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ABSTRACT 

In this report the flexural vibrations of the walls of 

free, thin, circular cylinders are considered. Theoretical 

expressions are developed for the natural frequencies 

by extending the approximate energy method of Arnold and 

Warburton to the free-free case. Furthermore, the developed 

expressions are shown to apply, as special cases, to the 

fixed-fixed and simply-supported cylinders analyzed by 

Arnold and Warburton. 

The energy solution for free-free cylinders is checked 

both experimentally using a 3500 pound-force, 5 to 2000 

hertz, vibration exciter and numerically using the well 

documented SABOR IV-DYNAL finite element program. While 

the derived energy method accounts for any prescribed number 

of circumferential waves, only the two and three wave cases 

were selected for experimental and numerical checking. Cy

linder geometric parameters investigated are length/radius 

= 1, 3, 5, 10, 15, and 20; and radius/wall thickness = 30. 

The experimental natural frequencies deviate by less than 

eight percent from the corresponding energy method fre

quencies. Finite element frequency deviations increase with 

increasing element length and axial half-wave number, m. 

They are less than nine percent for element-length/radius 

S 0.625 and m S 5. The mode shapes obtained with the 

finite element program are also in agreement with the 

assumed displacement forms of the energy method. 
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I. INTRODUCTION 

The modal vibration characteristics of thin circular 

cylindrical shells have been studied by many investigators. 

However, in spite of this extensive coverage, there appear 

to be no results for free-free boundary conditions. Arnold 

* and Warburton (1) , in their communication with Grinsted, 

mention that they had examined the free-free case, but 

had not published results as they did not appear to have 

much practical value. 

Recent innovation in design and manufacturing tech-

niques, however, indicates a need for free-free thin 

cylinder vibration characteristics. A particular case, 

familiar to the author, is the case of rotating machinery 

with structural shell frames, where the control of vibration 

and noise radiation is desirable. End plates are usually 

attached to the ends of the shells. Due to the dimensions 

and tolerances of the shells and end plates, the fit 

between them is usually rather loose. What boundary 

conditions apply? Although the clearance between end 

plate and shell is small, so are the wall displacements 

due to shell vibrations, even at resonant frequencies. 

Furthermore, these displacements decrease when higher 

normal modes are excited. Thus it is reasonable to assume 

*Numbers in parentheses refer to the list of 
references at the end of the thesis. 



that the end plates provide little restraint at the 

shell boundaries, and thatfree-free boundary conditions 

apply. 

A. Objective 

It is the objective of this investigation to deter

mine the flexural vibration characteristics of thin

walled circular cylinders with free-free boundary condi

tions. The following procedures will be used: 

1. Theoretical expressions for the natural fre

quencies will be developed by extending the 

approximate energy method of Arnold and Warburton 

to the free-free case. 

2. The energy method results will be compared with 

the results obtained both experimentally using a 

5 to 2000 hertz vibration exciter and numerically 

using the SABOR IV-DYNAL finite element program. 

B. Review of Literature 

2 

In 1894, Lord Rayleigh (2) derived an approximate 

expression for the natural vibratory frequencies of cy

lindrical shells, in which the motion of all cross-sections 

is similar, based on a separation of the effects of bending 

and stretching. In 1927, Love (3) investigated more 

general vibrations of cylinders. His work resulted in a 

general dynamical theory of shells which included both 

bending and extensional deformations, but did not include 

frequency equations for any specified end condition. In 



1934, Flugge (4) used Love 1 s equations to obtain a cubic 

frequency equation for a simply-supported cylinder, a 

result which indicated that there were three frequencies 

for each modal pattern. A more detailed investigation of 

simply-supported cylinders by Arnold and Warburton (5) in 

1949 showed that the three frequencies correspond to 

predominately radial, axial, and tangential vibrations 

with the predominately radial vibration frequency much 

lower than the other two. Later, Arnold and Warburton also 

investigated the natural frequencies of cylinders clamped 

at both ends, by using a Rayleigh-Ritz approach in which 

beam functions were used as radial, axial, and tangential 

displacement functions. Since only one beam function was 

used for each displacement component, their work was based 

on a very rudimentary form of the Rayleigh-Ritz method. 

The present paper extends this method of Arnold and War

burton to the free-free case. 

Many other investigators have studied the vibration of 

thin cylinders. Three approaches seem to exist. An exact 

method, outlined by Flugge (6) and used by Forsberg (7), 

establishes the influence of boundary conditions on the 

modal characteristics of thin cylindrical shells. Another 

exact method was used in a recent thesis by Sharma (8) in 

which the differential shell equations were integrated 

numerically with the aid of a suppression technique. Most 

recently,investigators have concentrated on simplifying 

3 
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the analysis of vibrating cylindrical shells by development 

of a number of approximate energy methods. References for 

these methods can be found in Weingarten (9). Finally, 

some investigators such as Gottenberg (10), have conducted 

detailed experiments on cylindrical shell vibrations. 
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II. ENERGY SOLUTION 

Typical vibration modal forms for a free-free thin 

cylinder are shown in Fig. 1. The circumferential forms of 

Fig. lb are the exact sinusoidal shapes presented by 

Arnold and Warburton (1) and again by Forsberg (7). Since 

these forms are independent of end boundary conditions, 

they are applicable to free-free cylinders. The axial 

forms of Fig. la and the modal arrangement of Fig. lc 

are plausible configurations assumed for the free-free 

cylinder of the present investigation. 

The theoretical expressions to be developed pertain 

to n ~ 2 and m ~ 1. Forsberg (11) showed that the behaviors 

of a cylindrical shell in axisymmetric (n=O) and beam-

type (n=l) motion can be adequately predicted by consider

ing the cylinder as a ring for n=O modes and as a compact 

beam for n=l modes. Furthermore, he noted that the 

minimum natural frequency of a cylindrical shell is 

generally associated with a mode having two or more circum

ferential waves. Thus, the fact that the following energy 

solution pertains only to n ~ 2 does not limit its impor

tance in any way. 

A. Development of Cubic Frequency Equation for Free-Free 

Cylinders 

1. Method of Development 

The strain components of a differential element of 



m =I 

n=3 

h 

m=2 

(a) AXIAL 
MODAL FORMS 

n =I 

6 

m=3 

n=4 

AXIAL NODE 

a 
Cl RCUMFERENTIAL 

NODE 

(c) NODAL ARRANGEMENT FOR 
n=3, m=4 

Fig. 1. Modal forms 
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the cylinder are used in the elastic constitutive equations 

to obtain an expression for strain energy. using the strain-

displacement equations developed by Love (3), strain energy 

is expressed in terms of the rectangular displacements u, 

v, Kinetic energy is expressed in terms of u,t; v,t; 

and w,t. With the assumption that the vibration of free

free cylinders is similar to that of free-free, Bernoulli-

and w. 

Euler beams; suitable expressions are chosen for u, v, and 

w such that the dependence of radial displacement, w, with 

the axial coordinate, x, takes the form of a free-free beam. 

After the selection of expressions for u, v, and w, 

equations for strain energy and kinetic energy are derived 

which lend themselves to analysis by energy principles such 

as Lagrange's equation. Applying Lagrange's equation three 

times, once for each of the three independent displacements 

u, v, and w, three equations of motion are obtained. By 

solving the equations of motion and eliminating the arbi

trary amplitude constants, a cubic frequency equation is 

obtained. The roots of this equation give three frequencies 

associated with: one, a predominately radial mode; two, a 

predominately tangential mode; and three, a predominately 

axial mode. 

2. Formulation 

The triple integrals of Eq. (1) for linear-elastic 

strain energy and of Eq. (2) for kinetic energy, are given 

by Arnold and Warburton (1) for the differential shell 

element of Fig. 2. 



y 

I 
I 
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"7 I 
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I I 
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I I 
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dx 

dz z ~f/J 

Fig. 2. Differential shell element 
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E 2'TT L/2 h/2 
{e2 + e2 + s = J J J 2ve e 2 . X y X y 2(1-v ) 0 -L/2 -'-h/2 

+ ~(1-v) e;y} a d<Il dx dz ( 1) 

2'TT 
T = ~ f 

0 

L/2 h/2 { 2 2 2 J J (u,t) + (v,t) + (w,t) } 
-L/2 -h/2 

a d<I> dx dz ( 2) 

Eqs. (3) were derived by Love (3) and represent the 

strains at a distance z from the middle surface of the 

deformed shell. 

e = E 1-Zl(l e = E -ZK e = y -2zT (3a-c) 
X y 2 2 xy 

1 +1 (3d-f) El = u, E2 = a (v, q, -w) y = v, u,q, 
X X a 

1 1 (3g-i) Kl = w'xx K2 =· 2 <w '<Il<Il +v,q,) T = - (w, q, + v, ) a X X 
a 

In deriving the above equations the basic assumptions of 

small displacement theory and thin shell theory were used 

such that higher order terms could be eliminated as 

discussed by Love (3) and again by Timoshenko (12). 

With the strain energy, kinetic energy and strain 

displacement Eqs. (1), (2), and (3), the development may 

proceed. The dependence of radial displacement, w, 

with axial coordinate, x, is assumed to be of the same 

form as that of a Bernolli-Euler free-free beam as 

indicated in Fig. la. The dependence of tangential dis-



placement, v, with x is assumed to be of the same form as 

radial displacement, w, since these two components of 

motion are directly coupled at each cross section. The 

dependence of axial displacement, u, with x is assumed to 

be of the form w, . 
X 

This assumed displacement for u is 

reasonable since it gives zero normal strains, u, =0, at 
X 

the ends of the cylinder and maximum normal strains at 

all radial motion antinodes. Finally, it should be noted 

that these assumed displacement forms were chosen in the 

10 

same manner as that of Arnold and Warburton (1) for fixed-

fixed cylinders. The accuracy of the results by Arnold and 

Warburton, therefore, give good justification for the above 

choices of dependence of u, v, and w with the axial 

coordinate, x. 

3. Analysis 

To simplify the analysis, the origin is taken at the 

mid-point of the cylinder. Thus, the two possibilities 

of even and odd number of axial nodes must be considered 

separately, since they have different displacement func-

tions due to the different conditions of symmetry at the 

origin. 

origin; 

When the number of nodes is even, w, =0 at the 
X 

and when it is odd, w=O. 

(a) Even Number of Axial Nodes. The assumed displacement 

functions are 

u = U(-sin~x- k sinh~x) cos(n¢) 
a a 

(4a) 



v = V(coswx- k coshwx) sin(n~) 
a a 

w = W(coswx- k coshwx) cos(n~) 
a a 

where U, V, and W are functions of time only and 

k = 
sinwL 

2a 

sinhi~ 

The values of w are given by 

tanwL 
2a 

wL = - tanh-2a 

for which the roots are 

WL = l 506 1T 71T ll'!T l5TI 
a · '2'2'2' 

(4b) 

( 4c) 

corresponding to 2, 4, 6, 8, ... axial nodes or l, 3, 5, 

7 ... axial half-waves (m=l, 3, 5, 7 ... ). Substituting 

Eqs. (4) into Eqs. (3) and then using Eqs. (l) and (2), 

the strain energy and kinetic energy expressions can be 

integrated. The steps of integration are presented in 

Appendix A. The results are 

s = TIEhL 
2 4a(l-v ) 

ll 

+ 2ve 2 fwnuv + wuw + S(w
2

n
2w2

- w
2

nvw)J + ~(l-v)e 3 
[n2u 2 + w2v 2 - 2wnuv + 4B (w

2
v

2 + w
2

n
2w2 

- 2w
2

nvw)J} 

( 5) 

where B = 

8 2 

l + k 2 

= l 
2 2a w 

k + wL sinaL 
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( 6 ) 

where U, V, and W represent the derivatives of U, V, 

and W with respect to time, t. Applying Lagrange's 

equation 

( 7) 

Two similar equations of motion for the degrees of freedom, 

V and W, can be obtained by applying Lagrange's equation 

two more times. Substituting U=A cos(wt), V=B cos(wt), 

and W=C cos(wt) into the three equations of motion and 

letting 6=p(l-v 2 )w 2a 2/Eg, the following three equations 

are obtained. 

( 8a) 

+ {n2 8
1 

+ ~(l-v)w 2 8 3 - 681 + B[n28 1 + 2(1-v)w
2

8 3] }B 

- {n81 + s[n 3el + vw
2

n82 + 2(1-v)w
2

n83] }c = 0 (8b) 

{vw8
2
}A- {n8

1 
+ B[n 3e 1 + v~ 2ne 2 + 2(1-v)w

2
ne 3] }B 

4 4 2 2 
+ {8

1
- 68

1 
+ B[w 0 1 + n 0 1 + 2vw n 0 2 

(8c) 
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The above three equations, Eqs. (8), contain four unknowns, 

the arbitrary amplitude constants A, B, and C,and the de-

sired natural frequency, w. By combining Eqs. (8), a cubic 

frequency equation and amplitude ratios are obtained. This 

reduction process is contained in Appendix B. Results are 

where R 

G 

H 

J 

zl 

z2 

x2 

y3 

x3 

ll 

(b) Odd 

( 9) 

2 = .1/ ( 010 3) 

= R(J0 10 3 + H0 1 0 3 + G0i) 

= R(x 2y 3 z 1 - Gy 3 z 2 - y 1x 2J- x 3 z 1H- x 3y 1 z 2 + GHJ) 

= [11
2

0 1 + ~(l-v)n2 0 3] 
= {n2 0 1 + ~(l-v)11 2 0 3 + B[n 20 1 + 2(1-V)1J 2 0 3]} 

{ [ 4 4 22 22 ]} = 0 1 + S ~ 0 1 + n 0 1 + 2v~ n 0 2 + 2(1-V)1J n 0 3 

= -[v]Jn0 2 + ~(l-v)]Jn0 3] 
= V]J0 2 

-{n0 1 B [n3 0 1 
2 n0 + 2(1-v)~ 2 n0 3]} = + + V]J 2 

= yl 

= z2 

= zl 

2 2 2 
= pa w (1-v )/Eg 

Number of Axial Nodes. The assumed displacement 

functions are 

u = U(cosllx + k cosh11x) cos(n~) 
a a 

(lOa) 
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v ~ V(sinwx + k sinhwx) sin(n¢) 
a a (lOb) 

w ~ W(sinwx + k sinhwx) cos(n¢) 
a a (lOc) 

where the definitions of U, V, W, and k are the same as 

before, but the values of w are given by 

.L L 
tania = tanhia 

for which the roots are 

WL = S'IT 9'IT 
a 2 ' 2 ' 

13 17 
2'IT' 2'IT' 

corresponding to 3, 5, 7, 9 ... axial nodes or 2, 4, 6, 

s ... axial half-waves (m=2, 4, 6, 8 ... ). 

Using the procedures discussed previously for an 

even number of axial nodes, the same form of cubic equa-

tion in w is obtained provided we redefine the values 

of 8 as follows: 

8 = 1 + (-l) m+l k2 
1 

( lla) 

8 = 1 + (-l) m+l (2a sinwL - k2) 
2 WL a (llb) 

8 = 1 + (-l)m(6a sinf.lL + k2) 
3 WL a 

(llc) 

where m+l is the number of axial nodes and rn is the number 

of axial half-waves. 

(c) Summary. Using Eqs. (9) and (11) along with Eqs. (12) 

below, 

ll..L ~ 1.506'IT for rn ~ 1 ( 12a) 
a 

WL ~ (m + 0. 5) 'IT for rn > 2 
a - (12b) 
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the three frequencies corresponding to predominately radial, 

axial, and tangential vibration of a free-free thin cy

linder may be determined by solving the resulting cubic 

equation. 

B. Application of Frequency Equation to Fixed-Fixed and 

Simply-Supported Cases 

It may be noted that the frequency equations developed 

by Arnold and Warburton (1) for fixed-fixed and simply-

supported thin cylinders are special cases of the fre-

quency equation developed for free-free cylinders. If 

Eqs. (9) and (12) are left the same, and Eq. (llc) is changed 

such that 

the results apply to the case of a fixed-fixed cylinder. 

If Eq. (9) is left the same and Eqs. (11) and (12) are 

changed such that 8 =8 =0 =1 and ~L=mn the results now 1 2 3 a ' 

apply to the case of a simply-supported cylinder. Fre-

quencies calculated in this way for the fixed-fixed and 

simply-supported cases agree exactly with those obtained 

from the expressions of Arnold and Warburton (1). These 

expressions were compared with a direct-integration 

solution by Sharma (8). He reported a maximum error of 

less than ten percent for cylinders investigated. 



III. METHODS OF VERIFICATION 

The energy solution of this investigation, presented 

in Eqs. (9), (11), and (12), was verified both experi

mentally in the laboratory and numerically with the SABOR 

IV-DYNAL finite element program. Descriptions of both 

methods of verification are given in the following 

paragraphs and Figs. 3, 4, and 5. 

A. Experimental 

16 

Thin cylinders were mounted in the free-free condition 

to a 3500 pound-force MB C25HAA vibration exciter by con

tinuous ring contacts at axial nodal locations as shown in 

Fig. 3. A 0.063-diameter-wire snap ring provided con

tinuous contact around the circumference at the axial 

nodal locations for the tangential and radial components 

of motion. In Fig. 4, this snap ring is shown in the groove 

of the fixture insert. The nodal locations were determined 

from finite element program output for each normal mode to 

be investigated. The desired distance between nodal sup-

ports was obtained by two adjustments. First the aluminum 

fixtures could be attached at one-inch intervals to the 

base plate through a pre-drilled hole pattern. Second, the 

fixture inserts containing the wire snap ring supports 

could be located within the fixtures anywhere within the 

one-inch intervals by means of the four adjusting screws. 

Thus, any location along the cylinder, within the limits 

(16-inch maximum) of the base plate, could be obtained 



Fig. 3. Free-free cylinder mounted 
on vibration exciter 

Fig. 4. Test fixture Fig. 5. Sand distribution 
due to m=S vibration 

17 



in order to support the cylinder at nodal locations. 

The shell geometry parameters, circumferential wave 

numbers, and axial half-wave numbers investigated exper

imentally are: 

L/a = 20, 15, 10 and 5 

a/h = 30 

n = 2 and 3 

m = 1, 2, 3, 4, 5 

18 

All combinations of the above values for n and m could not 

be investigated for each L/a ratio due to limitations 

imposed by the 5-2000 hertz frequency range of the exciter 

and the 2.0 - 16.0 inch range of the fixture hole pattern. 

The cylinders were lengths of cold-drawn seamless steel 

tubing having a 4.0-inch O.D. and a 0.065-inch wall 

thickness. 

A combination of experimental techniques were used to 

determine particular modal characteristics. Natural 

frequencies were determined during scanning of the fre

quency spectrum by watching the 180° phase reversals of 

two accelerometers mounted on the wall of the cylinder, by 

noting the maximum g-levels on the g-meters, and by 

observing the maximum sand activity inside the cylinder. 

Mode shapes were determined by observing the sand dis

tribution inside the cylinder, as shown in Fig. 5, and by 

a tracing method using a phonograph cartridge as a vibra-

tion pick-up. In the tracing method, the signal from an 

accelerometer mounted on the base plate was fed to one 
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plate of a cathode-ray tube and the signal from the 

vibration pick-up was fed to the other plate. Nodal lines 

were readily identified by the change in the phase ellipse 

as the pick-up passed through them. 

B. Finite Element 

The well documented SABOR IV-DYNAL program of the 

McDonnell-Douglas Automation Company was also used to 

verify the energy solution. The program makes use of two 

existing computer programs, SABOR IV and ICES-DYNAL, which 

have been integrated by McDonnell to provide natural fre-

quencies and mode shapes of axisymmetric shells. The 

SABOR IV program generates a stiffness matrix and a con-

sistent mass matrix, harmonic by harmonic, from a finite 

element representation of a general axisymmetric elastic 

shell. SABOR IV uses a meridionally-curved shell element 

with eight degrees of freedom having strain displacement 

relationships derived by Novozhilov (13). Axial and 

tangential displacements are allowed to vary linearly over 

the element length, while radial displacement is allowed 

to take on a cubic variation over the element length. 

Both slope, w, , and displacement compatibility exist at 
X 

the boundaries between elements. The DYNAL program 

subsequently uses the mass and stiffness matrices to 

generate the corresponding frequencies and mode shapes 

for each harmonic provided by SABOR IV (n=2 and n=3 are the 

harmonics which were investigated) . Since both programs 



are extensively documented in references (14) and (15), 

they have only been briefly described here. 

The shell geometry parameters, circumferential wave 

numbers, and axial half-wave numbers investigated with 

SABOR IV-DYNAL were: 

L/a = 20, 15, 10, 5, 3, and 1 

a/h = 30 

n = 2 and 3 

m = 1, 2, 3, 4, and 5 
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The number of axial half-waves obtained accurately depended 

upon the number of elements used in our model. For each 

L/a ratio, two finite element models were used in order to 

determine the effect of element length on accuracy of re

sults. First four and then eight cylindrical elements were 

used. Comparing the four and eight element models, dif-

ferences in the predicted natural frequencies indicated an 

increase in accuracy as element length was decreased. While 

the difference for long shells, L/a ~ 10 were large, the 

differences for short shells, L/a ~ 5, were small and, 

therefore, the eight element model was chosen as being 

satisfactory for this investigation. Models containing 

additional elements, which would have improved the accuracy 

for long shells, were not used due to limitations on com

puter time. 

The program's output consisted of frequency in hertz 

and normalized mode shapes. The mode shapes were used to 

identify the different axial modes and to locate the nodes 

for the experimental work. 



IV. RESULTS 

The preceding paragraphs have described two methods, 

experimental and finite element, used to check the energy 

solution, Eqs. (9), (ll), and (12), developed in this 

investigation of free-free cylinders. In the following 

paragraphs, a comparison of results obtained by the three 

different methods is presented in terms of a frequency 
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comparison, Table I, and a mode shape comparison, Figs. 6, 

7, and 8. Finally, a discussion of results is presented 

which explains the agreement of results shown in Table I 

and Figs. 6, 7, and 8. 

A. Frequency Comparison 

Table I presents natural frequencies obtained by 

each of the three methods used: energy, experimental, and 

finite element. These frequencies correspond to the pre-

dominately radial modes of vibration. Frequency data are 

in hertz for easy comparison. In calculating these fre-

quencies, the material properties assumed for the steel 

cylinders are: Poisson's ratio, v=0.3; elastic modulus, 

£=30,000 ksi; and mass density, p=0.283 lbs/in3 . To 

facilitate application of results to cylinders with other 

material properties, the non-dimensional frequency factor, 

w/w , which does not depend on the values of E and p, is 
0 

also presented for the energy solution. Percent deviations 

between the energy method results and both experimental 



Table I. Frequency comparison for free-free cylinders investigated, a/h=30. 

MODAL METHOD OF SOLUTION 
NUMBERS 

Energy Method Experi- Finite 
fbental Element 

n m frequency (frelD hz) (fre~ hz) (fre~ hz) 
factor 

L/a = 20 

2 1 0. 0288 495.1 . 558,9 . 2 0.0423 725.8 . 1003.6 . 3 0.0678 1162.6 1130 1770.3 

4 0,1020 1749.6 . 2801.7 . 5 0.1421 2437.6 .. 4001.8 

3 1 0.0733 1257.9 . 1280.1 

. 2 0,0757 1298.7 . 1435.6 

. 3 0.0812 1392.8 1500 1791.3 

4 0.0912 1565,0 . 2375.2 

5 0.1064 1825.5 1875 3156.9 

L/a • 15 

2 1 0.0341 585.5 590 657.6 

. 2 0.0633 1085.8 . 1363.6 . 3 0.1093 1875.7 1780 2485.6 

4 0.1655 2838.2 .. 3902.1 . 5 0.2267 3888.4 .. 5425.0 

3 1 0. 0744 1275.4 1345 1301.9 

. 2 0. 0802 1376.9 . 154 3. 6 

3 0.0938 1609.6 1680 2088.6 . 4 0.1166 1999.7 1985 2946.7 

5 0.1472 2525.4 .. 4024.2 

L/a • 10 

2 1 0.0547 938 .o 940 lOll. 3 

2 0.1245 2136.6 2035 2381.0 

3 0.2153 3693.2 .. 4245.6 

4 0. 3119 5349.3 .. 6288.5 

5 0.4045 6937.4 .. 8170.7 

3 1 0.0786 1348.2 1395 1386.1 

2 0. 0996 1709 .I 1765 1928.3 

3 0.1407 2413.0 .. 2990.5 

4 0.1963 336 7. 2 .. 4432.5 

. 5 0. 2596 4451.7 .. 5997.7 

Nodal locations were not within the range of test fixture. 
Frequency was not within the range of vibration exciter. 

PERCENT DEVIATION 

:Joo·Y :Joo·Y 

- +12. 9 

- +38. 3 

-2.8 +52. 2 

- +60 .o 

- +64 .2 

- +1.7 

- +10. 5 

+7. 7 +28.6 

- +51. 7 

+2. 7 + 73.0 

+0. 8 +12. 3 

- +25. 6 

-5.1 +32. 5 

- +37. 5 

- + 39.5 

+5, 5 +2 .1 

- +12.1 

+4. 3 +29. 8 

-o. 1 +47. 3 

- +59. 5 

+0. 0 +7. 8 

-4.7 1'11. 4 

- +14. 9 

- +17. 5 

- +17. 8 

+3. 5 +2. 8 

+3. 3 +12. 8 

- +23 .9 

- +31. 6 

+34. 8 
------ -· --

NODAL METHOD OF SOLUTION 
NUMBERS 

Energy Method Experi-
mental 

n m fr~~~~~~y (frelD hz) (fre'j;, hz) 

L/a : 5 

2 1 0.17 34 2974.3 .. 
. 2 0.3773 6471.1 .. 
" 3 0.5528 9480,3 .. 

4 0. 6 760 11,593.6 .. 
5 0. 759 3 13,022.1 .. 

3 1 0.1207 2069.6 2118 

" 2 0.2357 4043.0 .. 
. 3 0.3731 6398.3 .. 
" 4 0.5001 8577.2 .. 
. 5 0. 6062 10,397.2 .. 

L/a • 3 

2 l 0. 3888 6668.3 .. 
" 2 0.6692 11,476.5 .. 

3 0. 8054 13,812.2 .. 
" 4 0.8841 15,163.0 .. 

5 0.9495 16,285.7 .. 
3 1 0.2421 4151.7 .. 
" 2 0. 4726 8224.7 .. 
. 3 0. 6612 11,340,7 .. 
. 4 0.7876 13,508.3 .. 
. 5 0.8888 15,244.0 .. 

L/a • 1 

2 1 0.9349 16,034.2 .. 
. 2 1.1361 19,485.2 .. 

3 1.5308 26,253.1 .. 
4 2.1720 37,251.1 .. 

. 5 3.0449 52,222.2 .. 
3 1 0.8516 14,605.0 .. 
. 2 1,1378 19,514.2 .. 
. 3 !. 5635 26,814.3 .. 

4 2.2173 38,027.8 .. 
. 5 3. 0950 53,080.8 .. 

Finite 
Element 

(fre~ hz) 

2977.6 

6359,5 

9498.2 

11,831.8 

13,456.7 

2117.5 

4218,3 

6834.3 

9310.4 

11,313.4 

6465.2 

10,746.6 

13,534.4 

15,147.7 

16,553.2 

4123.5 

8006.2 

11,292.4 

13,717.1 

15,669.7 

15,459.1 

19,348.8 

26,227.1 

37,450.1 

52,810.3 

14,057.9 

19,007,7 

26,764.0 

38,225.4 

53,668.4 

PERCENT DEVIATION 

=loo·Y -1oo-y 

- +0 .1 

- -1.7 

- +0. 2 

- +2.1 

- 1'3. 3 

+2. 3 +2. 3 

- +4. 3 

- +6.8 

- +8. 5 

- +8. 8 

- •3 .o 

- -6.4 

- -2.0 

- -o. o 

- +1. 6 

- -o. 1 

- -2,6 

- -o. 4 

- •1. 5 

- +2.8 

- -3.6 

- -o. 7 

- -o.l 

- +0. 5 

- +1.1 

- -3.8 

- -2.6 

- -o. 2 

- +0. 5 

- +1.9 

! 

N 
N 
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and finite element results are presented. Experimental 

results are not presented for all combinations of modal 

numbers, n and m, and the geometric parameter, L/a, due 

to the limitations noted at the bottom of the table. 

The experimental natural frequencies deviate by less 

than eight percent from the corresponding energy method 

frequencies. Finite element deviations are seen to 

increase with increasing element-length/radius ratio 

and increasing axial half-wave number, m. Since eight 

finite elements were used for all L/a ratios, increasing 

L/a ratios in Table I signify increasing element-length/ 

radius ratios. For element-length/radius ratios ~ 0.625 
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(L/a ~ 5) and m S 5, the deviations of the finite element 

results from those of the energy method are always less 

than nine percent. For element-length/radius ratios > 0.625 

(L/a > 5), the deviations continue to increase with 

increasing element-length/radius ratio. Much smaller de-

viations would be expected for L/a > 5 if a larger number 

of finite elements had been used. Due to the increased 

computer time required for an increased number of finite 

elements, the finite element results of Table I were all 

obtained with an eight element model. 

B. Mode Shape Comparison 

Typical mode shapes from the finite element method 

and the energy solution are shown in Figs. 6, 7, and 8. 

Mode shapes shown are predominately radial with L/a=20 
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and n=2. The radial motion component of mode shape is 

shown in Fig. 6, the tangential motion component in Fig. 7, 

and the axial motion component in Fig. 8. As previously 

noted, the finite element program allows a linear variation 

of u and v over an element length, while it allows a cubic 

variation of w over an element length. In presenting the 

finite element results of Figs. 6, 7, and 8, the normalized 

mode shape data obtained from the computer output are 

plotted as points at the stations between finite elements. 

These points are then connected with a dash line repre

senting the particular variation over an element length 

which applies. The solid lines of Figs. 6, 7, and 8 are 

obtained from the assumed beam function displacements used 

in the energy method. These functionsare normalized to 

C=l which establishes numerical values for A and B given 

by the amplitude ratios described in Appendix B. 

Visual inspection of the mode shapes of Figs. 6, 7, 

and 8 gives the following results. The finite element 

mode shape representation becomes progressively rougher and 

more approximate as the axial half-wave number, m, increases. 

This trend was found to be most pronounced for long cy

linders (L/a=20) represented in the figures and could be 

anticipated by checking the frequency results, since the 

largest finite element frequency deviations occurred for 

L/a=20 and m=S. Even for this worst case, the agreement 

between finite element and energy solution mode shapes 



is remarkably good. 

C. Discussion of Results 

The frequency comparison of Table I indicates 

excellent agreement between the energy method results and 

those obtained by both methods of verification. An 

explanation for this agreement shall now be discussed. 

For a shell, the four conditions characterizing a 

free end are 

N =0 
X 

M =0 
X 

T =0 
X 

s =0 
X 

When the displacement functions of Eqs. (4) and (10) are 

assumed and the four stress resultants on the x face, 

N , M , T , and S , are evaluated at the boundaries, the 
X X X X 

stress resultants are found not to vanish. Thus, the 

assumed displacement forms of Eqs. (4) and (10) do not 

satisfy the natural boundary conditions of a free-free 

cylinder. Then why does the energy method of this inves-

tigation predict natural frequencies with good accuracy? 

The answer to the above question is drawn from 

Figs. 6, 7, and 8. In these figures, the nodal locations 

and the modal forms of the assumed displacement functions 

correspond well with those determined from the finite 
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element method. It is this agreement of radial, tangential, 

and axial motion mode shapes that has allowed the energy 

method to predict natural frequencies with good accuracy. 

If the natural boundary conditions had also been satisfied, 

the approximate natural frequency of the energy method 



would be an upper bound to the exact value of natural 

frequency for the particular mode (16). However, due to 

the accuracy indicated by Table I, the fact that the 

approximate frequencies may not be interpreted as an 
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upper bound makes the results of the energy method of this 

investigation of no less practical importance. Finally, 

a more sophisticated form of the Rayleigh-Ritz method could 

be used to obtain better approximations to the natural 

frequencies, but again due to the accuracy noted in Table I, 

further refinement is considered unjustified for most 

engineering applications. 



30 

V. CONCLUSIONS 

The energy solution developed in this investigation 

gives excellent approximations to the natural frequencies 

of free-free thin cylinders. Furthermore, with only 

slight modifications, the developed frequency equation for 

the free-free case is shown to agree with the frequency 

equations developed by Arnold and Warburton for the fixed-

fixed and simply-supported cases. When compared with ex-

perimental and finite element results, the maximum 

deviation of energy method frequencies for the free-free 

cylinders investigated is less than ten percent. Arnold 

and Warburton, as well as Sharma, found similar deviations 

for the fixed-fixed and simply-supported cases. 

Excellent agreement also exists between the assumed 

displacement forms of the energy method and those predicted 

by the SABOR IV-DYNAL finite element program for the 

free-free cylinders of this investigation. This agreement 

has allowed the natural frequencies to be predicted with 

good accuracy. 
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APPENDIX A 

INTEGRATIONS FOR STRAIN ENERGY AND KINETIC ENERGY 

l. Strain Energy (even number of axial nodes) 

s = E 
2 2(1-v ) 

2TI L/2 h/2 
f f f 

0 -L/2 -h/2 

+ ~(l-v)e 2 J a d~ dx dz xy 

let s 1 = f f J e 2 d~ dx dz 
X 

J e 2 d~ dx dz 
y 

s3 = 2v f f 

s
4 

= ~(1--v) f 

then S = 
Ea 

2 2(1-v ) 

f e e d~ dx dz 
X y 

f J e 2 d~ dx dz xy 

(a) The integration of Eq. (A-2a) follows. 

L/2 h/2 
f f 2 cos ( n~) 
-L/2 -h/2 

d¢ dx dz 
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(A-1) 

(A-2a) 

(A-2b) 

(A-2c) 

(A-2d) 

(A-3) 

Carrying out this integration ln three parts, the 

integrations are 

h/2 
f F C z) d z = h a 2 C ll 

4
W

2
S + ll 

2 
U 

2 
) (A-4a) 

-h/ 2 
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2TI 
J G(tP) diP = ·rr (A-4b) 

0 

L/2 
L (l+k 2 ) 

sinE.L 

J H(x) dx a = + 
-L/ 2 2 2f-l 

a 

sinfJL 
k2 

sinhfJL 
+ a + a 

f-1 f-1 
(A-4c) 

- -a a 

The results of the integration over x can be further 

simplified by evaluating k 2 , which becomes after 

using the relationships, tanfJL = -tanhfJL and 
2a 2a 

k = sinfJL/sinhfJL 
2a 2a 

Substituting Eq. (A-5) into Eq. 

gration over x becomes 

L/2 
J 
-L/2 

H ( x) dx = L (l+k2) 
2 

and sl becomes 

Sl = nhL (8lfJ4W2B+8lfJ2U2) 
2a 2 

where S = h
2 

12a2 

8 = (l+k 2 ) 
1 

(A-5) 

(A-4c), the inte-

(b) The integration of Eq. (A-2b) follows. 



2TI 

J 
L/2 h/2 

J J 2 cos ( n 1>) 
0 -L/2 -h/2 

Carrying out this integration in three parts, the 

integrations are 

h/2 
J 
-h/ 2 

2TI 

2 F(z) dz = a h [ 2 2 2 J (Vn-W) + (nV-n W) B 

f G(¢) diP = TI 
0 

L/2 
J 
-L/2 

H (x) dx L = 2 e
1 

(integration similar as for s 1 ) 

and s2 becomes 

(c) The integration of Eq. CA-2c) follows. 

2 v 2TI L/2 h/2 
s 3 = ~ f f J cos

2
Cn1>) 

a 0 -L/2 -h/2 

2 2 2 2 J 2 { [w~ aCVn-W) + ~aU(nV-n W)]z- [Ww CnV-n W) z 

- [~a2 uCVn-W)]} (cos 2 ~x- k 2cosh
2

Wx) diP dx dz 
a a 

Carrying out this integration in three parts, the 

integrations are 

h/2 
J 
-h/2 

2 F(z) dz = ha [ 
2 2 2 2 ] -~nUV + ~UW + SC~ n W - n~ VW) 
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2Tr 
f G(<P) d<P = n 

0 

L/2 
f H(x) dx = 
-L/2 

Substituting k2 

and s
3 

becomes 

sin]JL 
a 

2]J 
a 

from 

L sinh JJL 
+ k2 a 

2 -
2]J 

a 

Eq. (A-5) 

vh n L [ 2 2 2 2 J 83 = a2 82 wUW-wnUV + sew n w - n]J WV) 

(d) The integration of Eq. (A-2d) follows. 

(l-v) 2Tr L/2 h/2 
8 4 = --4- f f f sin

2 
(n<P) 

2a 0 -L/2 -h/2 

(sin 21Jx + 2k sin]Jx sinh~x 
a a a 

Carrying out this integration ln three parts, the 

integrations are 

2Tr 
f G(<P) d<P = n 

0 

L/2 

f H( x) dx 
-L/ 2 2]J 

a 

- 3 
2]J 

a 
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S b . . 2 f (A ) u stltutlng k rom Eq. -5 

L/2 
f H(x) dx = ~ [cl-k

2
) - ~~ sin~LJ = 

-L/2 

and s4 becomes 

22 222 2 ] +4BCw V + w n W - 2w nVW) 

39 

(e) Finally, substituting the results for s
1

, s
2

, s
3

, 

2 . 

let 

then 

(a) 

and s 4 back into Eq. (A-3), the expression for strain 

energy glven in the body of the thesis, Eq. CS) is 

obtained. 

Kinetic Energy (even number of axial nodes) 

2TI L/2 h/2 
[cu,t)2 

2 
(-w,t)2] T = ..2_ J J J + (v,t) + 

2o 
0 0 -L/2 -h/ 2 

a d¢ dx dz (A-6) 

J J 2 (A-7a) Tl = fCu,t) d¢ dx dz 

J J 2 (/-\-7b) T2 = fCv,t) d¢ dx dz 

J J 2 (A-7c) T3 = fCw-,t) d<P dx dz 

T = pa 
(Tl+T2+T3) (A-8) 

2g 

The integration of Eq. <A-7a) follows. 

2TI L/2 h/2 
u2c . 2w sin·E-x sinh.!::.x 

Tl = J J J sln -x + 2k 
a a a 

0 -L/2 -h/2 

+ k 2sinh 2 Wx) 2 cos (n<P) d¢ dx dz 
a 



(b) 

(c) 

The integrations take the same form as section (ld); 

the results are 

T = TILh 8 {;2 
1 2 3 

The integration of Eq. (A-7b) follows. 

2Tr L/2 h/2 . 2 2 
T2 = f f f V (cos ]Jx - 2k cosE.x coshE.x 

0 -L/2 -h/2 a a a 

The integration takes the same form as section (lb); 

the results are 

T2 = TILh 8 V 2 
2 1 

The integration 

2Tr L/2 
= f f f 

of 

h/2 
T3 

0 -L/2 -h/2 

Eq. CA-7c) follows. 

. 2 2 
W (cos llx - 2k cosllx coshE.x 

a a a 

The integrations are identical with those of T
2

; the 

results are 

T = nLh 8 W2 
3 2 l 
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(d) Finally, substituting the results for T1 , T 2 , and T 3 

back into Eq. (A-8), the expression for kinetic energy 

given in the body of the thesis, Eq. (6), is obtained. 

3. The integrations for strain energy and kinetic energy 

follow a similar form for the case of an odd number of 

axial nodes. 



APPENDIX B 

REDUCTION TO FREQUENCY EQUATION 

AND AMPLITUDE RATIOS 
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1. The three equations of motion obtained from Lagrange's 

equation are 

2 • Reduction process 

The above system of equations are of the form 

x 1A + ylB + z 1 c = 0 (B-la) 

x 2A + y2B + z 2 C = 0 (B-lb) 

x 3A + y3B + z
3

C = 0 (B-lc) 

-where )(1 :: (G-L'.8 ) 
3 

(B-ld) 

y2 :: (H-L'.8 ) 
1 

(B-le) 

z3 :: (J-f_l,8 ) 
1 

(B-lf) 



From (B-la) 

substituting into (B-lb) and (B-lc) 

(x2 - x 1 z 2 /z 1 )A + (y2 ylz2/zl)B = 0 

(x3 - x 1 z
3
/z

1
)A + (y3 ylz3/zl)B = 0 

from (B-3b) 

(x3 - xlz3/zl) 
B =- ( 

ylz3/zl) 
A 

y3 -

substituting into (B-3a), dividing through by A, and 

simplifying,the results are 

substituting x
1

, y
2

, and z 3 from Eqs. (B-ld), (B-le), 

and(B-lf), the desired cubic frequency equation is 

obtained 

= 0 

42 

(B-2) 

(B-3a) 

(B-3b) 

(B-4) 

(B-6) 

Eq. (B-6) can be arranged in the form of Eq. (9) found in 

the body of the thesis, as follows 

6 3 - R 6 2 + R 6 - R = 0 2 1 0 
(B-7) 
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where R 2 = 1/(8 8 ) 
1 3 

R2 = R(J8 8 + H8 8 + G8 2 ) 1 3 1 3 1 

Rl = R(GJ8
1 + GH8 - HJ8 - y3z2 8 3 - y1x2 8 1 x3zl81) 1 3 -

Ro = R(x2y3zl - Gy3z2 - ylx2J - x 3 z 1H - x3ylz2 + GHJ) 

G = [].1=81 + :lz(l-v)n
2

8 3] 

H {n
2

8 :lz(l-V)]J 2 8 2 
2 (1-V)]J 28)} = + + S[n 8 1 + 

1 3 

LJ {81 
4 4 = + B[JJ 8 1 + n 8 

1 
+ 2V]J 2 2 n 8 2 + 2(1-V)]J 2 

n283]} 

y, = - [ V]Jn8 2 
+ :lz(l-V)]Jn8 3] 

...L 

zl = V]J8 2 

-{n8 1 
3 2 2 n8 3]} z2 = + S[n 8 1 + V]J n8 + 2(1-V)]J 2 

x2 = y1 

y3 = z2 

x3 = z1 

6 = pa 2 w2 Cl-v 2 )/Eg 

Solving the cubic frequency equation, Eq. (B-7), for the 

three roots6 1 , 6 2 , and 6 3 , frequency in radians per second 

lS obtained from 

1 w. = 
l a 

6.Eg 
l 

2 p(l-v ) 
where l = 1, 2, and 3 (B-8) 

The amplitude ratios among the three displacements 

u, v, and w can be obtained for each frequency root by 

applying Eqs. CB-2) and (B-4). Normalizing to A and using 

the same expressions defined in Eq. CB-7), the results are 



(B/A). 
l 

(CIA). = 
l 

44 

(G-~.8 )(J-~.8 )/z J 
l 3 l 1 1 (B-9a) 

(G-~.8 )(J-~.8 )/z J 
l 3 l 1 1 

- Y 1 CJ-~.8 )/z J } 
l 1 1 

(B-9b) 
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