanoparticles were spherical in shape and had 

an APS of 16 ± 5 nm (Figure 3.5). The CuO nanoparticles were spherical in shape and 

exhibited an APS of 47 ± 24 nm (Figure 3.6). The ZnO nanoparticles were spherical in 

shape with an APS of 27 ± 13 nm (Figure 3.7). 

Overall, the morphology of the transition metal oxide nanoparticles was 

spherical in shape except the TiO2 which was spindle shaped, and agglomeration was 

observed in each nanoparticle. Both TEM image and size distribution indicated that the 

size of nanoparticles ranged from 10 to 100 nm except that of Mn2O3 which had several 

particles that were around 150 nm. These results indicated that the information  
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Table 3.1: Measured morphology, APS and SSA of metal oxide nanoparticles  

 TiO2 Cr2O3 Mn2O3 Fe2O3 NiO CuO ZnO 

SSA (m2/g) 178.95 11.41 8.71 31.44 70.86 9.02 44.61 

APS (nm) 46 ± 20 63 ± 34 82 ± 31 48 ± 13 16 ± 5 47 ± 24 27 ± 13 

Morphology rod-like 
shapes 

roughly 
spherical 

roughly 
spherical 

roughly 
spherical 

roughly 
spherical 

roughly 
spherical 

spherical 
and  

rod-like 
shapes 

Data sheet provided by company 

SSA (m2/g) 160 N.A. N.A. 40 50-80 N.A. 50 

APS (nm) 50 60 30-60 20-30 10-20 30-50 20 

[N.A. denote not available] 
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                                      A      B 

Figure 3.1: (A) TEM image of TiO2 nanoparticles with (B) size histogram. Scale bar is 100 

nm. 

                                       

                                      A                            B 

Figure 3.2: (A) TEM image of Cr2O3 nanoparticles with (B) size histogram. Scale bar is 

500 nm. 
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                                      A              B 

Figure 3.3: (A) TEM image of Mn2O3 nanoparticles with (B) size histogram. Scale bar is 

100 nm. 
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                                  A                   B 

Figure 3.4: (A) TEM image of Fe2O3 nanoparticles with (B) size histogram. Scale bar is 

200 nm. 
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                                     A                                                                     B 

Figure 3.5: (A) TEM image of NiO nanoparticles with (B) size histogram.  Scale bar is 

100 nm. 
 

 

  
                          

                               A                                                        B 

Figure 3.6: (A) TEM image of CuO nanoparticles with (B) size histogram.  Scale bar is 

100 nm. 
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                               A                                                                     B 

Figure 3.7: (A) TEM image of ZnO nanoparticles with (B) size histogram.  Scale bar is 

200 nm. 
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provided by company matched the data from our study. In Figure 3.1B to 3.7B, the size 

distribution of each transition metal oxide which matched the fitted line suggested that 

the size of each nanoparticle followed a normal distribution. Furthermore, we use 

spearman’s rank correlation coefficient to demonstrate the correlation between 

cytotoxicity and APS. There is a weak correlation between cytotoxicity and APS 

(spearman’s rank correlation coefficient, ρ = -0.32) (Figure 3.8). 

The specific surface area (SSA) measurements of all seven transition metal oxide 

nanoparticles were obtained by BET method [68] and the data are included in Table 2. 

The specific surface area (m2/g) was the surface area divided by unit gram of the 

nanoparticles. We found that there is a weak correlation between cytotoxicity and SSA 

(spearman’s rank correlation coefficient, ρ = -0.32) (Figure 3.9). In conclusion, the APS 

and SSA displayed little effect on the increasing cytotoxicity of transition metal oxides. 
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Figure 3.8: Relationship of cytotoxicity & APS. There is a weak correlation between 

cytotoxicity of transition metal oxides and APS (spearman’s rank correlation coefficient, 

ρ = -0.32).   
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Figure 3.9: Relationship of cytotoxicity & SSA. There is a strong correlation between 

cytotoxicity of transition metal oxides and SSA (spearman’s rank correlation coefficient, 

ρ = -0.32).   
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3.2 CYTOTOXICITY INCREASED AS ATOMIC NUMBER OF TRANSITION 
METAL OXIDE INCREASED 

Dosimetry measurements were made on BEAS-2B cell lines based on four 

different setting of X-axis units: 1.) particle mass/medium volume, 2.) particle 

mass/seeding area, 3.) particle specific surface area/seeding area, 4.) particle specific 

surface area/medium volume were and are summarized in Figure 3.10. The same type 

of measurements on A549 cell lines are shown in Figure 3.11. Within these four plots 

with different X-axis units, the trend of cytotoxicity was similar with the exception of 

Mn2O3 (Figure 3.10 and Figure 3.11). The cells (BEAS-2B and A549, respectively) were 

treated with series concentration of seven transition metal oxides for 24 hr. Greater 

percent cell viability, relative to the control group, denotes less cytotoxicity of the 

nanoparticles. In the case of BEAS-2B cell lines, the degree of cytotoxicity based on 

mass/medium volume had the following trend: TiO2 < Cr2O3 < Fe2O3 < Mn2O3 < NiO < 

ZnO < CuO. The trend matches the periodicity of the transition metal within the metal 

oxides with the exception of Mn2O3. In accordance with the cell viability of each metal 

oxide (Figure 3.10 and Figure 3.11), the transition metal oxides were defined as three 

degrees of cytotoxicity: none-to-minor, moderate, and steep. TiO2, Cr2O3, and Fe2O3 

were concluded to possess none-to-minor cytotoxicity; Mn2O3 and NiO were concluded 

to have moderate cytotoxicity; and ZnO and CuO were concluded to exhibit steep 

cytotoxicity. The degree of cytotoxicity increased as none-to-minor > moderate > steep 

while the atomic number of nanoparticles went up with the exception of Mn2O3. There 

is a strong correlation between cytotoxicity and atomic number (spearman’s rank 

correlation coefficient, ρ = 0.93) (Figure 3.12). Compared with the cytotoxicity of 

transition metal oxide treated in BEAS-2B and A549, the result showed that the 

cytotoxicity is not cell type specific. In conclusion, the cytotoxicity increased as the 

atomic number of nanoparticle increased. 
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Figure 3.10: Cytotoxicity of seven transition metal oxides in BEAS-2B cells exposed for 

24 hr. A.) The X axis is plotted based on mass/medium volume. B.) The X axis is plotted 

based on mass/seeding area. C.) The X axis is plotted based on surface area/seeding 

area. D.) The X axis is plotted based on area/medium volume. 
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A B 

C D 

Figure 3.11: Cytotoxicity of seven transition metal oxides in A549 cells exposed for 24 h. 

A.) The X axis is plotted based on mass/medium volume. B.) The X axis is plotted based 

on mass/seeding area. C.) The X axis is plotted based on surface area/seeding area. D.) 

The X axis is plotted based on area/medium volume. 
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Figure 3.12: Relationship of cytotoxicity & atomic number. There is a strong correlation between 

cytotoxicity of transition metal oxides and the atomic number (spearman’s rank correlation 

coefficient, ρ = 0.93).  
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3.3 THE CORRELATION BETWEEN PZC AND CYTOTOXICITY 

PZC was shown in Figure 3.13 and summarized in Table 3.2. With the exception 

of Mn2O3, a higher PZC corresponded with greater cytotoxicity. The horizontal dashed 

lines denote physiological pH at 7.4 and 4.5 (Figure 3.13). The pH value in cytosol 

environment is referenced to be 7.4, whereas the pH value is 4.5 in lysosome. Notably, 

we observed a potential threshold at pH = 8.0. Mn2O3, NiO, CuO, and ZnO had a PZC 

above 8.0 (PZC value: 8.8, 8.2, 8.5 and 8.5, respectively) and were defined as moderate 

and steep cytotoxicity. And the none-to-minor cytotoxic nanoparticles, i.e TiO2, Cr2O3, 

and Fe2O3 had PZC below 8.0 as 6.8, 7.8 and 8.0, respectively. There is a strong 

correlation between cytotoxicity and PZC (spearman’s rank correlation coefficient, ρ = 

0.78) (Figure 3.14). In conclusion, the cytotoxicity of nanoparticles increased as the PZC 

value rose.  
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Figure 3.13: PZC initial pH against final pH plots of transition metal oxides including 

Mn2O3, ZnO, CuO, NiO, Fe2O3, Cr2O3 and TiO2. Vertical dashed line denotes 

physiological pH = 4.5 and 7.4, respectively. 
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Table 3.2: Physicochemical properties showing correlation with cytotoxicity 

Atomic 
no. of 
metal 

Metal 
oxide 

NP 

Cell 
viability 

PZC 
Physisorbed-

to-metal 
oxide oxygen 

% dissolved 
in solution 

(pH 7.4) 

% dissolved 
in solution 

(pH 4.5) 

22 TiO2 100.0% 6.8 0.56 0.00012% 0.00010% 

24 Cr2O3 80.1% 7.8 3.09* 0.00507% 0.00200% 

25 Mn2O3 29.6%* 8.8* 0.71 0% 0% 

26 Fe2O3 79.9% 8.0 1.06 0.00822% 0.46930% 

28 NiO 29.9% 8.2 2.33 0.23699% 2.32698% 

29 CuO 9.8% 8.5 6.64 0.47672% 11.41012% 

30 ZnO 10.0% 8.5 6.76 0.46229% 26.08621% 

[Asterisks * denote deviation to periodic trend] 

 

 



45 
 

 

Figure 3.14: Relationship of cytotoxicity & PZC. There is a strong correlation between 

cytotoxicity of transition metal oxides and PZC (spearman’s rank correlation coefficient, 

ρ = 0.78).   
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3.4 THE CORRELATION BETWEEN THE NUMBER OF AVAILABLE BINDING 
SITES AND CYTOTOXICTY 

In addition to the observed trend in PZC, a periodicity in the number of available 

binding sites, as measured by XPS, was shown to be correlated with cytotoxicity trends 

(Figure 3.15). The relative adsorbed oxygen-to-metal oxide ratio, obtained from 

integrated XPS peak areas, was used as a means of quantifying the number of available 

binding sites to which intracellular material can interact via attachment. The greater the 

physisorbed- oxygen-to-metal oxide ratio is, the more adsorption sites are available for 

intracellular binding. The peak assignment was done by matching the calculated binding 

energies with experimentally determined binding energy values. The NIST X-ray 

photoelectron spectroscopy database (http://srdata.nist.gov/xps/, version 3.5) was used. 

Figure 3.15A showed a stack plot of XPS spectra of the O 1s orbitals of the Fe2O3, Mn2O3 

and TiO2 nanoparticles following a 16-hr CC reaction in a pH = 7.4 environment. The 

chemical oxidation state denoting metal oxide (blue traces in Figure 3.15) was clearly 

defined. XPS binding energies (BE) at 530.0 eV, 529.6 eV and 529.5 eV match literature 

values for the oxide oxidation state for TiO2 [69], Mn2O3 [70]  and Fe2O3 [71], 

respectively. BEs observed at 531.9 eV on TiO2, 530.9 eV and 531.5 eV on Mn2O3, and 

530.6 eV on Fe2O3 are consistent with adsorbed hydroxyl species (OH-) on these surfaces 

[72, 73]. Figure 3.15B similarly shows a stack plot of XPS spectra of the O 1s orbitals of 

NiO, Cr2O3, CuO and ZnO following the 16-hr CC reaction. BEs of the metal oxide 

chemical state observed at O 1s = 528.9, 529.6, 529.6 and 529.8 eV, matched their 

literature values for NiO [74], Cr2O3 [75], CuO [76] and ZnO [71], respectively. BE peaks 

centered at 532.9 eV, 531.1, and 532.6 eV on CuO were also consistent with the 

presence of adsorbed oxygen from hydroxyl species (OH-) [77]. BE peaks centered at 

530.7 eV and 532.5 eV on Cr2O3, and 531.6 eV on ZnO were also consistent with the 

presence of adsorbed carbonyl group (C O) [78, 79]. BE peaks centered at 531.0 eV on 

NiO was assigned to adsorbed oxygen from carbonate[69]. There is a strong correlation 

between cytotoxicity and the number of available binding sites (spearman’s rank 

correlation coefficient, ρ = 0.71) (Figure 3.16).  

http://srdata.nist.gov/xps/
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Figure 3.15: XPS of O 1s orbitals of transition metal oxide. A.) XPS of O 1s orbitals of 

Fe2O3, Mn2O3 and TiO2 metal oxide nanoparticles. Blue envelopes denote metal 

oxide chemical oxidation state. B.)XPS of O 1s orbitals of ZnO, CuO, Cr2O3 and NiO 

metal oxide nanoparticles. Blue envelopes denote metal oxide chemical oxidation 

state. Red envelopes denoted adsorbed oxygen. Vertical dashed line denotes BE 

position for adsorbed H2O. 



48 
 

 

 

Figure 3.16: Relationship of cytotoxicity & the number of available binding sites. There is 

a strong correlation between cytotoxicity of transition metal oxides and the number of 

available binding sites (spearman’s rank correlation coefficient, ρ = 0.71).   
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3.5 THE CORRELATION BETWEEN METAL DISSOLUTION OF TRANSITION 
METAL OXIDES AND CYTOTOXICITY 

Following the evaluation correlation between nanoparticle surface binding sites 

and cytotoxicity, the metal dissolution of metal oxides was further examined. The metal 

dissolution of seven transition metal oxides in pH 4.5 and 7.4 was summarized in Table 

3.3. The samples were collected in two different pH environments, 4.5 and 7.4, at 6, 12, 

18, 24 hr. Inside the cell, a stable and consistent physiological condition, such as pH 

value, is maintained to provide a favorable metabolic environment. In our model, 

nanoparticles could interact with H2O to alter the pH value. To resolve this issue of pH 

shift by nanoparticles, autotitration was employed to maintain a stable and consistent 

pH value in cytosol and lysosome of 4.5 and 7.4, respectively.  

The ZnO nanoparticle had an average metal dissolution of 25% from four time 

points (6, 12, 18, and 24 hour) at pH 4.5 and 0.47% dissolution at pH 7.4. This result 

demonstrated that the ZnO nanoparticles tend to release more Zinc ion under acidic 

conditions. The dissolution of ZnO nanoparticle did not show an increasing trend as time 

passed by (Figure 3.17). The CuO nanoparticle had an average dissolution 11% over four 

time points at pH 4.5 and 0.47% dissolution at pH 7.4. The result showed that the CuO 

nanoparticles tend to release more copper ions under acidic conditions. The dissolution 

of CuO nanoparticle did not show an increasing trend as time passed by (Figure 3.18). 

Interestingly, the dissolution of ZnO and CuO at pH 7.4 had identical value of 0.47%. The 

dissolution of NiO had an average value of 2% over four time points at pH 4.5 and 0.2% 

at pH 7.4. This showed the NiO nanoparticle tended to release nickel ions under acidic 

conditions. Also, the dissolution of NiO nanoparticles did not show an increasing trend 

with time (Figure 3.19). The dissolution of Mn2O3 had an average value 0.5% over four 

time points at pH 4.5 and was below 0.01% at pH 7.4. This showed that the Mn2O3 

nanoparticle’s ability to release manganese ions under acidic conditions slightly 

increased. Also, the dissolution of the Mn2O3 nanoparticles did not show an increasing 

trend with time (Figure 3.20). The dissolution of Fe2O3, Cr2O3 and TiO2 nanoparticles was 

below 0.01% which is summarized in table 3.3. 
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In summary, the dissolution of all seven nanoparticles at pH 7.4 was less than 1% 

(Table 3.3) and this result indicates that nanoparticles exposed in cytosol environment 

would not release metal ions. There is a strong correlation between cytotoxicity and 

dissolution at pH 7.4 (spearman’s rank correlation coefficient, ρ = 0.89) (Figure 3.21A). 

The metal dissolution of nanoparicltes at pH 4.5 showed various results ranging from 0 

to 25 % with different nanoparticles. At the pH 4.5 condition, ZnO and CuO, which 

exhibited sever cytotoxicity, had the highest dissolution rate of nearly 25% and 11% 

respectively; NiO and Mn2O3, which exhibit mild cytotoxicity, displayed a 2% and 0.5% 

dissolution rate, respectively; Fe2O3, Cr2O3, and TiO2, which exhibit minor cytotoxicity, 

had dissolution below 0.1%. On the other hand, the dissolution of all seven 

nanoparticles at pH 7.4 had values below 1%. There is a strong correlation between 

cytotoxicity and dissolution at pH 4.5 (spearman’s rank correlation coefficient, ρ = 0.86) 

(Figure 3.21B). 

  



51 
 

 

Table 3.3: Metal dissolution of transition metal oxide 

Metal oxide pH value Time (hour) Dissolution (%) 

ZnO 
 

7.4 

6 0.36497% 

12 0.43795% 

18 0.99180% 

24 0.04946% 

4.5 

6 25.94597%   4.98% 

12 31.54751%   0.50% 

18 31.99241%   12.72% 

24 14.99871%   6.06% 

CuO 
 

7.4 

6 0.02138% 

12 0.15414% 

18 0.00852% 

24 1.72286% 

4.5 

6 6.84158%   0.29% 

12 9.85740%   1.14% 

18 14.97398%   6.16% 

24 13.96753%   2.29% 

NiO 
 

7.4 

6 0.09015% 

12 0.40732% 

18 0.19613% 

24 0.25434% 

4.5 

6 3.99964% 

12 2.18469% 

18 1.29370% 

24 1.82991% 

Mn2O3 
 

7.4 

6 0.00201% 

12 0.00067% 

18 0.00683% 

24 0.02323% 

4.5 

6 0.40881% 

12 0.29667% 

18 0.55140% 

24 0.62015% 

 
 
 
 
 
 
 

  

 



52 
 

    
Table 3.3: Metal dissolution of transition metal oxide (cont.) 

Fe2O3 
 

7.4 

6 0.00000% 

12 0.00000% 

18 0.00000% 

24 0.00000% 

4.5 

6 0.00000% 

12 0.00000% 

18 0.00000% 

24 0.00000% 

Cr2O3 
 

7.4 

6 0.00399% 

12 0.00494% 

18 0.00539% 

24 0.00597% 

4.5 

6 0.00136% 

12 0.00188% 

18 0.00219% 

24 0.00257% 

TiO2 
 

7.4 

6 0.00010% 

12 0.00008% 

18 0.00012% 

24 0.00007% 

4.5 

6 0.00009% 

12 0.00002% 

18 0.00007% 

24 0.00009% 
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Figure 3.17: Dissolution of ZnO. ZnO was added into 0.01 M NaCl solution maintaining 

pH at 7.4 and 4.5, respectively. 250 mg of ZnO was dispersed into 50 mL 0.01 M NaCl 

solution. At each time point (6, 12, 18 and 24 hr), the 4 mL of sample was taken out and 

centrifuged for 5 min at at 4oC, 12,000 rpm for 5 min. The supernatant of solution was 

further transferred into dialysis membrane and wait for 17 hr. After dialysis, the sample 

was analyzed by ICP-MS. Values are mean   SD from two independent experiments. 
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Figure 3.18: Dissolution of CuO. CuO was added into 0.01 M NaCl solution maintaining 

pH at 7.4 and 4.5, respectively. 250 mg of CuO was dispersed into 50 mL 0.01 M NaCl 

solution. At each time point (6, 12, 18 and 24 hr), the 4 mL of sample was taken out and 

centrifuged for 5 min at at 4oC, 12,000 rpm for 5 min. The supernatant of solution was 

further transferred into dialysis membrane and wait for 17 hr. After dialysis, the sample 

was analyzed by ICP-MS. Values are mean   SD from two independent experiments. 
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Figure 3.19: Dissolution of NiO. NiO was added into 0.01 M NaCl solution maintaining pH 

at 7.4 and 4.5, respectively. 250 mg of NiO was dispersed into 50 mL 0.01 M NaCl 

solution. At each time point (6, 12, 18 and 24 hr), the 4 mL of sample was taken out and 

centrifuged for 5 min at at 4oC, 12,000 rpm for 5 min. The supernatant of solution was 

further transferred into dialysis membrane and wait for 17 hr. After dialysis, the sample 

was analyzed by ICP-MS. 
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Figure 3.20: Dissolution of Mn2O3. Mn2O3 was added into 0.01 M NaCl solution 

maintaining pH at 7.4 and 4.5, respectively. 250 mg of Mn2O3 was dispersed into 50 mL 

0.01 M NaCl solution. At each time point (6, 12, 18 and 24 hr), the 4 mL of sample was 

taken out and centrifuged for 5 min at at 4oC, 12,000 rpm for 5 min. The supernatant of 

solution was further transferred into dialysis membrane and wait for 17 hr. After dialysis, 

the sample was analyzed by ICP-MS. 
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Figure 3.21: Relationship of cytotoxicity and dissolution (pH 4.5 and 7.4). A.) There is a 

strong correlation between cytotoxicity and dissolution at pH 4.5 (spearman’s rank 

correlation coefficient, ρ = 0.86). B.) There is a strong correlation between cytotoxicity 

and dissolution at pH 7.4 (spearman’s rank correlation coefficient, ρ = 0.89). 
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4. DISCUSSION 

4.1 TRANSITION METAL OXIDE NANOPARTICLES CHARACTERIZATION  

Characterization of nanoparticles was critical for the research when considering 

the different size, shape, and synthesis method could affect the cytotoxicity of 

nanoparticles. The preliminary TEM data of the transition metal oxide nanoparticles 

provided very important information such as particle size, morphology and appearance 

of the nanoparticles. Physical characteristics, such as morphology and size, provided by 

the company must be validated in the chance the values are misrepresented. TEM was 

employed to verify the characteristics of each nanoparticle (Table 3.1). The morphology 

of each nanoparticle was spherical in shape with the size coinciding with the 

information provided by supplier. The exception was TiO2 which was needle shape 

instead of spherical, and Mn2O3 which was 82 ± 31 nm instead of 30-60 nm. According 

to the TEM images (Figure 3.1 to 3.7), the transition metal oxide nanoparticles were 

shown to form agglomerates which has been shown previously [24, 54, 55]. The 

decreasing size of particle was proposed to increase the effect on the cytotoxicity. It had 

been demonstrated that smaller nanoparticle with same composition had greater 

cytotoxicity. For instance, ZnO with APS of 27.16 nm caused 50 % cell viability at 

concentration as 15 µg/mL in A549 with 24 hr treatment (Figure 3.10 and 3.11). In other 

study, ZnO with APS of 52 nm caused 50% cell viability at concentration as 50 µg/mL 

[45]. This evidence indicated that a smaller size nanoparticle of same composition would 

cause higher cytotoxicity. Then, we were interested as to whether the different size of 

various composition nanoparticles would have the same trend. Based on the TEM data 

(Table 3.2), we demonstrated the correlation between cytotoxicity and APS. The ρ was -

0.32 which indicates no increasing trend observed in the APS as cytotoxicity increased 

(Figure 3.8).  

Nanoparticles with larger surface area per given mass correlated with increasing 

cytotoxicity by reactive atoms and molecules. SSA increases as the size of the particles 
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decreases and the increased SSA would be more reactive to intracellular compounds 

resulting in toxicity. However, according to the data in Table 3.2, we demonstrated the 

correlation between cytotoxicity and APS. The ρ was -0.32 which indicates there is no 

such trend that nanoparticles which had higher SSA would be more toxic (Figure 3.9). In 

conclusion, the particle size measurement and SSA measurement of the seven transition 

metal oxide nanoparticles indicated that both parameters were not significant factors in 

affecting the increasing cytotoxicity. Perhaps, there were some confounding factors 

which compromised or influenced the effect of APS and SSA such as point of zero charge, 

the number of available binding sites, and amount of released metal ion which are 

discussed in subsequent sections.  

4.2 CYTOTOXICITY OF TRANSITION METAL OXIDES INCREASES AS ATOMIC 
NUMBER INCREASED 

The specific nanoparticles were demonstrated to have different cytotoxicity on 

various cell lines [54]. A549, human alveolar adenocarcinoma cancer cell line, and BEAS-

2B, bronchial epithelium derived cell line, were employed to clarify whether the 

cytotoxicity of nanoparticles was cell type specific. From our results (Figure 3.10 & 3.11), 

we concluded that the cytotoxicity of transition metal oxides was not cell line specific 

with the exception of ZnO which had 0-10 µg/mL cytotoxicity in BEAS-2B and 0-20 

µg/mL cytotoxicity in A549. There was a steep relationship between concentrations 

(from 0 to 20 µg/mL) and reduction in cell viability (from 100% to 20%) treated with 

both BEAS-2B and A549 cells that were exposed to ZnO and CuO, respectively, for 24 

hours. A curve relationship between concentrations (from 0 to 100 µg/mL) and 

reduction in cell viability (from 100% to 30%) was found in both cell lines exposed to NiO 

and Mn2O3 for 24 hr. The cytotoxicity data of Fe2O3, Cr2O3, and TiO2 were shown to have 

only slight or no reduction in cell viability at 100 µg/mL. From this result, we defined 

three levels of cytotoxicity as none-to-minor, moderate, and steep. The ZnO and CuO 

were included in the steep cytotoxicity category, NiO and Mn2O3 were included in the 

moderate cytotoxicity category, and the none-to-minor cytotoxicity category included 
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Fe2O3, Cr2O3, and TiO2. These three levels of cytotoxicity displayed the increasing trend, 

ordered with ascending atomic number of nanoparticle, as none-to-minor, moderate, 

and steep with the exception of Mn2O3. Although the Mn2O3 was supposed to be in a 

none-to-minor toxic group based on the increasing trend of the cytotoxicity, our 

observation defined it as moderate cytotoxicity. We demonstrated the correlation 

between cytotoxicity and atomic number. The ρ was 0.93 which indicates a strong 

correlation between cytotoxicity and atomic number (Figure 3.12). This finding 

concluded that the cytotoxicity of transition metal oxides increased as their atomic 

number increased. The phenomenon aroused our curiosity as to whether there was a 

factor or multiple factors which could contribute to the increasing cytotoxicity of 

transition metal oxides.  

4.3 POINT OF ZERO CHARGE ON SURFACE OF NANOPARTICLES INCREASED 
AS CYTOTOXICITY INCREASED 

Point of zero charge was an important factor in the physicochemical properties. 

Evaluating the result from point of zero charge (Table 3.2 and Figure 3.13), PZC of 

transition metal oxides above 8.0 included NiO, CuO, ZnO, and Mn2O3 which were 

defined as mildly and severely cytotoxic, and the minor toxicity nanoparticles as TiO2, 

Cr2O3, and Fe2O3 had PZC below 8.0. And there was an increasing value of PZC as atomic 

number of transition metal oxide rose. This observed trend matched the cytotoxicity of 

nanoparticles with the exception of Mn2O3 which showed the highest PZC of 8.8. The 

rationale for the deviation of Mn2O3 from periodic behavior with regard to PZC (and 

subsequent cytotoxicity) remains unclear. Moreover, the rationale for this observed 

trend can be understood by applying the principles underlying the Gouy-Chapman 

theory and considering the fact that attachment of intracellular material to these 

nanoparticulate surfaces were Coulombic in nature. When nanoparticles were exposed 

to an aqueous solution matrix below their PZC, the surface would get populated with an 

excess of hydronium ions and protons, making the nanoparticle surface positively 

charged which could attract and interact with negative charge intracellular molecules. 
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According to our result, the PZC of transition metal oxide nanoparticles were all above 

pH 7.4, or the cytosol pH value, with the exception of TiO2 (PZC = 6.8). Once these 

nanoparticles were exposed to cytosol environment, the surface of the nanoparticles 

would become positively charge. Hence, negatively charged species such as phosphate 

groups of nucleic acid molecules (DNA and RNA) would be attracted to the nanoparticle 

surfaces. This interaction would cause further damage to cells. The fact that the PZC of 

TiO2 is below pH = 7.4, and hence no Columbic attraction to intracellular material with 

an overall negative charge can occur, is one factor explaining its relative non-toxic 

character. Note that the cell viability is 100% in Figure 3.10 and 3.11, showing virtually 

no toxicity and taking into account the error bar. The PZC of Fe2O3 and Cr2O3 which was 

8.0 and 7.8, respectively, may not attract enough intracellular material to cause any 

toxicity, or cell damage was remedied by other mechanisms which require further 

investigation. Interestingly, the most toxic of the nanoparticles, ZnO and CuO, which 

have the highest PZCs in the series, should be able to disrupt the cellular materials. We 

demonstrated the correlation between cytotoxicity and PZC. The ρ was 0.78 which 

indicated that the PZC increased as the cytotoxicity increased (Figure 3.14). Our 

previous study reported that ZnO could cause DNA damage and alter the gene 

expressions [22, 51]. ZnO with 30 nm size and spherical shape treated on the A431 cell 

line for 6 hours at 5 and 0.8 µg/mL had caused DNA damage [80]. This rationale 

explained why nanoparticles of high PZC, above 8.0, were more toxic than materials that 

contain negatively charged groups. Cytotoxicity, in part, was governed by the resulting 

columbic attraction to cellular material based on a consequence of the PZC which 

seemed to increase with increasing atomic number of the transition metal within the 

oxide, with the exception of Mn2O3. 

4.4 THE NUMBER OF AVAILABLE BINDING SITES OF TRANSITION METAL 
OXIDE INCREASED AS CYTOTOXICITY INCREASED 

In addition to the observed trend in PZC, a periodicity in the number of available 

binding sites, as measured by XPS, was also correlated with toxicity trends. The number 
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of available binding sites on the surface of nanoparticles represented their chemical 

reactivity .The relative amount of adsorbed oxygen-to-metal oxide oxygen ratio, 

obtained from integrated XPS peak areas, was used as a means of quantifying the 

number of available binding sites to which intracellular material can interact via 

attachment. The greater the physisorbed oxygen-to-metal oxide oxygen ratio, the more 

adsorption sites are available for intracellular binding.  

The adsorbates were predominantly adsorbed hydroxyl groups from H2O; 

however, it would be noted that carbonates, CO and CO2 from atmosphere, could be 

adsorb on the surface, and their BEs typically overlapped with the observed chemical 

shifts for adsorbed hydroxyls in the ~531 eV region. A trend of increasing adsorbed 

oxygen-to-metal oxide oxygen was observed for the series of metal oxides studied, with 

the exception of Cr2O3, which deviated in that it had a pronounced amount of adsorbed 

oxygen that was likely an artifact of CO2 from solution exposure to atmosphere. CO2 has 

a propensity to adsorb in a pronounced fashion onto Cr2O3. The relatively large XPS 

intensity at O 1 s BE at 531.2 eV (Figure 3.15) has also been reported to emanate from a 

mixed complex of Cr2O3∙nH2O∙xCO2 formed from adsorbed atmospheric CO2 into 

aqueous solution [81]. The most toxic of nanoparticles analyzed in this series also have 

the highest adsorbed H2O content; the vertical dashed line denotes the chemical 

oxidation state for adsorbed H2O. ZnO and CuO have the highest PZCs and hence 

greatest degree of “protonation” via adsorption of hydronium ions (H3O+). We postulate 

that under aqueous solution physiological pH conditions, the metal oxide surface was 

populated by excess H3O+, in accordance with Gouy-Chapman theory. During adsorption, 

the adsorbate was electrically neutralized resulting in the observed enhanced intensity 

denoting chemisorbed H2O at 532.9 eV on the CuO and ZnO surfaces. Adsorbed H2O was 

not pronounced on the TiO2, Mn2O3, Fe2O3 and NiO nanoparticulate surfaces. A lower 

intensity was observed for TiO2 (Figure 3.15), which had the lowest PZC in the series 

(below that of physiological pH); however, it appears on the leading edge of the BE 

envelope indicative of adsorbed hydroxyls at 532 eV. We demonstrated the correlation 

between cytotoxicity and the number of available binding sites. The ρ was 0.71 which 
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indicates that the number of available binding sites increased as cytotoxicity increased 

(Figure 3.16). Cytotoxicity, in part, was governed by the available bind sites which 

seemed to increase with increasing atomic number of the transition metal within the 

oxide, with the exception of Cr2O3 and Mn2O3. 

4.5 METAL DISSOLUTION OF TRANSITION METAL OXIDE CONTRIBUTES TO 
CYOTOXICITY 

Our data indicate the transition metal oxides with higher cytotoxicity had more 

physicochemical reactivity. We were more interested in whether the transition metal 

oxide which might interact with excess hydronium in the aqueous condition would 

release the metal ion into the environment. During the dissolution experiments at pH 

4.5, the nanoparticles of ZnO and CuO both disappeared in the solution within the first 3 

hr, and the color of the solution turned from murky to transparent and light blue, 

respectively. The phenomenon above matched the result of high dissolution of ZnO and 

CuO (26% and 11%, respectively). The other nanoparticles, including NiO, Mn2O3, Fe2O3, 

Cr2O3, and TiO2 would form a turbid solution, making it impossible to observe the 

reducing mass of nanoparticles.  

ZnO nanoparticles tended to release more of the zinc ion under acidic conditions 

(pH 4.5) than under neutral conditions (pH 7.4). However, there was no significant linear 

relationship or increasing trend between dissolution and time (Figure 3.17). The similar 

pattern of dissolution appeared in CuO, NiO and Mn2O3 nanoparticles (Figure 3.18 to 

3.20). In conclusion, the dissolution of ZnO, CuO, NiO and Mn2O3 nanoparticles showed 

no increasing trend nor significant linear relationship between various time points (6, 12, 

18, and 24 hr) and two pH conditions (pH 4.5 and 7.4). This phenomenon could be 

explained by various uncontrollable parameters, such as agglomeration of the 

nanoparticles, adsorption by the beaker, and equilibrium between the nanoparticle and 

the free ion. For instance, we observed the nanoparticles would attach to the wall of 

beaker and formed a thick layer which may indicate adsorption. Regarding these issues, 

we are currently running more repeats of each transition metal oxide nanoparticles. 
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Overall, the dissolution of ZnO, CuO, NiO and Mn2O3 nanoparticles which were 

defined as severely and mildly cytotoxic tended to release more metal ions in an acidic 

environment (pH 4.5) than in a neutral environment (pH 7.4) (Table 3.3). Fe2O3, Cr2O3, 

and TiO2 which were defined as the minorly cytotoxic had no significant dissolution 

(below 0.1%) at two different pH conditions (pH 4.5 and 7.4). Moreover, the result gave 

us an insight that the dissolution indeed had a relationship with cytotoxicity. We further 

demonstrated the correlation between cell viability and dissolution data at 24 hr, and 

there was a strong association at pH 4.5 and pH 7.4 (spearman’s rank correlation 

coefficient, ρ = 0.86 and 0.89, respectively) (Figure 21). According to our result, we 

hypothesized that the transition metal oxide nanoparticles exposed to cells would be 

taken up, trapped and would release the metal ion in acidic environment (lysosome). 

The metal ion would be hardly released from nanoparticles which were exposed directly 

to the cytosol. When the nanoparticles triggered the cell death, it involved the 

interaction of the nanoparticles and intracellular molecules, as well as metal ion 

released from nanoparticles. 

In this study, there was a strong correlation between dissolution of transition 

metal oxides and cytotoxicity at pH 4.5 and pH 7.4. Noteworthy, the dissolution rate of 

metal oxide was all below 1% at pH 7.4. At pH 4.5, the steeply cytotoxic group which 

included ZnO and CuO had the highest dissolution rates of 26% and 11%, respectively, 

and the moderately cytotoxic group which included NiO and Mn2O3 had the highest 

dissolution rates of 2% and 0.5%, respectively while the other metal oxides had 

dissolution rates below 0.1 %. This indicated the metal oxides present in cytosol would 

retain its integrity and do not interact with the hydronium while the metal oxides 

trapped in lysosome via endocytosis could release the metal ion. It became clear that 

the steep cytotoxicity of ZnO and CuO was mainly due to the released metal ion, and 

also accounted for PZC and the number of available binding sites. At the same time, the 

cytotoxicity of NiO and Mn2O3 mainly accounted for the PZC, the number of available 

binding sites, and the minor level of released metal ion.   
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5. CONCLUSION 

The physicochemical characteristics of transition metal oxide such as 

morphology, APS, SSA, PZC, the number of available binding sites, and metal dissolution 

contributed to cytotoxicity were demonstrated in this study. We use the spearman’s 

rank correlation coefficient to indicate whether there was any correlation between 

physicochemical properties and cytotoxicity. The cytotoxicity of transition metal oxide 

had strong correlation with atomic numbers. In other worlds, the cytotoxicity of 

transition metal oxide increased as atomic number went up. The results showed that 

APS and SSA had no correlation with the cytotoxicity of transition metal oxides. There 

was a strong correlation between PZC and cytotoxicity. The quantification of the 

number of available binding sites, done with XPS, also had a strong correlation with 

cytotoxicity. The metal dissolution of transition metal oxides was studied and showed a 

noteworthy result. At pH 7.4, the metal oxide barely released metal ions (dissolution 

below 0.1%). At pH 4.5, the ZnO and CuO which were steeply cytotoxic displaying the 

highest dissolution, the moderately cytotoxic NiO and Mn2O3 had dissolution around 2%, 

and minor dissolution was observed for TiO2, Cr2O3, and Fe2O3 which were categorized 

as none-to-minor group. In summary, there was a strong correlation between metal 

dissolution and cytotoxicity. 

Overall, the correlation between cytotoxicity and physicochemical properties of 

transition metal oxide nanoparticles such as PZC, the number of available binding sites, 

and dissolution were summarized in Table 5.1. Based on this information, we could 

conclude that the higher PZC of metal oxide nanoparticles was related with greater 

cytotoxicity. In the same way, higher number of available binding sites was associated 

with the greater cytotoxicity. Similarly, higher dissolution of metal oxide had correlated 

to greater cytotoxicity. Therefore, the observed trend in cytotoxicity is a consequence of 

multiple properties including PZC, available binding site, and dissolution. Overall, there 

is a periodicity in cytotoxicity across the 4th period transition metal oxide nanoparticles 
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which are attributed to the physicochemical properties such as PZC, number of available 

surface binding sites and metal dissolution. This study presented the correlation 

between cytotoxicity and physicochemical characteristic which contributed to the 

cytotoxicity and gave an insight to develop strategies to remedy it. Future work will 

involve developing strategies to study and collect the effect of each physicochemical 

property to improve the safety of engineered nanoparticles. 

 

 

Table 5.1: Summary of correlation between cytotoxicity and physicochemical 

characteristics 

Relationship 

Spearman’s rank 

correlation 

coefficient (ρ) 

Trend 

Cytotoxicity 

Atomic number 0.93 Increasing 

APS -0.32 None 

SSA -0.32 None 

PZC 0.78 Increasing 

The number of 

available binding sites 
0.71 Increasing 

Dissolution (7.4) 0.89 Increasing 

Dissolution (4.5) 0.86 Increasing 
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