
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2012

Dynamic model-based systems engineering using XML metadata Dynamic model-based systems engineering using XML metadata

interchange interchange

Dustin Scott Nottage

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Systems Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Nottage, Dustin Scott, "Dynamic model-based systems engineering using XML metadata interchange"
(2012). Masters Theses. 5147.
https://scholarsmine.mst.edu/masters_theses/5147

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5147?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Dynamic Model-Based Systems Engineering using XML Metadata Interchange

by

DUSTIN SCOTT NOTTAGE

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

2012

Approved by

Steven Corns, Advisor

Henry Pernicka

Elizabeth Cudney

iii

ABSTRACT

Designing systems presents an engineer with numerous design choices based on

multiple conditions and constraints. Base camp planning must take into account the

number of soldiers, the permanency of the base, the location of the base, etc. To help

alleviate the complexity of constructing a base camp, a model-based systems engineering

approach is used. This method creates and integrates models for all of the facilities that

can make a base camp, as well as interactions between facilities and required utilities for

each. The goal is to have a camp design, and then solve a system of equations to solve for

the total resources required for the specified camp. The issue that arises is that the models

are static and non-executable. The proposed method takes the components and values of

the model and exports them in an XML format. The information in the XML file is

parsed to extract the relevant information so it can be used in an analysis application. The

application results provide the total resources required for camp and facilities. The XML

file is then updated with the analysis results, and imported back into the model. This

essentially makes the model executable and dynamic. This approach is also successfully

applied to a satellite design process. The goal of this work is to use the information in a

virtual engineering toolkit, with the toolkit integrating multiple analysis tools, to achieve

a fully executable design architecture.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Steven Corns, for his valuable guidance,

encouragement and support throughout my graduate studies. I would also like to thank

Dr. Hank Pernicka and Dr. Elizabeth Cudney for their input and participation on my

committee. Special thanks for Dr. Pernicka for his support and motivation through my

undergraduate and graduate studies.

I would like to express my gratitude to my family for all of their love and support.

Finally, I would like to thank my daughter for keeping me entertained when times were

tough, and giving me the motivation to continue in my studies.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

SECTION

1. INTRODUCTION .. 1

2. MODEL-BASED SYSTEMS ENGINEERING .. 4

2.1. SYSTEMS MODELING LANGUAGE ... 5

2.2. MBSE INTEROPERABILITY ... 6

2.3. PREVIOUS WORK .. 7

3. BASE CAMPS ... 8

3.1. BASE CAMP PLANNING... 8

3.2. PREVIOUS WORK .. 8

3.3. DEFINING THE MATHEMATICAL MODEL .. 9

3.4. DEFINING THE MODEL .. 10

3.4.1. Base Camp Domain. ... 10

3.4.2. Base Camp Components. ... 10

3.4.3. Identification of Interactions. ... 13

3.5. LIBRARY OF FACILITY CHOICES ... 16

3.5.1. Separation Through Packages. ... 17

3.5.2. Separation with Domain-Specific Profile. .. 18

3.6. USER INTERFACE ... 20

4. APPLICATION TO SATELLITE SYSTEM... 25

4.1. BACKGROUND INFORMATION ... 25

4.2. DIAGRAM CREATION .. 26

4.2.1. Requirements. ... 26

4.2.2. Physical System. ... 28

4.2.3. Mission Modeling. .. 30

4.3. ANALYSIS ... 32

vi

5. CONCLUSIONS .. 34

APPENDICES

 A. BasecampUI.py .. 37

 B. DataParser.py .. 54

 C. Solver.py ... 59

BIBLIOGRAPHY ... 64

VITA .. 67

vii

LIST OF ILLUSTRATIONS

 Page

Figure 2.1. Foundation of OOSEM... 4

Figure 2.2. SysML Diagram Types [9]. .. 5

Figure 3.1. Base Camp Domain. ... 11

Figure 3.2. Package Diagram showing facilities and utilities. .. 11

Figure 3.3. Block Definition Diagram of dining facility. ... 13

Figure 3.4. Dining facility flows for 150 soldier camp. .. 14

Figure 3.5. Generator connections to facilities for 150 soldier camp. 15

Figure 3.6. Parametric diagram of dining facility parameters. ... 16

Figure 3.7. Facility levels separated through packages. ... 17

Figure 3.8. Linking the new stereotype and its associated properties. 18

Figure 3.9. Dining facilities with new tag definitions. ... 20

Figure 3.10. Matching IDs for referencing in the XMI file. ... 20

Figure 3.11. User interface that solves the mathematical model and displays the results. 22

Figure 3.12. Sample of the XML formatting that goes into the user interface. 23

Figure 3.13. Parsing the XML file using DOM. ... 23

Figure 3.14. Parsing the XML file using ElementTree. .. 24

Figure 3.15. Created XML file with totals. ... 24

Figure 4.1. Transition from documented requirements to model requirements. 28

Figure 4.2. Block diagram of satellite subsystems. .. 29

Figure 4.3. Block definition diagrams for (a) ADAC structural composition and (b)

Magnetometer specifications. ... 30

Figure 4.4. Use Case Diagram showing a Use Case linked with an Activity Diagram. ... 31

Figure 4.5. Behavioral analysis showing (a) Operational Modes of the satellite and (b)

Initialization Mode activities. ... 31

Figure 4.6. Theoretical user interface for satellite totals analysis. 33

1. INTRODUCTION

Model-Based Systems Engineering (MBSE) moves the document-focused

approach into a single, computer model approach which supports analysis, specification,

design, verification, and validation of complex systems [1]. Advantages of this method

are better communication between people working on different subsystems and the

ability to easily reuse designs. A. Wayne Wymore introduced the concept of model-based

systems engineering in 1993 with his book on the subject [2]. It is only recently that the

concept has been coming to fruition, especially as the computer-aided approach.

Computers are now powerful enough, and can store enough information, to be a viable

option for system design and analysis. Much of system simulations and analysis is done

using computer software now. It would be beneficial to be able to use information in a

system model in those different analysis programs. There would be no need to duplicate

efforts of inputting information. Also, the system specifications, analysis, and results

would all be connected in the same place.

Base camps are locations outside the United States that support military forces for

combat and peacetime missions. They provide all the equipment, facilities, and personnel

required to support a specified number of troops on various missions. No two base camps

will be exactly the same. Variables to consider when designing a base camp include

location, mission, duration, and troop population. Changes to any of those parameters

change the structure and requirements of a camp, so planning those facilities is an

iterative process. The population is affected as the number of facilities is increased, and

the number of facilities is affected by a population increase. Some facilities require

personnel to operate them, and those extra personnel add to the total population that

needs to be provided for. This increases the strain on the current facilities. Additional

facilities may need to be brought in, possibly increasing the number of personnel on the

base to keep it operational. Taking into account the need to provide for the support

personnel adds to the degree of difficulty in planning a base camp.

Each facility type will have different utility requirements. Knowing the total

resources required to keep a camp operational will allow the logistics to be planned and

set up to keep the camp supplied. These numbers are also hard to pin down. There are no

2

solid numbers published anywhere. There are estimations for some utilities like water

consumption, but could vary from 25 to 60 gallons of water per day per soldier depending

on the source [3]. Those are just overall estimations too. This project also requires utility

estimations for each individual facility. This gets very tricky at the larger camps with a

Post Exchange where soldiers can buy consumer electronics. Soldiers could have

televisions and videogame consoles in their housing. Each housing barrack would then

have a different power requirement depending on soldier activity within. Some utility

information is not published for security reasons. So, many of the numbers that could not

be found were estimated and verified by people familiar with operational camps.

The difficulty and number of variables to consider leads into using a Systems

Engineering design approach. Because of the large number of computer models that must

be integrated, a Model-Based Systems Engineering approach is used. In the model-based

approach, camps can be designed easily and quickly. Different variations to the camp can

be modeled and compared against each other. This allows planners to conduct trade

studies on different camp designs. Also, many of the scenarios to which a base camp is

subjected can be modeled and analyzed before construction starts. With all the

information already on a computer format, computer-aided analysis tools could be

employed. However, MBSE tools are typically just static information models. There is no

way to perform significant analysis on a model without using other software. A method is

needed that takes the static information from the model and allows an analysis tool to use

it and then update the static information based on the result.

In order to perform analysis on the camp design, model information is input to an

additional analysis tool. There are numerous methods for the transfer of information [4].

The method used in this research is through the XML Metadata Interchange (XMI). XMI

provides a standard format for exchanging information across tools using the Extensible

Markup Language (XML). It defines the representation of objects, standard mechanisms

for linking objects, object identification, and validation using XML Schemas [5]. The

analysis that must be performed is solving a system of equations for obtaining the total

resources required for the entire base camp, and the individual facilities. This is

performed using a graphical user interface developed specifically for the base camp

3

project and this research. The results are then transferred back into the modeling tool,

again using XMI.

Workshops have been conducted to get a knowledge management system in place

so information can grow and evolve instead of remain static. The

ArmyBaseCamp/JFOB.net knowledge management system contains information from all

branches of the military on base camps through the use of briefings, interviews,

documents, books, best practices, and policies [6]. With the knowledge management

system and the ability to store system models in a repository, collaboration among

different planners is now possible. One issue currently being addressed by the military is

passing on the knowledge of base camp planning. A new planner might have to go

through numerous learning experiences that senior planners have already went through.

4

2. MODEL-BASED SYSTEMS ENGINEERING

The MBSE Initiative was started in 2007 during the International Council on

Systems Engineering (INCOSE) International Workshop. As part of the INCOSE SE

Vision 2020 statement, MBSE is “part of a long-term trend toward model-centric

approaches adopted by other engineering disciplines…(and) is expected to replace the

document-centric approach…by becoming fully integrated into the definition of systems

engineering processes [7].” The MBSE environment is made up a modeling language,

tools, methods, and way to incorporate them all. There are multiple MBSE

methodologies that have been developed and adopted including IBM Telelogic Harmony-

SE, INCOSE Object-Oriented Systems Engineering Method (OOSEM), IBM Rational

Unified Process for Systems Engineering (RUP SE) for Model-Driven Systems

Development (MSDS), Vitech MBSE Methodology, and JPL State Analysis [8]. OOSEM

uses a traditional top-down systems engineering approach with the Systems Modeling

Language (SysML). The core activities for development of a system include analysis of

stakeholder needs, definition of system requirements, definition of logical architecture,

synthesis of candidate allocated architectures, optimization and evaluation of alternatives,

and validation and verification of the system [8]. OOSEM utilizes systems engineering as

a base, and builds upon it with some common object-oriented techniques. Finally, it

introduces unique techniques, (Fig. 2.1), such as causal analysis and requirements

variation analysis.

Figure 2.1. Foundation of OOSEM.

5

2.1. SYSTEMS MODELING LANGUAGE

MBSE utilizes SysML, developed by the Object Management Group (OMG) as

request to expand the Unified Modeling Language (UML) for Systems Engineers [9].

UML is prominent in software development for modeling software systems. SysML adds

to the functionality so that engineers can model physical systems as well. Version 1.0 of

the specification was made available in September 2007. The language helps with

architecting systems and specifying components of a system through a graphical

representation with a semantic base for structural composition, behavior, constraints,

allocations between the three previous representations, and requirements [9].

As part of the additional functionality, new diagrams were created and others

were modified from UML specifications (Fig. 2.2). The block definition diagram, internal

block diagram, and parametric diagram are the main focus in this research. The block

definition diagram represents the “system hierarchy and system/component

classification,” and the internal block diagram “describes the internal structure of a

system in terms of its parts, ports, and connectors.” [9] The parametric diagram is used to

describe the mathematical relationships within the system.

Figure 2.2. SysML Diagram Types [9].

6

2.2. MBSE INTEROPERABILITY

There are numerous ways of exchanging data between tools including manual

entry, file based exchange, interaction based exchange, and repository based exchange

[1]. The manual method involves typing in the data in each tool separately. A dual screen

setup would be beneficial so each tool could have a screen to display its information. This

would end up being a very time consuming approach to data exchange. The file based

exchange uses applications that can understand similar file types. This would be like

document applications being able to open different formats like .txt, .rtf, or .doc. The

interaction based exchange needs a tool’s application programming interface (API). The

API allows other tools to access and filter its data. This method has the most overhead

and difficulty in terms of setup. The last method, repository based exchange, uses a

database accessible by multiple tools.

In SysML, all components a model can be represented as metadata. XMI is a file

based exchange method based on the industry standards XML, Meta Object Facility

(MOF), and UML. It is a set of rules for transforming model information into a unique set

of tags in XML [1]. Patel, et al. [10] goes further into using the XMI format to allow for

executing SysML models. The information can also be transformed for use by Modelica,

as shown in [11]. A second model interchange standard is ISO 10303 and its specific

application protocol 233 (AP233). ISO 10303 is also known as the Standard for the

Exchange of Product Model Data, or STEP. It is an international standard used to

describe “describe product data throughout the life cycle of a product, independent of any

particular system” [1]. AP233 was created to support systems engineering, and was

developed in coordination with SysML.

XML is a flexible text format developed for the exchange of information. It is

machine-readable while also being able to be easily understood by a person [12]. It is also

not tied to any specific software application. XML is organized in a hierarchical structure

made up elements. The elements can be specified by the user under any name, or tag.

This allows the user to create and organize data in a specific manner. However, this also

means any application using the data will have to know the structure and tags of the data.

These mappings of the data can be supplied by an associated schema.

7

2.3. PREVIOUS WORK

Model-based approaches have been implemented on other projects as well,

ranging from large telescopes [13] to disaster management systems [14]. There are also

numerous challenge teams for using MBSE to solve particular problems in the areas of

Modeling and Simulation Interoperability, Space System Modeling, Telescope Modeling,

and GEOSS Modeling [15]. In [16], Haiar and co-author found that design and analysis

could be performed simultaneously by modeling objects in an abstract manner and later

develop the physical model as it was finalized. This allowed greater flexibility in design

changes. They found that model-based engineering provides a way to reduce design cycle

time. This type of approach is beneficial for base camp planning since the environment

that a base camp operates is always changing. Populations, missions, threat levels will

never be constant. So any big changes could be implemented on the model to anticipate

changes required on the camp.

8

3. BASE CAMPS

3.1. BASE CAMP PLANNING

Plans for developing Army base camps must take into account up to a 20-year

lifespan, sustainability due to limited local resources, community outreach, and changing

mission requirements. [17] The camp may have to transition from a force projection

mission into a humanitarian relief mission if a natural disaster were to occur nearby.

Plans should also try to have minimal impact on the surrounding community and

environment, or improve the existing conditions. Political, social, and weather

environments also need to be considered for planning.

Depending on the size, the base camps can be classified as a Patrol Base, Combat

Outpost (COP), Forward Operating Base (FOB), or Super FOB. Base camps must also

take into account any supporting camps that will need to be continuously supplied with

exhaustible resources and equipment. Each FOB may have multiple COPs that it has to

keep supplied, and additionally each COP may have to supply multiple patrol bases that

logistics must be pushed out to.

The base camp can have many possible facility types. Each type performs a

different function for the camp. Each type may also have multiple instances of it. For

example, there would likely be multiple housing facilities to accommodate the population

of the camp. These facilities can be grouped under four main types: (1) Living facilities

provide the basic necessities like sleeping, cleaning, and eating; (2) Support facilities are

optional and provide for the soldiers’ morale, welfare, and recreation. They could include

a chapel, activity center, fitness center, etc.; (3) Operational facilities such as motor pool,

aviation, and tactical operations center support military operations, and (4) Utility

facilities supply or process electricity, water, and waste. Each of these needs to be

modeled with an emphasis on how they interact with the other base camp facilities.

3.2. PREVIOUS WORK

The Theater Construction Management System (TCMS) is a tool used for

computer-aided “planning, design, and management of contingency construction mission

in a theater of operations and for emergency construction support during disaster relief

9

operations [18].” The tool contains a repository of facility designs, component designs,

and some base camp designs. One of the drawbacks found with the system is the lack of

life cycle analysis of the base camps.

 The Geographical Base Engineer Support Tool (GeoBEST) is a separately

developed decision support tool for base camp planning developed by the US Army

Engineer Research and Development Center (ERDC) and the Air Force. GeoBEST

determines the required assets to deploy a base camp based on a given population. The

tool can also “spatially visualize a layout” and help with spacing requirements between

facilities [19]. Both of the tools, however, lack an ability to analyze utility requirements

like electricity and water.

3.3. DEFINING THE MATHEMATICAL MODEL

During the process of defining the system, 12 parameters are identified that can be used

to define the personnel and resource requirement and waste generation of each facility.

These parameters are:

 Electricity required

 Fuel required

 Potable water required

 Bottled water required

 Storage area

 Number of personnel to operate facility

 Gray water produced

 Black water produced

 Solid waste produced

 Food stuffs required

 Footprint of facility

 Maintenance hours per day.

Each parameter is estimated with a total consumption/production per day per

solider. Then, each facility’s parameter is given an estimate of the percentage it uses of

the total amount. Many of the values are derived from field manuals like the Sand Book

[20], Red Book [21], and other reports [3]. Other values are given using engineering

10

approximations until totals resemble anticipated totals. All values, estimations and totals,

are verified for general accuracy by subject matter experts familiar with operational

camps.

It should be noted that the estimations for these parameters are not linearly

scalable. Values for the larger size camps will not always work for smaller camps. Each

value has an associated soldier population range it is accurate for. Also, some of the

smaller camp’s facilities have constants instead of percentages. For example, a dining

facility requires 2 personnel, regardless if there are 100 soldiers or 150 soldiers.

Parameter values will also differ by geographic location. A camp in the arctic or desert

will need more fuel to produce more electricity for heating or cooling. Meanwhile, a

camp in a moderate temperate zone will not require much power for heating and cooling.

3.4. DEFINING THE MODEL

3.4.1. Base Camp Domain. The base camp domain is modeled to set up what

will be affecting the system, internally and externally, and their relationships with each

other and the given system (Fig. 3.1). Internally, actors are made for soldiers, civilian

workers, and vehicles. Actors are defined as representations of person, organizations, or

external systems that participate in the system [1]. Actors are chosen as the method for

modeling them because they are able to act as consumers of utilities within the base

camp, and also are able to leave the boundaries of the system. A subsystem block is

created to represent the facilities that make up the components of the base camp. The last

block is for the environment, which includes influences outside the boundaries of the

system. The environment is made up of parts which include social, weather, political, and

other bases. It also includes an actor representation for enemy combatants.

3.4.2. Base Camp Components. To keep the initial model simple, facilities are

modeled as abstract objects where utility requirements can be changed as needed. This

makes it possible to create the base camp model without having to model every tent, or

structure, or variation of a facility. For example, the dining facility is created as just

dining facility, and not ‘Tent Type 1’ dining facility or ‘Tent Type 2’ dining facility. Its

utility requirements can be altered as required.

11

The first step is to create a package organization and hierarchy (Fig. 3.2).

Packages for each facility are made and placed into their appropriate category. Packages

for system actors and facility variables are also created. This is similar to the domain

diagram, but with greater detail for the facility components and utilities.

Figure 3.1. Base Camp Domain.

Figure 3.2. Package Diagram showing facilities and utilities.

12

 These packages include all possible components and flows that could make up a

base camp. The vehicles are modeled as actors and block because they have the ability to

enter and leave the boundaries of the base camp. When the vehicles are within the

boundaries, they will act as like a facility consuming resources and producing waste.

Creating them as blocks as well is a way to show that dynamic role.

 The next step to begin creating blocks for each of the facilities, and their ‘flows’

of the resources and wastes. Blocks are a way to represent components of the system.

Blocks can be composed of other blocks. In order to model the characteristics of a block,

a value property for each parameter is modeled as part of the block. Each value property

is associated to a value type. A value type describes the quantities [1], in terms of

dimensions and units. SysML is flexible enough that it allows the modeler to define new

units, like gal/day or gal/soldier, if needed. Properties for all of the parameters are added

to the individual blocks regardless of whether the facility consumes or produces the flow.

If the facility does not consume or generate a flow, then the value property’s default

value is set to zero. The default value for each value property is set to the percentage

defined in the mathematical model. When the value is a constant, like a facility needing

two personnel no matter what the environment variables are, the ‘Is Constant’ option is

set to true and the constant value set as the default value. Blocks are created for each

facility and the parameter flows added to each block (Fig. 3.3).

 Depending on the amount of details desired, parts within a facility can be modeled

as well. In the dining facility, the ‘Kitchen’ and ‘Eating Area’ are added. The ‘Kitchen’ is

where the food will be prepared and served, and the ‘Eating Area’ is where the soldiers

sit to eat. The flows are connected to the certain area that uses them. In this example, the

eating area only generates solid waste. The kitchen requires electricity and potable water,

and produces solid waste and gray water. The issue with adding parts is that it begins to

affect the amount of abstraction in the model. For a different dining facility, the ‘Eating

Area’ may require electricity as well for lighting. A completely different block would

need to be created to represent the facility. A method for distinguishing these potentially

different blocks is covered later.

13

Figure 3.3. Block Definition Diagram of dining facility.

3.4.3. Identification of Interactions. There are two types of interactions modeled

for this project, the physical and mathematical. They physical interactions show where

the utilities flow from and where they flow to. Two different views can be generated:

how all utilities flow in and out of a specific facility (Fig. 3.4) and which facilities are

connected to a utility facility (Fig. 3.5). In the first view, the dining facility is modeled in

a 150 soldier camp.

 It shows how potable water will come from a storage tank, through a distribution

system, a pump in this case, and ends at the dining facility. The distribution system and

the dining facility also get electricity from a generator. Finally, the solid waste produced

from eating gets taken to a burn pit for incineration. This can easily be generated for any

facility. The relevant blocks are added to the diagram. For each flow into or out of a

facility, a flowport is added. There are three types of flowports: in, out, inout. Connectors

14

display which ports are connected to each. Then, an ‘ItemFlow’ is added to the

connectors to model which type of flow and the direction.

Figure 3.4. Dining facility flows for 150 soldier camp.

 The second view is beneficial to show which utility facilities are responsible for

which facilities. In the example, Generator 1 is responsible for many of the living

facilities. Generator 2 and Generator 3 are sole sources for the more operationally import

Tactical Operations Center (C4ISR) and Force Protection, respectively. A priority could

be given to the generators for which need to be monitored more than the others. Analysis

could also be performed on how mission effectiveness is affected due to Generator 2

going offline.

The second types of interactions, the mathematical interactions, begin to show the

requirements and production of the utilities. They represent the mathematical model

developed earlier, and are made through parametric diagrams (Fig. 3.6). Each base camp

parameter has an estimated usage per person per day. These values and the soldier

population are modeled as value properties. Two constraint blocks are created for

15

calculating the total base population and each facility’s utility totals. Constraint blocks

allow for the reuse of constraints. Constraints can be any mathematical expression [1].

The variables of these mathematical expressions are the constraint parameters, shown as

input and output in figure 8.

Figure 3.5. Generator connections to facilities for 150 soldier camp.

In order to get the total utilities required by each facility, the percentages provided

by the individual facilities for the individual utilities are multiplied by the corresponding

usage estimates and total population. Parametric diagrams are created for each facility.

Also, the summation of the totals from the facilities will have their own parametric

diagrams to calculate the total utility requirements of the entire base camp. The problem

can end up being a very large system of linear equations as number of facilities used

increases. This system would need to be modeled on the same diagram to understand the

math, but the diagram would be unreadable and of no use to a human user.

16

Figure 3.6. Parametric diagram of dining facility parameters.

3.5. LIBRARY OF FACILITY CHOICES

As determined earlier, there is a range of soldier populations for each facility for

which the given requirements are accurate. Each of these different facilities is created as

separate blocks in the model, adding to a library of choices for creating a base camp. Due

to the number of possible facility types, it helps to have a way to differentiate the facility

levels so that during base camp planning each facility’s parameters does not need to be

changed individually and facilities of the same level could easily be pulled from the

library. There are two possible methods for differentiating the structures: separation

through packages and creating a domain-specific profile for the model.

17

3.5.1. Separation Through Packages. The simplest and quickest method for

separating the facility levels is by placing blocks in their respectively tiered packages, as

in figure 3.7. In this figure, the blocks are given notional values and do not represent

factual data. First, a package is created for the first tier. Then, blocks for the facilities are

created, including their value properties. When this is finished, the package can be cloned

and renamed into another tier level. The final step is altering all the value properties to

reflect the correct information per tier level.

Figure 3.7. Facility levels separated through packages.

The value properties are used to measure any quantifiable unit. In this example,

manpower is the number of personnel required to run the facility, in addition to the

soldiers they are providing for. So a tier 1 dining facility requires no personnel while tier

2 and tier 3 facilities require 3 and 15 personnel, respectively. The advantage of having

the tiers separated into packages is the packages can be exported and imported into new

basecamps that are being planned. The planner determines which tier would be used

based on the number of soldiers and imports the package from a database. The base camp

is essentially all there, and only minor alterations may need to be performed.

18

The problem with this approach is that not every facility will fit nicely into a

package. The housing facility may only require two tiers, a tent and a prefabricated

structure. The real calculation of the required utilities would come from the multiplicities

of the tents or prefab structures. There would also be redundant housing blocks in tiers

greater than level two, since any of those facility blocks would contain the same value

properties as the tier 2 block. Another problem is where a 2
nd

 tier level of a structure may

start being used when other structures have 3
rd

 tier levels already in use, based on the

number of soldiers. A 2
nd

 tier housing facility may start around 500 soldiers, where a 3
rd

tier dining facility would start around 300 soldiers.

3.5.2. Separation with Domain-Specific Profile. A method to circumvent the

problems with tiered packages is creating a domain-specific profile to apply to blocks.

Creating a new profile is a common method to use when more domain-specific

information is desired within the model, as seen in [22] and [23]. SysML is actually a

profile for UML to help extend it beyond the software domain [1]. A profile is a kind of

package of stereotypes and tag definitions. Stereotypes are specific metaclasses, and tag

definitions are properties of a stereotype [24]. A stereotype would be like a block (a

SysML stereotype that extends UML’s class), and a tag definition would be the value

property. In order to use tags, they have to be linked to a stereotype, and the stereotype

applied to a model item or items, as shown in figure 3.8. A stereotype called ‘Facility’

and two tags, ‘MinSoldiers’ and ‘MaxSoldiers’, are created in order to specify a

minimum and maximum number of soldiers that a certain level of facility can handle. In

addition, the new stereotype also allows a planner to specify that the block is a facility,

rather than a utility or structure.

Figure 3.8. Linking the new stereotype and its associated properties.

19

The next step is to create a new stereotype and link it to the ‘Class’ model item, or

blocks in this case. By linking the stereotype to the block, the block is associated with the

tag definitions. In the stereotype properties, allow the stereotype to be browsable and

shown on all diagrams. Next, create two new tag definitions and link them to the new

stereotype. Now the blocks are created in the same package. Again, the dining facility is

used for the example in figure 3.9. It should be noted that the blocks must have different

names if they are in the same package. The final step is to apply the ‘Facility’ stereotype

to the blocks that are to have the ‘Facility’ stereotype applied to them, which is all three

Dining Facility blocks in this case. When the new stereotype is applied, a new tab in the

properties displays the two tag definitions and a way to input their values. In order to get

the min and max soldiers to display on the diagram, the respective compartments are

selected and toggled on in the style options. Now the tiered facility options can be

displayed so planners are able to see the different facilities available and how many

soldiers each supports.

The plan is that a program is given design choices like soldier population,

location, longevity, and mission by an end user at the beginning of execution. It then

looks through the facilities and picks out the facilities that are required and optional based

on those initial choices. It is similar to a search engine where the user inputs keywords,

and the engine returns relevant information. The database of facilities and how they are

organized would be done by an expert in the field of base camp planning. In XMI, each

component is given a unique identification string (Fig. 3.10). The profile will make

searching through the design parameters easier. The ID that fits the design choices is then

used to search for the more detailed information associated with the SysML block. The

results and any changes from the program would be added or updated in the XMI file.

Then when the model is imported back into the modeling tool, those changes would be

reflected in the blocks and diagrams

20

Figure 3.9. Dining facilities with new tag definitions.

Figure 3.10. Matching IDs for referencing in the XMI file.

3.6. USER INTERFACE

 A user interface is developed to set up the variables for the mathematical model,

solve the mathematical model, and display the results (Fig. 3.11). The interface is

separated into five sections: overview, calculated totals, facility selection, anticipated

usage, and facility details. The overview section contains variables about the environment

21

the camp is operating under. This includes the operational soldiers, mission type, and

geographical location of the camp. The calculated totals are the results from solving the

mathematical model. The facility selection section is where facilities can be ‘turned on’

or ‘turned off’ for the model. This means if the camp does not have a facility, then it

would be unchecked. For each base camp size, a specified list is initially added with all

facilities that would typically be on a camp of specified size. For a small camp, around

100 operational soldiers, there are only about 9 facility types to choose. The larger camps

will have around the full 40 types of facilities listed. The anticipated totals section is for

displaying or modifying the anticipated usage per person per day. The facility details

section displays all the parameter values of a selected facility type. The values can be

altered and changed from a percentage to a constant. The section also displays the total

utility usage/production for the individual facility. Any changes to values that can be

modified will trigger the totals to be automatically updated. At this time, changing the

number of operational soldiers does not affect the facilities that are listed. This means

that it cannot be changed from a small base camp to a large base camp after the small

base camp is initially set. The graphical interface is made using WxPython, with Python

as the base programming language. Two additional libraries, SciPy and NumPy, are

required for solving the system of linear equations.

In order to get the user interface developed and working, a simplified XML file is

created with the facility information (Fig. 3.12). Three different versions were created for

150, 300, and 600 sized camps. The 150 size is accurate for between 100 and 200

operational soldiers. The 300 size is accurate for between 200 and 400, and the 600 size

is accurate for between 450 and 2000. They contain only the information that is required

to run the user interface and solve the mathematical model. The root, or top level

element, contains attributes of the anticipated usage values. Its child elements are all the

facilities for the given size. Within the Facility elements are the usage percentages or

constants, and the total that would be required given the total population. The total is

calculated in the solver, so they act as placeholders. Each usage element also has an

attribute to specify whether the value is a constant or not.

22

Figure 3.11. User interface that solves the mathematical model and displays the results.

 There are numerous methods of retrieving data from an XML file in Python. The

main two methods are through Simple API for XML (SAX) or the Document Object

Model (DOM). SAX requires more details to manage for the programmer, but requires

less memory and lower overhead [12]. SAX processes events, where content-related

events would be the prominent type in this case. It only looks at a small portion of the

document at a time. It has start and end events, with content represented by events

between those two. DOM requires more memory because it loads the entire document

into memory, where it is made into an object for the application. Nodes represent parts of

the document, and there are separate node types for each of the structure types of a XML

document. When a node is ‘grabbed’ by the application, the DOM provides methods to

get the child nodes which contains the content of the element [12]. The original process

of getting the data involves using DOM (Fig. 3.13). Each parameter for the facility is

made into a node, creating an array. The data from the element are then extracted, added

to a list, and made into a programming class.

23

Figure 3.12. Sample of the XML formatting that goes into the user interface.

Figure 3.13. Parsing the XML file using DOM.

 The next version of the application uses the ElementTree method (Fig. 3.14),

which is becoming popular due to it being lightweight and fast when compared to DOM

[25]. It is similar to DOM in that it stores the data as a hierarchical structure in memory,

and described as a combination “between a list and a dictionary” [26]. Each element can

24

have a tag, attribute, text, tail, and child elements. ‘Tag’ and ‘Text’ were used to get the

representative string of the data and the content, respectively. ElementTree also provides

support for writing XML files. This is used to add the calculated totals from the solver.

Each time the totals are calculated, the information is written to an XML file that would

be used to import back into the modeling tool. Figure 3.15 shows the totals added into the

XML file.

Figure 3.14. Parsing the XML file using ElementTree.

Figure 3.15. Created XML file with totals.

25

4. APPLICATION TO SATELLITE SYSTEM

University design teams typically suffer from problems unique to academia

including high personnel turnover, a limited time commitment due to classes, lack of

experience and knowledge, and keeping consistency across all subsystems. The issue,

like in base camp planning, is with knowledge management and educating inexperienced

designers so they can begin contributing. Here we will apply the methods used for base

camps to the M-SAT Design Team. The method typically used on projects of this nature

to help with this issue is a document tree that includes documentation of all designs, tests,

procedures, code, etc. Each document includes a revision section in order to track

changes. Occasionally, errors are found in the documents. Design changes may be

overlooked, or understanding of design choices may be lost with new members. The

model-based approach is a possible method to also help address the consistency and

knowledge problems, and better verify requirements with simulation analysis.

The main focus for modeling the base camp was on the blocks representing the

facilities. In the case of the satellite project, all aspects of MBSE and SysML are taken

into account and modeled. This includes requirements, structure, behaviors, parametric

analysis, and traceability. Particularly with the parametric analysis, there is some overlap

with the base camp project with using the XMI generated file in an analysis application.

4.1. BACKGROUND INFORMATION

The M-SAT Design Team from Missouri University of Science & Technology is

currently participating in the Nanosat 7 program which is a joint program between the Air

Force Research Laboratory’s Space Vehicles Directorate, the Air Force Office of

Scientific Research and the American Institute of Aeronautics and Astronautics. The

purpose is to “educate and train the future workforce through a national student satellite

design and fabrication competition and to enable small satellite R&D, payload

development, integration and flight test, Air Force related technologies.” [27] The

competition lasts two years and challenges student teams to design and fabricate a

prototype satellite. There are multiple design reviews throughout the two years where

documentation is submitted and reviewed, and presentations are given. The winning team

26

will get the chance to launch their satellite as a secondary payload on a launch vehicle

into orbit about the Earth.

The primary objective of the M-SAT team is to fly two satellites that will operate

in close proximity. One satellite will act a Resident Space Object (RSO), and the other as

an Inspector satellite. The Inspector satellite will attempt to calculate the Ballistic

Coefficient of the RSO. The secondary objective is to circumnavigate the RSO and create

a 3D model from images to ascertain the RSO’s capabilities. Much of the design is

heritage from previous competitions to reduce the design time required, helping the

satellite be completed on time. The team does not exactly follow the systems engineering

process, however, each of the design choices has been researched thoroughly through

trade studies to ensure that they still meet the requirements and mission. At the time of

this writing, many of the designs have been selected, and details about those designs

documented.

Previous members of the satellite team have laid some ground work for

establishing systems engineering on the project [28], and methods of management for

developing subsystems [29]. Stewart talks about creating the role of the Chief Engineer,

which is a lead Systems Engineer position, and using standard practices for setting up the

mission, requirements, and functions. The Chief Engineer position is tasked with

verifying that requirements are met and facilitating communication between subsystems.

In work outside the team and university, Cole, et al [30] lays out techniques using MBSE

in early formulation of spacecraft concepts, from large projects to small satellites. A long

term goal for the team would be to have a similar ‘virtual satellite’ where simulations can

be run before hardware is procured. These simulations would include orbital, thermal,

structural, and operational analysis.

4.2. DIAGRAM CREATION

4.2.1. Requirements. Since the NS-7 program started seven months prior to

starting the model, some of the information had already been developed and documented.

First, the requirements are put into the model. These are already in a worksheet format

that includes id#, requirement, source, verification and testing documentation. This is a

straight-forward transfer of information from document to model. However, it does allow

27

for review of the requirements and any modifications that were made. One area that is

missing in the document is a rationale for the requirements. In the MBSE tool, adding

rationales is incorporated in nearly all aspects of the model. The benefit of adding the

rationales is added details about where the requirement is developed from aside from the

source requirement. For example, many of the structures requirements come from

University Nanosat Program requirements provided in the User’s Guide. The rationale

can point any reader to the specific section of the User’s Guide with the requirement.

Another example is the minimum time required to operate in orbit in order to complete

the mission. There was a specific value, but no information as to where the value came

from. In the rationale, estimates are added to include time required for detumble and

status checks, mission 1, and mission 2.

In the model, it is also easy to separate and display information for anyone who

wants extra information about a particular area. A diagram is created that shows all

system level requirements of the Inspector satellite and which mission requirement they

are derived from. If someone wants more information about system requirement 2, which

relates to operational period in orbit, they can double click on that requirement to open

the S1-2 requirement diagram. (Provided the modeler creates that particular diagram and

links it). The diagram (Fig. 4.1) displays the rationale, ‘satisfied by,’ and ‘verified by’

information. Depending on the depth of the model, either the ‘satisfied by’ or ‘verified

by’ could have linked diagrams that contain even more information. The ‘verified by’ test

case could include information obtained from an analysis tool, like a power budget.

28

Figure 4.1. Transition from documented requirements to model requirements.

4.2.2. Physical System. Like the base camp, the physical system is modeled

going from a level of abstraction to details. First, a block definition diagram is created

with the different subsystems on each satellite (Fig. 4.2).

 Each subsystem block opens up to another block definition diagram containing

the hardware for the particular subsystem (Fig. 4.3a). Some are more detailed than others,

as not all designs have been finalized. However, the lack of design information was

occasionally due to a lack of documentation. Documents might contain design choices

but lack specifications about the hardware. One issue with an MBSE approach noticed

early on was determining what should be a block and what should be a part. For example,

in the attitude determination and control subsystem, there are three magnetic torque coils

used for control. Typically they are thought of as all being the same and would be

29

modeled using one block with a multiplicity of three. However, each torque coil has

different dimensions, leading to different mass and power properties. So, each torque coil

must be modeled as its own block. Each block can now be given property values (Fig.

4.3b) about its weight, power, dimensions, etc. Like in the base camp model, this is

information that can later be used in an analysis tool.

Figure 4.2. Block diagram of satellite subsystems.

30

Figure 4.3. Block definition diagrams for (a) ADAC structural composition and (b)

Magnetometer specifications.

4.2.3. Mission Modeling. A use case diagram is created and functions added that

each satellite will have to perform are added. There is some overlap between the two

satellites, such as ‘Provide Power’ and ‘Determine Position.’ The majority of capabilities

belong to the Inspector satellite because the RSO will just be a beacon that transmits its

position. As the depth of the model increases, activities and sequence diagrams will be

linked to these capabilities, and satisfied by physical system components (Fig. 4.4).

Associating physical components is beneficial to knowing which components will be

running while performing a specified task.

 The states, or operational modes, of the system are based on the previous

competition’s operational modes. They are then modified, deleted, or added to as

required to fulfill the new mission. The first step was to create a state diagram that

included all states, and why, or when, the system will move from one state to another

(Fig. 4.5a). Each state is then linked to an activity diagram that walks through the general

activities performed during that state (Fig. 4.5b). Eventually, many of these activities will

link to diagrams that contain more activities required to perform that higher level activity.

This is already a defined process within systems engineering.

31

Figure 4.4. Use Case Diagram showing a Use Case linked with an Activity Diagram.

Figure 4.5. Behavioral analysis showing (a) Operational Modes of the satellite and (b)

Initialization Mode activities.

32

The benefits of using a model in this project is providing an easier method to walk

through the lifecycle of the system. Each of the high level activities terminates at the start

of another state, and by double clicking the termination point the next state’s activity

diagram opens. A person looking through the model would be able to navigate through

the functional flow like they would navigate through a website. Another benefit is that

processes are beginning to be determined for each state. Now the state will have a set of

activities associated to it, and activities associated to hardware. So, a list of hardware

running during each state could be generated for analysis. Depending on the work that is

put into the details of the model, this could help produce either a rough calculation for

power consumption or an accurate model of power consumption.

4.3. ANALYSIS

Some of the common analysis performed on a satellite early on is the power

budget, mass budget, and data budget. These are performed to know how much power is

being consumed, the mass of the satellite, and memory that needs to be stored. These all

have constraints, or requirements from the customer in the case of mass.

The same process used for the army base camp can be applied to the satellite

project. A domain-specific profile for satellites may also need to be created. The model

could be exported out in the XML format, and the hardware and state information

extracted. The information could then be used in a totals analysis tool based off the base

camp one (Fig. 4.6).

 The interface would again be separated in sections for mission mode, totals,

component selection, and component details. The mission mode could contain the

selection of modes. When a state is selected, components that are active during the state

would be automatically selected. Totals for that state would then be calculated and

displayed. There would also be the option to turn on/off components. This analysis tool

would work well for power mostly because mass will not change due to a component

being active or inactive. Additional types of analysis tools could be developed as well for

each type of analysis that needs to be performed. The results could then be imported back

into the model as those test cases that verify requirements.

33

Figure 4.6. Theoretical user interface for satellite totals analysis.

34

5. CONCLUSIONS

The results of this work highlight methods to model and examine the

interrelationships between elements of an operational base camp and the coupling that

occurs between these elements. The diagrams show the sources and sinks of utilities. To

manage the inherent complexity in these systems, much of the effort must be put forth

early to develop appropriate requirements that will produce a sustainable and adaptable

system. Creating a domain-specific profile for base camps appears to be beneficial

because it allows for more customization. It would be essential for creating a library of

design choices. Parameters could be added for mission type and geographical location, in

addition to the minimum and maximum soldiers that facility supports. With those

properties added, a program could be given the location of the base, the mission to be

performed, and the anticipated number of soldiers needed for the mission. The program

would then run through all of the facility choices and grab the ones that match the search

criteria in a method that resembles searching a database.

One of the issues that arose with creating the model was making changes to the

mathematical model and variables. For example, if there wasn’t a gray water variable that

was initially considered and it needed to be included, then it would have to be added

individually to all of the facilities. There is no way to add the variable to one super class

and have it added to all other facilities. It ends up becoming a very time consuming

process to make changes that affect all facility types. One option around this issue is to

the make a facility block and then all of the different facilities would be “parts” to that

block. However, in this method, the values for the value properties would be the same for

all facilities. So, all facilities would end up acting the same and requiring the same

amount of utilities. The other option is using the profile created for differentiating the

levels of facility types. Tag definitions representing the variables like electricity and

water would be added to the facility stereotype. If a tag definition is added or removed

from the stereotype, then it would change that for the facilities all at once. A possible

issue with this approach would be a loss of functionality. Since the variables are no

longer defined as value properties and value types, then there may be no way of making

parametric diagrams with them. The mathematical relationships would no longer be able

35

to be modeled. However, because the mathematical relationships are set up independently

in the analysis tool, this may be an acceptable loss of functionality.

The purpose for creating the satellite model is to help with system understanding

among team members, make a central repository of information about the system that can

be easily located, and help create presentation material for review presentations. As the

model is generated, information not previously known or understood is learned. This may

not be the same for anyone exploring the model. It was the act of creating the model that

was most beneficial to broader system understanding. One observation was that there was

always detailed information, but lacking with respect to some of the high level

information. This may be attributed to engineers getting into the details too fast, and

forgetting to think about the ‘why’ in the design process. With a diagram hierarchy like in

MBSE, it guides a designer to create that high level information first to start the process

of getting the details. However, this is not mandatory. The designer could just as easily

skip over the high level information.

During the modeling process, the modes of operations and their respective

activities were presented to the team. It allowed for an open discussion among all

members of the team, and resulted in activity flow changes. A similar approach could be

done for all aspects of the satellite: physical, behavior, requirements, and parametric

models. This could help inform all members about other subsystems that affect their

specific subsystems, but don’t know many details about. Presenting some of the high

level information would also remind the team about the rationale of what they are

designing. A problem discovered when creating the model was to organize it in a

document-tree structure. This is counterproductive in some respects. The idea is to start

off at one top level diagram, and be able to get any and all information desired by

clicking through the linked diagrams. When sections become separated too much, some

duplication is performed and information is again lost in a large folder hierarchy.

The eventual goal for the base camp is to be able to import the model into a

virtual engineering environment for detailed design and analysis. Facility models would

be selected and placed in a 3-D environment that represents the actual terrain of a

selected site. This environment will enable detailed analysis of the different utility

systems for a given configuration. Third party software would be able to be integrated

36

into the virtual engineering tool for power grid analysis, water flow analysis, etc. The

planner would end up with a site layout and detailed utility requirements. Scenarios could

be developed where system failures occur so the planner could document how a

configuration will continue to perform. The library repository style of MBSE means fully

developed base camps could be reused. A planner could start with a previously designed

camp, make some alterations, and run it through the analysis to check if it meets the

requirements for the new mission. Currently operating camps could also be analyzed if

any design changes are required due to a proposed change in mission or soldier

population. The same approach could also be taken with the satellite model. The virtual

engineering tool could utilize tools for structural, orbital, or thermal analysis.

37

APPENDIX A

CODE – BaseCampUI.py

38

BaseCampUI.py

import wx

from DataParser import GetData, GetEnvData

from Solver import Solver

Facility =

Env =

FacilityNames =

FacVariables = ['Power:','Fuel:','Potable Water:','Bottled Water:',

 'Storage Area:','Personnel:','Gray Water:','Black Water:',

 'Solid Waste:','Food:','Area:','Maintenance:','TotalPopulation:']

TotalVariables = ['PowConsumed (kw):','PowGen (kw):','Fuel (gal):','Potable Water (gal):','Bottled Water (gal):',

 'Storage Area (SqFt):','Personnel:','Gray Water (gal):','Black Water (gal):',

 'Solid Waste (lbm):','Food (lbm):','Area (SqFt):','Maintenance (hrs):', 'Total Population:']

EstVariables = ['PowAvail/Person/Day (watts):','PowUsage/Person/Day (watts):','FuelUsage/Person/Day (gal):','PotWatUsage/Person/Day (gal)',

 'BotWatUsage/Person/Day (gal):','Avg Storage (sqft)','GrayWatGen/Person/Day (gal)','BlkWatGen/Person/Day (gal)',

 'SolidWaste/Person/Day (lbm):','FoodConsumed/Person/Day (lbm)','AvgFacSqft (sqft)','AvgMaintenace (hrs)']

VariableUnits = ['watts','gal','gal','gal','SqFt','persons','gal','gal','lbm','lbm','SqFt','Hrs']

MissionTypes = ['Reconnaisance','Humanitarian Aid','Peace Keeping','Offensive Operations','Show of Force']

GeoTypes = ['Southeast Asia','South Africa','Mediterranean','Western Europe','Arctic','City']

current_selection = 0

#---|

Base Environment Values |

#---|

class OverviewPanel(wx.Panel):

 def __init__(self, parent, id):

 wx.Panel.__init__(self, parent, id, style=wx.BORDER_DOUBLE)

 st1 = wx.StaticText(self, -1, 'Operational Soldiers:')

 st2 = wx.StaticText(self, -1, 'Mission Type:')

 st3 = wx.StaticText(self, -1, 'Geo Location:')

 self.SoldPop = wx.TextCtrl(self, -1, value=str(Env.SoldierPopulation), size=(50,-1), style = wx.TE_PROCESS_ENTER)

 self.SoldPop.Bind(wx.EVT_TEXT_ENTER, self.SetSoldPop)

 tc2 = wx.ComboBox(self,-1, size=(120,-1), choices=MissionTypes, style=wx.CB_READONLY)

 tc3 = wx.ComboBox(self, -1, size=(100,-1), choices=GeoTypes, style=wx.CB_READONLY)

 #btn = wx.Button(self, -1, 'Update', size=(100,-1))

 #btn.Bind(wx.EVT_BUTTON, self.onUpdateBtn)

 btn2 = wx.Button(self, -1, 'Add Facility', size=(100,-1))

 btn2.Bind(wx.EVT_BUTTON, self.onAddFacility)

 vbox = wx.BoxSizer(wx.VERTICAL)

 hbox = wx.BoxSizer(wx.HORIZONTAL)

39

 hbox.Add(st1, 0, wx.RIGHT, 5)

 hbox.Add(self.SoldPop, 0, wx.RIGHT, 20)

 hbox.Add(st2, 0, wx.RIGHT, 5)

 hbox.Add(tc2, 1, wx.RIGHT, 20)

 hbox.Add(st3, 0, wx.RIGHT, 5)

 hbox.Add(tc3, 1, wx.RIGHT, 20)

 #hbox.Add(btn, 0, wx.RIGHT, 20)

 hbox.Add(btn2,0, wx.RIGHT, 20)

 vbox.Add(hbox, 0, wx.ALL, 8)

 self.SetSizer(vbox)

 def SetSoldPop(self,event):

 item = event.GetEventObject()

 Env.SoldierPopulation = float(item.GetValue())

 self.GetParent().GetParent().Panel2.UpdateTotals()

 def onUpdateBtn(self,event):

 self.GetParent().GetParent().Panel2.UpdateTotals()

 def onAddFacility(self,event):

 pass

#---|

List of Available Facilities |

#---|

class FacilityListPanel(wx.Panel):

 def __init__(self, parent, id):

 wx.Panel.__init__(self, parent, id)

 vbox = wx.BoxSizer(wx.VERTICAL)

 self.FacCLB = wx.CheckListBox(self, -1, size=(200,380), choices = FacilityNames, style = wx.LB_NEEDED_SB)

 self.FacCLB.Bind(wx.EVT_CHECKLISTBOX, self.onFacilitySelection)

 hbox = wx.BoxSizer(wx.HORIZONTAL)

 btn1 = wx.Button(self, -1, 'Select All')

 btn1.Bind(wx.EVT_BUTTON, self.onSelectAll)

 btn2 = wx.Button(self, -1, 'Deselect All')

 btn2.Bind(wx.EVT_BUTTON, self.onDeselectAll)

 hbox.Add(btn1, 0, wx.TOP, 0)

 hbox.Add(btn2, 0, wx.TOP, 0)

 vbox.Add(self.FacCLB, 0, wx.ALL, 5)

 vbox.Add(hbox, 0, wx.TOP, 2)

 self.SetSizer(vbox)

 def onFacilitySelection(self,event):

40

 index = event.GetSelection()

 if self.FacCLB.IsChecked(index):

 Facility[index].Switch = 1

 self.UpdateTotals()

 else:

 Facility[index].Switch = 0

 self.UpdateTotals()

 def onSelectAll(self,event):

 for itemnum in range(len(Facility)):

 if self.FacCLB.IsChecked(itemnum):

 pass

 else:

 self.FacCLB.Check(itemnum, True)

 Facility[itemnum].Switch = 1

 self.UpdateTotals()

 def onDeselectAll(self,event):

 for itemnum in range(len(FacilityNames)):

 if self.FacCLB.IsChecked(itemnum):

 self.FacCLB.Check(itemnum, False)

 Facility[itemnum].Switch = 0

 self.UpdateTotals()

 def UpdateTotals(self):

 Solver(Facility, Env)

 self.GetParent().GetParent().GetParent().Panel5.PowTotal.SetLabel(str(Env.TotalPower))

 self.GetParent().GetParent().GetParent().Panel5.PowGen.SetLabel(str(Env.PowerGen))

 self.GetParent().GetParent().GetParent().Panel5.FuelTotal.SetLabel(str(Env.TotalFuel))

 self.GetParent().GetParent().GetParent().Panel5.PotWatTotal.SetLabel(str(Env.TotalPotWat))

 self.GetParent().GetParent().GetParent().Panel5.BotWatTotal.SetLabel(str(Env.TotalBotWat))

 self.GetParent().GetParent().GetParent().Panel5.StorageTotal.SetLabel(str(Env.TotalStorage))

 self.GetParent().GetParent().GetParent().Panel5.PersonnelTotal.SetLabel(str(Env.TotalPersonnel))

 self.GetParent().GetParent().GetParent().Panel5.GrayWatTotal.SetLabel(str(Env.TotalGrayWat))

 self.GetParent().GetParent().GetParent().Panel5.BlkWatTotal.SetLabel(str(Env.TotalBlkWat))

 self.GetParent().GetParent().GetParent().Panel5.SWasteTotal.SetLabel(str(Env.TotalSWaste))

 self.GetParent().GetParent().GetParent().Panel5.FoodTotal.SetLabel(str(Env.TotalFood))

 self.GetParent().GetParent().GetParent().Panel5.AreaTotal.SetLabel(str(Env.TotalArea))

 self.GetParent().GetParent().GetParent().Panel5.MtnTotal.SetLabel(str(Env.TotalMaintenance))

 self.GetParent().GetParent().GetParent().Panel5.PopTotal.SetLabel(str(Env.TotalPopulation))

#---|

Base Camp Totals Inputs |

#---|

class EstTotalsPanel(wx.Panel):

 def __init__(self, parent, id):

 wx.Panel.__init__(self,parent,id, style=wx.BORDER_DOUBLE)

41

 vbox = wx.BoxSizer(wx.VERTICAL)

 title = wx.StaticText(self, -1, 'Anticipated Totals:')

 self.SoldPowAvail = wx.TextCtrl(self, -1, str(Env.PowAvail), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[0])

 self.SoldPowUsage = wx.TextCtrl(self, -1, str(Env.PowUsage), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[1])

 self.SoldFuel = wx.TextCtrl(self, -1, str(Env.FuelUsage), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[2])

 self.SoldPotWater = wx.TextCtrl(self, -1, str(Env.PotWatUsage), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[3])

 self.SoldBotWater = wx.TextCtrl(self, -1, str(Env.BotWatUsage), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[4])

 self.AStorageArea = wx.TextCtrl(self, -1, str(Env.AvgStorage), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[5])

 self.SoldGrayWater = wx.TextCtrl(self, -1, str(Env.GrayWatGen), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[6])

 self.SoldBlkWater = wx.TextCtrl(self, -1, str(Env.BlkWatGen), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[7])

 self.SoldSWaste = wx.TextCtrl(self, -1, str(Env.SWasteGen), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[8])

 self.SoldFood = wx.TextCtrl(self, -1, str(Env.FoodConsumed), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[9])

 self.SoldFootprint = wx.TextCtrl(self, -1, str(Env.AvgFacSqFt), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[10])

 self.SoldMaint = wx.TextCtrl(self, -1, str(Env.AvgMaintenance), size=(50,-1), style = wx.TE_PROCESS_ENTER, name = EstVariables[11])

 inputs = [self.SoldPowAvail, self.SoldPowUsage, self.SoldFuel, self.SoldPotWater, self.SoldBotWater,

 self.AStorageArea, self.SoldGrayWater, self.SoldBlkWater, self.SoldSWaste,

 self.SoldFood, self.SoldFootprint, self.SoldMaint]

 grid = wx.FlexGridSizer(13, 2, 8, 5)

 for item in inputs:

 item.Bind(wx.EVT_TEXT_ENTER, self.UpdateEstValues)

 grid.Add(wx.StaticText(self, -1, EstVariables[inputs.index(item)]),0)

 grid.Add(item, 0)

 vbox.Add(title, 0, wx.BOTTOM, 5)

 vbox.Add(grid, 0, wx.ALL, 10)

 self.SetSizer(vbox)

 def UpdateEstValues(self,event):

 item = event.GetEventObject()

 varName = item.GetName()

 if varName == EstVariables[0]:

 Env.PowAvail = float(item.GetValue())

 elif varName == EstVariables[1]:

 Env.PowUsage = float(item.GetValue())

 elif varName == EstVariables[2]:

 Env.FuelUsage = float(item.GetValue())

 elif varName == EstVariables[3]:

 Env.PotWatUsage = float(item.GetValue())

 elif varName == EstVariables[4]:

 Env.BotWatUsage = float(item.GetValue())

 elif varName == EstVariables[5]:

 Env.AvgStorage = float(item.GetValue())

 elif varName == EstVariables[6]:

 Env.GrayWatGen = float(item.GetValue())

42

 elif varName == EstVariables[7]:

 Env.BlkWatGen = float(item.GetValue())

 elif varName == EstVariables[8]:

 Env.SWasteGen = float(item.GetValue())

 elif varName == EstVariables[9]:

 Env.FoodConsumed = float(item.GetValue())

 elif varName == EstVariables[10]:

 Env.AvgFacSqFt = float(item.GetValue())

 elif varName == EstVariables[11]:

 Env.AvgMaintenance = float(item.GetValue())

 else:

 pass

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

#---|

Facility Selected for Changes |

#---|

class SelectionPanel(wx.Panel):

 def __init__(self,parent,id):

 wx.Panel.__init__(self,parent,id, style=wx.BORDER_DOUBLE)

 self.current_selection = 3000

 hbox = wx.BoxSizer(wx.HORIZONTAL)

 vbox = wx.BoxSizer(wx.VERTICAL)

 hbox_i = wx.BoxSizer(wx.HORIZONTAL)

 title = wx.BoxSizer(wx.HORIZONTAL)

 self.FacCB = wx.ComboBox(self, -1, value="Facility", size=(170,-1), choices=FacilityNames, style=wx.CB_READONLY)

 self.FacCB.Bind(wx.EVT_COMBOBOX, self.onSelectFacility)

 title.Add(self.FacCB)

 #Text Input for displaying/changing percentage values

 self.PowUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="PowerUse")

 self.FuelUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="FuelUse")

 self.PWUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="PotWaterUse")

 self.BWUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="BotWaterUse")

 self.SAUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="StorageUse")

 self.PerUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="PersonnelUse")

 self.GWWUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="GrayWaterUse")

 self.BWWUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="BlkWaterUse")

 self.SWUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="SolidWasteUse")

 self.FoodUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="FoodUse")

 self.AreaUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="FootprintUse")

 self.MtnUsage = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="MaintenanceUse")

43

 self.inputs1 = [self.PowUsage, self.FuelUsage, self.PWUsage, self.BWUsage, self.SAUsage, self.PerUsage,

 self.GWWUsage, self.BWWUsage, self.SWUsage, self.FoodUsage, self.AreaUsage, self.MtnUsage]

 grid = wx.FlexGridSizer(13, 3, 8, 5)

 for item in self.inputs1:

 item.Bind(wx.EVT_TEXT_ENTER, self.UpdatePercValue)

 grid.Add(wx.StaticText(self, -1, FacVariables[self.inputs1.index(item)]))

 grid.Add(item)

 grid.Add(wx.StaticText(self, -1, '%'), wx.ALIGN_LEFT)

 #Constants Checkboxes

 self.PowConst = wx.CheckBox(self, -1, 'Constant', name="PowerUse")

 self.FuelConst = wx.CheckBox(self, -1, 'Constant', name="FuelUse")

 self.PWConst = wx.CheckBox(self, -1, 'Constant', name="PotWatUse")

 self.BWConst = wx.CheckBox(self, -1, 'Constant', name="BotWatUse")

 self.SAConst = wx.CheckBox(self, -1, 'Constant', name="StorageUse")

 self.PerConst = wx.CheckBox(self, -1, 'Constant', name="PersonnelUse")

 self.GWWConst = wx.CheckBox(self, -1, 'Constant', name="GrayWaterUse")

 self.BWWConst = wx.CheckBox(self, -1, 'Constant', name="BlkWaterUse")

 self.SWConst = wx.CheckBox(self, -1, 'Constant', name="SolidWasteUse")

 self.FoodConst = wx.CheckBox(self, -1, 'Constant', name='FoodUse')

 self.AreaConst = wx.CheckBox(self, -1, 'Constant', name="FootprintUse")

 self.MtnConst = wx.CheckBox(self, -1, 'Constant', name="MaintenanceUse")

 self.inputs2 = [self.PowConst, self.FuelConst, self.PWConst, self.BWConst, self.SAConst, self.PerConst,

 self.GWWConst, self.BWWConst, self.SWConst, self.FoodConst, self.AreaConst, self.MtnConst]

 for item in self.inputs2:

 item.Bind(wx.EVT_CHECKBOX, self.OnSetConstant)

 #Text inputs for displaying/changing constants values

 self.PowConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="PowerUse")

 self.FuelConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="FuelUse")

 self.PWConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="PotWatUse")

 self.BWConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="BotWatUse")

 self.SAConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="StorageUse")

 self.PerConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="PersonnelUse")

 self.GWWConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="GrayWaterUse")

 self.BWWConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="BlkWaterUse")

 self.SWConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="SolidWasteUse")

 self.FoodConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="FoodUse")

 self.AreaConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="FootprintUse")

 self.MtnConstVal = wx.TextCtrl(self, -1, '0.0', size=(50,-1), style = wx.TE_PROCESS_ENTER, name="MaintenanceUse")

 self.inputs3 = [self.PowConstVal, self.FuelConstVal, self.PWConstVal, self.BWConstVal, self.SAConstVal, self.PerConstVal,

 self.GWWConstVal, self.BWWConstVal, self.SWConstVal, self.FoodConstVal, self.AreaConstVal, self.MtnConstVal]

 grid1 = wx.FlexGridSizer(13,3,8,5)

 for item in self.inputs3:

 item.Bind(wx.EVT_TEXT_ENTER, self.UpdateConstValue)

44

 grid1.Add(self.inputs2[self.inputs3.index(item)])

 item.Disable()

 grid1.Add(item)

 grid1.Add(wx.StaticText(self, -1, VariableUnits[self.inputs3.index(item)]))

 hbox_i.Add(grid, 0)

 hbox_i.Add(grid1, 0, wx.LEFT, 20)

 vbox.Add(title,0,wx.ALL,10)

 vbox.Add(hbox_i, 0, wx.ALL, 10)

 #Displaying individual facility totals

 title2 = wx.StaticText(self, -1, 'Totals: ')

 vbox2 = wx.BoxSizer(wx.VERTICAL)

 self.PowTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.FuelTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.PotWatTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.BotWatTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.StorageTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.PersonnelTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.GrayWatTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.BlkWatTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.SWasteTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.FoodTotal = wx.StaticText(self,-1,'0', style=wx.BORDER_DOUBLE)

 self.AreaTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 self.MtnTotal = wx.StaticText(self, -1, '0', style=wx.BORDER_DOUBLE)

 total_items = [self.PowTotal, self.FuelTotal, self.PotWatTotal, self.BotWatTotal, self.StorageTotal,

 self.PersonnelTotal, self.GrayWatTotal, self.BlkWatTotal, self.SWasteTotal, self.FoodTotal,

 self.AreaTotal, self.MtnTotal]

 grid2 = wx.GridSizer(13,1,10,0)

 for item in total_items:

 grid2.Add(item)

 vbox2.Add(title2, 0, wx.TOP, 20)

 vbox2.Add(grid2, 0, wx.TOP | wx.LEFT, 13)

 hbox.Add(vbox, 0)

 hbox.Add(vbox2, 0, wx.RIGHT, 35)

 self.SetSizer(hbox)

 def onSelectFacility(self,event):

 item = event.GetSelection()

 #item = item - 1

 self.current_selection = item

 #Change default values

 #Set true for constants

 count = 0

 if Facility[self.current_selection].constants[count] == 1:

45

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].PowerUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].PowerUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].FuelUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].FuelUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].PotWaterUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].PotWaterUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].BotWaterUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].BotWaterUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].StorageUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].StorageUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

46

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].PersonnelUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].PersonnelUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].GrayWaterUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].GrayWaterUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].BlkWaterUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].BlkWaterUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].SolidWasteUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].SolidWasteUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].FoodUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].FoodUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].FootprintUse))

47

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].FootprintUse))

 count = count + 1

 if Facility[self.current_selection].constants[count] == 1:

 self.inputs1[count].Disable()

 self.inputs2[count].SetValue(True)

 self.inputs3[count].Enable()

 self.inputs3[count].ChangeValue(str(Facility[self.current_selection].MaintenanceUse))

 else:

 self.inputs2[count].SetValue(False)

 self.inputs1[count].ChangeValue(str(Facility[self.current_selection].MaintenanceUse))

 count = count + 1

 #Display calculated total values for facility

 self.PowTotal.SetLabel(str(Facility[item].PowerReq))

 self.FuelTotal.SetLabel(str(Facility[item].FuelReq))

 self.PotWatTotal.SetLabel(str(Facility[item].PotWaterReq))

 self.BotWatTotal.SetLabel(str(Facility[item].BotWaterReq))

 self.StorageTotal.SetLabel(str(Facility[item].StorageReq))

 self.PersonnelTotal.SetLabel(str(Facility[item].PersonnelReq))

 self.GrayWatTotal.SetLabel(str(Facility[item].GrayWaterReq))

 self.BlkWatTotal.SetLabel(str(Facility[item].BlkWaterReq))

 self.SWasteTotal.SetLabel(str(Facility[item].SolidWasteReq))

 self.FoodTotal.SetLabel(str(Facility[item].FoodReq))

 self.AreaTotal.SetLabel(str(Facility[item].FootprintReq))

 self.MtnTotal.SetLabel(str(Facility[item].MaintenanceReq))

 def UpdatePercValue(self,event):

 if self.current_selection == 3000:

 dlg = wx.MessageDialog(self, "No Facility has been selected. Please select a facility first.",'Error', wx.OK | wx.ICON_ERROR)

 dlg.ShowModal()

 dlg.Destroy()

 else:

 item = event.GetEventObject()

 varName = item.GetName()

 if varName == 'PowerUse':

 Facility[self.current_selection].PowerUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.PowTotal.SetLabel(str(Facility[self.current_selection].PowerReq))

 elif varName == 'FuelUse':

 Facility[self.current_selection].FuelUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.FuelTotal.SetLabel(str(Facility[self.current_selection].FuelReq))

 elif varName == 'PotWaterUse':

 Facility[self.current_selection].PotWaterUse = float(item.GetValue())

48

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.PotWatTotal.SetLabel(str(Facility[self.current_selection].PotWaterReq))

 elif varName == 'BotWaterUse':

 Facility[self.current_selection].BotWaterUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.BotWatTotal.SetLabel(str(Facility[self.current_selection].BotWaterReq))

 elif varName == 'StorageUse':

 Facility[self.current_selection].StorageUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.StorageTotal.SetLabel(str(Facility[self.current_selection].StorageReq))

 elif varName == 'PersonnelUse':

 Facility[self.current_selection].PersonnelUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.PersonnelTotal.SetLabel(str(Facility[self.current_selection].PersonnelReq))

 elif varName == 'GrayWaterUse':

 Facility[self.current_selection].GrayWaterUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.GrayWatTotal.SetLabel(str(Facility[self.current_selection].GrayWaterReq))

 elif varName == 'BlkWaterUse':

 Facility[self.current_selection].BlkWaterUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.BlkWatTotal.SetLabel(str(Facility[self.current_selection].BlkWaterReq))

 elif varName == 'SolidWasteUse':

 Facility[self.current_selection].SolidWasteUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.SWasteTotal.SetLabel(str(Facility[self.current_selection].SolidWasteReq))

 elif varName == 'FoodUse':

 Facility[self.current_selection].FoodUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.FoodTotal.SetLabel(str(Facility[self.current_selection].FoodReq))

 elif varName == 'FootprintUse':

 Facility[self.current_selection].FootprintUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.AreaTotal.SetLabel(str(Facility[self.current_selection].FootprintReq))

 elif varName == 'MaintenanceUse':

 Facility[self.current_selection].MaintenanceUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.MtnTotal.SetLabel(str(Facility[self.current_selection].MaintenanceReq))

 else:

 pass

 def UpdateConstValue(self,event):

 if self.current_selection == 3000:

 dlg = wx.MessageDialog(self, "No Facility has been selected. Please select a facility first.",'Error', wx.OK | wx.ICON_ERROR)

 dlg.ShowModal()

 dlg.Destroy()

 else:

49

 item = event.GetEventObject()

 varName = item.GetName()

 if varName == 'PowerUse':

 Facility[self.current_selection].PowerUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.PowTotal.SetLabel(str(Facility[self.current_selection].PowerReq))

 elif varName == 'FuelUse':

 Facility[self.current_selection].FuelUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.FuelTotal.SetLabel(str(Facility[self.current_selection].FuelReq))

 elif varName == 'PotWaterUse':

 Facility[self.current_selection].PotWaterUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.PotWatTotal.SetLabel(str(Facility[self.current_selection].PotWaterReq))

 elif varName == 'BotWaterUse':

 Facility[self.current_selection].BotWaterUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.BotWatTotal.SetLabel(str(Facility[self.current_selection].BotWaterReq))

 elif varName == 'StorageUse':

 Facility[self.current_selection].StorageUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.StorageTotal.SetLabel(str(Facility[self.current_selection].StorageReq))

 elif varName == 'PersonnelUse':

 Facility[self.current_selection].PersonnelUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.PersonnelTotal.SetLabel(str(Facility[self.current_selection].PersonnelReq))

 elif varName == 'GrayWaterUse':

 Facility[self.current_selection].GrayWaterUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.GrayWatTotal.SetLabel(str(Facility[self.current_selection].GrayWaterReq))

 elif varName == 'BlkWaterUse':

 Facility[self.current_selection].BlkWaterUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.BlkWatTotal.SetLabel(str(Facility[self.current_selection].BlkWaterReq))

 elif varName == 'SolidWasteUse':

 Facility[self.current_selection].SolidWasteUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.SWasteTotal.SetLabel(str(Facility[self.current_selection].SolidWasteReq))

 elif varName == 'FoodUse':

 Facility[self.current_selection].FoodUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.FoodTotal.SetLabel(str(Facility[self.current_selection].FoodReq))

 elif varName == 'FootprintUse':

 Facility[self.current_selection].FootprintUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.AreaTotal.SetLabel(str(Facility[self.current_selection].FootprintReq))

 elif varName == 'MaintenanceUse':

50

 Facility[self.current_selection].MaintenanceUse = float(item.GetValue())

 self.GetParent().GetParent().GetParent().Panel2.UpdateTotals()

 self.MtnTotal.SetLabel(str(Facility[self.current_selection].MaintenanceReq))

 else:

 pass

 def OnSetConstant(self,event):

 if self.current_selection == 3000:

 dlg = wx.MessageDialog(self, "No Facility has been selected. Please select a facility first.",'Error', wx.OK | wx.ICON_ERROR)

 dlg.ShowModal()

 dlg.Destroy()

 else:

 item = event.GetEventObject()

 varName = item.GetName()

 variables = ['PowerUse','FuelUse','PotWaterUse','BotWaterUse','StorageUse','PersonnelUse',

 'GrayWaterUse','BlkWaterUse','SolidWasteUse','FootprintUse','MaintenanceUse']

 if item.IsChecked():

 Facility[self.current_selection].constants[variables.index(varName)] = 1

 self.inputs1[variables.index(varName)].Disable()

 self.inputs3[variables.index(varName)].Enable()

 else:

 Facility[self.current_selection].constants[variables.index(varName)] = 0

 self.inputs1[variables.index(varName)].Enable()

 self.inputs3[variables.index(varName)].Disable()

#---|

Calculated Totals |

#---|

class CalcTotalsPanel(wx.Panel):

 def __init__(self, parent, id):

 wx.Panel.__init__(self, parent, id)

 vbox = wx.BoxSizer(wx.VERTICAL)

 title = wx.StaticText(self, -1, 'Calculated Totals:')

 self.PowTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.PowGen = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.FuelTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.PotWatTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.BotWatTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.StorageTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.PersonnelTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.GrayWatTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.BlkWatTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.SWasteTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.FoodTotal = wx.StaticText(self,-1,'0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.AreaTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

51

 self.MtnTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 self.PopTotal = wx.StaticText(self, -1, '0', size=(75,-1), style=wx.BORDER_DOUBLE)

 total_items = [self.PowTotal, self.PowGen, self.FuelTotal, self.PotWatTotal, self.BotWatTotal, self.StorageTotal,

 self.PersonnelTotal, self.GrayWatTotal, self.BlkWatTotal, self.SWasteTotal, self.FoodTotal,

 self.AreaTotal, self.MtnTotal, self.PopTotal]

 grid = wx.FlexGridSizer(4, 8, 0, 10)

 for item in total_items:

 grid.Add(wx.StaticText(self, -1, TotalVariables[total_items.index(item)]), 0, wx.ALIGN_RIGHT)

 grid.Add(item, 0)

 vbox.Add(title,0,wx.ALL,5)

 vbox.Add(grid, 0, wx.ALL, 5)

 self.SetSizer(vbox)

#---|

Main Window |

#---|

class Main(wx.Frame):

 def __init__(self,parent,id,title):

 wx.Frame.__init__(self,parent,id, title, size=(975,650))

 self.GetPopulation()

 self.UpdateEnv()

 Interface = wx.Panel(self, -1)

 vbox = wx.BoxSizer(wx.VERTICAL)

 #Overview Information

 self.Panel1 = OverviewPanel(Interface, -1)

 # Input Content

 Content = wx.Panel(Interface, -1, style=wx.BORDER_RAISED)

 hbox = wx.BoxSizer(wx.HORIZONTAL)

 self.Panel2 = FacilityListPanel(Content, -1)

 self.Panel3 = EstTotalsPanel(Content,-1)

 self.Panel4 = SelectionPanel(Content, -1)

 hbox.Add(self.Panel2, 0, wx.ALL, 10)

 hbox.Add(self.Panel3, 0, wx.ALL, 10)

 hbox.Add(self.Panel4, 0, wx.ALL, 10)

 Content.SetSizer(hbox)

 # Totals

52

 self.Panel5 = CalcTotalsPanel(Interface, -1)

 vbox.Add(self.Panel1, 0, wx.TOP | wx.RIGHT | wx.LEFT, 10)

 vbox.Add(self.Panel5, 0, wx.LEFT, 10)

 vbox.Add(Content, 1, wx.RIGHT | wx.LEFT | wx.BOTTOM, 10)

 Interface.SetSizer(vbox)

 self.Show(True)

 #self.Centre()

 def GetPopulation(self):

 dia = wx.TextEntryDialog(self,'Please Enter Operational Soldier Population','Operational Soldier Population','0',style=wx.OK)

 if dia.ShowModal()== wx.ID_OK:

 self.PopChoice = float(dia.GetValue())

 dia.Destroy()

 self.LoadData()

 def LoadData(self):

 if self.PopChoice >= 100 and self.PopChoice <= 200:

 self.xml_file = 'InputValues150.xml'

 elif self.PopChoice > 200 and self.PopChoice <= 400:

 self.xml_file = 'InputValues300.xml'

 elif self.PopChoice > 450 and self.PopChoice <= 2000:

 self.xml_file = 'InputValues600.xml'

 #elif self.PopChoice > 1000 and self.PopChoice <=2000:

 # self.xml_file = 'InputValues1500.xml'

 else:

 dlg = wx.MessageDialog(self, "Soldier Population provided was out of the capabilities of this program. Please provide a value between 100

and 2000.",'Error', wx.OK | wx.ICON_ERROR)

 dlg.ShowModal()

 dlg.Destroy()

 self.GetPopulation()

 def UpdateEnv(self):

 Facility.pop()

 FacilityNames.pop()

 GetData(self.xml_file, Facility)

 EnvTemp = GetEnvData(self.xml_file)

 for t in range(len(Facility)):

 FacilityNames.append(Facility[t].Name)

 Env.AvgFacSqFt = EnvTemp.AvgFacSqFt

 Env.AvgMaintenance = EnvTemp.AvgMaintenance

 Env.AvgStorage = EnvTemp.AvgStorage

53

 Env.BlkWatGen = EnvTemp.BlkWatGen

 Env.BotWatUsage = EnvTemp.BotWatUsage

 Env.FoodConsumed = EnvTemp.FoodConsumed

 Env.FuelUsage = EnvTemp.FuelUsage

 Env.GrayWatGen = EnvTemp.GrayWatGen

 Env.PotWatUsage = EnvTemp.PotWatUsage

 Env.PowAvail = EnvTemp.PowAvail

 Env.PowUsage = EnvTemp.PowUsage

 Env.SWasteGen = EnvTemp.SWasteGen

 Env.SoldierPopulation = float(self.PopChoice)

 if self.xml_file == 'InputValues300.xml':

 Env.PersonnelFactor = 0.25

 if self.xml_file == 'InputValues600.xml':

 Env.PersonnelFactor = .44

GetData('BaseEmpty.xml', Facility)

Env = GetEnvData('BaseEmpty.xml')

#Env.SoldierPopulation = SoldPop

for t in range(len(Facility)):

 FacilityNames.append(Facility[t].Name)

app = wx.App()

Main(None, -1, 'Relationship Analysis Model')

app.MainLoop()

54

APPENDIX B

CODE – DataParser.py

55

DataParser.py

from xml.etree import ElementTree as ET

infile = 'InputValue150.xml'

Facility = []

Env = []

BaseVar = []

FacilityVar = []

class System:

 def __init__(self, param):

 self.Name = param[0]

 self.PowerUse = float(param[1])

 self.FuelUse = float(param[2])

 self.PotWaterUse = float(param[3])

 self.BotWaterUse = float(param[4])

 self.StorageUse = float(param[5])

 self.PersonnelUse = float(param[6])

 self.GrayWaterUse = float(param[7])

 self.BlkWaterUse = float(param[8])

 self.SolidWasteUse = float(param[9])

 self.FoodUse = float(param[10])

 self.FootprintUse = float(param[11])

 self.MaintenanceUse = float(param[12])

 self.PowerReq = float(param[13])

 self.FuelReq = float(param[14])

 self.PotWaterReq = float(param[15])

 self.BotWaterReq = float(param[16])

 self.StorageReq = float(param[17])

 self.PersonnelReq = float(param[18])

 self.GrayWaterReq = float(param[19])

 self.BlkWaterReq = float(param[20])

 self.SolidWasteReq = float(param[21])

 self.FoodReq = float(param[22])

 self.FootprintReq = float(param[23])

 self.MaintenanceReq = float(param[24])

 self.constants = [0]*12

56

 self.Variables = [self.PowerUse, self.FuelUse, self.PotWaterUse, self.BotWaterUse,

 self.StorageUse, self.PersonnelUse, self.GrayWaterUse,

 self.BlkWaterUse, self.SolidWasteUse, self.FoodUse, self.FootprintUse, self.MaintenanceUse]

 self.A1 = [-1,0,0,0,0,0,0,0,0,0,0,0] #Power Equation

 self.A2 = [0,-1,0,0,0,0,0,0,0,0,0,0] #Fuel Equation

 self.A3 = [0,0,-1,0,0,0,0,0,0,0,0,0] #Potable Water Equation

 self.A4 = [0,0,0,-1,0,0,0,0,0,0,0,0] #Bottled Water Equation

 self.A5 = [0,0,0,0,-1,0,0,0,0,0,0,0] #Storage Equation

 self.A6 = [0,0,0,0,0,-1,0,0,0,0,0,0] #Personnel Equation

 self.A7 = [0,0,0,0,0,0,-1,0,0,0,0,0] #Gray Water Equation

 self.A8 = [0,0,0,0,0,0,0,-1,0,0,0,0] #Black Water Equation

 self.A9 = [0,0,0,0,0,0,0,0,-1,0,0,0] #Solid Waste Equation

 self.A10 = [0,0,0,0,0,0,0,0,0,-1,0,0] #Food Consumed Equation

 self.A11 = [0,0,0,0,0,0,0,0,0,0,-1,0] #Footprint Equation

 self.A12 = [0,0,0,0,0,0,0,0,0,0,0,-1] #Maintenance Equation

 self.A = [self.A1, self.A2, self.A3, self.A4, self.A5, self.A6, self.A7, self.A8, self.A9, self.A10, self.A11, self.A12]

self.A = []

for item in items:

self.A.append(item)

 self.B = [0]*len(self.Variables)

 self.Switch = 0

 def SetConstants(self, const):

 for x in const:

 self.constants[31] = 1

class GetData:

 def __init__(self,XMLFile, Fac):

 tree = ET.parse(XMLFile)

 #Get Facility Values

 element = tree.find('Facility')

 x = tree.findall('Facility')

 for index in x:

 List = []

 const = []

 for node in index:

57

 check = node.get('IsConstant')

 if check == '1':

 const.append(len(List)-1)

 List.append(node.text)

 FacilityVar.append(node.tag)

 Fac.append(System(List))

 Fac[x.index(index)].SetConstants(const)

class GetEnvData:

 def __init__(self,XMLFile):

 tree = ET.parse(XMLFile)

 root = tree.getroot()

 env = root.keys()

 env.sort()

 List = []

 for node in env:

 List.append(root.get(node))

 param = List

 self.AvgFacSqFt = float(param[0])

 self.AvgMaintenance = float(param[1])

 self.AvgStorage = float(param[2])

 self.BlkWatGen = float(param[3])

 self.BotWatUsage = float(param[4])

 self.FoodConsumed = float(param[5])

 self.FuelUsage = float(param[6])

 self.GrayWatGen = float(param[7])

 self.PotWatUsage = float(param[8])

 self.PowAvail = float(param[9])

 self.PowUsage = float(param[10])

 self.SWasteGen = float(param[11])

 self.SoldierPopulation = 0

 self.PersonnelFactor = 0

 self.TotalPower = 0

 self.TotalFuel = 0

 self.TotalPotWat = 0

 self.TotalBotWat = 0

 self.TotalStorage = 0

 self.TotalPersonnel = 0

 self.TotalGrayWat = 0

 self.TotalBlkWat = 0

58

 self.TotalSWaste = 0

 self.TotalFood = 0

 self.TotalArea = 0

 self.TotalMaintenance = 0

 self.TotalPopulation = 0

 self.PowerGen = 0

 self.Variables = [self.PowUsage, self.FuelUsage, self.PotWatUsage, self.BotWatUsage,

 self.AvgStorage, 1, self.GrayWatGen, self.BlkWatGen, self.SWasteGen,

 self.FoodConsumed, self.AvgFacSqFt, self.AvgMaintenance]

class UpdateData:

 pass

59

APPENDIX C

CODE – Solver.py

60

Solver.py

from numpy import *

from scipy import *

from xml.etree import ElementTree as ET

class Solver:

 def __init__(self, Fac, Env):

 EnvVariables = [Env.PowUsage, Env.FuelUsage, Env.PotWatUsage, Env.BotWatUsage,

 Env.AvgStorage, Env.PersonnelFactor, Env.GrayWatGen, Env.BlkWatGen, Env.SWasteGen,

 Env.FoodConsumed, Env.AvgFacSqFt, Env.AvgMaintenance, Env.SoldierPopulation]

 self.count = 0

 for index in range(len(Fac)):

 if Fac[index].Switch == 1:

 self.count = self.count + 1

 self.CreateBlankMatrix()

 Solution = self.PopulateMatrix(Fac, EnvVariables)

 UpdateLibrary(Fac,Env,Solution)

 WriteNewFile(Fac,Env)

 def CreateBlankMatrix(self):

 self.TableA = []

 self.TableB = []

 self.n = 12+self.count*12

 self.TableB = [0]*self.n

 for i in range(self.n):

 self.TableA.append([0]*self.n)

 def PopulateMatrix(self,Fac,EnvVariables):

 l = [0,1,2,3,4,5,6,7,8,9,10,11]

 for i in range(len(l)):

 for j in range(i,self.n,len(l)):

 if i == j:

 self.TableA[i][j] = -1

 else:

 self.TableA[i][j] = 1

 self.TableB[5] = EnvVariables[-1]*(-1)

 FacCount = 0

61

 for FacIndex in range(len(Fac)):

 if Fac[FacIndex].Switch == 1:

 Variables = [Fac[FacIndex].PowerUse, Fac[FacIndex].FuelUse, Fac[FacIndex].PotWaterUse,

 Fac[FacIndex].BotWaterUse, Fac[FacIndex].StorageUse, Fac[FacIndex].PersonnelUse,

 Fac[FacIndex].GrayWaterUse, Fac[FacIndex].BlkWaterUse, Fac[FacIndex].SolidWasteUse,

 Fac[FacIndex].FoodUse, Fac[FacIndex].FootprintUse, Fac[FacIndex].MaintenanceUse]

 FacCount = FacCount + 1

 startI = len(l)*(FacCount)

 h = 0

 for i in range(startI, (startI + len(l)), 1):

 if Fac[FacIndex].constants[h] == 1:

 self.TableA[i][i] = 1

 self.TableB[i] = Variables[h]

 else:

 self.TableA[i][i] = -1

 self.TableA[i][5] = Variables[h]*EnvVariables[h]

 h = h + 1

 self.C = linalg.solve(self.TableA, self.TableB)

 #print "Table A"

 #for index in range(self.n):

 # print self.TableA[index]

 #print "Table B"

 #print self.TableB

 #print self.C

 return self.C

class UpdateLibrary:

 def __init__(self,Fac,Env,Sol):

 Env.TotalPower = round(Sol[0]/1000, 2)

 Env.TotalFuel = round(Sol[1], 2)

 Env.TotalPotWat = round(Sol[2], 2)

 Env.TotalBotWat = round(Sol[3], 2)

 Env.TotalStorage = round(Sol[4], 2)

 Env.TotalPersonnel = round(Sol[5] - Env.SoldierPopulation, 2)

 Env.TotalGrayWat = round(Sol[6], 2)

 Env.TotalBlkWat = round(Sol[7], 2)

62

 Env.TotalSWaste = round(Sol[8], 2)

 Env.TotalFood = round(Sol[9], 2)

 Env.TotalArea = round(Sol[10], 2)

 Env.TotalMaintenance = round(Sol[11], 2)

 Env.TotalPopulation = round(Sol[5], 2)

 Env.PowerGen = round((Env.PowAvail*Env.TotalPopulation)/1000, 2)

 pos = 11

 for i in range(len(Fac)):

 if Fac[i].Switch == 1:

 Fac[i].PowerReq = round(Sol[pos+1],2)

 Fac[i].FuelReq = round(Sol[pos+2],2)

 Fac[i].PotWaterReq = round(Sol[pos+3],2)

 Fac[i].BotWaterReq = round(Sol[pos+4],2)

 Fac[i].StorageReq = round(Sol[pos+5],2)

 Fac[i].PersonnelReq = round(Sol[pos+6],2)

 Fac[i].GrayWaterReq = round(Sol[pos+7],2)

 Fac[i].BlkWaterReq = round(Sol[pos+8],2)

 Fac[i].SolidWasteReq = round(Sol[pos+9],2)

 Fac[i].FoodReq = round(Sol[pos+10],2)

 Fac[i].FootprintReq = round(Sol[pos+11],2)

 Fac[i].MaintenanceReq = round(Sol[pos+12],2)

 pos = pos + 12

class WriteNewFile:

 def __init__(self,Fac,Env):

 root = ET.Element("Base")

 #Write Initial Assumptions

 elements = ['SoldierPopulation','PowAvail','PowUsage','FuelUsage','PotWatUsage',

 'BotWatUsage','AvgStorage','GrayWatGen','BlkWatGen','SWasteGen',

 'FoodConsumed','AvgFacSqFt','AvgMaint']

 element_values = [Env.SoldierPopulation, Env.PowAvail, Env.PowUsage, Env.FuelUsage,

 Env.PotWatUsage, Env.BotWatUsage, Env.AvgStorage, Env.GrayWatGen,

 Env.BlkWatGen, Env.SWasteGen, Env.FoodConsumed,Env.AvgFacSqFt,

 Env.AvgMaintenance]

 for i in range(len(elements)):

 root.set(elements[i], str(element_values[i]))

 #Write Total Calculated Values

 elements = ['TotalPower','TotalFuel','TotalPotWat','TotalBotWat','TotalStorage',

63

 'TotalPersonnel','TotalGrayWat','TotalBlkWat','TotalSWaste','TotalFood',

 'TotalArea','TotalMaintenance','TotalPopulation']

 element_values = [Env.TotalPower, Env.TotalFuel, Env.TotalPotWat, Env.TotalBotWat,

 Env.TotalStorage, Env.TotalPersonnel, Env.TotalGrayWat, Env.TotalBlkWat,

 Env.TotalSWaste, Env.TotalFood, Env.TotalArea, Env.TotalMaintenance,

 Env.TotalPopulation]

 for i in range(len(elements)):

 BaseTotal = ET.SubElement(root, elements[i])

 BaseTotal.text = str(element_values[i])

 #Write Facilities

 elements = ['Name','PowerUse','PotWaterUse','BotWaterUse','StorageUse',

 'PersonnelUse','GrayWaterUse','BlkWaterUse','SolidWasteUse',

 'FoodUse','FootprintUse','MaintenanceUse','PowerReq','FuelReq',

 'PotWaterReq','BotWaterReq','StorageReq','PersonnelReq',

 'GrayWaterReq','BlkWaterReq','SolidWasteReq','FoodReq',

 'FootprintReq','MaintenanceReq']

 for i in range(len(Fac)):

 FacVar = []

 Facility = ET.SubElement(root, "Facility")

 element_values = [Fac[i].Name, Fac[i].PowerUse, Fac[i].FuelUse, Fac[i].PotWaterUse,

 Fac[i].BotWaterUse, Fac[i].StorageUse, Fac[i].PersonnelUse,

 Fac[i].GrayWaterUse, Fac[i].BlkWaterUse, Fac[i].SolidWasteUse,

 Fac[i].FoodUse, Fac[i].FootprintUse, Fac[i].MaintenanceUse,

 Fac[i].PowerReq, Fac[i].FuelReq, Fac[i].PotWaterReq,

 Fac[i].BotWaterReq, Fac[i].StorageReq, Fac[i].PersonnelReq,

 Fac[i].GrayWaterReq, Fac[i].BlkWaterReq, Fac[i].SolidWasteReq,

 Fac[i].FoodReq, Fac[i].FootprintReq, Fac[i].MaintenanceReq]

 for x in range(len(elements)):

 FacVar = ET.SubElement(Facility, elements[31])

 FacVar.text = str(element_values[31])

 if x < 8:

 FacVar.set("IsConstant", str(Fac[i].constants[31]))

 #Write out to file

 tree = ET.ElementTree(root)

 tree.write("InputValues-User.xml")

64

BIBLIOGRAPHY

[1] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML: The

Systems Modeling Language. Boston: Morgan Kaufmann OMG Press, 2009.

[2] A. W. Wymore, Model-based systems engineering: an introduction to the

mathematical theory of discrete systems and to the tricotyledon theory of system

design. Boca Raton: CRC Press, 1993.

[3] Noblis, "Sustainable Forward Operating Bases," Strategic Environmental

Research and Development Program (SERDP)2010.

[4] A. Kande, "Integration of model-based systems engineering and virtual

engineering tools for detailed design," Masters, Engineering Management and

Systems Engineering, Missouri University of Science & Technology, 2010.

[5] OMG, "OMG MOF 2 XMI Mapping Specification," ed, August 2011.

[6] T. Trainor, D. Brazil, and T. Lindberg, "Building Knowledge from Organizational

Experience: Approaches and Lessons Learned from US Army Base Camp

Workshops," Engineering Managment Journal, vol. 20, pp. 37-45, 2008.

[7] Systems Engineering Vision 2020, T. Operations, September 2007.

[8] J. A. Estefan, "Survey of Model-Based Systems Engineering (MBSE)

Methodologies," International Council on Systems Engineering (INCOSE): the

Model-Based Systems Engineering (MBSE) InitiativeJune 2008.

[9] OMG. (Dec 13). OMG Systems Modeling Language. Available:

www.omgsysml.org

[10] V. V. Patel, J. D. McGregor, and S. Goasguen, "SysML-based domain-specific

executable workflows," presented at the 2010 4th Annual IEEE Systems

Conference, 2010.

[11] C. J. J. Paredis, Y. Bernard, R. M. Burkhart, H.-P. d. Koning, S. Friedenthal, P.

Fritzson, N. F. Rouquette, and W. Schamai, "An Overview of the SysML-

Modelica Transformation Specification," in the 2010 INCOSE International

Symposium, Proceedings of, Chicago, IL, 2010.

[12] C. A. Jones and F. L. Drake, Python & XML: O'Reilly & Associates, Inc., 2002.

[13] R. Karban, et al., "Exploring Model based Engineering for Large Telescopes -

Getting Started with Descriptive Models.," presented at the Proceedings of SPIE -

the International Society for Optical Engineering., 2008.

65

[14] A. Solyler, and S. Sala-Diakanda, "A Model-Based Systems Engineering

Approach to Capturing Disaster Management Systems.," in 2010 IEE

International Systems Conference Proceedings, 2010.

[15] OMG. (Dec 14). MBSE Wiki. Available:

http://www.omgwiki.org/MBSE/doku.php

[16] J. A. Haiar, J. C. Lewis, and H. G. Tiedeman, "Model-Based Engineering for

Platform System Design," in 25th Digital Avionics Systems Conference, 2006

IEEE/AIAA, 2006, pp. 1-12.

[17] Real Property Master Planning for Army Installations, D. o. t. Army, 2005.

[18] A. Soyler and S. Sala-Diakanda, "A model-based systems engineering approach

to capturing disaster management systems," in Systems Conference, 2010 4th

Annual IEEE, 2010, pp. 283-287.

[19] J. Williams, "Contingency Operations and the use of GeoBEST," in Esri

International User Conference, San Diego, CA, 2002.

[20] Construction and Base Camp Development in the USCENTCOM Area of

Responsibility, USCENTCOM, Dec 2007.

[21] Base Camp Facility Standards for Contingency Operations, USAREUR, Feb

2004.

[22] M. Nikolaidou, V. Dalakas, L. Mitsi, G. D. Kapos, and D. Anagnostopoulos, "A

SysML Profile for Classical DEVS Simulators," in Software Engineering

Advances, 2008. ICSEA '08. The Third International Conference on, 2008, pp.

445-450.

[23] Y. Ben Maissa and S. Mouline, "A SysML profile for wireless sensor networks

modeling," in I/V Communications and Mobile Network (ISVC), 2010 5th

International Symposium, 2010, pp. 1-4.

[24] "OMG UML 2.3 Specification," ed: Object Management Group, May 2010.

[25] D. Mertz. (2003, Dec 14). XML Matters: Process XML in Python with

ElementTree. Available: http://www.ibm.com/developerworks/library/x-

matters28/

[26] F. Lundh. (July 2007, Dec 14). Elements and Element Trees. Available:

http://effbot.org/zone/element.htm

[27] Nanosat-7 User's Guide: University Nanosat-7 Program, A. F. R. Laboratory,

February 2011.

66

[28] A. Stewart, "A Guide to the Establishment of a University Satellite Program,"

Masters, Mechanical and Aerospace Department, Missouri University of Science

and Technology, 2007.

[29] S. Miller, "Managment of a University Satellite Program with Focus on a

Refrigerant-Based Propulsion System.," Masters, Mechanical and Aerospace

Department, Missouri University of Science and Technology, May 2010.

[30] B. Cole, Chris Delp, and Kenny Donahue, "Piloting Model Based Engineering

Techniques for Spacecraft Concepts in Early Formation," presented at the

INCOSE IS 2010, 2010.

[31] J. Gross, A. Reichwein, and S. Rudolph, "An Executable Unified Product Model

Based on UML to Support Satellite Design," in AIAA Space 2009 Conference &

Exposition, Pasadena, CA, 2009.

67

VITA

Dustin Scott Nottage was born in Boynton Beach, FL on November 5, 1985. For

High School, he attended Trinity High School in Euless, TX where he was part of the

inaugural class for the International Baccalaureate Program at the school. He earned a

B.S. in Aerospace Engineering in May 2009 from Missouri University of Science and

Technology. After graduating, he decided to pursue a Master’s degree starting in the Fall

of 2009. Dustin completed his M.S. in Systems Engineering in May 2012 from Missouri

University of Science and Technology. During his time at Missouri University of Science

and Technology, Dustin participated on the 2005 Solar House Design Team and the

Satellite Design Team.

	Dynamic model-based systems engineering using XML metadata interchange
	Recommended Citation

	II

