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ABSTRACT 

Excess water production is one of the most prevalent operational problems that oil 

companies are facing.  Polymers and polymer gels have been used widely to control 

excess water production for mature oilfields.  It is well known that polymers/gels can 

reduce the permeability to water (Krw) much more than that to oil (Kro). This 

phenomenon is called disproportionate permeability reduction (DPR) and the polymers or 

gels that exhibit this behavior are called relative permeability modifier (RPM). When 

RPMs are placed in reservoir, reduced permeability to water can lead to decreased water 

production, and sometimes increased hydrocarbon production, therefore prolonging the 

useful life of the reservoir. However, arguments exist about where and when RPM can be 

used.   

Numerical simulation was run to investigate whether RPM can be used to reduce 

water production and increase oil recovery for two reservoir models: one layer 

homogeneous formation, two-layer heterogeneous formation with crossflow. Linear flow 

and five-spot well patterns were considered for the simulation. Results showed that the 

relative permeability modification with five spot and two layers flow pattern is more 

effective than linear flow with two layers and one layer. The effective period of DPR 

treatment is longer if treated in low water cut than in high water cut. DPR can improve oil 

production and reduce water production during the effective period of a treatment but the 

final recovery could not be significantly improved even sometimes worse. Results also 

show that better water control results can be achieved with more gel injection. 
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1. INTRODUCTION 

  

 

Almost all oil or gas reservoirs produce water. Since nature does not like 

vacuums, water usually replaces oil as hydrocarbon reserves decline in the field. In 

mature oil fields, most of the produced fluid is water, with oil or gas representing a small 

percent of the total production. Moreover, many reservoirs are submitted to water 

injection, which provides pressure maintenance and improves sweep efficiency. A 

continuous increase in water production is thus normal in the lifetime of a field.  Water 

flow paths in the reservoir, especially close to the wellbore, are irregular. They by-pass 

large hydrocarbon-saturated zones and induce undesirable high water-cut levels. In such 

situations, "bad" or undesirable water is produced, as opposed to "good" water that is 

created under normal conditions. Chemically enhanced oil recovery, especially gel 

treatment, is a crucial process to shut off or reduce excess water production while at the 

same time increasing the hydrocarbon production rate in mature oil and gas fields. 

Robert et al, (2007) explained when treating unfractured and multizoned 

production wells that are not fully drawn down, the well’s long-term oil-production rate 

can be increased if the post-treatment drawdown can be increased substantially. Also, 

treatments that promote short-term (transient) decreased water/oil ratios can, in principle, 

be applied to many unfractured production wells (that are not totally watered out) in 

matrix-rock reservoirs.  

In this study one- and two-layer reservoirs were considered for a strong 

permeability modification, treatment which intends to decrease water influx from the 

high-permeability layer or fingering effect, thus favoring oil production. When the 
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different layers are clearly separated and work over costs are acceptable, a water shutoff 

treatment aims at sealing off the watered-out layer with strong gels placed by mechanical 

tools (coil tubing, packers, etc.). Nevertheless, in practice, bullheading is often the only 

option for the operator due to several problems like poor identification of the different 

zones surrounding the wellbore, multilayered production, unfavorable completion (gravel 

pack, slotted liners, etc.) or relative permeability to water more than the relative 

permeability to oil or to gas. Liang et al. (1995) ” indicated that a method called 

“disproportionate permeability reduction” (DPR). This unique property is the basis for 

the use of polymers and gels as water control agents in near-wellbore treatments of 

production wells, especially when polymer injection has to be bullheaded without 

mechanical zone isolation to protect the oil zones. High water production in association 

with crude oil is one of the major production difficulties for the petroleum industry. 

Coning due to bottom water drive and production from high-permeability watered-out 

layers during flooding are among the main causes. Water handling and disposal costs 

often shorten the economic life of a well. 

Disposal of produced water is also an environmental concern, especially offshore. 

The application of relative permeability modifiers is useful in wells where oil/gas-

producing zones cannot be isolated, and bullhead treatments are required. In this case, 

polymers or gelant solutions are mixed at the surface and injected into the reservoir 

through a production well. Once inside the formation, a gel is formed or the polymer is 

retained within the rock. The ideal relative permeability modification (RPM) treatment 

will reduce the effective permeability to water without affecting the oil/gas permeability. 

As the properties of the flowing fluids remain unchanged before and after treatment, the 
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polymer/gel must cause some modifications in the pore sizes, fluid distribution and flow 

paths at the pore level, in order for the relative permeabilities to be changed. 

Reservoir simulation is a form of numerical modeling which is used to quantify 

and interpret physical phenomena with the ability to extend these to predict future 

performance. The process involves dividing the reservoir into a number of discrete units 

in three dimensions and modeling the progression of reservoir and fluid properties 

through space and time in a series of discrete steps. The equation solved for each cell and 

each time step is a combination of the mass conservation and an equation of state. There 

are several different techniques that can be used to solve the resulting equation. 

In this numerical simulation study, four of scenarios were run to examine the 

effect of polymer and gel treatment on water and oil flow. This study benefits the 

industry by demonstrating the applicability of polymer gel treatment to reduce the 

permeability of water flow and detailing numerical simulation methods necessary to 

extrapolate this work to oil reservoirs. This study also presents an easy-to-follow 

procedure to assist with the understanding of this RPM-treatment prediction technique as 

a low cost alternative to a side track or re-drill. Evaluation of water shutoff treatment 

should not be based on observed water cut reduction, but on added value to operations 

with respect to water cost saving, oil revenue, or both. 

This method will provide a practical method to improve sweep efficiency. The 

demand for effective and selective chemical water control techniques is at an all-time 

high, as old fields tend towards maturity and decline. Results of the current work 

demonstrate that these relative permeability curves were employed to identify conditions 

where relative permeability modifiers can be used with potential for success.  
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1.1 OBJECTIVE OF THESIS 

 

The objectives of this study are:  

 To answer whether DPR can be used in homogenous reservoirs and multiple-

layer reservoirs with crossflow through numerical simulation study.  

 To when is the best time to implement DPR treatment 

 To understand the fundamentals of gel polymer’s effect on water and oil flow 

in rocks. 

 To understand the mechanisms of DPR to water and oil in a reservoir scale.  

 To provide guidance for maximizing DPR through the selection of gel 

polymer for different formations. 
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2. REVIEW OF LITERATURE 

 

This section provides the background of one of the major challenges facing the 

petroleum industry; excessive unwanted water production from hydrocarbon reservoirs is 

increasing worldwide as more reservoirs are becoming mature. Water production is a 

serious problem in mature oil and gas fields. By some estimates, it represents the largest 

single waste stream in the United States. Water handling and disposal costs decrease the 

economic life of a field. Disposal of produced water also is an environmental concern, 

both on- and off-shore. To mitigate this problem, scientists and engineers have introduced 

gel as a plugging agent. A gel plug fractures and thus restricts water from following 

through these paths, directing it instead into low-permeability areas. Gel is also used to 

reduce channeling in gas flooding reservoirs (Seright et al. 1995).   

 

2.1 ENHANCED OIL RECOVERY POTENTIALS   

 

Fewer new wells are being drilled (Annual DOE Report, 2008, 2009), and fewer 

large oil reservoirs are presumed to be available. Drilling expenses have increased 

dramatically, and fewer companies are capable of making investments in such 

technologies as deeper wells that are necessary to reach target zones. These and other 

factors have made EOR much more attractive in the United States, Canada, and other 

countries. 

Rising world oil prices have redirected the interest of oil companies around the 

globe toward improving the availability of recoverable reserves and protecting EOR 

technology. EOR projects once considered economically risky now seem practical 
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(Anderson et al. 2006). High prices have also compelled companies to increase their 

production rates. 

Secondary production in many fields is reaching its economic limit, and the focus 

is shifting to asset development. Tertiary methods have been proven to work (Adams et 

al.1987; Chang et al. 2006; Jayanti et al. 2002; Bai et al. 2007), and in many reservoirs 

worldwide a large portion of the original oil in place (OOIP) remains. The potential for 

EOR worldwide therefore is very high. In recent years, numerous advancements have 

made these technologies not only more practical, but also economically feasible.  

 

2.2 EXCESS WATER PRODUCTION AND ASSOCIATED PROBLEMS  

  

A serious problem in oil-producing reservoirs is water production. On average in 

the United States, more than seven barrels of water are produced for each barrel of oil. 

Worldwide, the average is three barrels of water for each barrel of oil. The annual cost of 

disposing of this water is estimated to be $5-10 billion in the United States and around 

$40 billion worldwide (Seright et al. 2000). As with most things in nature, fluids flow 

through the paths of least resistance. In reservoirs, such paths are often determined by the 

heterogeneous nature of the rock. According to the Department of Energy (DOE), 

produced water is defined as the water brought up from the hydrocarbon-bearing strata 

during extraction of oil or gas. It can include formation water, injection water, condensed 

water, and trace amounts of treatment chemicals. 

Produced water is the highest volume waste generated in association with oil and 

gas production operations. This waste stream is characterized by high volume and low 
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toxicity. Over its life span, a typical oil field is likely to produce at least as much water as 

oil. In gas fields, the volume of produced water is significantly lower.  

Diagnosis and management of water production problems have been objectives of 

the oil industry almost since its inception because produced water has a major impact on 

the profitability of an oilfield project. Producing one barrel of water requires as much or 

more energy as producing the same volume of oil (Eoff et al. 2006). Moreover, water 

production causes major problems such as sand production, reduced oil production, and 

tubular corrosion. 

Remedies have been elusive. The oil industry has seen many attempts to manage 

water production. Historically, it has used the most convenient or least expensive 

methods such as reperforation and cement plugs. Today, some strategies have been 

implemented to restrict water from entering the well bore. These involve mechanical 

blocking devices or chemicals that shut off water-bearing channels or fracture within the 

formation and prevent water from making its way to the well.     

 

2.3 METHODS TO REDUCE WATER PRODUCTION   

 

The aim of this research is to present a method to reduce water production by 

changing RPM using a numerical simulation study. This knowledge could allow 

improving the oil production and design of products in order to increase the success of 

well treatments. 

Operators have used various mechanical and well construction techniques to 

block water from entering wells. Seright et al. (2000) offer several examples, including 

straddle packers, bridge plugs, tubing patches, well bore sand plugs, infill drilling, pattern 
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flow control, and horizontal wells. These techniques have been used for many years, but 

they do not work well in all applications. Seright recommends that mechanical 

approaches be used to block casing leaks, flow behind the pipe without flow restrictions, 

and unfractured wells with barriers to cross flow. However, these approaches may not be 

effective in solving other types of water production problems. 

Seright (2000) summarizes the causes of excess water production. Each of these 

problems requires a different approach, so a successful treatment of water production 

problems depends on correct identification of the nature of the problem. Many different 

materials and methods can be used to assess excess water production problems. 

Generally, these methods can be categorized as either mechanical or chemical. 

  Another approach of particular interest here is to shut off water production by 

chemical injection while allowing continued oil production. The chemicals are introduced 

deep in the formation where they are unlikely to affect the underground water and will 

thus have a net beneficial impact.  

Most previous research effort has been directed toward testing polymer or gels in 

cores and sand-packs to improve the understanding of water control. However, the effects 

of RPM could vary with the polymer/gel system and the particular conditions studied. As 

a consequence, several theories have been proposed (Liang and Seright, 1997; Zaitoun 

and Bertin, 1998; Barreau et al., 1999; Dalrymple et al., 2000; Liang and Seright, 2000; 

Al-Sharji et al., 2001a; Stavland and Nilsson, 2001; Grattoni et al., 2002), but there is a 

lack of general agreement between researchers on the basic mechanisms and the 

conditions under which they are applicable.     
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Polymer retention in a porous medium generally decreases the permeability of 

water. This phenomenon can be modeled by applying a layer of adsorbed polymer onto 

the pore walls, which reduces the pore sizes. Zaitoun and Bertin (1998) describe the oil 

and water relative permeability modification in terms of wall effects resulting from the 

adsorbed polymer layer. The adsorbed layer thickness can be estimated by modeling the 

pores of the system as a bundle of capillary tubes, and the reduction in permeability can 

be used to calculate the thickness of the polymer layer (Zaitoun and Kohler, 1988).  

Their interpretation indicated that a multilayer might be formed by mechanical 

entanglement between the flowing and immobile polymer molecules. Al-Sharji et al. 

(2001b) performed polymer flow experiments in water-wet micro-models and observed 

the build-up of polymer in the crevices (along the grain–grain contact), which induced a 

significant water permeability reduction with little effect in the oil permeability. 

However, no layers or RPM effects were observed in oil-wet models. 

 

2.4 GEL TREATMENT  

 

When gels set up in the cracks, they block most water movement to the well while 

still allowing oil to flow to the well. Many different types of gels can be used, depending 

on the specific type of water flow to be targeted. Thomas et al. (2000), Mack et al. 

(2003), Seright et al. (2001), and Green et al. (2001) discuss the key factors to be 

considered when designing and conducting a gel treatment. Among the most important 

considerations are component ingredients, gel properties, and treatment processes.   

Green et al. (2001) described a series of gel treatments at four Kansas wells. Each 

treatment cost $14,000 to $18,000 per well, including polymer and well servicing costs. 
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Following treatment, the total oil production increased by about 30 barrels per day (bpd), 

and water production dropped by about 1,000 bpd. Lifting costs associated with the lower 

fluid volume decreased by about $300/month/well. With less stress on the lifting 

equipment, well servicing costs also decreased by about $2,400/year/well. Since mid-

2000, a total of about 37,500 bbl of oil have been economically recovered, representing 

about $1.60 per incremental bbl to date, and several years of production are still 

anticipated. The gel polymer treatments extended the economic life of the wells by at 

least seven years. 

Reynolds et al. (2002) and Mack et al. (2003) suggest the following criteria for 

selected candidate wells for gel treatment: the wells must be near the end of their 

economic lives, have significant remaining mobile oil in place, contain a high water to oil 

ratio, have a high-producing fluid level, have declining oil and flat water production, be 

associated with active natural water drive, and have a high permeability contrast between 

oil- and water-saturated rocks. 

2.4.1 Gel Types. Gel properties depend mainly on the chemical composition of 

the gel, including polymer concentration and the degree of crosslinking. Gel treatments 

can be applied by using different types of gels which have different chemical 

compositions and particle sizes. The two types of gel most commonly used by the oil 

industry today are in-situ gels and PPGs.  

Both in-situ gel and PPGs have the same function of reducing the reservoir 

heterogeneity and improve the sweep efficiency, but they differ in terms of composition 

and method of preparation; thus they produce different results. Injection of stable 

preformed microgels modifies relative permeability and reduces water production. The 
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procedure is an attractive means to minimize the risk of formation plugging and ensure 

the efficiency of in-depth treatments. 

Gel is a crosslinked polymer consisting of several chemical materials including a 

polymer, a crosslinker and some additives. Polymer gels were first applied in the 1970s 

when partially hydrolyzed polyacrylamide was used to control conformance in oil 

reservoirs. Polyacrylamide in its pure state is electrically neutral and comprises a carbon-

carbon backbone hung with amide groups. PAMs used in in-situ gel systems are all 

partially hydrolyzed to carry a negative charge. Therefore, it can form an ionic bonding 

with multivalent cations.  

PPGs are dried crosslinked polyacrylamide powders. They use super absorbent 

polymers (SAPs) that can absorb over a hundred times their weight in liquids and do not 

easily release the absorbed fluids under pressure (Bai et al.  2008).  

According to Bai et. al (2007), particle gels have great potential for conformance 

control due to their unique advantages over traditional in-situ gels. PPGs are synthesized 

prior to formation contact, thus overcoming several drawbacks of in-suite gelation 

systems, such as uncontrolled gelation time, variation in gelation due to shear 

degradation, and gelant compositional changes induced by contact with reservoir 

minerals and fluids. PPGs can be controlled for strength and size, and they are 

environmentally friendly. Further, their stability is not sensitive to the reservoir’s 

minerals and formation water salinity. 

PPGs usually have only one component during injection, so they do not require 

the injection facilities and instruments needed to dissolve and mix polymers and 
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crosslinkers in conventional gel systems. The simple injection operation processes and 

surface facilities can significantly reduce operational and labor costs  (Bai, 2008). 

Various types of preformed gels are commercially available; the major differences 

among them are particle size, swelling time, and swelling ratio. These commercial gels 

include PPG (Coste et al.  2000; Bai et al.  2004, 2005; Zaitoun et al.  2007), pH-sensitive 

crosslinked polymers (Al-Anazi, 2002; Huh, 2005), preformed bulk gels (Seright et al.  

2004, 2005),  microgels (Chauveteau et al.  2000, 2001), partially preformed gels 

(Sydansk et al.  2004), swelling millimeter-sized polymer grains (e.g., Diamond Seal®), 

and swelling micron-sized polymers such as Bright Water® (Pritchett, 2003; Frampton, 

2004). Most of these gels have been applied to various reservoirs with satisfactory 

results.  

2.4.2 Gel Applications. Seright et al. (2001) reported many successful gel 

treatments. They evaluated 274 gel treatments conducted in naturally fractured carbonate 

formations. The median water-to-oil ratio (WOR) was 82 before the treatment, 7 shortly 

after the treatment, and 20 a year or two after treatment.  

Oil production increased following treatment and remained above pretreatment 

levels for 1 to 2 years. Thomas et al. (2000) reported that an initial investment of 

$231,000 for gel treatments resulted in incremental profits of $1.7-2.3 million over a two-

year period.  

2.4.3 DPR Properties of Gels / Polymers. Gel properties may vary over several 

stages during the course of gel treatment. For example, both the concentration and the 

molecular weight of polymer may vary. Viscosity too, may vary; it affects the size of 
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cracks or fractures that can be penetrated at a given pressure. It also permits injection of 

the material as a premixed gel.  

The degree of crosslinking might change throughout a treatment. Density is also a 

significant factor, if the gel is too dense, it can sink too far into the water layer and lose 

its effectiveness. Also, setup time, which determines how far into the crack or fractures 

the gel will penetrate. 

2.4.4 DPR Mechanisms. Stavland, Nilsson (2001) “Segregated Flow is the 

Governing Mechanism of Disproportionate Permeability Reduction in Water and Gas 

Shutoff” indicated that DPR normally reduces water permeability more than oil or gas 

permeability. It is most effective when used against water production caused by coning or 

in situations where the watered out layers are separated from the oil producing layers.  

DPR treatment in situations with two-phase flow will cause an improved pressure 

drawdown because of water saturation buildup in the treated zone. The methods of 

Polymer is adsorption at the pore surface and the possibility to alter the wettability to 

more water-wet situation as well as some lubrication effects. Dehydration and swelling of 

polymer and gel, segregated flow of oil and water and stability between the differing 

capillary forces. DPR is observed for both single polymers and crosslinked gel. 

On the contrary, when an oil-based gel is used, the oil permeability should be 

reduced more than water permeability. Liang et al. (1995a,b, 1997) linked the segregated 

pathways with DPR and the hydrophilic character of the porous medium. In water-wet 

media, the oil will flow preferentially through the larger pores, whereas the water will 

flow preferentially through the smaller channels and along the pore walls. Thus, a water-
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based gelant should preferentially invade the smaller paths, and an oil-based gelant 

should invade the larger paths.  

DPR technology has been widely used to selectively control water production due 

to its unique function of reducing permeability to water much more than that to 

hydrocarbon in conventional hydrocarbon reservoirs and gas storage wells. The function 

of disproportionate permeability reduction is essential to polymers or gels when they are 

placed in production wells without protecting hydrocarbon-productive zones.  

With existing technology, polymer gels may have its greatest value when treating 

production wells that intersect a fracture or fracture-like features (Seright 2006). 

Nonetheless, previous DPR researches were focused on conventional unfractured cores 

for two reasons: the first reason is that many people are still very interested in exploiting 

the DPR property to reduce excess water production from unfractured wells, and the 

second is that people target on fully blocking fractures while exploiting the DPR property 

in matrix where has minimized gel penetration for fractured wells.    

Many mechanisms for polymer and polymer gel DPR have been proposed, mainly 

include:  (1) gel swelling in water but shrinking in oil (Mennella 1998, Dawe and Zhang 

1994,  Sparlin and Hagen 1984, Gales 1994, Liang 1995); (2)  Segregated flow path to 

water and oil in porous media (Liang and Seright, 1997, Liang 1995, White 1973 ; 

Schneider and Owens 1982; Nilsson 1998; Stavland and Nilsson, 2001); (3) Wall effect 

by which gels constrict water pathways more than oil pathways in a given pore (Liang 

and Seright 1997, Liang et al 1995, Zaitoun and Kohler 1988, 1989; Barreau 1996; 

Zaitoun et al. 1998); (4) Pore blocked by “gel-droplet” where gel droplets formed in pore 

bodies cause a higher pressure drop at the pore throat in the wetting phase than in the 
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nonwetting one (Liang and Seright 2001,  Nilsson et al. 1998); (5) Gel dehydration 

during oil breakthrough (Seright 2006, 2008; Dawe and Zhang 1994, Green 1998, 

Willhite 2002); and others, such as wettability alteration by gel (Zaitoun 1998), 

Lubrication effect (Sparklin and Hagen 1984), etc.  

DPR mechanisms have been argued for long time due to different core models 

and experimental design used by different researchers. Moreover, all the previous 

experiments were performed either in consolidated cores, sand-packed cores or visual 

pore-networked micromodels.  

 Near wellbore gas flow is usually non-Darcy flow due to high flow rate. 

However, all the previous work was focused on Darcy flow except for a couple of recent 

publications by Dr. Zaitoun’s group (Elmkies 2002, Blanchard 2007). They studied the 

effect of polymer adsorption in a gas/water flow in non-Darcy regimes in a homogenous 

silicon carbide powders cores. But the study of Darcy and non-Darcy effect on DPR in 

fractured systems has not been reported in their publications. 

White et al. (1973) suggested that DPR might be caused by water and oil flowing 

through segregated pathways, i.e., in a porous medium the pathways preferentially taken 

by water and oil are governed by wettability, pore size, and saturation. Therefore, water 

flows through the water-open pathways, while some of the oil pathways remain 

connected by oil and inaccessible to water. If this scenario is valid, a water-based gelant 

primarily follows the pathways available to water. Hence, after treatment these paths will 

be filled with gel. Some oil pathways however, must remain open after the treatment for 

the oil to flow through. Therefore, the water-based gel will reduce water permeability 

much more than oil permeability. 
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When oil and water are flowing simultaneously at a given fractional flow, fluid 

partitioning should naturally occur. The experiments of Liang et al. (1995a,b) showed 

that, depending on the fractional flow, the wettability, the base of the gelant, and water-

relative permeability may or may not be preferentially reduced.  

Nilsson et al. (1998) conducted a mechanistic study of DPR using quartz, sand, 

and Teflon powder to simulate strong water-wet and oil-wet porous media. Their 

experiments showed that a water-based polyacryalmide gel reduced the permeability to 

water significantly more than to oil, and they attributed the DPR to the segregated 

pathways. 

2.4.5 Application Condition of DPR Treatment. Seright et al. (2007) suggested 

that DPR treatment can be successfully applied where some degree of excessive water 

production problems when appearing either in oil or gas production wells. DPR can be 

applied using bullhead injection due to excessive water production instead of mechanical 

zone isolation. Also, DPR can be attractive for the application of a matrix rock that is 

nearby water producing fracture.  

DPR is applicable for multizoned  unfractured production well  that has excessive 

water production because this treatment is useful  for long term WSO.  Furthermore, 

DPR can provide short-term decreased water oil ratio for production wells that are not 

fully watered out where the radial flow is appearing in the matrix rock; on the other hand, 

all these wells need to be engineered. 

Polyacrylamide or polymer gels are widely used in DPR applications. In addition 

to the reservoir channel/streak permeability, formation water composition, concentration, 

and reservoir temperature. The selection of polymers for DPR applications also depends 



17 
 

 

on the extend to how much the chemicals can reduce permeability to water more than to 

hydrocarbon. 

  Many polymers were evaluated for this purpose (Bai 2007, Kalfayan and Qu 

2008, Rousseau 2005, Seright 2006, Willhite 2008, Zitha 2006). For example, Seright 

(2006) tested the DPR performance of a few Cr(III)-Acetate-HPAM formulations in 

Berea sandstone and found that water resistance factor Frrw (the ratio of water 

permeability before gel treatment to that after treatment) is more than 2,000, but ultimate 

oil resistance factor (Frro) is only 2 or less.  

Willhite’s group (Nyuyen 2006) studied the effects of gelant compositions and 

pressure gradients of water and oil on DPR of sandpacks with polyacrylamide-chromium 

acetate gels, and found that increased gel composition concentration increased selectivity. 

However, previous studies about the magnitude of DPR were most focused on the 

oil/water system, but little attention has been paid to the gas/water system. 
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3. NUMERICAL RESERVOIR MODEL 

 

3.1 MODEL DESCRIPTION 

 

In order to accurately model the difference in reduction of relative permeability 

by using gel or polymer, it is necessary not only to use a reliable simulator, but also to 

take the inherent mechanisms into account. In this study, an existing simulator (CMG 

IMEX, Version 2008.10) is employed to model the relative permeability modification 

disproportion reduction water shutoff treatment for oil recovery with the incorporation of 

relative permeability. Since fluid volumes need to be determined in the displacement 

process, a three-dimensional (3D) model is used for the simulation of the relative 

permeability modification. Figure 3.1 shows the original relative permeability of water 

and oil and Figure 3.2 illustrates the 3D view of the numerical model. In this section, the 

models were applied to four different cases, case 1 which is linear flow for one layer, 

case 2 which is five spot for one layer, case 3 which is linear flow for two layers, and 

case 4 which is five spot for two layers, and each case has two scenarios.  In scenario 1, 

the relative permeability of water was reduced by 20 times through injected gel or 

polymer when applying the water shutoff treatment.  In scenario 2, the relative 

permeability of water was reduced by 60 times through injected gel or polymer when 

applying the water shutoff treatment. In both scenarios, the relative permeability of oil 

was reduced by 2 times.  

3.1.1 Case 1: Linear Flow for One Layer. Case 1 was created with one layer 

and given specific physical properties. The porosity was set to 0.25%. The absolute 

permeability in the I direction was equal to 500 md, in the J direction was equal to 500 
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md, and in the K direction was 75 md. A regular coordinate system having three 

dimensions (i, j, k) was applied to all of the model reservoirs in the case. The number of 

grid blocks in the x direction was 100, the number of grid blocks in the y direction was 5, 

and the number of grid blocks in the z direction was 20. The total number of grid blocks 

was 10,000. Each block in the grid had the size of 10 feet in the x direction, 10 feet in the 

y direction, and 10 feet in the z direction.  Figure 3.2 illustrates the 3D view of the 

numerical model of case 1. In all cases, reservoir temperature, oil density, gas density, 

water density, water formation volume factor, water compressibility, reference pressure 

for water, water viscosity, reference pressure, reference depth, phase contact of water-oil 

contact, datum depth and bubble point pressure are shown in Table 3.1.  There were two 

wells, one producer located in block (1, 3, 1), and one injector located in block (100, 3, 

1). The flow type in these wells was set as linear flow for this case. The locations of these 

wells are shown in Figure 3.3.  

3.1.2 Case 2: Five Spot for One Layer. Case 2 was created for one layer and 

given specific physical properties. The porosity was set to 0.25%. The absolute 

permeability in the I direction was equal to 500 md, in the J direction was equal to 500 

md, and in the K direction was 75 md.  A regular coordinate system having three 

dimensions (i, j, k) was applied to all of the model reservoirs in all cases. The number of 

grid blocks in the x direction was 20, the number of grid blocks in the y direction was 20, 

and the number of grid blocks in the z direction was 20. The total number of grid blocks 

was 8,000. Each block in the grid had the size of 10 feet in the x direction, 10 feet in the y 

direction, and 10 feet in the z direction. Figure 3.4 illustrates the 3D view of the 
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numerical model. There were two wells, one producer located in block (1, 20, 1), and one 

injector located in block (20, 1, 1). The locations of these wells are shown in Figure 3.5. 

3.1.3 Case 3: Linear Flow for Two Layers. Case 3 was built for two layers and 

given specific physical properties.  The porosity was set to 0.25%. In the upper layer the 

absolute permeability in the I direction was equal to 500 md, in the J direction was equal 

to 500 md, and in the K direction was 75 md. In the lower layer the absolute permeability 

in the I direction was equal to 1000 md, in the J direction was equal to 1000 md, and in 

the K direction was 150 md. A regular coordinate system having three dimensions (i, j, k) 

was applied to all of the model reservoirs in all cases. The number of grid blocks in the x 

direction was 100, the number of grid blocks in the y direction was 5, and the number of 

grid blocks in the z direction was 20. The total number of grid blocks was 10,000. Each 

block in the grid had the size of 10 feet in the x direction, 10 feet in the y direction, and 

10 feet in the z direction. Figure 3.6 illustrates the 3D view of the numerical model. 

There were two wells, one producer located in block (1, 3, 1), and one injector located in 

block (100, 3, 1). The flow type in these wells was set as linear flow for this case. The 

locations of these wells are shown in Figure 3.3. 

3.1.4 Case 4: Five Spot for Two Layers. Case 4 was built for two layers and 

given specific physical properties. The porosity was set to 0.25%. In the upper layer, the 

absolute permeability in the I direction was equal to 500 md, in the J direction was equal 

to 500 md, and in the K direction was 75 md. In the lower layer, the absolute 

permeability in the I direction was equal to 1000 md, in the J direction was equal to 1000 

md, and in the K direction was 150 md. A regular coordinate system having three 

dimensions (i, j, k) was applied to all of the model reservoirs in all cases. The number of 
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grid blocks in the x direction was 20, the number of grid blocks in the y direction was 20, 

and the number of grid blocks in the z direction was 20. The total number of grid blocks 

was 8,000. Each block in the grid had the size of 10 feet in the x direction, 10 feet in the y 

direction, and 10 feet in the z direction. Figure 3.7 illustrates the 3D view of the 

numerical model. There were two wells, one producer located in block (1, 20, 1), and one 

injector located in block (20, 1, 1). The locations of these wells are shown in Figure 3.5. 

 

3.2 NUMERICAL PROCEDURES 

 

The CMG IMEX, Version 2008 was used to model relative permeability 

modification for water in a reservoir in order to compare the effect of changing relative 

permeabilities water and oil production in the simulation study.  In case 1 and 3 the 

model reservoir was divided into 100 grid in the I direction, 5 grid in the J direction, and 

20 grid in the K direction. In case 2 and 4 the model reservoir was divided to 20 grid in 

the I direction, 20 grid in the J direction, and 20 grid in the K direction.  CMG IMEX was 

used to simulate a study for relative permeability modification, also known as 

disproportionate permeability reduction or water shutoff treatment.  One injection well 

was created in same grid location (1, 3, 1) in both cases 1 and 3, and was created in the 

same grid location (1, 20, 1) in both cases 2 and 4 for water flooding. One production 

well was created in the same grid location (100, 3, 1) in both cases 1 and 3, and was 

created in the same grid location (20, 1, 1) in both cases 2 and 4 for producing oil. The 

water flooding was applied until a 95% water cut was reached. The reservoir was injected 

with 200 bbl/day of water and produced 200 bbl/day of liquid. There were four different 

cases applied to the simulation model. The oil in place was 236,920 STB. The relative 
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permeability in each case was modified based on the relative permeability for the base 

case as shown in Figure 3.1.  

3.2.1 Case 1 (Linear Flow / One Layer) Scenario 1. Scenario 1 was created 

with linear flow and one layer, with the same permeability and porosity as the rest of the 

reservoir. The relative permeability was reduced by 20 times in water and by 2 times in 

oil, as shown in Figure 3.8. The gel polymer radius was 39.9 ft and the pore volume was 

250 ft³ as shown in Figure 3.10. 

3.2.2 Case 1 (Linear Flow / One Layer) Scenario 2. Scenario 2 was created 

with linear flow and one layer, with the same permeability and porosity as the rest of the 

reservoir. The relative permeability was reduced by 60 times in water and by 2 times in 

oil, as shown in Figure 3.9. The gel polymer radius was 39.9 ft and the pore volume was 

250 ft³ as shown in Figure 3.10. 

3.2.3 Case 2 (Five Spot / One Layer) Scenario 1. Scenario 1 was created with 

five spot and one layer, with the same permeability and porosity as the rest of the 

reservoir. The relative permeability was reduced by 20 times in water and by 2 times in 

oil, as shown in as shown in Figure 3.8. The gel polymer radius was 12.6 ft and the pore 

volume was 5 ft³ as shown in Figure 3.11. 

3.2.4 Case 2 (Five Spot / One Layer) Scenario 2. Scenario 2 was created with 

five spot and one layer, with the same permeability and porosity as the rest of the 

reservoir. The relative permeability was reduced by 60 times in water and by 2 times in 

oil, as shown in, as shown in Figure 3.9. The gel polymer radius was 12.6 ft and the pore 

volume was 5 ft³ as shown in Figure 3.11. 
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3.2.5 Case 3 (Linear Flow / Two Layers) Scenario 1. Scenario 1 was created 

with linear flow and two layers, with two different permeabilities. The permeability of 

the upper layer was less than the permeability of the bottom layer. The porosity of the 

entire reservoir was the same. The relative permeability was reduced by 20 times in water 

and by 2 times in oil, as shown in, Figure 3.8. The gel polymer radius was 39.9, 56.43 ft 

and the pore volume was 375 ft³ as shown in Figure 3.12. 

3.2.6 Case 3 (Linear Flow / Two Layers) Scenario 2. Scenario 2 was created 

with linear flow and two layers, with two different permeabilities. The permeability of 

the upper layer was less than the permeability of the bottom layer. The porosity of the 

entire reservoir was the same The relative permeability was reduced by 60 times in water 

and by 2 times in oil, as shown in, Figure 3.9. The gel polymer radius was 39.9, 56.43 ft 

and the pore volume was 375 ft³ as shown in Figure 3.12. 

3.2.7 Case 4 (Five Spot / Two Layers) Scenario 1. Scenario 1 was created with 

five spot and two layers, with two different permeabilities. The permeability of the upper 

layer was less than the permeability of the bottom layer. The porosity of the entire 

reservoir was the same. The relative permeability was reduced by 20 times in water and 

by 2 times in oil, as shown in, Figure 3.8. The gel polymer radius was 12.6, 25.2 ft and 

the pore volume was 50 ft³ as shown in Figure 3.13. 

3.2.8 Case 4 (Five Spot / Two Layers) Scenario 2. Scenario 2 was created with 

five spot and two layers, with two different permeabilities. The permeability of the upper 

layer was less than the permeability of the bottom layer. The porosity of the entire 

reservoir was the same.  The relative permeability was reduced by 60 times in water and 
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by 2 times in oil, as shown in, Figure 3.9. The gel polymer radius was 12.6, 25.2 ft and 

the pore volume was 50 ft³ as shown in Figure 3.13. 

 

3.3 RESULTS AND DISCUSSION 

 

3.3.1 Linear Flow One Layer: Scenario 1. The relative permeability was 

reduced by 20 times with water and by 2 times with oil. The simulator run at the water 

cut reached 60%, 70%, 80%, and 90% for four different runs. The water shutoff treatment 

was worked by injecting gel or polymer which means the relative permeability of water 

was decreased, and the water cut was decreased over different periods of time during 

shutoff treatment. Table 3.2 shows the cumulative oil production during the effective 

period of water shutoff at the same RPM radius and the same volume. In this scenario the 

best modification was at water cut 60%, which was effective for a period of 428 days and 

improved the total oil production by 20,529 STB. Moreover the worst modification 

scenario was at water cut 90%, it was only effective for a shorter period of 99 days and 

there was not much improvement in the cumulative oil production due to most of the 

layers being flooded by water before RPM was made. Figure 3.14 shows that the 

cumulative oil production was increased when the water cut was decreased. Figure 3.15 

confirms the results that when the water cut was lower, then there was higher oil 

production over longer periods of time. This was due to the water shutoff treatment being 

used at an early stage of oil production, before the water could reach breakthrough in the 

most of the layers. The water shutoff treatment results vary with changing the water cut 

percentage. Oil recovery was increased by 8.6% in the case of the lowest water cut of 

60% during effective period, as shown in Figure 3.16. 



25 
 

 

3.3.2 Linear Flow One Layer: Scenario 2. The relative permeability was 

reduced by 60 times with water and by 2 times with oil. The simulator run at the water 

cut reached 60%, 70%, 80%, and 90% for four different runs. The water shutoff treatment 

was worked by injecting gel or polymer which means the relative permeability of water 

was decreased, and the water cut was decreased over different periods of time during 

shutoff treatment. Table 3.3 shows the cumulative oil production during the effective 

period of water shutoff at the same RPM radius and the same volume. In this scenario the 

best modification was still at water cut 60%, which was effective for a period of 376 days 

and improved the total oil production by 21,945 STB. Moreover the worst modification 

scenario was also at water cut 90%, it was only effective for short period of 95 days and 

there was not much improvement in the cumulative oil production due to most of the 

layers being flooded by water before RPM was made. Figure 3.17 shows that the 

cumulative oil production was increased when the water cut was decreased. Figure 3.18 

confirms the results that when the water cut was lower, then there was higher oil 

production over longer periods of time. This was due to the water shutoff treatment being 

used at an early stage of oil production, before the water could reach breakthrough in the 

most of the layers. The water shutoff treatment results vary with changing the water cut 

percentage. Oil recovery was increased by 9.3% in the case of the lowest water cut of 

60% during effective period, as shown in Figure 3.19. 

3.3.3 Comparison of Linear Flow (Case 1). Table 3.4 provides a summary and 

comparison of cumulative oil production and the oil recovery factor for linear flow in one 

layer and a different relative permeability modifications. Figure 3.20 shown the best 

scenario at final oil recovery when reduced the relative permeability of water by 60 times 
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at water cut 60% compared with when reduced the relative permeability of water by 20 

times and different water cut.  

As shown, the best scenario is for the relative permeability to water reduction by 

60 times and at the lowest water cut of 60%, where the cumulative oil production went 

from 158,979 STB and increased to 172,292 STB, and the oil recovery factor was 

improved by 8.4%. The cumulative oil production was increased as shown in Figure 3.21 

compared with base case 1. After treatment the water cut was reduced and then it 

returned to pretreatment decline rate as shown in Figure 3.22. The result of the oil 

recovery factor was significantly increased as shown in Figure 3.23. Also Figure 3.24 

shown the best scenario during effective period when reduced the relative permeability of 

water by 60 times at water cut 60% compared with when reduced the relative 

permeability of water by 20 times and different water cut. 

3.3.4 Five Spot One Layer: Scenario 1. The relative permeability was reduced 

by 20 times with water and by 2 times with oil. The simulator run at the water cut 

reached 60%, 70%, 80%, and 90% for four different runs. The water shutoff treatment 

was worked by injecting gel or polymer which means the relative permeability of water 

was decreased, and the water cut was decreased over different periods of time during 

shutoff treatment. Table 3.5 shows the cumulative oil production during the effective 

period of water shutoff at same RPM radius and same volume. In this scenario the best 

modification was still at water cut 60%, which was effective for a period of 976 days  and 

improved the total oil production by 45,903 STB. Moreover the worst modification 

scenario was also at 90% water cut, it was only effective for a shorter period of 550 days 

and there was not much improvement in the cumulative oil production due to most of the 
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layers being flooded by water before RPM was made. Figure 3.25 shows that the 

cumulative oil production was increased when the water cut was decreased. Figure 3.26 

confirms the results that when the water cut was lower, then there was higher oil 

production over longer periods of time. This was due to the water shutoff treatment being 

used at an early stage of oil production, before the water could reach breakthrough in the 

most of the layers. The water shutoff treatment results vary with changing the water cut 

percentage. Oil recovery was increased by 19.4% in the case of the lowest water cut of 

60% during effective period, as shown in Figure 3.27. 

3.3.5 Five Spot One Layer: Scenario 2. The relative permeability was reduced 

by 60 times with water and by 2 times with oil. The simulator run at the water cut 

reached 60%, 70%, 80%, and 90% for four different runs. The water shutoff treatment 

was worked by injecting gel or polymer which means the relative permeability of water 

was decreased, and the water cut was decreased over different periods of time during 

shutoff treatment. Table 3.6 shows the cumulative oil production during the effective 

period of water shutoff at the same RPM radius and the same volume. In this scenario the 

best modification was still at water cut 60%, which was effective for a period of 837 days 

and improved the total oil production by 48,968 STB. The worst modification scenario 

was at 90% water cut, as it was only effective for a shorter period of 498 days and there 

was not much improvement in the cumulative oil production due to most of the layers 

being flooded by water before RPM was made. Figure 3.28 shows that the cumulative oil 

production was increased when the water cut was decreased. Figure 3.29 confirms the 

results that when the water cut was lower, then there was higher oil production over 

longer periods of time. This was due to the water shutoff treatment being used at an early 
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stage of oil production, before the water could reach breakthrough in the most of the 

layers. The water shutoff treatment results vary with changing the water cut percentage. 

Oil recovery was increased by 20.7% in the case of the lowest water cut of 60% during 

effective period, as shown in Figure 3.30. 

3.3.6 Comparison of Five Spot One Layer (Case 2). Table 3.7 provides a 

summary and comparison of cumulative oil production and the oil recovery factor for 

five spot  in one layer and a different relative permeability modifications. Figure 3.31 

shown the best scenario at final oil recovery when reduced the relative permeability of 

water by 60 times at water cut 60% compared with when reduced the relative 

permeability of water by 20 times and different water cut. 

As shown, the best scenario is for the relative permeability to water reduction by 

60 times and at the lowest water cut of 60% , where the cumulative oil production went 

from 131,116 STB and increased to 170,694 STB, and the oil recovery factor was 

improved by 30.2%. It was significantly better than base case 2. The cumulative oil 

production was increased as shown in Figure 3.32 compared with base case 2. After 

treatment the water cut was reduced and then it returned to pretreatment decline rate as 

shown in Figure 3.33. The result of the oil recovery factor was significantly increased as 

shown in Figure 3.34. Also Figure 3.35 shown the best scenario during effective period 

when reduced the relative permeability of water by 60 times at water cut 60% compared 

with when reduced the relative permeability of water by 20 times and different water cut. 

3.3.7 Linear Flow Two Layers: Scenario 1. The relative permeability was 

reduced by 20 times with water and by 2 times with oil. The simulator run at the water 

cut reached 60%, 70%, 80%, and 90% for four different runs. The water shutoff treatment 
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was worked by injecting gel or polymer which means the relative permeability of water 

was decreased, and the water cut was decreased over different periods of time during 

shutoff treatment. Table 3.8 shows the cumulative oil production during the effective 

period of water shutoff at same RPM radius and same volume. In this scenario the best 

modification was at water cut 60%, which was effective for a period of 952 days and 

improved the total oil production by 20,541 STB. Moreover the worst modification 

scenario was at 90% water cut, it was only effective for short period of 405 days and 

there was not much improvement in the cumulative oil production due to most of the 

layers being flooded by water before RPM was made. Figure 3.36 shows that the 

cumulative oil production was increased when the water cut was decreased. Figure 3.37 

confirms the results that when the water cut was lower, then there was higher oil 

production over longer periods of time. This was due to the water shutoff treatment being 

used at an early stage of oil production, before the water could reach breakthrough in the 

most of the layers. The water shutoff treatment results vary with changing the water cut 

percentage. Oil recovery was increased by 8.7% in the case of the lowest water cut of 60 

% during effective period, as shown in Figure 3.38. 

3.3.8 Linear Flow Two Layers: Scenario 2. The relative permeability was 

reduced by 60 times with water and by 2 times with oil. The simulator run at the water 

cut reached 60%, 70%, 80%, and 90% for four different runs. The water shutoff treatment 

was worked by injecting gel or polymer which means the relative permeability of water 

was decreased, and the water cut was decreased over different periods of time during 

shutoff treatment. Table 3.9 shows the cumulative oil production during the effective 

period of water shutoff at same RPM radius and same volume. In this scenario the best 
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modification was still at water cut 60%, which was effective for a period of 951 days and 

improved the total oil production by 23,283 STB. Moreover the worst modification 

scenario was also at 90% water cut, it was only effective for short period of 440 days and 

there was not much improvement in the cumulative oil production due to most of the 

layers being flooded by water before RPM was made. Figure 3.39 shows that the 

cumulative oil production was increased when the water cut was decreased. Figure 3.40 

confirms the results that when the water cut was lower, then there was higher oil 

production over longer periods of time. This was due to the water shutoff treatment being 

used at an early stage of oil production, before the water could reach breakthrough in the 

most of the layers. The water shutoff treatment results vary with changing the water cut 

percentage. Oil recovery was increased by 9.8% in the case of the lowest water cut of 60 

% during effective period, as shown in Figure 3.41. 

3.3.9 Comparison of Linear Flow Two Layers (Case 3). Table 3.10 provides a 

summary and comparison of cumulative oil production and the oil recovery factor for 

linear flow in two layers and a different relative permeability modifications. Figure 3.42 

shown the best scenario at final oil recovery when reduced the relative permeability of 

water by 60 times at water cut 60% compared with when reduced the relative 

permeability of water by 20 times and different water cut. 

As shown, the best scenario is for the relative permeability to water reduction by 

60 times and at the lowest water cut of 60%, where the cumulative oil production went  

from 145,165 STB and  increased to 162,390 STB, and the oil recovery factor was 

improved by 11.9%. It was significantly better than base case 3. The cumulative oil 

production was increased as shown in Figure 3.43 compared with base case 3. After 
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treatment the water cut was reduced and then it returned to pretreatment decline rate as 

shown in Figure 3.44. The result of the oil recovery factor was significantly increased as 

shown in Figure 3.45. Also Figure 3.46 shown the best scenario during effective period 

when reduced the relative permeability of water by 60 times at water cut 60% compared 

with when reduced the relative permeability of water by 20 times and different water cut. 

3.3.10 Five Spot Two Layers: Scenario 1. The relative permeability was reduced 

by 20 times with water and by 2 times with oil. The simulator run at the water cut 

reached 60%, 70%, 80%, and 90% for four different runs. The water shutoff treatment 

was worked by injecting gel or polymer which means the relative permeability of water 

was decreased, and the water cut was decreased over different periods of time during 

shutoff treatment. Table 3.11 shows the cumulative oil production during the effective 

period of water shutoff at same RPM radius and same volume. In this scenario the best 

modification was at water cut 60%, which was effective for a period of 1406 days and 

improved the total oil production by 70,954 STB. Moreover the worst modification 

scenario was at 90% water cut, it was only effective for short period of 1141 days and 

there was not much improvement in the cumulative oil production due to most of the 

layers being flooded by water before RPM was made. Figure 3.47 shows that the 

cumulative oil production was increased when the water cut was decreased. Figure 3.48 

confirms the results that when the water cut was lower, then there was higher oil 

production over longer periods of time. This was due to the water shutoff treatment being 

used at an early stage of oil production, before the water could reach breakthrough in the 

most of the layers. The water shutoff treatment results vary with changing the water cut 
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percentage. Oil recovery was increased by 29.9% in the case of the lowest water cut of 60 

% during effective period, as shown in Figure 3.49. 

3.3.11 Five Spot Two Layers: Scenario 2. The relative permeability was reduced 

by 60 times with water and by 2 times with oil. The simulator run at the water cut 

reached 60%, 70%, 80%, and 90% for four different runs. The water shutoff treatment 

was worked by injecting gel or polymer which means the relative permeability of water 

was decreased, and the water cut was decreased over different periods of time during 

shutoff treatment. Table 3.12 shows the cumulative oil production during the effective 

period of water shutoff at same RPM radius and same volume. In this scenario the best 

modification was still at water cut 60%, which was effective for a period of 1361 days 

and improved the total oil production by 73,832 STB. Moreover the worst modification 

scenario was also at 90% water cut, it was only effective for short period of 1003 days 

and there was not much improvement in the cumulative oil production due to most of the 

layers being flooded by water before RPM was made. Figure 3.50 shows that the 

cumulative oil production was increased when the water cut was decreased. Figure 3.51 

confirms the results that when the water cut was lower, then there was higher oil 

production over longer periods of time. This was due to the water shutoff treatment being 

used at an early stage of oil production, before the water could reach breakthrough in the 

most of the layers. The water shutoff treatment results vary with changing the water cut 

percentage. Oil recovery was increased by 31.2% in the case of the lowest water cut of 

60% during effective period, as shown in Figure 3.52. 

3.3.12 Comparison of Five Spot Two Layers (Case 4). Table 3.13 provides a 

summary and comparison of cumulative oil production and the oil recovery factor for 
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five spot two layers and a different relative permeability modifications. Figure 3.53 

shown the best scenario at final oil recovery when reduced the relative permeability of 

water by 60 times at water cut 60% compared with when reduced the relative 

permeability of water by 20 times and different water cut. 

As shown, the best scenario is for the relative permeability to water reduction by 

60 times and at the lowest water cut of 60% , where the cumulative oil production went 

from 98,696.6 STB and increased to 169,960 STB, and the oil recovery factor was 

improved by 72.2%. It was significantly better than base case 4. The cumulative oil 

production was increased as shown in Figure 3.54 compared with base case 4. After 

treatment the water cut was reduced and then it returned to pretreatment decline rate as 

shown in Figure 3.55. The result of the oil recovery factor was significantly increased as 

shown in Figure 3.56. Also Figure 3.57 shown the best scenario during effective period 

when reduced the relative permeability of water by 60 times at water cut 60% compared 

with when reduced the relative permeability of water by 20 times and different water cut. 

3.3.13 Comparison of Linear Flow and Five Spot One Layer (Case 1 and 

Case 2). Table 3.14 provides a summary and comparison of cumulative oil and oil 

recovery factors at the end of relative permeability modification, with the water cut at 

95% for linear flow and five spot one layer with different  relative permeability 

modification. As shown, the cumulative oil and recovery factor is slightly better for case 

1 and 2 where relative permeability was redused by 60 times and water cut 60% at five 

spot. The cumulative oil production was increased and the oil recovery factor was 

improved with the best result in this modification. Figure 3.58 shown the best scenario at 

final oil recovery when reduced the relative permeability of water by 60 times at water 
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cut 60% case 2 five spot compared with when reduced the relative permeability of water 

by 20 times case 1 linear flow and different water cut. 

3.3.14 Comparison of Linear Flow and Five Spot Two Layers (Case 3 and 

Case 4). Table 3.15 provides a summary and comparison of cumulative oil and oil 

recovery factors at end of relative permeability modification with water cut 95% for 

linear flow at five spot two layers with different  relative permeability modification. As 

shown, cumulative oil and recovery factors are slightly better for cases 3 and 4 where 

relative permeability was redused by 60 times and water cut 60% and five spot. The 

cumulative oil production was increased and the oil recovery factor was improved with 

best results in this modification. Figure 3.59 shown the best scenario at final oil recovery 

when reduced the relative permeability of water by 60 times at water cut 60% case 3 five 

spot compared with when reduced the relative permeability of water by 20 times case 4 

linear flow and different water cut. 

3.3.15 Impact of Gel Treatment Volume/Radius (Case 1). Table 3.16 provides 

a summary and comparison of the cumulative oil production and the oil recovery factor 

for linear flow one layer at the end of the relative permeability modification with 

different gel tratments. The radius was 28.2, 39.9, and 56.43 ft and volume was 125, 250, 

and 500 ft³. The cumulative oil and recovery factor is slightly better when the relative 

permeability modification radius was 56.43 ft and 500 ft³ pore volume with the relative 

permeabilty of water reduced by 60 times and at water cut of 60%. It produced the largest 

amount of oil at the earliest time compared with other results.  

Table 3.17 provides a summary and comparison of the impact of gel treatment 

volume/radius. The cumulative oil production and oil recovery factor during water 
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shutoff tratment were improved when the relative permeability modification radius was 

56.43 ft and  the pore volume was 500 ft³ with relative prmeability of water decreased by 

60 times and water cut 60%. The result of the water cut is shown in Figure 3.60. The 

water shutoff treatment did not last a long time, it only operated for a few months, but at 

the end of the simulation or during the water shutoff treatment, the cumulative oil 

progressed. 

3.3.16 Impact of Gel Treatment Volume/Radius (Case 2). Table 3.18 provides 

a summary and comparison of the cumulative oil production and oil the recovery factor 

for five spot one layer at the end of the relative permeability modification with different 

gel treatments. The radius was 6.3, 12.6 and 25.2 ft and pore volume was 5, 20, and 80 

ft³. The cumulative oil production and oil recovery factor is slightly better when the  

relative permeability modification radius was 25.2 ft and 80 ft³ pore volume with the 

relative permeabilty of water redused by 60 times and at water cut 60%.It  produced the 

largest amount of oil at the earliest time compared with others results.  

Table 3.19 provides a summary and comparison of the impact of gel treatment 

volume/radius. The cumulative oil production and oil recovery factor during water 

shutoff tratment were improved when the relative permeability modification radius was 

25.2 ft and the pore volume was 80 ft³ with relative prmeability of water redused by 60 

times and water cut 60%. The result of the water cut is shown in Figure 3.61. The water 

shutoff treatment did not last a long time, it only operated for a few months, but at the 

end of the simulation or during the water shutoff treatment, the cumulative oil 

progressed. 
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3.3.17 Impact of Gel Treatment Volume/Radius (Case 3). Table 3.20 provides 

a summary and comparison of the cumulative oil production and oil the recovery factor 

for linear flow two layers at the end of the relative permeability modification with 

different  gel treatments. The radius was 28.2, 39.9, 56.43 and 79.8 ft and pore volume 

was 187.5, 375, and 750 ft³. The cumulative oil production and oil recovery factor is 

slightly better when the relative permeability modification radius was 56.43, 79.8 ft and 

750 ft³ pore volume with the relative permeabilty of water redused by 60 times and at 

60%. It produced the largest amount of oil at the earliest time compared with others 

results.  

Table 3.21 provides a summary and comparison of the impact of gel treatment 

volume/radius. The cumulative oil production and oil recovery factor during water 

shutoff tratment were  improved when the relative permeability modification radius was 

56.4, 79.8 ft and 750 ft³ and the pore volume with relative prmeability of water redused 

by 60 times and water cut 60%. The result of the water cut is shown in Figure 3.62. The 

water shutoff treatment did not last a long time, it only operated for a few months, but at 

the end of the simulation or during the water shutoff treatment, the cumulative oil 

progressed. 

3.3.18 Impact of Gel Treatment Volume/Radius (Case 4). Table 3.22 provides 

a summary and comparison of the cumulative oil production and the oil recovery factor 

for five spot two layers at the end of the relative permeability modification with different  

gel treatments. The  radius was 6.3, 12.6, 25.2 and 50.4 ft and pore volume was 12.5, 50, 

and 200 ft³. The cumulative oil and the recovery factor is slightly better when the  relative 

permeability modification radius was 25.2, 50.4 ft and 200 ft³ pore volume with the 
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relative permeabilty of water redused by 60 times and at water cut of 60%. It produced 

the largst amount of oil at earliest time compared with others results.  

Table 3.23 provides a summary and comparison of the impact of gel treatment 

volumm/radius. The cumulative oil production and oil recovery factor during water 

shutoff tratmentwere  improved when the relative permeability modification radius was 

6.3, 12.6 and 25.2 ft with 12.5 and the pore volume was 50 ft³ with  relative prmeability 

of water redused by 60 times and water cut 60% and 25.2, 50.4 ft and the pore volume 

was 200 ft³ with relative prmeability of water redused 20 times at water cut 60%. The 

result of the water cut is shown in Figure 3.63. The water shutoff treatment did not last a 

long time, it only operated for a few months, but at the end of the simulation or during the 

water shutoff treatment, the cumulative oil progressed. 

3.3.19 Effect of Gel Treatment on Water Saturation at Final Water Cut 95%. 

Table 3.24 provides a summary of how the cumulative water injection at base case 1 

decresed from 520.47 to 347.00 MSTB at case 1 with RPM and took less time to arrive at 

water cut 95% compared with base case 1 as shown in Figure 3.64 and Figure 3.65. Also 

how the cumulative water injection at base case 2decreased from 830.70 to 395.60 MSTB 

at case 2 with RPM and took time to arrived at water cut 95% compared with base case 2 

as shown in Figure 3.66 and Figure 3.67. Als how the cumulative water injection at base 

case 3 decreced  from 789.07 to 383.40 MSTB at case 3 with RPM and took less time to 

arived to water cut 95% compared with base case 3 as shown in Figure 3.68 and Figure 

3.69. Finally,how the cumulative water production at base case 4 decreaced from 660.70 

to 369.00 MSTB at case 4 with RPM and took less time to arrived to water cut 95% 

compared with base case 4 as showen in Figure 3.70 and Figure 3.71.  
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3.3.20 Effect of Gel Treatment Before and After on Water Saturation. The 

available evidence indicates that the gel polymer usually shifted the entire water relative 

permeability curve to lower values without significantly changing the residual oil 

saturation. In contrast, the position of the oil relative permeability curve was often 

unaffected by the gel polymer, except that the irreducible water saturation was increased 

due to the gel polymer injection. Therefore, as shown the same time period in Figure 3.73 

gives an indication of an increase of water saturation in contrast with Figure 3.72 the base 

case. That is because during water shutoff treatment, the water was increased because the 

gel plucked the area near the wellbore so the water cannot move, which that means the 

mobility of the water is restricted; as a result, the drawdown pressure was increased so 

there is bore space can be filled by water and then it can move faster to fill the pore 

space. In addition, this theory applies for case 1 and case 1 with RPM in the same time 

period as in Figure 3.74 and Figure 3.75, we can observe the increase in water saturation 

after the gel treatment is injected. The water cut increased rabidly with water shutoff 

treatment.  
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Figure 3.1 Relative Permeability. 

 

 

 

Figure 3.2  The 3D View of The Numerical Model (Linear Flow). 
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Figure 3.3 The 3D View of The Well Location (Case 1 and 3). 

 

 

Figure 3.4 The 3D View of The Numerical Model (Five Spot). 
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Figure 3.5 The 3D View of The Well Location (Five Spot Case 2 and 4). 

 

 

Figure 3.6 The 3D View of The Permeability of Two Layers (Linear Flow Case 3). 
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Figure 3.7 The 3D View of The Permeability of Two Layers (Five Spot Case 4). 

 

 

Table 3.1 The Input Physical Properties 

Reservoir temperature (F) 160  

Oil density (lb/ft3) 51.4561 

Gas density (lb/ft3) 0.05341 

Water density (lb/ft3) 62.3179 

Water formation volume factor (RB/STB) 1.00832 

Water compressibility (1/ps) 2.7756e-006 

Ref. pressure for water (psi) 5000 

Water viscosity (cp) 0.432871 

Reference presser (psi) 5200 

Reference depth (ft) 11400 

Phase contact of Water-Oil contact (ft) 11450 

Datum Depth (ft) 11200 

Bubble point pressure (psi) 3400 
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Figure 3.8 Oil and Water Relative Permeability Curves Before and After Gel Treatment 

Reduced The Relative Permeability of Water by 20 Times. 

 

 

Figure 3.9 Oil and Water Relative Permeability Curves Before and After Gel Treatment 

Reduced The Relative Permeability of Water by 60 Times. 
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Figure 3.10  The 3D View of The Relative Permeability Modification Radius (Linear 

Flow Case 1). 

 

 

Figure 3.11The 3D View of Relative Permeability Modification Radius (Five Spot Case 

2). 
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Figure 3.12 The 3D View of The Relative Permeability Modification Radius (Linear 

Flow Case 3). 

 

 

Figure 3.13  The 3D View of Relative Permeability Modification Radius (Five Spot Case 

4). 
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Figure 3.14  Cumulative Oil at Different Disproportionate Permeability Reduction (Case 

1 Scenario1). 

 

 

Figure 3.15  Water Cut (Case 1 Scenario 1). 
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Figure 3.16 Oil Recovery Factor (Case 1 Scenario 1). 

 

 

Table 3.2 Effect on Effective Period (days) and Corresponding Increased Oil Case 1 

Scenario 1. 

RPM 

Effective 

period 

(day) 

RPM 

Radius 

(ft) 

Volume 

of RPM 

(ft³) 

Total Oil 

production 

at Base Case  

Total Oil 

production at 

RPM (STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil 

 Recovery 

Improvement 

(%) 

krw/20,kro/2 60%WCUT 428 39.9 250 23169 43698 20529 8.6 

krw/20,kro/2 70% WCUT 313 39.9 250 14071 30307 16236 6.8 

krw/20,kro/2 80% WCUT 206 39.9 250 6701 16968 10267 4.3 

krw/20,kro/2 90% WCUT 99 39.9 250 1853 5925 4072 1.7 

 

 

Table 3.3  Effect on Effective Period (days) and Corresponding Increased Oil Case 1   

Scenario 2. 

RPM Effect 

period 

(day) 

RPM 

Radius 

(ft) 

Volume 

of RPM 

(ft³) 

Total Oil 

production at 

Base Case  

(STB) 

Total Oil 

production at 

RPM (STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil Recovery 

Improvement 

(%) 

krw/60,kro/2 60% WCUT 376 39.9 250 21148 43093 21945 9.3 

krw/60,kro/2 70% WCUT 284 39.9 250 12946 30233 17287 7.3 

krw/60,kro/2 80% WCUT 192 39.9 250 6349 17268 10919 4.6 

krw/60,kro/2 90% WCUT 95 39.9 250 1780 6199 4419 1.9 
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Figure 3.17  Cumulative Oil at Different Disproportionate Permeability Reduction (Case 

1 Scenario 2). 

 

 

Figure 3.18  Water Cut (Case 1 Scenario 2). 
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Figure 3.19  Oil Recovery Factor (Case1 Scenario 2). 

 

 

Figure 3.20 Comparison of Oil Recovery for Case 1. 
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Figure 3.21  Cumulative Oil at Different Disproportionate Permeability Reduction (Case 

1). 

 

 

Figure 3.22  Water Cut  (Case 1). 
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Figure 3.23 Oil Recovery Factor (Case 1). 

 

 

 

 

Figure 3.24 Compare The Results During Effective Period Case 1. 
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Figure 3.25 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 2 

Scenario1). 

 

 

Figure 3.26 Water Cut (Case 2 Scenario 1). 



53 
 

 

 

Figure 3.27 Oil Recovery Factor (Case 2 Scenario 1). 

 

 

Figure 3.28 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 1 

Scenario2). 
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Table 3.4  Effect on Accumulative Production and Oil Recovery (Case 1). 

RPM DATE Cumulative Oil 

SC at Base 

Case (STB) 

Cumulative Oil 

SC at RPM  

(STB) 

Oil 

Recovery 

Factor  

(%) 

Oil Recovery 

Factor at Base 

Case  

(%) 

Oil Recovery 

Improvement 

(%) 

Base case 1 2/15/2007 172281 172281 72.9948     

krw/20 , kro/2 60% WCUT 3/6/2005 159759 172267 72.7121 67.43 7.8 

krw/20 , kro/2 70% WCUT 7/1/2005 162827 172752 72.9168 68.73 6.1 

krw/20 , kro/2 80% WCUT 11/16/2005 166035 173098 73.9168 70.08 4.3 

krw/20 , kro/2 90% WCUT 7/1/2006 170114 173742 73.3347 71.8 2.1 

krw/60 , kro/2 60% WCUT 2/8/2005 158979 172292 72.7224 67.1 8.4 

krw/60 , kro/2 70% WCUT 5/14/2005 161668 172612 72.8578 68.24 6.8 

krw/60 , kro/2 80% WCUT 10/1/2005 165034 172954 73.0022 69.66 4.8 

krw/60 , kro/2 90% WCUT 6/10/2006 169797 173775 73.3486 71.67 2.3 

 

 

 

Table 3.5  Effect on Effective Period (days) and Corresponding Increased Oil Case 2 

Scenario 1. 

RPM Effective 

period 

(day) 

RPM 

Radius 

(ft) 

Volume 

of 

RPM 

(ft³) 

Total Oil 

production 

at Base Case  

(STB) 

Total Oil 

production 

at RPM 

(STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil Recovery 

Improvement 

(%) 

krw/20,kro/2 60% WCUT 976 12.6 20 46524 92427 45903 19.4 

krw/20,kro/2 70% WCUT 831 12.6 20 35972 77746 41774 17.6 

krw/20,kro/2 80% WCUT 811 12.6 20 27236 60448 33212 14 

krw/20,kro/2 90% WCUT 550 12.6 20 11580 26864 15284 6.5 

 

 

 

Table 3.6 Effect on Effective Period (days) and Corresponding Increased Oil Case 2 

Scenario 2. 

RPM Effective 

period 

(day) 

RPM 

Radius 

(ft) 

Volume 

of 

RPM 

(ft³) 

Total Oil 

production 

at Base Case  

(STB) 

Total Oil 

production 

at RPM 

(STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil Recovery 

Improvement 

(%) 

krw/60,kro/2 60% WCUT 837 12.6 20 41545 90513 48968 20.7 

krw/60,kro/2 70% WCUT 746 12.6 20 32639 77594 44955 19 

krw/60,kro/2 80% WCUT 655 12.6 20 23033 58152 35119 14.8 

krw/60,kro/2 90% WCUT 498 12.6 20 10563 26965 16402 6.9 
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Figure 3.29 Water Cut (Case 2 Scenario 2). 

 

 

 

Figure 3.30 Oil Recovery Factor (Case 2 Scenario 2). 
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Figure 3.31 Comparison of Oil Recovery for Case 2. 

 

 

 

Figure 3.32 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 

2). 
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Figure 3.33 Water Cut (Case 2). 

 

 

 

Figure 3.34 Oil Recovery Factor (Case 2). 
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Figure 3.35 Compare The Results During Effective Period Case 2. 

 

 

Table 3.7 Effect on Accumulative Production and Oil Recovery (Case 2). 

RPM DATE Cumulative Oil 

SC at Base Case 

(STB) 

Cumulative Oil 

SC at RPM  

(STB) 

Oil Recovery 

Factor  

(%) 

Oil Recovery 

Factor at Base 

Case  

(%) 

Oil Recovery 

Improvement 

(%) 

Base case 2 5/16/2011 167639  70.763   

krw/20,kro/2 60% WCUT 2/1/2006 134688 170909 72.1431 56.85 26.9 

krw/20,kro/2 70% WCUT 5/1/2006 137050 170773 72.0859 57.85 24.6 

krw/20,kro/2 80% WCUT 2/1/2007 143424 170827 72.1084 60.54 19.1 

krw/20,kro/2 90% WCUT 4/1/2009 158041 171297 72.3071 66.71 8.4 

krw/60,kro/2 60% WCUT 10/1/2005 131116 170694 72.0524 55.34 30.2 

krw/60,kro/2 70% WCUT 2/1/2006 134688 170811 72.1018 56.85 26.8 

krw/60,kro/2 80% WCUT 12/1/2006 141943 171039 72.198 59.91 20.5 

krw/60,kro/2 90% WCUT 2/1/2009 157167 171241 72.2834 66.34 9 

 

 

Table 3.8 Effect on Effective Period (days) and Corresponding Increased Oil Case 3 

Scenario 1. 

RPM Effective 

period 

(day) 

RPM Radius 

 (ft) 
Volume 

of RPM 

(ft³) 

Total Oil 

production at 

Base Case  

(STB) 

Total Oil 

production 

at RPM 

(STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil 

Recovery 

Improveme

nt (%) 

krw/20,kro/2 60% WCUT 952 39.9, 56.43  375 39278 59819 20541 8.7 

krw/20,kro/2 70% WCUT 779 39.9, 56.43  375 28436 47628 19192 8.1 

krw/20,kro/2 80% WCUT 777 39.9, 56.43  375 22283 38932 16649 7.0 

krw/20,kro/2 90% WCUT 405 39.9, 56.43  375 8127 16865 8738 3.7 
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Figure 3.36 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 3 

Scenario1). 

 

 

Figure 3.37 Water Cut (Case 3 Scenario 1). 
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Figure 3.38 Oil Recovery Factor (Case 3 Scenario 1). 

 

 

Figure 3.39 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 3 

Scenario 2). 
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Figure 3.40 Water Cut (Case 3 Scenario 2). 

 

 

 

Figure 3.41 Oil Recovery Factor (Case 3 Scenario 2). 
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Table 3.9 Effect on Effective Period (days) and Corresponding Increased Oil Case 3 

Scenario 2. 

RPM Effective 

period 

(day) 

RPM 

 Radius  

(ft) 

Volume 

of RPM 

(ft³) 

Total Oil 

production 

at Base Case  

(STB) 

Total Oil 

production 

at RPM 

(STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil Recovery 

Improvement 

(%) 

krw/60,kro/2 60% WCUT 951 39.9, 56.43  375 39236 62519 23283 9.8 

krw/60,kro/2 70% WCUT 764 39.9, 56.43  375 28057 50005 21948 9.3 

krw/60,kro/2 80% WCUT 760 39.9, 56.43  375 21916 41117 19201 8.1 

krw/60,kro/2 90% WCUT 440 39.9, 56.43  375 8749 19311 10562 4.5 

 

Table 3.10 Effect on Accumulative Production and Oil Recovery (Case 3). 

RPM DATE Cumulative Oil 

SC at Base 

Case  

(STB) 

Cumulative 

Oil SC at 

RPM 

 (STB) 

Oil Recovery 

Factor 

(%) 

Oil Recovery 

Factor at Base 

Case  

(%) 

Oil Recovery 

Improvement 

(%) 

Base case 3 10/20/2010 166315   70.1998     

krw/20 , kro/2 60% WCUT 1/1/2007 145165 159033 67.1261 61.27 9.6 

krw/20 , kro/2 70% WCUT 2/15/2007 145971 159083 67.1471 61.61 9 

krw/20 , kro/2 80% WCUT 4/1/2007 146733 158463 66.8853 61.93 8 

krw/20 , kro/2 90% WCUT 2/15/2008 152669 159461 67.3067 64.44 4.4 

krw/60 , kro/2 60% WCUT 1/1/2007 145165 162390 68.5429 61.27 11.9 

krw/60 , kro/2 70% WCUT 4/28/2007 147198 163055 68.8235 62.13 10.8 

krw/60 , kro/2 80% WCUT 9/2/2007 149701 162752 68.6959 63.19 8.7 

krw/60 , kro/2 90% WCUT 7/1/2008 154689 163306 68.9295 65.29 5.6 

 

 

 

Figure 3.42 Comparison of Oil Recovery for Case 3. 
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Figure 3.43 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 

3). 

 

 

Figure 3.44 Water Cut (Case 3). 
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Figure 3.45 Oil Recovery Factor (Case 3). 

 

 

 

 

Figure 3.46 Compare The Results During Effective Period Case 3. 
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Figure 3.47 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 4 

Scenario 1). 

 

 

Figure 3.48 Water Cut (Case 4 Scenario 1). 
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Figure 3.49 Oil Recovery Factor (Case 4 Scenario 1). 

 

 

Figure 3.50 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 4 

Scenario 2). 
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Figure 3.51 Water Cut (Case 4 Scenario 2). 

 

 

 

Figure 3.52 Oil Recovery Factor (Case 4 Scenario 2). 
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Table 3.11  Effect on Effective Period (days) and Corresponding Increased Oil Case 4 

Scenario 1. 

RPM Effective 

period 

(day) 

RPM 

Radius  

(ft) 

Volume 

of RPM 

(ft³) 

Total Oil 

production 

at Base Case  

(STB) 

Total Oil 

production 

at RPM 

(STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil 

Recovery 

Improve

ment (%) 

krw/20,kro/2 60% WCUT 1406 12.6, 25.2 50 45748 116702 70954 29.9 

krw/20,kro/2 70% WCUT 1287 12.6, 25.2 50 38628 108152 69524 29.3 

krw/20,kro/2 80% WCUT 1365 12.6, 25.2 50 32006 98187 66181 27.9 

krw/20,kro/2 90% WCUT 1141 12.6, 25.2 50 19577 76317 56740 23.9 

 

 

Table 3.12  Effect on Effective Period (days) and Corresponding Increased Oil Case 4 

Scenario 2. 

RPM Effective 

period 

(day) 

RPM 

Radius 

 (ft) 

Volume 

of RPM 

(ft³) 

Total Oil 

production at 

Base Case  

(STB) 

Total Oil 

production 

at RPM 

(STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil Recovery 

Improvement 

(%) 

krw/60,kro/2 60% WCUT 1361 12.6, 25.2 50 44878 118709 73832 31.2 

krw/60,kro/2 70% WCUT 1257 12.6, 25.2 50 37950 110814 72864 30.8 

krw/60,kro/2 80% WCUT 1106 12.6, 25.2 50 27620 96348 68727 29 

krw/60,kro/2 90% WCUT 1003 12.6, 25.2 50 17940 76112 58172 24.6 

 

 

 

Table 3.13 Effect on Accumulative Production and Oil Recovery (Case 4). 

RPM DATE Cumulative 

Oil SC at 

Base Case 

(STB) 

Cumulative Oil 

SC at RPM  

(STB) 

Oil Recovery 

Factor 

(%) 

Oil Recovery 

Factor at Base 

Case  

(%) 

Oil Recovery 

Improvement 

(%) 

Base case 4 1/16/2009 119431  50.4136   

krw/20 , kro/2 60% WCUT 10/1/2005 100267 169304 71.4655 42.32 68.9 

krw/20 , kro/2 70% WCUT 12/1/2005 101155 169316 71.4708 42.7 67.4 

krw/20 , kro/2 80% WCUT 5/20/2006 104152 169191 71.4181 43.96 62.4 

krw/20 , kro/2 90% WCUT 1/1/2008 113955 169359 71.4888 48.1 48.6 

krw/60 , kro/2 60% WCUT 7/1/2005 98696.6 169960 71.7424 41.66 72.2 

krw/60 , kro/2 70% WCUT 9/1/2005 99784.8 169973 71.7481 42.12 70.3 

krw/60 , kro/2 80% WCUT 3/1/2006 102421 169890 71.713 43.23 65.9 

krw/60 , kro/2 90% WCUT 11/1/2007 112850 170034 71.7739 47.63 50.7 
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Figure 3.53 Comparison of Oil Recovery for Case 4. 

 

 

 

 

Figure 3.54 Cumulative Oil at Different Disproportionate Permeability Reduction (Case 

4). 
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Figure 3.55 Water Cut (Case 4). 

 

 

 

Figure 3.56 Oil Recovery Factor (Case 4). 
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Figure 3.57 Compare The Results During Effective Period Case 4. 

 

 

 

 

Figure 3.58 Comparison of Oil Recovery for Case 1 and Case 2. 
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Table 3.14  Effect on Accumulative Production and Oil Recovery: Case 1 and Case 2. 

RPM DATE Cumulative Oil SC 

at Base Case  

(STB) 

Cumulative Oil SC 

at RPM  

(STB) 

Oil Recovery 

Factor 

(%) 

Oil Recovery 

Improvement 

(%) 

Linear Flow one layer 

Base case 1 2/15/2007 172281  72.9948  

krw/20,kro/2 60% WCUT 3/6/2005 159759 172267 72.7121 7.8 

krw/20,kro/2 70%WCUT 7/1/2005 162827 172752 72.9168 6.1 

krw/20,kro/2 80% WCUT 11/16/2005 166035 173098 73.9168 4.3 

krw/20,kro/2 90% WCUT 7/1/2006 170114 173742 73.3347 2.1 

krw/60,kro/2 60% WCUT 2/8/2005 158979 172292 72.7224 8.4 

krw/60,kro/2 70% WCUT 5/14/2005 161668 172612 72.8578 6.8 

krw/60,kro/2 80% WCUT 10/1/2005 165034 172954 73.0022 4.8 

krw/60,kro/2 90% WCUT 6/10/2006 169797 173775 73.3486 2.3 

Five spot one layer 

Base case 2 5/16/2011 167639  70.763  

krw/20,kro/2 60% WCUT 2/1/2006 134688 170909 72.1431 26.9 

krw/20,kro/2 70% WCUT 5/1/2006 137050 170773 72.0859 24.6 

krw/20,kro/2 80% WCUT 2/1/2007 143424 170827 72.1084 19.1 

krw/20,kro/2 90% WCUT 4/1/2009 158041 171297 72.3071 8.4 

krw/60,kro/2 60% WCUT 10/1/2005 131116 170694 72.0524 30.2 

krw/60,kro/2 70% WCUT 2/1/2006 134688 170811 72.1018 26.8 

krw/60,kro/2 80% WCUT 12/1/2006 141943 171039 72.198 20.5 

krw/60,kro/2 90% WCUT 2/1/2009 157167 171241 72.2834 9.0 

 

 

 

Table 3.15  Effect on Accumulative Production and Oil Recovery Case 3 and Case 4. 

RPM DATE Cumulative Oil SC 

at Base Case  

(STB) 

Cumulative Oil SC 

at RPM  

(STB) 

Oil Recovery 

Factor 

(%) 

Oil Recovery 

Improvement 

(%) 

Linear flow two layers 

Base case 3 10/20/2010 166315  70.1998  

krw/20,kro/2 60% WCUT 1/1/2007 145165 159033 67.1261 9.6 

krw/20,kro/2 70% WCUT 2/15/2007 145971 159083 67.1471 9.0 

krw/20,kro/2 80% WCUT 4/1/2007 146733 158463 66.8853 8.0 

krw/20,kro/2 90% WCUT 2/15/2008 152669 159461 67.3067 4.4 

krw/60,kro/2 60% WCUT 1/1/2007 145165 162390 68.5429 11.9 

krw/60,kro/2 70% WCUT 4/28/2007 147198 163055 68.8235 10.8 

krw/60,kro/2 80% WCUT 9/2/2007 149701 162752 68.6959 8.7 

krw/60,kro/2 90% WCUT 7/1/2008 154689 163306 68.9295 5.6 

Five spot two layers  

Base case 4 1/16/2009 119431  50.4136  

krw/20,kro/2 60% WCUT 10/1/2005 100267 169304 71.4655 68.9 

krw/20,kro/2 70% WCUT 12/1/2005 101155 169316 71.4708 67.4 

krw/20,kro/2 80% WCUT 5/20/2006 104152 169191 71.4181 62.4 

krw/20,kro/2 90% WCUT 1/1/2008 113955 169359 71.4888 48.6 

krw/60,kro/2 60% WCUT 7/1/2005 98696.6 169960 71.7424 72.2 

krw/60,kro/2 70% WCUT 9/1/2005 99784.8 169973 71.7481 70.3 

krw/60,kro/2 80% WCUT 3/1/2006 102421 169890 71.713 65.9 

krw/60,kro/2 90% WCUT 11/1/2007 112850 170034 71.7739 50.7 
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Figure 3.59 Comparison of Oil Recovery for Case 3 and Case 4. 

 

 

 

Figure 3.60 Water Cut Case 1. 
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Table 3.16  Impact of Gel Treatment Volume/Radius Effect on Accumulative Production 

and Oil Recovery Case1. 

RPM RPM 

Radius 

(ft) 

Volume 

of RPM 

(ft³) 

DATE Cumulative Oil  

(STB) 

Oil Recovery 

Factor 

(%) 

Oil Recovery 

Improvement 

(%) 

Base case 1   2/15/2007 172281 72.9948  

krw/20,kro/2 60% WCUT 28.21 125 5/16/2005 172171 72.6717 6.4 

krw/20,kro/2 60% WCUT 39.9 250 3/6/2005 172267 72.7121 7.8 

krw/20,kro/2 60% WCUT 56.43 500 1/10/2004 172259 72.7085 11.13 

krw/60,kro/2 60% WCUT 28.21 125 5/17/2005 172388 72.7632 6.59 

krw/60,kro/2 60% WCUT 39.9 250 2/8/2005 172292 72.7224 8.4 

krw/60,kro/2 60% WCUT 56.43 500 1/10/2004 172699 72.8944 11.42 

 

 

 

Table 3.17  Impact of Gel Treatment Volume/Radius on Effective Period (days) Case 1. 

RPM RPM 

Radius 

 (ft) 

Volum

e of 

RPM 

(ft³) 

Effective 

period 

 (day) 

Total Oil 

production at 

Base Case  

(STB) 

Total Oil 

production at 

RPM (STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil 

Recovery 

Improvem

ent (%) 

krw/20,kro/2 60% WCUT 28.21 125 419 23224 41272 18048 7.6 

krw/20,kro/2 60% WCUT 39.9 250 428 23169 43698 20529 8.7 

krw/20,kro/2 60% WCUT 56.43 500 461 25110 49014 23904 10.1 

krw/60,kro/2 60% WCUT 28.21 125 354 20245 39583 19338 8.2 

krw/60,kro/2 60% WCUT 39.9 250 376 21148 43093 21945 9.3 

krw/60,kro/2 60% WCUT 56.43 500 445 24355 49693 25338 10.7 

 

 

 

Table 3.18 Impact of Gel Treatment Volume/Radius Effect on Accumulative Production 

and Oil Recovery Case 2. 

RPM RPM 

Radius 

(ft) 

Volume 

of RPM 

(ft³) 

DATE Cumulative Oil 

(STB) 

Oil Recovery 

Factor 

(%) 

Oil Recovery 

Improvement 

(%) 

Base case 2   5/16/2011 167639 70.763  

krw/20,kro/2 60% WCUT 6.3 5 8/1/2006 170963 72.166 22.9 

krw/20,kro/2 60% WCUT 12.6 20 2/1/2006 170909 72.1431 26.9 

krw/20,kro/2 60% WCUT 25.2 80 1/9/2005 170699 72.0544 31.01 

krw/60,kro/2 60% WCUT 6.3 5 1/1/2006 170739 72.0714 27.59 

krw/60,kro/2 60% WCUT 12.6 20 10/1/2005 170694 72.0524 30.2 

krw/60,kro/2 60% WCUT 25.2 80 1/6/2005 170517 71.9776 33.21 
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Table 3.19 Impact of Gel Treatment Volume/Radius on Effective Period (days) Case 2. 

RPM RPM 

Radius 

 (ft)) 

Volum

e of 

RPM 

(ft³) 

Effective 

period 

 (day) 

Total Oil 

production at 

Base Case  

(STB) 

Total Oil 

production at 

RPM (STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil 

Recovery 

Improveme

nt (%) 

krw/20,kro/2 60% WCUT 6.3 5 1079 50296 90282 39986 16.9 

krw/20,kro/2 60% WCUT 12.6 20 976 46524 92427 45903 19.4 

krw/20,kro/2 60% WCUT 25.2 80 957 45705 95249 49544 20.9 

krw/60,kro/2 60% WCUT 6.3 5 957 45705 92051 46346 19.6 

krw/60,kro/2 60% WCUT 12.6 20 837 41545 90513 48968 20.7 

krw/60,kro/2 60% WCUT 25.2 80 805 40195 92174 51979 21.9 

 

 

Table 3.20  Impact of Gel Treatment Volume/Radius Effect on Accumulative Production 

and Oil Recovery Case 3. 

RPM RPM Radius 

(ft) 

Volume 

of RPM 

(ft³) 

DATE Cumulative Oil 

(STB) 

Oil Recovery 

Factor 

(%) 

Oil Recovery 

Improvement 

(%) 

Base case 3   10/20/2010 166315 70.1998  

krw/20,kro/2 60% WCUT  28.2, 39.9 187.5 7/1/2006 171263 72.2881 21.20 

krw/20,kro/2 60% WCUT  39.9, 56.4 375 2/6/2006 172183 72.6768 24.51 

krw/20,kro/2 60% WCUT  56.4, 79.8 750 1/4/2005 172918 72.987 31.97 

krw/60,kro/2 60% WCUT  28.2, 39.9 157.5 4/24/2006 171152 72.2415 22.45 

krw/60,kro/2 60% WCUT  39.9, 56.4 375 2/1/2006 172210 72.7825 26.40 

krw/60,kro/2 60% WCUT  56.4, 79.8 750 1/4/2005 173044 73.0401 32.07 

 

 

Table 3.21  Impact of Gel Treatment Volume/Radius on Effective Period (days) Case 3. 

RPM RPM Radius 

 (ft)) 

Volum

e of 

RPM 

(ft³) 

Effective 

period 

 (day) 

Total Oil 

production at 

Base Case  

(STB) 

Total Oil 

production 

at RPM 

(STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil Recovery 

Improvement 

(%) 

krw/20,kro/2 60% WCUT 28.2, 39.9 187.5 972 39820 74608 34788 14.7 

krw/20,kro/2 60% WCUT 39.9, 56.4 375 952 39278 59819 20541 8.7 

krw/20,kro/2 60% WCUT 56.4, 79.8 750 770 34471 81286 46815 19.8 

krw/60,kro/2 60% WCUT 28.2, 39.9 157.5 956 39388 75541 36153 15.3 

krw/60,kro/2 60% WCUT 39.9, 56.4 375 951 39236 62519 23283 9.8 

krw/60,kro/2 60% WCUT 56.4, 79.8 750 717 32838 80269 47431 20.0 
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Figure 3.61  Water Cut Case 3. 

 

 

Figure 3.62 Water Cut Case 2. 
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Table 3.22  Impact of Gel Treatment Volume/Radius Effect on Accumulative Production 

and Oil Recovery Case 4. 

RPM RPM Radius 

(ft) 

Volume 

of RPM 

(ft³) 

DATE Cumulative Oil 

(STB) 

Oil Recovery 

Factor 

(%) 

Oil Recovery 

(%) 

Base case 4   1/16/2009 119431 50.4136  

krw/20,kro/2 60% WCUT  6.3, 12.6 12.5 10/1/2005 169304 71.4655 21.0519 

krw/20,kro/2 60% WCUT  12.6, 25.2 50 10/1/2005 169304 71.4655 21.0519 

krw/20,kro/2 60% WCUT  25.2, 50.4 200 1/5/2005 169241 71.4391 21.0255 

krw/60,kro/2 60% WCUT  6.3, 12.6 12.5 7/1/2005 169960 71.7424 21.3288 

krw/60,kro/2 60% WCUT  12.6, 25.2 50 7/1/2005 169960 71.7424 21.3288 

krw/60,kro/2 60% WCUT  25.2, 50.4 200 1/19/2005 169571 71.5784 21.1648 

 

 

Table 3.23 Impact of Gel Treatment Volume/Radius on Effective Period (days) Case 4. 

RPM RPM Radius 

 (ft)) 

Volum

e of 

RPM 

(ft³) 

Effective 

period 

 (day) 

Total Oil 

production at 

Base Case  

(STB) 

Total Oil 

production 

at RPM 

(STB) 

Total Oil 

production 

Improvement 

(STB) 

Oil 

Recovery 

Improveme

nt (%) 

krw/20,kro/2 60% WCUT 6.3, 12.6 12.5 1406 45748 116702 70954 29.9 

krw/20,kro/2 60% WCUT 12.6, 25.2 50 1406 45748 116702 70954 29.9 

krw/20,kro/2 60% WCUT 25.2, 50.4 200 1376 45070 118773 73703 31.1 

krw/60,kro/2 60% WCUT 6.3, 12.6 12.5 1360 44813 118645 73832 31.2 

krw/60,kro/2 60% WCUT 12.6, 25.2 50 1361 44878 118709 73832 31.2 

krw/60,kro/2 60% WCUT 25.2, 50.4 200 1192 42119 117904 75785 32.0 

 

 

Table 3.24 Effect of Gel Treatment on Water Saturation. 

Case Cumulative Water Injection 

(MSTB) 

Cumulative Water Production 

(MSTB) 

Base Case 1 520.47 269.62 

Case 1 with RPM 347.00 95.033 

Base Case 2 830.70 587.82 

Case 2 with RPM 395.60 147.88 

Base Case 3 789.07 548.37 

Case 3 with RPM 383.40 131.02 

Base Case 4 660.70 491.12 

Case 4 with RPM 369.00 122.87 

 



78 
 

 

 

Figure 3.63 Water Cut Case 4. 

 

 

 

Figure 3.64 Water Saturation Base Case 1. 

 

Figure 3.65 Water Saturation Case 1 After 

Effective Treatment. 
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Figure 3.66 Water Saturation Base Case 2. 

 

Figure 3.67 Water Saturation Case 2 After 

Effective Treatment. 

 

 

 

 

Figure 3.68 Water Saturation Base Case 3. 

 

Figure 3.69 Water Saturation Case 3 After 

Effective Treatment. 
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Figure 3.70 Water Saturation Base Case 4. 

 

Figure 3.71 Water Saturation Case 4 After 

Effective Treatment. 

 

 

 

 

Figure 3.72 Water Saturation Base Case 1. 

 

Figure 3.73 Water Saturation Case 1 with 

RPM.  
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Figure 3.74 Water Saturation Base Case 1. 

 

Figure 3.75 Water Saturation Case 1 with 

RPM.  
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4. CONCLUSIONS AND RECOMMENDATIONS 

 

4.1 CONCLUSIONS 

Numerical simulation was run investigate whether RPM can be used to reduce 

water production and increase oil recovery for two reservoir models: one lay 

homogeneous formation, the two-layer heterogeneous formation with crossflow. Linear 

flow and five-spot well patterns were considered for the simulation. The following the 

relative permeability modification with five spot and two layers flow pattern is more 

effective than linear flow with two layers and one layer. Conclusions are as follows: 

  The effective period of DPR treatment is longer if treated in low water cut than in 

high water cut.  

 DPR can improve oil production and reduce water production during the effective 

period of a treatment but the final recovery could not be significantly improved even 

sometimes worse.  

 Better water control results can be achieved with more gel injection. 

4.2 LIMITATION OF THE STUDY 

 

 This study did not consider the potential damage of gel treatment on productivity. 

 It is an ideal model of RPM treatment. 

 The result is only used to give a general instruction about when and where RPM 

can be used further study should be implemented. 
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