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ABSTRACT

The short duration afterglow of an r~f discharge in mercury has been
examined versus ground state mercury atom density and r-f power. The intens~
ity of the 5771, 5462, 4360, 4079, 4047, 3907, 3651/56, 3342, and 3127/32%
atomic mercury lines were observed to decay as a function of time after the
shut off of the active discharge, At temperatures below 33301{, all atomic lines
decayed exponentially, and no molecular emission was observed, From 3330K
to 423OK, the atomic lines were observed to decay rapidly initially, then exhibit
an enhancement effect in intensity which was produced by metastable atom colli-
sions, and finally, the intensity decayed with a small time constant, Above
4330K, molecular emission begins to become effective because of the increased
ground state atom density, and the overall intensity of the atomic lines is observe
to decrease, but the intensity of the lines still exhibited an enhancement effect,
Above 4730K, molecular emission becomes dominate, and the molecular emis~
sion robs the atomic line spectra of energy. From the comparison of theory
and result of the experiment, the coefficient of ambipolar diffusion (De) for the
electron can be calculated. The average value calculated is De =991 cn12/ sec,

Also, the average valueof the lifefime of the metastable 63P state of mercury

2

can be calculated Tm =47 microseconds,
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I. INTRODUCTION

A. REVIEW OF LITERATURE

Soon after the discovery of x~rays by Roentgen, the property of x-rays to
cause a non-conducting gas o conduct was put to experimental use, Ionization
of gas molecules by x-rays became a tool by which Rutherford, 1 studied the
recombination of gases., J. Sayer2 used a method similar to Ruthexford's
ionized air molecules, His ionization chamber was a cylindrical pyrex envelope
with metal electrodes., The air was ionized by x~rays and secondary electrons
were ejected from the gas molecules. These electrons were then captured by
neutral oxygen molecules before they could recombine with a positive ion.

This recombination with neutral 02 molecules yielded positive and negative ion
concentrations in the tube. These concentrations could be measured by applying

a high voltage pulse to ﬁle electrodes. In order to set up the rate equations for
the decay of the ions in this experiment, it is assumed that equal positive and
negative ions are created with random distributions and also that neufralization
occurs only upon collision of positive and negative ions, Under these assumptions,
the rate equation would be % = cvnz, for the removal of ions after removal of the
ionizing x-rays,

The above experiment was a crude beginniné; to the study of ion-ion and
electron-ion recombination., Afterglow experiments have been performed using
numerous techniques and gases. Those of particular interest are the afterglow
em)erhﬁents performed on mercury. Experimental studies of electron-ion

3,4,5,6,7

recombination have used several techniques; spectroscopic observation

of the light intensity and microwave and probe technigques to measure the electron



density as a function of time. Also, pulsed electric discharges have been used
for ionization of sample gases, Microwave techniques are used for the ionization
of the sample gas, and they are also used to measure the electron density. The
resulting change in frequency of the microwave cavity is a measure of the elec-
tron density:

=—5— M

(1 +2)n
w! 'p

Af
f

where 1 is the average electron density, v is the electron collision frequency,

w

w is the angular frequency of the probing signal; np = me —gv—, where cop in this
o ‘

term is the plasma resonance frequency, me is the mass of the electron, ande —

is the charge of the electron,

B. EXPERIMENTAL STUDIES ON MERCURY

M. A, Bionch6 used microwave measurements to determine the atomic
processes causing the electron removal in a mercury afterglow. In his work,
he suggested ambipolar diffusion as a loss mechanism for the electron at low
pressure in the afterglow. Also, a production mechanism was suggested for the
electrons due to collisions of metastable atoms:

(a) Hg;';l + Hg;';l ~ Hg* + e— + Hg.
If the electrons are produced by metastable atom collisions and are lost by
ambipolar diffusion, Biondi said the electron density obeyed the following
equation:

n = Aexp(—t/TD) - Bexp(-—Zt/Tm),

where n, is the electron density, TD is the characteristic ambipolar diffusion



length, Tm is the lifetime of the metastable state, and A and B are independent
of time, Because their diffusion coefficient is much larger than that of the iong,
the electrons try to diffuse more rapidly than the ions toward regions of lower
concentration, The electron motion is impeded because of the space charge
field created due to the electron-ion separation, thus slowing down the diffusion
of the electron and increasing the diffusion of the ion, This type of diffusion is
called ambipolar diffusion.

At high pressure or atom densities, mercury band structure begins to
enter the picfure. A, O. Mc Coubrey8 studied the band fluorescence of an
optically excited mercury vapor during the afterglow. The experimental results
led to an interpretation that the optically excited Hg (63P1) atoms are converted
into metastable Hg;*;1 (63PO) atoms by collisions with ground state atoms,

The Hg; (63P 0) atoms are then converted into metastable Hggm(30;)
molecules by a three body collision.

() Hg*m(63P(;) + 2Hg — Hggm(%;) + g

(©) Hg%‘m(%;) — Hg, + hw(33503\)

@ Hg;m(3o;) + 2Hg + hy(48504).
The Hg%‘m(?’();) molecule decays by the emission of two band systems at 33500A
and 48500A.

In a theoretical paper by W, H. Kunkel, o the differential equations gov-
erning the removal of ions and electrons from the afterglow for any generalized
gas have been solved for three special cases. Ion production methods were
introduced involving metastable atoms in two of these cases.

Since the metastable mercury atoms play an important role in the after-



glow of a discharge, several studies have been performed concerning the role
of metastable atoms in the afterglow of mercury. Absorption studies involving

metastable atoms Hg*(GsP ) in a mercury-argon discharge have been performed

0,2
10 11 . .

by C. Kenty and M. Yokoyama ~, The results of these experiments give the

" relative population densities of the metastable states and the resonance state,

Hg*(63P1) versus time. From this information, fractional absorptions and

apparent lifetimes of these states in the afterglow under various conditions can

be determined.



II. THEORY

A, THE MECHANISM PRODU CING THE AFTERGLOW SPECTRA

The explanation of the atomic and molecular emission in the afterglow of
_a mercury discharge is a complicated problem because of the many processes
involved. In the following experiment, a study of the intensity of the atomic
emission lines of mercury as a function 6f time and atom density was performed.
The intensity behavior of the atomic spectral lines, after the removal of the r-f
exciting source, showed a rapid decrease in intensity for temperatures below
3330K. This decay was a simple exponential, Above 333°K and below 4330K,
the intensity showed an initial rapid decay, followed by an increase in intensity,
and then a slow decrease in intensity towards zero. Above 4330K, the intensity
initially increased or enhanced and this was followed by a slow decrease towards
zero intensity. There are three temperature regions fér which the data must

be explained. The temperature and atom density will be used interchangeably

to devscribe a certain region of the data because in this experiment the atom
density of mercury is uniquely determined by the temperature of the cell,
Therefore, a low temperéture implies a low atom density.

Several possible mechanisms such as electron-ion recombination,
electron production by ionizing collisions between metastable atoms, and natural
radiative decay will be employed to explain the afterglow results. Some of the
mechanisms producing the observed atomic line afterglow spectrum are:

(e) Hg* —»I Hg + hy

) Hg*m(63P2) + Hg¥ (63132) ~Hg' + e+ Hg
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Hg*(61P )+ Hg*(GlPl) ~Hg  + € + Hg
Hg*(6.P,) + Hg* (6°D.) — Hg' + o + Hg
1 m 2
1 3 + -
Hg*(6 Pl) + Hg*(6 Pl) —Hg + e + Hg
Hg*(67P.) + Hg* (65D ) —~ Hg're + Hg
1 m (o}
(8) Hg' + € — Hg* — Hg + hv
3 3
vk B k(6 — * — +
(h) Hgm(G PO) + Hgm(G Po) Hg* + Hg 2Hg hv
3 ‘
Hg*(6 Pl) + Hg*(63P1) ~ Hg* 4+ Hg — 2Hg + hv
Hg*(63P1) + Hg*(GgPO) — Hg* + Hg — 2Hg + hv
3
Hg*(6 Pl) + Hg;‘n(Gst) — Hg* + Hg — 2Hg + hv.
Equation (e) is the reaction for natural atomic photon emission, equations (f)
are the reactions for electron production due to ionization by metastable and
imprisoned atom collisions, equation (g) is the reaction for producing excited
atomic states of mercury atoms by electron recombination, and equations (h)
are the reactions for producing excited atomic states of mercury by collisions
of metastable atoms and atoms in the imprisoned resonance states, The impri-
soned resonance states of mercury are the 63P 1 and 61P1 states which have
0 o '
wavelengths to the ground state of 2537A, 1850A, respectively. A resonance
line is a spectral line which can be absorbed by atoms in the ground state, I
the ground state atom density is large, then this radiation can become impri~
soned in the cell causing an increase or extension of the lifetime of these
states. This effect will only be of importance at high ground state density or
in other wbrds at high temperature in our experiment,

In order to explain the observed atomic emission spectra at various



atom densities or temperatures, the problem is to detei‘mine which mechanism
holds in the different time and temﬁerature or atom density regions. At low
temperature or atom density, below 3330K the atomic photon emission and

_ volume electron-ion recombination processes should be the dominate mechanisms
for the decaying intensity. The resulting intensity of the spectral lines should be
a simple exponential decay. The simple exponential has been observed for this
atom density region., The natural lifetimes of fhe lines are around 0, 01 micro-
seconds, and the time resclution of the experimental equipment is of the order
of 1 microsecond. This implies that the natural lifetimes are shorter than can
be obsexrved so that the initial exponential decay is controlled by volume elec~
tron recombination,

In the intermediate temperature or atom dengity region, above 333°K
and below 4330K, the light intensity has, probably, aninitial decay due to the -
natural lifetime of the state which can not bt_a observed, and the rapid initial
decay observed in the experiment is caused, again, by volume electron recombi-
nation. This is followed by an enhancement of the intensity caused by ionization
of mercury atoms by collisions of metastable atoms, and.finally a slow decay
of the light intensity which is controlled by ambipolar diffusion pf the electrons
which are recombining with the atoms to produce excited mercury atoms,

At high temperatﬁre or atom density, above 43301{, molecular emission
begins to‘ play a role in the afterglow spectrum causing an overall drop in the
intensitonf the atomic spectral lines. The same processes or mechanisms
still apply in this region that applied in the intermediate region, but the mole-

cular emission is robbing the spectra of energy causing the intensity to drop,



Molecular emission is important only at high atom density for the excitation of
a molecular state requires a three body atomic collision, The probability of
this type of collision will only be significant at high atom densities. Molecular
emission follows these mechanisms:

) Hg* (6P 2Hg — Hgk 30',‘ + H

() Hg* (6°P) + 2Hg 8t V) g

G Hg* (0) —Hg + hy (3350%)

2m* u 2 '

3 -
* —
() Hgy ("0 ) + 2Hg — 4Hg + hy (48502).

10,

The molecular emission will not be discussed in detail. It will only be mentioned

here., Mr, Bruce Whitcomb12 has done work in this area and his results will be
applied when necessary.

B. THE ELECTRON RATE EQUATION

The decay of the atomic radiation in the afterglow can only be explained
by examining the rate equations governing electron and excitéd atom removal
from the afterglow discharge. The rate equation for the electron densily is

governed by the mechanisms listed under reactions (f) and (g). The last four

reactions will be ignored in the rate equation because collision of 61P1 with

other GlPl atoms oxr 63P atoms are of little importance. The 61P

0,1,2 1

state of mercury has a high probability of transition to the ground state, there-
fore its lifetime will be very short, and the atoms in this state will have
decayed before the equipment could respond fo their decay. The rate eéttation'
for the electron density is:

?ﬁ_g?i_;zLQ = Devze(p,z,t) - ale-[ Hg+] +01[Hg(63P2)]2 (3)

where e(p, z, t) is the electron density in cylindrical coordinates, DeVZe(p, z,1)



11.

represents the ambipolar diffusion loss to the walls for electrons, ale*[ Hg+]
reﬁresents the volume recombination term for Hg+ ion and electrons, and
01[ Hg(63P2)]2 represents the electron p roduction term producing electrons
caused by ionizing collisions between metastable atoms,

At low atom density, electron loss is controlled by ambipolar diffusion,
and electron production is controlled by icnization produced by metastable

atom collisions. Thus the volume recombination loss term will be neglected.

Equation (3) becomes
I
2
280229 = pePopp,s,t,) + o rHgx (67P )7 (@

where the Hg;i;l (63132) atom density is assumed to be of the form:
£
3 - —
ES = =
[Hgk (67P,)] =N(,zt) = Ap,z)e T

In this equation, t is the time measured from the end of the active discharge,
Tm is the lifetime of the metastable 63132 atomic state, and A(p, z) is the met-

astable atom concentration of the active discharge. The solution to equation

(4) is
H=3% .% D t 3 3 t |2t 5
e(p3Z: )—i:‘i j____l iJ (P!Z) exp |- 9 -izi]Zj.Mij(p, )eXp T ( )
Aij my o,

where Dij(p’ z) is a product of zero order Bessel and cosine functions, Mij(p’ z)
is also a product of zero order Bessel and cosine functions, and Aizj is the
square of the characteristic diffusion length for the electrons. If only the

lowest mode of diffusion is considered, the equation reduces to the form:

ISee Appendix I p. 42 for complete solution,
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_ t 2t
e (p,2,1) = Dy (p.z) exp |~ | ~ M, (p,2) exp |~ (6)
hll : mip ,

whexre D 11 (p, z) is the first term of the double infinite sum, Dij(p’ 7); Mll(p’ z)
- is also the first term of the double infinite sum, Mij(p’ z); and 7\11 is the lowest
mode characteristic diffusion length. The quantities Mij (p,z) and M 1 1(p, Z)

are given by the expressions:

11 2 1
Mij(p’ zy = Aij (p, z) T - —~§-—
m A, !
1j
d M = A11 2 1
) / Tm 7\.2
11 .

M 11 (0, z) is a positive constant with respect to time since A1 1(p’ z) is positive
and since the lifetime of the metastable state is smaller than the square of the
characteristic diffusion length. The lowest mode of diffusion is considered the
dominate mode, and other modes of diffusion ;alre considered unobservable, The

characteristic diffusion length for the lowest mode is given by the expression:

2

1 2 T
= De[A11 + 2]

2
>L1

as)

1

where Ai is the lowest value of m such that Jo(ma) = 0, and H is the length

1

I

of the cell and a is the radius of the experimental cell,

C. THE I-TH ATOMIC STATE'S RATE EQUATION

The rate equation for the decay of the i-th excited atomic state is:



13.

I

AN (0, 2. 1) ) .
=D VNG, 20 - aNp. 5,1 + ae o,z 1) H B,50) (1)

[ —

9t

where Ni(p, z,t) is the atom density in the i-th excited state, DnV 2Ni(p’ z, 1)
represents the diffusion loss to the walls of the cell of excited atoms, aNi(p, z,t)
represents the spontaneous radiation loss from the excited state, and oge~(p, z, t):
ng"(p, z, 1) is the production term caused by electron~ion reéombination. It is
assumed that the electron density is equal to the ion density, for the plasma is
assumed neutral; thus,

e-(p, z,t) = Hg‘:’(p, z, t).
In solving equation (7), the electron density term will be assumed the lowest
mode electron density given by equation (6). After a suitable transformation,
equation (7) is solvable, The solution is,

o)

™ 8

N.(o,z,1) = (.O,Z) exp| t( +a)]

1—1 ]"1 ij

2t ] o0
- >N -
Ai](p, Z) e’xp )\.2 +i'§1 j: Cij(p: Z) exp

11

g 8

0
+}iJ
0 a0

2 1
- ) -t 4+
i3 3 By 2 exel t(Tm 2 s

11
where 6i2j is the square of the characteristic diffusion length for the excited
mercury atom, and Fij (p, z), Aij(p,z), Cij(p,z) , and Bij(p’ z) are constants

times products of zero order Bessel and cosine functions. They are all constants

HSee Appendix I.p, 54 for complete solution.
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with respect to time. I will be assumed again that only the lowest mode of
atom diffusion dominates,
Then equation (8) becomes
N,z t) = F (. ex-t( +A)] +A D)o () ()
i 11 Oil i 11 Tm

' ' 4t
+ C —
1127 ex0 (=75 )

+ B, (0,%) exp | ~t (%m + ;%-}1 :
11

The coefficients Fll (v, 2), Cll(p’ z), All(p, z) and Bll(p, z) are all positive

first terms of the double infinite sum of coefficients of equation (8), because

of the assumption that the coefficients of the electron density are all positive

and that the lifetime of the metastable state is smaller than the square of the

characteristic diffusion length, The other quantities; have already been defined,

The first exponential of the solution is that corresponding to the natural photon

emission and can not be observed with our electronic equipment because of its

fast decay time,

D. THE METASTABLE ATOM'S RATE EQUATION

The last rate equation to be examined is the decay of the metastable

6313'2 atom population, The rate equation is

I
aM(p, z,t 2 2
-——git-———l = D_V'Mp,z,1h - oM (p,2,1 (10)

where M(p, z,t) represents the metastable 63P atom density, DszM(p, z, 1)

2

II'[See Appendix I p. 67 for complete solution,
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3
represents the loss of 6 P_ atoms due to diffusion to the walls, and ¢ le(p, z, t)

2
the loss of metastable atoms due to collisions with similar atoms to produce

+
electrons and Hg ions. By neglecting diffusion as a loss mechanism, equation

- {(10) becomes

dM(p, 7, t 2
—.*a%?“ = - 0 M(p,z,1) (11)
Equation (11) has a solution of the form:

1+0,A(p,z,1)

t/T

M(p,2z,t) = Ap,z)e " m (12)

where t is the time after the cut off of the active discharge, Tm is the meta~
stable state's lifetime, and A(p, z) is the concentration of the metastahle atoms

in the active discharge, In the approximation employed above -,il— = UlA(p, Z)
m

and M(p, z,0) = A(p, z)., Absorption studies have indicated that the metastable
63P 5 atoms decay approximately exponentially, Also, the concentration

of the 63P2 atoms decays to almost zero in less than 100 microseconds, and

the enhancement occurs at 100 microseconds, This is the main reason that

metastable atom collisions of the 63P2 states were given as a possible mechanism

to explain the enhancement of the light intensity.
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III. EXPERIMENTAL PROCEDURE

In this experiment the experimental cell was a pyrex cylinder 300mm.
long and 51mm. in diameter with pyrex \vi,ndoxvé. It had a Tmm, side arm which
was used to attach the cell to a vacuum system. ’I‘hé cell had two tunstgen
electrodes which could be used if pulsed d. c. excitation was desired, The
vacuum system‘ consisted of a rotary forepump, | phosphorous pentoxide.
water vapor trap, and an oil diffusion pump. The cell was outgassed to a pres-
sure of 2, 2x10—6mm. of Hg, the cell was heated in an oven to a temperature of
37 SOK, and then triply distilled mercury was distilled into the cell, The cell
was then removed from the vacuum system leaving enough of the side arm-
attached to be used as a mercury reservoir. The cell was then encircled by an
r-f tank coil tuned to 28.5Mc, Thermocouples were attached to the cell at the
windows, the top, and reservoir. The cell was then placed in an oven Whiéh
had pyrex end windows, The temperature was controlled by varying the cur~
rent through the‘four heating rods of the oven,

The experimental setup is as shown in fig, 3. The signal from the r-f
source, a Heathkit transmitter, was sent to the pulsed r-f power amplifier
which was turned off and on 60 times a second by a screen grid switching sig-
nal. The resultant signal from the power amplifier was then impedance matched
to the mercury cell where the signal produced an intense r-f discharge. The
radiation from the cell was focused into a Bausch & Lémb 500mm. quartz
grating m‘onochron's ator and detected with an EMI 6256Q quartz windowed photo-

multiplier which was powered by a Fluke 412B power supply. The current from
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Figure 3. Biock diagram of the apparctus used in the experiment.
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the photomultiplier was sent through a 10Kohm resistor and the voltage across
the resistor was displayed on a 531A Tektronix oscilloscope, In order to
synchronize the oscilloscope, the horizontal sweep was triggered externally
wheﬁ the power amplifier was pulsed off. This trigger was supplied by the 60
cycle switching pulser for the power amplifier,

The monochromator was used to separate the different wavelengths of
mercury light, . The temperature of the oven and cell was varied by controlling
the current in the heating rods, The r-f power input to the discharge was varied
by controlling the plate voltage supply to the amplifier. Polaroid pictures were
then taken of the various spectral lines displayed. The spectral lines examined
were of wavelengths 5771, 5462, 4360, 4079, 4047, 3907, 3657/56, 3342, and
3327/ 32?&. These lines were examined at cell temperatures of 3330K, 353°K,
373°K, 398°K, 423°K, 433°K, 443°k, 453°K, 463°K, 473°K, and 498°K.
Finally, each line at each temperature was examined at four r-f power levels

of 200, 400, 500, and 600 watts.
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IV, RESULTS AND DISCUSSION

A, THE COMPARISON BETWEEN THEORY AND EXPERIMENT OF THE

AFTERGLCW SPECTRA

The comparison of theory and experimental data is shown in figure 4 and
5. The solid line is the theoretical curve, and the circles indicate the direction
of the experimental curve for the light intensity versus time. The comparison
of theory and experiment is for the representative lines 5771, 5462, 4362, 4079,
4947, 3907, 3651/56, and 3127/324 of mercury at 398°K. At 398°K, the
enhancement effect has become pronownced and molecular emission has not
entered into the afterglow spectrum because of the low mercury atom density,
The theory predicts that the light intensity of the atomic lines of mercury
follows four exponential decaying terms, but because the experimental equip-
ment had a rise time of approximately 1 microsecond and the expected decay
time of natural radiation is of the order of,01 microseconds only three exponen-

tials were observed. The decay constant L + a was not observed. In

2
6
Table I., the coefficients A 11’ B 11’ and C 1ilare tabulated for the lines mentioned
ahove, The decay constants —% , %— + ~;Pg- , and 4/ Tm are also tabulated, From

A 1 ?\1 1 m
these decay constants and the d&mensions of the cell, an average value of the

electron ambipolar diffusion constant, De’ and the lifetime of the metastable

63]?2 state of mercury, Tm’ can bhe evaluated, The average value of De is 991
2

om /sec. The average value of Tm is 47 microseconds,

B. THE ENHANCEMENT OF THE ATOMIC LINES

Figures 6, 7, and 8 show the intensity behavior versus time and r-f
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power input to the mercury discharge at temperatures of 33, 373, 423, and
4730K. On each figure, there are four r~f power levels corresponding to 600,
500, ’400, and 200 watts. The largest power input is the first curve in the

_ figure and the three other power levels are displaced approximately 100 micro~
seconds from each other., All atomic lines of mercury exhibit the enhancement
effect, The 40793 line, which is an intercombination line and weak in intensity,
originates from the 7180 state, and did exhibit an enhancement at 150°K which
disagrees with the experiment of Stepp and Anderson. 7 The 40793 line decays
in a simple exponential fashion for all temperature and power levels below
4230K, and is assumed to be controlled by volume electron-ion recombination in
this region. The lines 3651/56 and 3127/ 328 which originate from the 63D3
and 63D1 states exhibit enhancement which is greater than the intensity of

the line in the active discharge, This implies a high population of these states
in the afterglow, The lines 5462, 4360, and 404713 whdch originate from the

7 381 state are not intercombination lines and exhibit an enhancement, but the
intensity is never greater than the intensity of the line in the active discharge.
The 5771K line is an intercombination line which shows an enhancement, but is

never greater than the intensity of the active discharge. This data is tabulated

in Table II.
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TABLE I

* ' 2
AVERAGE VALUE OF D, = 991 cm /sec. AVERAGE VALUE OF Tm = 47 microsec.

4 2
Wavelength of the All B11 Cll -’1-‘;1 }LZ }\2 * '-I‘:n De Tm
, 11 11

tomie Tine x10™ x10*® x10™  om?/sec x107% see.

40478 28 75 147,090 .0016  .055 800.0 44.4

40798 - - 122 .090 - - - 44,4

54628 27 325 398 .078 .0015  .066 750, 8 51.2

57718 51 330 379  .085 .0025 062 1250.6  47.1

33404 125 333 296 080 0021 . 042 1250.1  50.0

39074 122 450 358 .090 .0018  .052 900. 0 44.4
"3651/568 195 270 358 .057 0021 012 1200.8  71.4

. :
Relative Units of Intensity

Kk
The 3651/ SGX atomic line was omitted when averages were calculated.

TABLE‘I ~ LIST OF COEFFICIENTS AND DECAY CONSTANTS

R4
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TABLE II - Intensity of the lines at the positions of minimum of the initial drop (columns A) and the maximum of the
enhancement (columnsB) immediately after shut off of the discharge as a percentage of the intensity just before shut
off. A blank space indicates that the line did not drop initially in intensity and an asterisk indicates that the line

decayed in a smooth exponential fashion,

Wavelength, transition, and energy Temperature 33301{
of originating state in selection volts P1 = 600 watts P2 = 500 watts P 3 = 400 wattvs‘ P . = 200 waftts
A% B% A% B% A% B% A% B%

All atomic spectra lines of mercury decayed in a smooth exponential fashion

for temperatures below 3330K.

'Le



- TABLE II (CONTINUED) -

Wavelength, transition, and Temperature 353°K

energy of originating state P 1T 600 watts P2 = 500 watts P g = 400 watts P g 200 watts
in electron volts A% B% A% B% A% B% A% B%
3651/564 63D3 2-63P2 (8.85) 5.5 20.1 5.8 9.6 4.5 18.2 6.2 17
5771 63D2—61P1 (8.84) 5.5 ‘ 95,0 5.8 9.6 4.6 6.7 6.0 8.0
4079 7130—63192 (7.92) * * * * * * * *
4360 7381--63P1 (7.73) * * * * * * * *
5462 7°s 1—63P2 (7.73) * * * * * * * *
4047 733 1—63PO (7.73) * * * * * * * *
3342 8381-63132 (9.17) 8.0 20.0 7.0 19.0 7.8 18.1 6.0 15.4
3907 81D2—61P1 (9.87) 50.0 97.1 No Data Taken

3127/32 63D2 1—63P1 (8.84) 6.3 18.0 5.4 17.2 4.5 14.0 5.2 15,6

82



- TABLE I (CONTINUED) -

Wavelength, transition, and Temperature 37 BOK

energy of originating state P L T 600 watts P2 = 500 watts P 3 = 400 watts P 4' = 200 watts
in electron volts A% B% A% B% A% B% A% B%
3651/56K 63D3 2—63P2 (8.85) 10.1 38.0 11.2 36.0 13.0 39.5 12.3 36.
5771 63D2—61P1 (8. 84) 5.8 11,1 4,0 11.7 5.0 12,5 5.6 11,
4079 7180—63P2 (7.92) * * * * * * * *
4360 7381—63131 (7.73) 9.1 15.0 7.5 14.5 5.0 11.5 4,0 6.
5462 7381—63P2 (7.73) 11.4 | 22.0 11.6 21.4 10.1 16.5 7.8 13.
4047 7381—63130 (7.73) * * * * * * * *
3342 8381-63p2 (9.17) 12.6 32,0 2.0 30.9 8.0 29.5 8.5 - 28.
3907 81D2-61P1 (8.87) 46,1 166.3 35.6 160.3 50.4 200.1 30.1 150.
3127/32 63D2, 1—63131 8.80 8.7 29.3 7.2 28.4 7.5 26,1 5.4 24,

‘68



Wavelength, transition, and

- TABLE II (CONTINUED) -

Temperature 398°K

energy of originating state _'P1 = 600 watts Pz = 500 watts P g = 400 watts P 4 = 200 watts
in electron volts A% B% A%  B% A% B% A% B%
3651/56.8 63D3 2-63P2 (8.85) 26.2 166.5 28.1 169.1 27.3 165.2 22,3 170.5
5771 63D2—61P1 (8.84) 20.4 41.6 20.9 43,4 17.9 38.3 16.8 45.8
4079 7180—63P2 (7.92) * * * * * * * *
4360 7381—63P1 (7.73) 12.8 22,2 11.4 20.3 138.2 20,0 9.7 20.3
5462 7381—63P2 (7.73) 10.0 25.5 5.1 24.3 6,8 20.4 5.6 19.2
4047 7381—63P0 (7.73) * * * * * * * *
3342 8381--63P2 (9.17 39.2 115.2 386.2 111,7 32,5 107.4 30.1 113.5
3907 81])2—61P1 (9.87) 57.2 222.1 57.2 230.0 51.8 231.1 46.8 228.9
3127/32 63D2’ 1_63P1 (8. 84) No Data Taken

"0¢



Wavelength, transition, and ‘

- TABLE II (CONTINUED) -

Temperature 42 30K

energy of originating state Pl = 600 watts Pz = 500 watts P3 = 400 watts P 4 " 200 watts

in electron volts A% B% A% B% A% B% A% B%
3651/568 63D3’ 2—63}?2 (8.85) 58.1 294,5 50.0 290.0 44.5 292.4 50.0 285.5
5771 63D2-61P1 (8.84) 37.7 70.1 34.4 68.1 31.1 65.5 30.3 65.0
4079 718 0—63P2 (7.92) Slight Enhancement at all Powers

4360 7381—63131 (7.73) 16.8 26.5 17/7 24,4 15.4 27.3 16.9 26.2
5462 7381—63P2 (7.73) 22.5 45,1 22.2 44.4 20.1 40,2 20,0 45,2
4047 7381—63130 {7.73) 16.2 20.0 14,2 17.7 13.5 16.7 11.1 15.9
3342 8381—63P2 (9.17) 33.3 156,3 36,4 190.3 35.8 180.1 25.5 180.1
3907 slnz-slpl (9. 87) 410.0 - 382, 2 400. 0 420.1
3127/32 63D2’ 1—-63P1 (8.84) 46.6 154.8 45.5 1561.5 43.6 160.0 40.3 151.8

‘18



Wavelength, transition, and

- TABLE T (CONTINUED) -

Temperature 4330K

energy of originating state P1 = 600 watts P 9 = 500 watts P g = 400 watts P s = 200 watts
in electron volts A% B% A% B A% B% A% B%
3651/56X 63D3 2-—63P2 (8.85) 69.2 211.4 58,9 195.5 68.1 218.3 60.3 180.0
5771 63D2—61P1 (8.84) 65.5 70.7 61.3 100.0 62.0 94.0
4079 7180—63P2 (7.92) * * * * * * * *
4360 7381—63191 (7.73) 35.5 44,4 34.0 42,2 29.9 39.1 83.3 96.0
5462 7351—63P2 (7.73) 40.0 68.8 39.5 64.4 28.3 60.2 162,3
. 4047 7331-63:9 0 (7.73) * * * * * * * *
3342 8331-63192 (9.17) 80.7 216.3 74.5 208.8 80,0 246.5 83.3 191.1
3907 81D2—61P1 (9. 87) 3444 313.3 333.3 375.0
3127/32 63D2’ 1—63P1 (8.84) 62,1 172.2 61,0 171.5 55.5 165.8 50.0 116.6

R4



Wavelength, transition, and

- TABLE II (CONTINUED) -

Temperature 443°K

energy of originating state P1 = 600 watts P2 = 500 watts P 3 = 400 watts P . 200 watts

in electron volts A% B% A% B% A% B% A% B%
3651/56& 63D3’2—63P2 (8.85) 86,6 196,5 77.4 152.3 1738.3 171.3
5771 63D2-61P1 (8.84) 177.4 103.0 70.0 100.0 130.1 140.4
4079 7180-—63132 (7.92) * * * * * * * *
4360 ‘7381—63P1 (7.73) 45.3 50.0 40.8 41.1 * * * *
5462 7381—63132 (7.73) 50.5 75.3 41.6 66.6 137.7 136.3
4047 7381—631)0 (7.73) * * * * * * * *
3342 8351—63132 - (9.17) 196.5 187.6 * * * *
3907 813{)2—61P1 (9. 87) 2221 256.4 * * * *
3127/32 63D2, 1—63P1 (3. 84) 192.7 158.0 120.7 115.3

ge



- TABLE II (CONTINUED) -

| Wavelength, transition, and ’ Temperature 453°K
energy of originating state P1 = 600 watts P2 = H500 watts b 3 = 400 watts P 4" 200 watts
in electron volts A% B% A% B% A% B% A% B%
3651/564 63D3 2—63P2 (8. 85) 9250. 0 259.0 220.5 9925.5
5771 63D2---61P1 (8.84) 80,1 90.9 126.5 124.7 130.7
4079 7180—63P2 (7.92) * * * * * * * *
4360 73S1—63P1 (1.73) * * % * * * * *
5462 7381—63P2 (7.73) 50.3 70.4 50,1 60.6 74.7 85.5 81,3 94, 8
4047 7381—63130 (7.73) * * * * * * * *
3342 8351—63P2 (9.17) | No Data Taken
3907 81D2—61P L (9.8D) ‘ No Data Taken
3127/32 63D2’ 1—63131 (8.84) No Data Taken

‘7e



Wavelength, transition, and

energy of originating state

- TABLE II (CONTINUED) -

Temperature 4630K

P1 = 600 watts P_ = 500 watts P_ = 400 watts P, = 200 watts

2 3 4

in electron volts A% B% A% B% A% B% A% B%
3651/56.& 63D3 2—63]?2 (8. 85) 295.1 303.3 295.4 250.7
5771 63D2—61P1 (8. 84) 155.3 125, 6» 134.2 136.6
4079 s 0—63P2 (7.92) * * * * * * * *
4360 7°s 6P, (T.73) * * * X x x X «
54.-62» 7381-63P2 (7.73) 87,7 97.1 77.0 88.8 77.1 100,0 80.0 92. 5
4047 7331—63P (7.73) * * * * * * * *
3342 8381—63132 (9.17) * * * * * * * *
3907 81Dz—61P1 (9. 87) 125.5 125.9 * N N N
3127/32 GSDZ, 1—63Pl (8. 84) 250.4 244, 3 212.4 200.0

"gg



Wavelength, transition, and

energy of originating state

- TABLE II (CONTINUED) -

Temperature 47 SOK

P1 = 600 watts = 500 watts 5 = 400 watts P4 = 200 watts
in electron volts A% B% A%, B% B% A% B%
3651/568 63D3 2—63132 (8. 85) 20.1 235, 2 240.0 204.5
5771 63D2—61P1 (8. 84) 168.9 153.5 123.3 150.0
4079 7180—63 P, (7.92) * - * * * * *
4360 7381-6313 . @ ok * * * *
5462 7381—63P1 (7.73) 114.4 122.9 114.5 120.7
a1 7351-631’0 (7.73) * * * * *
3342 8381—63P2 (9.17) 130, 2 125. 4 123.1 116.2
3907 81D2—61P , (.87 No Data Taken
3127/32 63D2’l—63P1 (8.84) 173.6 180.0 175.3 175.8

‘9¢



- TABLE II (CONTINUED) -

Wavelength, {ransition, and Temperature 4980K

.energy of originating state Pl = 600 watts P2 = 500 watts P 3 = 400 watts P Pl 200 watts

in electron volts ' A% B% A% B% A% B% A% - - B%
3651/564 63D3 2—63P2 (8. 85) 290.1 312. 3 285. 4 233.3
5771 63D2-61P1 (8. 84) 168.3 160.6 184.7 166.0
4079 7180-63132 (7.92) * * * * * * £ *
4360 7381—63P1 (7.73) * * * * * * * *
5462 7381—63P2 (7.73) 76.1 87.6 76.0 105.0 76.5 82.4 76.1 76.3
4047 7381—6313 o (173 * * * * * * * *
3342 8381—63P2 (9.17) * * * * * * * *
3907 81D2—63P1 (9.87) No Data Taken

3127/32 63D2, 1—63131 (8. 84) 245,5 225.4 218.86 212.3

‘LE
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IV. CONCLUSION

Several conclusions can be reached from this experiment, It was
assumed in the theory for the process occurring in the discharge that at low atom
densities, two mechanisms were controlling the electron density, Ambipolar
diffusion of the electrons from an elemental volume in the discharge was the
main mechanism for the loss of electrons. Electrons were assumed to be pro-
duced by metastable 63132 atom collisions, From these assumptions, an
expression for the electron density can be obtained, On making the assumption
that the plasma is neutral and that the electron density is ecual to the mercury
ion density, one, the enhancement effect observed in an r-f excited mercury
discharge for the light intensity of the atomic lines can be predicted. Two,
the cause of the enhancement can be concluded to be the metastable atom col-
lisions which produce ionization of mercury atoms. The subsequent electron-
ion recombination produces excited mercury atoms which radiate energy.
Three, the observed decay of the atomic lines can be predicted to be three
exponential functions. The rapid initial decay is produced by volume electron
recombination, the enhancement is produced by metastable 63P2 atom collisions,
and the final long decay is controlled by volume electron recombination of elec-
trons with mercury ions which is controlled by ambipolar diffusion at low temper-
atures. Four, in the experiment, the r-f power to the discharge was varied, and
the modes of decay were observed not to be a function of r~f power to the dis-
charge. As should be expected, only the light intensity of the atomic lines
was observed to vary with power. Five, from the comparison of theory and

results, certain constants could be calculated. The average value of the



ambipolar diffusion coefficient was calculated to have the value De = 991
cm2/ sec, ; the metastable 63P2 state's lifetime was calculated to have the value

Tm = 47 microseconds,

39.
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APPENDIX 1
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The above diagram is schematic of the experimental cell. The rate equation
for the removal of electrons from the afterglow of mercury is:

delp,z,t 2 3 2
= Ve +
T DY "ep,z,t) + o [B (67P)I", (1)
where e(p,z,t) is the electron density, Devze(p,z,t) represents the ambipolar

2
] represents the

diffusion loss to the walls for electrons, and crl [Hg(GSPZ)

production term for electrons associated with ionizing collisions between 63132
metastable atoms of mercury. The boundary conditions are:

e(@z,1) = ep, + 5,4 = 0 andep,z,0 = Fi,2). @)

In the boundary conditions, it is assumed that there are no electrons at the walls
of the cell, and that the electron concentration is ¥(p,z) at the end of the active

discharge. The solution of equation (1) is of the form:
el,z,t) = e (b,3,t) + ,b,2,1), (@)

and it is governed by the boundary conditions:
e(a,7,t) = e, +,5) = 0 ande(,z,t) = £ (,2) + £,(p,2) = Fp,2).

where el(o ,Z,t) is the general solution, and ez(p,z,t) is any particular solution

of equation (1), e 1(0 ,Z,t) is the solution of the partial differential equation:
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) t
el(o,z,)

ot = DeV el(o,z,t),‘ (5)

under the boundary conditions:
el(a,z,t) = el(p,ié-,t) = 0 and el(p,z,o) = fl(p,z) . (6)

9203 .Z,1t) is any solution of the partial differential equation:
= =DV e p,z,t) + 0.Np,zt), (M)
ot e 2 1 ot
s 3. .2 .2 T .
where it is assumed that N{ ,z,1) = [Hg(ﬁ Pz)] = A (p,z,t)e m is the pro-

duction term for electrons due to collisions of the 63P2 metastable state of mer-

cury. The boundary conditions are:
H
[y = + — = = E
ez(a,.a,t) ez(p,_ 2,1;) 0 ez(p,z,o) fz(p,z). (8)
In order to olve equation (5), the solution is assumed to be of the form:

e (pz,1) = X(p,z) & (). ‘ 9)

When equation (9) is substituted into equation (5) it becomes:

-%q’ - #D VX
., (10)
bv

1de _ e X1

& dt X 2

After separation of variables, two differential equations must be solved to find

the solution for e 1(p,z,t). These differential eugations are:

1d 1

id _ L (11)
& at 22

and vix + X - o, (12)
D X

e
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The solution of equation (11) can be found by straightforward integration which

yields:

B(t) = ce—% (13)
A

The coordinate equation (12) may be solved by assuming a solution of the form:
X(p,z) = R(P) O (), (14)

and upon substituting equation (14) into equation (12), it becomes:

2 2

1/d 1 d 1 < 2

w2 TRt aT e 5)
dp ?] DX dz

After this separation of variables, equation (15) becomes two differential equations:

2
.1. _d._Q — k2 = O, (16)
o 2
dz
and dzR 1 dr 1
S ro L | - ¥R=0 a7)
dp p =P D A
e
Equation (17) will be solved first and A 2 will be substituted for the term
1 2 .
T o T k Equation (17) becomes:
D A '
e
d2R 1 dR 2
2+~a~+AR=0, (18)
dp p p ¢

which is Bessel ' s differential equation of the form:

®R 1 dR
s L AR

b2 2
+ (m-n)R = 0,
dpz p do

and has pbssible solutions of the form:

Rlp) = A_J (mp) + B Y (mp).
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From the behavior of the function Yn(mp), that Yn(m,o) — ®agp—{, an must
be zero to have realistic solutions. In our equation, m and n are given by the
relationships:

n =0 andm2=A2=—l§~k2 (19)

w)
>

The most general solution to equation (17) is a sum of Bessel's functions:

0
= X
R() =, Z.A_J Bo), (20)
' 1 dzé 2
Equation (16), 5 3° K~ = 0, will now be solved. A possible solution is:
dz
o) = E &% + go K2 @1)

Equation (21) must obey the boundary conditions:

o() = (%) = 0; then:

ikH ~ikH
e(I—g-)=0=Ee 2+ ge 2
~ikH ikH
and e(—-gl):o:Ee’z +Gez,,
Upon adding the equations above, the result is: -
e(-2~)+e(§)=0=E(ez+ez)+G(er+eT),
ikH -ikH
.2 2 .
+
butcosl;—H = 2 5 ° , 8500 = (E+G)200$1—{2E

This equation will only be zero if:

kH . 7
T = (23_ 1)5 ’

. (22)
k. = 2j- 1)-IjI where j=1,2,3....,

Upon substituting equation (22) into equation (21), it becomes:
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2 1
L9412 sy 12
{( i Ri-1)
6(z) + Ee + Ge ) (23)
where j = 1,2,3,4....

. If the boundary condition 8(%{ ) = 0 is employed, equation (23) becomes:

i(2j - 1)% ~i(2j - 1)__2
0 = Ee + Ge :

43
and since e — 6 cos 9+ j sin 6, equation (21) becomes:

0 = (E + G) cos (25~1)§ + (E—G)sin(Zj—l)-;‘r,

wherej = 1,2,3,4...,
Since cos (2j - 1)% =0 and sin (2] - 1) 7-;: = 1, whenj = 1,2,3,4...., it
follows that: E = G.

The final solution of equation (21) is then:

o0 |
Tz
S] = 3 - 1)—
(z) & 12E cos (2j ~ 1) 0 (24)
The general solution of equation (1) is then: ¢
N Tz .2
= 2 3 C) A j- 1)~ e A",
el(P,z,t) n=lj=1(2E)( ) nJo(Ap) cos (2 1)H e A
The boundary condition, e 1(a,z,’c) = 0, implies that:
A
o0 o) e
2i- 1) 7z 2
=X = J (ah) cos e A (9
0 n=1j=1 Dn] o( ) €0 H 5)

and this condition necessitates that JO (an) =0,

so that the general solution becomes: 1

)
2~ 1)1z M

‘ - 26
el(p,z,t) 2 1J PIJJO(Al]p) cos 0 e (26)
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where D_. is a constant and A,z_ =
1 ) ij
Only discrete values of )»i equal to 7\13, will yield discrete values of Aij’ 80

1

2
A

ij

=D o+ kz. d A = 0
= o { i ) an JO ( lJa) = (27)

The final solution to equation (5) becomes:

o 00
=3 3 (_l_,) ot
el(p,z,t) 21451 DIJ 0( i .p) COS (LN )\_2 (28)
1
The particular solution of the partial differential equation (1) is any solution of
the eguation:
362 (p, Z, ’t) 9
—_—e =D +
5t eV ez(p,z,t) ulN(p,z,t) (29)

~2t
where N{(p,z,t) = Az(p,z) e Tm . Let N'(p,z,t) = clN(p,z,t), and equation

(17) becomes:

2 t
5 = DV “e,(p,2,1) + N (p,z1). , (30)

From the theory of partia differential equations, any solution of equation (30) is

a particular solution of equation (1), therefore a solution will be assumed of the

form:

o0

0, (,%,1) = 1§IJ§1¢ (3 0 cos Dy (31)

t
N (p,z,t) will be expanded into an infinite Bessel-Fourier series:
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° 2j -1
§ Nij(t) JO (Aijp) COS("I’““)’/TZ (32)

1 =<1
‘ =¥
N p2h =2 8 H

Substituting equations (31) and (32) into equation (30), this yields expressions

. of the form:

9e,(p,2,t) o, o - dé.. ()
__25.,.,._.._ =3 T J (A, .p) cosBDy, U (33)
t =151 o i) H ot

2 2 L2
DeV e2(p,z,t) = —De(Ai_ + k. Yy

w0 2~ 1
i T g Sohyprees Ty ™ Py G4

=

where . D (A?. + kj)
7\.2 e 1j
ij
' o0 j~1
b =33 A ei-1. .
N (p,z,t) 211 Nij(t) Jo( ijp) cos™ T2 (35)

After substitution of these terms into eguation (30) and after rearranging them,

it becomes

o0

. do. . (t)
o0

2i-1) ij
218 JoBypreosTy | 5

+ ;:E ¢ij (t) - Nij tyj= 0. (36)
ij '
One solution of equation (30) must be found and this will be the particular solu-

tion e2 (p,2,1).

Equation {36) can be reduced to the form:

do_.(t)
i L ) N () =
ij

ox
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de .. (1)
1j 1 :
dt * )\2 ¢ij © Nij ® .
ij

Now, Nij (t) must be found, Using the orthogonality properties of the Bessel and

cosine functions, an expression for Nij (t) can be obtained., If equation (32) is
Y s 2l - 1) . _

multiplied on both sides by J o (Akl p) and cos g and integrated over the

cell’s dimensions, one obtains the expression:

/

—

b [T

a
0 oo
(21-1)
] k§11§1 N (p,2,1) JO(AMP) CosT T Mz pdpdz (88)

o

o |

H
- a
= |2 0 @ @ w @i-1) @l-1)
7D Y . g - -~ %

f o f 21 F1iB 5 NI Gyp) By preos ™= mz cos Tz pdpdz

From the orthogonality properties of the functions, equation (38) reduces to
zero when k# i and 1# j. The integrals in equation (38) are evaluated below
whenk=iand1l=j:

H

5 a 2’724 a)
. 9 .
f cos® @*LH—-:D- 7z dz = % andf e [Jo(Aijp)] d = - 1 —

o

2 1 2
since  [J (M1 %ph = 32 (00 + (30

Equation (38) becomes
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H 2 _2
o o - 6 HJ (A a)N_, ()
2 ZJ ;} N (Pyz,t)y d (A, .P) cosz-‘L‘—l‘nz pdpdz = L) 3 (39)
H i=1F1 0" 1ij H 4
3
and N (t) is given by the relation:
' (_L_l)
1__11 fH f N'(o,z, t) J (A p)cos Tz P dpdz
Nij(t) = (40)
a HJ 1 (Ai_a)
4
-2t |
I N'(p,z,t) = A ©, z) e Tm then equation (40) becomes -
2 J. -
T f f ,; A%(p,z) 7,04) cq@#) nz pdpdz
N.(t) = - (41)
Y aZHJ (,.8)
1 1ij
4
Let H °
o
2 2j -1
£z d
___21_1_ o 51 1 1A ®,2) Jo(Aijp)cos q " pdpdz
A = - :
1) azHJz(A.,a)
1 ij .
4 s
and equation (41) can be simplified toz’gche form:
= ! —’i‘:n '
Nij (t) A i e (42)
Upon substituting equation (42) into equation (37), the differential equation for
cbij (t) becomes
-2t
d¢ i 1 T,
+ = = Al m
it N 5 (bij (t) Aij e 43)
i

The differential equation (43) has a general solution and a particular solution.
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The general solution is the solution to the homogenous eq%zttion when Nij () = 0.

1
The particular solution is the solution when Nij (t) :Aij e Tm, The general
solution is found from the equati_oﬁ:
do . (t)
7,1 by = 44
dt 7\2 ij( ) 0 (44)
ij

-1
t
The solution of equation (44) is ¢,j(t) =C e 7\i2j which ig similar to the solution
i

for el(p,z,t). This is the solution to the homogenous equation. The particular

solution is a solution of the equation:

t ".?i
dq?ii ( ) + 1_ (;b (-t) = A!' e Tm 45
dt AZ ij ij (42)
ij +f

and can be obtained by multiplying equation (45) by e h:iaj' Equation (45) becomes

+1
2 RN
dé. t)er’ T, " .2 46
Loy Ohy A e A )
dt ij
which has the solution: _ i A, -2t
2 ij T
= 1 A - m
P® = Ayety o 1© . (47)
2
T A2
ij
The expression for ¢ij (t) becomes '
-t A -2t
2 ij T
= LIS ! A - m
¢ij(t) (€5 Aij) e Ay 7 1 e (48)
T 2
m

or
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-t -2t
. " "
b)) = C. er’ A e Tm
ij ij ij ij
where '
I 4 1 Ai‘
c., =¢C, +A = —L
I R
Ty 52
ij

where A;j is alWays positive. The particular solution of equation (1) becomes

-t -2C
ey(p2,1) = 3 J.El Ty (n) cosBLD) Ci';‘e?»izj - A;;:e Tm (49)
The overall solution, e(p,z,t) becomes
glan
e(p,z,t) = i:__ﬁlj":ﬁl O+ c;j) e ‘Afj To(4;P) co8 @%DM (50)
—2.12. '
i} ::él;él :3 TolByP) COS@%{QWZ e T,
The solution for the electron density when simplified becomes
-t -2t
©° = 2 2 T,
e(p,z,t) = i_'_z}l jgl Dij(f),z)e Aij - 151 j”—z‘l Mij(P,z) e m’ (51)
where
" . .
Dij(P,Z) = (Dij + Cij) JO(A ijp) cos @Jﬁi) 1rz,
and

1" s
= A , (2j-1)
Mij(P.Z) Aij (P,z) JO(A ij,0) cos == Tz

If only the lowest mode of diffusion is considered the dominate mode, than the
other diffusion modes are considered uncbservable. The equation reduces to the

form:
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-1 _?i

2 T
. . =D A - M (0 m
e(p>5:t) ll(psz) € 11 11 Jz) € ' (52)

where D 1 1(p, z) is the first term of the double infinite sum, Dij (p,2); M 1 1(p,Z)
_ is also the first term of the double infinite sum, Mij(p,z); and ?\1 1 is the lowest
mode of the characteristic diffusion length. The guantities Mij (p,z) and M 11 ®,z)

are given by the expressions:

M _ A" 2 1
ij(p’ Z) - ij (p!z) Tm - A'2
ij
and M, _(p,z2) = A__({p,2z 2 _ L
117’ ) 117’ ) T )\2
m M~
11

M 1 l(p: z) is a positive constant with respect to time since Al"'l(p,z) is positive
‘and since the lifetime of the metastable state is smaller than the square of the
lowest mode characteristic diffusion length., The characteristic diffusion length

for the lowest mode is given by the expression:

2

1 2 T

— ] + —_—

?\2 De(All H ) ,
11

where Ai 1 is the lowest value of m such that,Jo (ma) = 0, and H is the length of

the cell and a is the radius of the experimental cell.
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The rate equation for the removal of excited atoms in the i~th excited state
is given by the equation:

8Ni(p, z,1)

‘ - +
DY N b2, - N2, + ae (p2h [HE ], 63)
: +
and if it is assumed that e(p,z,t) = [Hg‘ :‘ , this equation becomes:
aNi(P,Z,t) 2 2
57 = DV N(p.5.1) - aN,(p,z.1) + e ,z,1), (54)

where Ni(p,z,t) is the excited atom density, Davai(p,z,t) represents the dif-

fusion loss to the walls of the cell of an excited atom, aNi(p,z,t) is the natural
.

radiative decay term, and ce (p,z,t) represents the production of excited atoms

corresponding to electron-ion recombination, The boundary conditions are
+ 1 ‘
Ni(a,z,t) = Ni(p,w—i,t) = 0 and Ni(p,z,o) = Kip,z), (55)

It is assumed that excited atoms are destroyed through collision with the walls
of the cell, and the atom density is K(p,z) after removal of the active discharge.

If equation (54) is multiplied by eat, it becomes

. ON.(p,2,1)
2l DN, e - aN.(p,z,8) 6o + act(p,z,1) €7, (56)
ot a i i 7
and after the terms are rearranged, it becomes:
at
d(N.(p,z,t)e )
1 = DV2N p,z,1) eaJC + ozez(p,z,t) aat
ot a i
at 2 at .
Let U= Nie and X = ae {p,z,t)e and equation (56) becomes:
00021 = 1y vPyp,a,ty + Xp,2,1), (57)
ot a #

which is similar to the partial differential equation solved for the electrun density.
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The same procedure, that was used for the electron density equation, will be
applied to solve equation (57). From the theory of partial differential equations,

equation (567) has a solution of the form:

U(pQZ!t) = u]. (P:Z,t) + uz(P:Z,t):
and the solution is subject fo the boundary conditions:

+ H
U{a,z,t) = U(p,"“é,t) = 0 and U(p,z,0 = gl(p,z) + g‘2(p,z) .

ul(p,z,t) is the general solution to the homogenous equation and u, (0,z,t) is
any particular solution to the partial differential equation (57). uy (p,z,t) is

the solution of the equation:

u
01 2
— =D v
5t a % (58)
and w, (p»%,t) is subject to the houndary conditions:
- Ho - -
ul (a,z,t) o uI(O, 2:t) = 0 and ul (p,Z,t) - gl(P:Z)-
uz(p,z,t) is any solution of the equation:
u
9 2 2
— = v + X 59
5t Da’ % (59)
where _t A %
-2t m Aij
2 at _ 2 2 _
X(p2st) = ae (p,2,t0e =ofDy (p,2)e X =Dy (p,2)M, ; (p,2)0

-t

- at
+M11(p,z)e .[‘m e

and u,( p,%,1t) is subject to the boundary conditions:

+H . -
w, (@2, = w(p=50 = 0 and w (1,20 = g,(.7)
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In order to solve equation (58), the solution will be assumed to be of the form:

ul(p,z,t) = X'(p,z) @r(t)o (60)

When equation (60) is substituted into equation (58), this yields

t d @ _ 1 2 t
X i s Da v X
!
rodt ! 2
3 X 52,

After separation of the variables, two differential equations must be solved.

These equations are

t
t 2
) (61)

e_{'—‘

' 1
VX + -)5—2 = 0, (62)
D, ¢

The solution of equation (61) is by straightforward integration which gives

g

& (1) = @;e 52 (63)

The coordinate equation (62) may be solved by assuming a solution of the form:

X (prz) = R (o) O (2) | (64)

After substituting equation (64) into equation (62), equation (62) becomes

1 [d®8' 1R 1 186 12
\zZ Trd |27 TOF (69)
R \dp p D,6 o dz

After separation of variables, equation (65) reduces to the two differential



57.

equations:
2 1
1]
1,d§ tkZ% =0 (66)
0 dz
and
R 1 dR '
S +-—%B-—+-———-12—k"211=0 (67)
dp p p D_6

Equation (67) will be solved first and AZ will be substituted for the term

2 '2
i—)—l-—— 6" - k . Equation (67) becomes
a
iy dR’ |
Tty tAR =0, (68)
dp P

which is Bessel's differential equation of the form:

9 1 '
2 !

9——% LLAB 2 AR -, (69)

dp p dp

and has possible solutions of the form:

Re) = A J@mp) + B Y(mp). (70)

From the behavior of the function Y _(mp ), that Yo(mp) —~ a8 p— 0, B

O( mn

must be zero in ovder to have realistic solutions, In our equation, m and n
are given by the relations:

2
n=0 and m = A =-*~—~—2-—k . (71)

Now, the most general solution will be a sum of Bessel functions, and the

solution to equation (67) will be



0
E .

R k) = =l AmJo(Ap)

2 ! )
. de 2 .
Equation (66), — 5 + k = 0, has the solution:
6 dz
! ) !
ik z -ik z

1
© (z) = Ee + Ge

Equation (73) must satisfy the boundary conditions that e(g-)

and under these boundary conditions, equation (73) becomes

'H H
0 = Ee X% 4 gk
f

1k-H— k~I—L1

0 = Ee 2 + Ge 2

These equations are added and the result is

L 'H L H H
0 =F(e¥ 2 + %) 4 ™2
but
kX wld . o B
cos— =e¢e 2 e 2
P
2
SO

0 = (E +G)Zcosl{-§g

This equation will be zero if

f
kH _(@2-1 7
2 H 2

or

' 5
13 G Rl m where j =1,2,3,4.

H
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| (72)

(73)



Upon substituting equation (74) into (73), equation (73) becomes

127 - 1 ~1(21 -
igﬁ__.lﬂ &Llﬁ._l)m
o(z) = Ee + Ge
¥rom the boundary condition 6 5 = 0, equation (73) becomes
</ T i
91 -1y I _s/os Ly T
H2j - 1) ] i(2 - 1) 5
0 = Ee + Fe

i
and from the identity, e — = cos@ +1ising , equation (73) becomes

2i . 1y X 1y K
0 =@®+Fcos™ Ve L im-1)sin @ DY whorej = 1,2,3...
but
95 -
cos(J 1)-;[ = 0 for j = 1,2,3....,
and

sin® DT 1 gorg=1,9,3....

no

Equation (73) then becomes

© (z) = 2E cos 21 —Hl TZ

The solution of equation (57) becomes

-t
u t~°z°°§3 oF <I>'AJ5 cosgl:ize 52
16121 ~n:1j=1( ) (2 ) (AT (A p) g

1

The boundary conditions are applied and equation (7 7) becomes

-1
0 © ! 2j -1 2
ul(a, z,ty = 0 —nzzjl j2=:1 Dnj JO(Ana) cos~5; Tz e 6

59,

(75)

.3

(76)

(77)

(78)
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1
where Dnj = (2E) (®) (An). The fact that ul(a, z,t) = 0 implies that JO(A a) =0,

Let A__ be the values of A for which JO (Aa) =0, then
3

et = 23 D J(aLp) cos @D 4y _'EE 79
1@ % == o if H T (79)
| 2 1 1
where Dij is a constant, and Aij = -I-)- 5" kj . Since only discrete values of §
a

will yield discrete values of Aij then

2

=% =D + k) (50)
6 .

ij

The final solution to equation (58) becomes

-t
, %% o @1, 42
u (0,2, 1) "igljél Dij JO(AiJ. ) cos' =12 e 6ij (81)
The particular solution to the partial differential equation (57) will now be
obtained. It will be any solution of the equation:
u
972 2 ‘
5t - Dav Yt X (82)
where
-2t - 42+ L - 4t
Xp,z,t) = o Dll(p, z) e }\11 - Dll(p’ Z)Mll(p,z)e J o+ Mll(p’ z)e e

From the theory of partial differential equations if any sclution can be found
to satisfy equation (82), that solution will be a particular solution to equation

(8'), therefore a solution of Ilz(p, z,t) is assumed to be of the form:
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R R (21 ’ 1) ! ’
uz(p,z,t) ﬁi?—-lj?—'l J (A jo) cos g nzrj)ij(t) (83)

X(p, z,t) is now expanded as an infinite Bessel-Fourier series:

o0 00
X{p, 2z, t) =iE 2

(2i -1
2% Xij(t)Jo(Aijp)cos 0 1rz. | (84)

On substituting equations (83) and (84) into (82), the separate teﬁns of

equation (82) reduce to the form:

du d¢ (B
2 co o0
2 (0,5,1) = ?1?1 78 preod A L (85)
2 9 12 ® (2] = 1)
\v4 = - A A H Z
Da uz(p,z,t) Da( ij+k )i-z}‘ljgl Jo( ijp)cos q M(Pij(t) (86)
and
S 5 2 -1
X0, z,t) = X (T (A..p)eob =D 1y 87
o ) i—z')—‘ljél 13() o(qu) Ho (87)
where _}é_ =D (A_Z_ +-ks2)
a'’" ij
a..
1]

After substituting ecuation (85), (86) and (87) into equation (82) and rearranging
terms, equation (82) becomes

d¢ i

[ e} [~} s 1
(2 - 1 1 - X = 98
1§1 ng J (Aijo)cos o TZ + 5 qbij(t) Xij (t) 0 (88)

i



Equation (88) has a solution only if:

| Tt T O RKe =0 (89)
. ij
or
a1
ij _}— 1 _ ‘
dt +’o‘2 ¢) (t) - Xij(t) c.
ij

Now, Xij(t) must be found, Using the orthogonality properties of the Bessel
functions and cosine functions, Xij(t) can be found. If equation (82) is mul-
tiplied by JO(Aklp)and cos @}f;-—l)ﬂ z on both sides of the equation and integrated

over the dimensions of the cell, it yields

q
2 {
. (21 - 1)
/ f §1 121 X(P,Z,t)Jo(Aklp) cos H T 7 pdpdz (90)
H B
'é" a
o0 0 o0 o0 .
= ' (2j - 1) (21-)
f H [ lk Enfy Xij(t) T ijp) I (A gp)cos™=p—=rz cos~—=rzp dpdz

-

2 .
From the orthogonality properties of the functions, equation (90) is equal to zero

ifk#iand1#j, andif k =i and 1 =j, then Xij(t) becomes

9j -1
Xyt = J[ f ~132‘1 X(p,2,1)J (A ijp)cos(-lﬁ—-—) 1z pdpde (91)
2. 32 |
a HJl(Aij a)

4 .




2t ' & X

. ' 2 2 : 11
H X(ps Zy t) = o Dll(p, Z) e }\'11 - Dl].@ L Z)Mll(p’ Z) e

-4t

T at
Mll(P,z)e m e |,

then

- 2t (- ) - ¢
A' 22 B' Tm ' 'E—n at
Xij(t) = ije 11 ije + Cije ,
where

/ f ozD 1(p,z)J (A p) COS("'J“'"")TFZ pdpdz
1—1] =1+

_H
ij 2
2., .2
a H Jl(Ai.a)
4
H-

1~«1 ]_ ‘[H f aDll(p z)l\ﬁl(p,z)J (A p COS(-'*l—“-)ﬂ'Z pdo Az

By =
aHJl(Aija)
4

o> 2z 2j -1
A a-l
and 1231 ]Elf [ ll(,D,Z)J ( ]p)cos T pdodz

C.. =
1

Nlm

2
a HJ (4,.2)
1 i

et s g St et

63.
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The differential equation (89) becomes

' 2 1
' -2t (= += —4t
de_.(t) \ = Ty 22) =t
A N § Y = o A e n Mo oTm
T 2 b5t = o Aij e A, B.e 11+cij e "M (92)

ij
Equation (92) has a general solution an a particular solution, The general

!
solution occurs when nij(t) = 0, and the particular solution occurs when

-2t -t(% + -1—2. ) - -4t
a ' 2 ! m A ! T
() = - m
nlJ( ) e AIJ e 11 Be 11+ Cije

The general solution is the solution of the diffsrential equation:

t
do,.(t) .
Y M T
dt 52 qbij(t) 0 (93)
ij
! ok )
which is ¢, j(t) = ‘i’o e 2, and this solution is similar to the solution for
i "
1]
ul(p, z,t). The particular solution of equation (92) is
2 1
-2t - T + ) ) -4t -t
f a t 2 1 m A T 62
= - 11 +C,,e ™M + G, e
cl)ij(t) e Aij e A 11 Bij e 1§%%4
where " | " &
| Aij ” Bij s c" Ci'
= = and C,, = ——
Ai] 1 2 Bij 1 4 1 ij L 4
a +';"'"—'2 a+_5‘é""T ";\'2 . a 62 anl
ij )‘11 ij "m 711 13
(94)
Equation (92) has the solution:
2 1
-t - ot - ) -4t
) " i) 1 Tm }\2 n T
2 4 e e A2 -B. e 1L +Cye ™ (95)

f [§]
Pyl =doe Oyt Aye Ag - By
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The particular solution to the partial differential equation (57) becomes

-1
LR 2j-1 " 2
z, ) = 2 B3 (A ARl N S : ‘
L12(P Z, 1) #1551 0( iJ_P) cos - A e i (96
-2t IR -4t
a " 2 " Tm )\2 " ET
+ e A.e A ~-B. . e 11 +C,, e m
ij 11 i} ij

The final solution for the rate equation for the atom density is

u(p,z,t) = ul(p,z,t) + uz(p %, 1) (87

which has the form:

-1
) 2i-1
Lty = 22 + & % J (AL, =y 98
u(p,z,t) #1481 (Dij o)e i Jo( lJp) cos ~r iz (98)
-2t AR B
o0 t r m !
+2 3 A e M B e 1l+¢ e 'm g (A )
=1 571 1 1) 1 o 1j
j -1
cog A1) mz
H

and the erquation reduces to the form:

-t -2t -4t
2 at 2 T
z. ) =F zye 67 + e A (p,z)e AN _+C (p,z)e ™-B (p,z
—t("2- + 1 ) {(99)
T }\2
11

where

@ % ! 2j~-1
[ = % I Lt @)Yd (A,.p)cos Tz ,
Fiein) = 2 2 Dy s 8) 3 (A4P) ==
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@ 00 1" 2i -1 Q0 f1
Apz) =2 2 AT (A, 1= =3 3
1)(p, ) i=1j§=1 ij 0( IJP) cos H WZ, Bij(p’z) igljél Bion(Aij.O)

2' — l [ee] (o] 1" 2. _ l
cos 2L nz and C..(p,z) = 3 S
BT = E B CyI (Agp) cos T m
From the transformation equation U( p,z,t) = Ni(p,z,t) eat , the expression

for the excited atom density becomes

Nzt = Fueme U+ A Gpae i
» Wl el (100)
T Th _/\2
+ Cij(p,z) e "m. Bij e 11

It will be assumed {hat only the lowest mode of atom diffusion dominates, then

equatioa (100) reduces to

—t(% ¥ a) - 2t
) 5
N,z = T (pAe 11 +A (p7)e A

-4t -y v Loy
: Tn

‘ m .

G, (m2) e B, (p,2) e 1

where Fll(p,z), Cll(p’z)’ Allgo,z) and Bll(p,z) are all positive first texms
of the infinite sum of the coefficients of equation (100). These terms can be

observed to be positive for the lowest diffusion mode from equation (94) since

4
a is the largest and dominate term—-in order of magnitude a > T > —1-2— >
m
1 )“11
62

11



67.

3
The rate equation governing the removal of 6 P2 metastable atoms

from the afterglow is

dM(p, z, 1) 2 2
dt = Dmv M(paz)t) - UlM (P,Zat) (101)

where M(p, z, t) represents the metastable atom density, DmVZM(p, z,t)
represents the loss of atoms by diffusion to the walls of the cell, and OM2
{p,z,t) represents the loss of metastable atoms by collisions with similar atoms
to produce mercury ions and electrons. By neglecting diffusion, equation

(100) becomes

; 2
P2~ o M(p,2,1

(102)
which has a solution of the form:
Mo = AL ato g o~ AL Ot L
under the boundary conditions:
1
M(p,z,0) = A{p,2z) and 0 _A(p,z) = =
1 Tm

where A(p,z) is the metastable atom concentration at the end of the active

discharge.
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