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ABSTRACT 

 Investment casting is a process in which a ceramic shell is prepared on a wax or 

foam pattern. The wax is melted out or the foam is burnt out and the shell is sintered to 

have sufficient strength to withstand casting conditions. The investment casting process is 

very important as it produces near net shape castings which reduce the need for 

subsequent operations of castings like machining etc. 

Investment casting shells are subjected to a number of heating cycles during 

pattern removal, firing, preheating before pouring and finally during solidification. The 

thermo-physical properties of the shell play an important role during these processes. One 

focus area of this research was measuring the thermal conductivity and the specific heat 

capacity of investment casting shells. The measured properties were included in a 

simulation software database (Magmasoft).   

 A second focus area of the research was casting surface defects due to liquid steel 

– ceramic shell interactions. A special cube-shaped specimen with a deep pocket region 

was designed and simulated using Magmasoft. Three different types of shells were 

prepared with silica, zircon and alumina flour in the prime coat slurries. For comparison, 

shells prepared around the same pattern were obtained from three industrial foundries. 

Shells were preheated to 800°C and poured with HY130 steel. Shell samples in contact with 

the steel were taken from the pocket region of the castings, polished and SEM/EDS analyzed. 

Multiple interaction products included complex Mn-Si-O, Al-Si-Mn-O and Fe-Si-Mn-Al-O oxides 

were experimentally identified. The experimental results are discussed with respect to the 

thermodynamic predictions. The results can be used for shell material selection and to identify 

casting procedures that would limit these defects. 
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1. INTRODUCTION 

1.1. BACKGROUND 

The investment casting process has been used widely for the production of small 

and medium sized precision steel and aluminum castings with complex geometry. Now it 

is finding many more applications in the fields of military, marine, aerospace etc. There 

are many design advantages 
1
 of the investment casting process. Any degree of external 

complexity as well as wide range of internal complexity can be achieved. Any castable 

alloy can be used, including ones that are impossible to forge or are too difficult to 

machine. The absence of parting lines and the elimination of substantial amounts of 

machining by producing parts very close to final size give investment casting an 

enormous advantage over sand casting and conventional forging. The long-standing use 

of investment castings in aircraft engines for the most demanding applications has fully 

demonstrated their ability to be manufactured to the highest standards.  

There are two distinct processes 
2
 used for making investment casting molds: the 

ceramic shell process and the solid investment (solid mold) process. The ceramic shell 

process starts with dipping a foam or wax pattern in slurry made of binder and flour 

(fused silica, zircon, alumina etc.). Most common binder used today is colloidal silica 

since the United States government imposed limits on the use of ethyl silicate. The 

dipped pattern is allowed to drain for sufficient time and then refractory powders 

(crushed stucco) are applied to the slurry coated pattern. The first coat is called as prime 

coat and plays a major role in surface finish of the casting and hence slurry with high 

viscosity and finer stucco is preferred. Stucco is applied by dipping the pattern into a 
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fluidized bed, the rain fall method or simply by hand. The stucco can be silica or 

aluminosilicate. Each shell coat is allowed to dry for three to four hours depending on the 

humidity of the surrounding atmosphere. Forced air or fans are sometimes used to 

expedite the drying process. The shell building process consists of one or two prime 

coats, four to five back up coats and a seal coat. The backup coats impart strength to the 

shell and hence coarser stucco is used for this purpose. The coarser stucco also results in 

more porosity in the shell which can both prevent crack penetration to the surface and 

increase permeability of the shell. The seal coat uses the same slurry as the backup coats, 

but uses no stucco.  Its purpose is to seal the stucco of the previous layers. The solid 

investment process 
2
 is primarily used to produce dental and jewelry castings and has 

only a small role in engineering applications.  

 The pattern is then removed from the shell by melting the wax or thermal 

decomposition of the foam. The shell is cleaned from the pattern residue and 

strengthened by firing.  At the same time, sintering of the ceramic takes place to give the 

investment casting shell a structure which has enough strength to hold the pressure of 

liquid metal. If any cracks are found they are repaired by patching with ceramic slurry. 

Shells are preheated between 700 and 1000°C just before pouring to keep the metal 

liquid, allowing complete filling of complex geometry parts. During solidification phase 

transformations take place in the ceramic shell, which results in small changes in volume 

leading to cracking of the shell. This phenomenon helps in breaking the castings out of 

the ceramic shells. Once the metal has solidified the shell can be hammered, shot blasted, 

washed with high pressure water or sometimes chemically dissolved to release the 

casting. Over the years the process has evolved in order to have better surface finish and 
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thereby reduce the cost of finishing and machining. Large castings are being poured into 

free standing shells using this process. 
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1.2. LITERATURE REVIEW  

1.2.1. Thermo-Physical Properties of Ceramic Shells.  Hendricks and Engelhardt 
4
 

studied thermal conductivity and heat transfer measurement for ceramic shell molds. In 

their experiment they plugged one end of an alumina tube with a small amount of wax. 

Then a ceramic shell of desired composition was built around the end and approximately 

five cm up the tube. After the shell was completed, including a final drying period, the 

wax was removed by low temperature firing at around 425°C. A thermocouple was 

placed on the internal surface of the shell sample. The shell was inserted into a preheated 

furnace and when the internal temperature reached the target temperature the sample was 

pulled from the furnace and the cooling profile was recorded. The rate of temperature 

loss (dT/dt) or the slope of the temperature versus time curve for a number of runs was 

plotted against temperature. The rate of temperature loss for the test temperature was 

calculated by linear regression on the slope values within 25°C of test temperature.  The 

authors 
4
 developed equation for heat transfer through the shell as  

2

2( ) /

3.1416* *( )

S

i e

D OD dT dt
H

ID T T

−
=

−
 

Where H – thermal transfer coefficient, Ds – shell diameter, OD – outside diameter of the 

tube, dT/dt – rate of temperature loss, Ti – interior temperature, Te – exterior temperature 

and  ID – inside diameter of tube. 

 Richards, Lekakh and Druschitz 
5
 studied dynamic measurements of mold thermal 

properties with application to the investment casting processes. A novel 

experimental/computational method was designed for dynamic measurements of the 
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thermal properties of foundry molds. The method was based on the generation of a 

precise energy impulse in the mold media by small electrical heater and measurement of 

the temperature response near the heat source within the molding media. A computer and 

data acquisition interface was used for controlling impulse cycles and obtaining high 

resolution temperature measurements. The device had a five mm diameter and could be 

easily imbedded in different locations within the molds. The coefficient of thermal 

conductivity was calculated on the basis of the measured temperature response and non 

steady state heat transfer modeling with fluent software by assuming a constant value of 

heat capacity. The method has been used for the measurement of the thermal properties 

of the green sand mold near the surface of the mold cavity during steel pouring and thin 

ceramic shell properties during de-waxing. 

 Huang, Berry, Zheng and Piwonka 
6
 studied the thermal conductivity of 

investment casting ceramics. These authors 
6
 mentioned analytical models developed by 

Eucken and Kingery. Eucken 
7
 assumed that the pores were spheres and the refractory 

phase was continuous. The conductivity of the mold, Km was given by 

1
2 (1 ) / (2 1)

1 (1 ) / (2 1)

S

m

K P Q Q
K

P Q Q

+ − +
=

− − +
 

Where Ks – thermal conductivity of solid material, Ka – thermal conductivity of air, P – 

porosity, Q – Ks/Ka. 

Kingery 
7
 assumed the layers would be parallel to the surface (i.e. perpendicular 

to direction of heat flow). He found that when different ceramic phases were arranged in 

parallel to the slab plane, the thermal conductivity was given by 
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1/km = [V1/k1] + [V2/k2] 

Where V1, V2 – volume of each phase and k1, k2 – conductivity of each phase. 

The experimental values of thermal conductivity were measured over the range of 

0-750°C using the hot wire method for shells consisting of colloidal silica/fused silica, 

colloidal silica/zircon, colloidal silica/mullite and colloidal silica/mullite/zircon as well as 

colloidal silica/alumina and colloidal silica/zircon cores. Simulation theories failed to 

recognize the heat transfer mechanisms which became more efficient with increasing 

temperature. For fused silica based shells, values predicted from the model by Eucken 

and experimental results were observed close to a line, calculated assuming shell is 50% 

continuous solid and 50% continuous air. Huang et al. concluded existing models could 

describe the thermal conductivity behavior of monolithic shells up to 750°C if the right 

percentage of continuous porosity is used in the model. No simple simulation models 

accurately described the contribution of radiation and translucence to thermal 

conductivity at high temperatures. 

 Browne and Sayers 
8
 also measured the mold thermo-physical properties of 

ceramic shells. They used an axially located heating element which provided a thermal 

gradient in a cylindrical specimen of radius 35 mm and length 200 mm. The shell was 

built up around the element (using the element as pattern) so that good thermal contact 

would be achieved. Radially located thermocouples were also molded into the specimen 

and the output was recorded on a data logger. The shell was homogenous i.e. the same 

slurry and stucco was used throughout. This was done to enable an accurate value of 

thermal conductivity of the backup part of the shell to be deduced. Thermal conductivity 
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was determined by applying the Fourier law in cylindrical co-ordinates. The specific heat 

capacity of the shells was not measured separately but data taken from the thermal 

conductivity test was used in finite difference calculation to determine the specific heat. 

 Browne and Sayers 
8
 continued their work of experimental measurement of 

investment shell properties. A conventional calorimeter was used to measure the specific 

heat capacity of a sample of investment material. The sample block was placed in a 

furnace and brought to the temperature at which data was required. Once thermal 

equilibrium was established, the test piece was rapidly removed and plunged into the 

calorimeter. When the new thermal equilibrium was established in the calorimeter, the 

specific heat of the investment block was measured. Measurements were taken over the 

range 300 – 1000°C. The data showed a significant increase in the specific heat capacity 

with increasing temperature.  

Connolly, Jones and Marquis 
9
 measured the specific heat capacity of investment 

casting shells. The specific heat capacity of the shell was measured using differential 

scanning calorimeter.  Results were compared with calculated values from the rule of 

mixtures. The rule of mixtures used was  

Cp shell = f1Cp1 + f2Cp2 + f3Cp3 + ….. Etc 

Where Cp shell – specific heat capacity of whole investment casting shell, f1 – fractional 

mass of material 1, Cp1 – specific heat capacity of material 1 and so on. 

The masses of each coat were measured by drying after each dip and weighed in 

order to measure the slurry mass loss during heating. Specific heat capacity 

measurements were taken after each coat. The primary slurry consisted of a 3.7:1 mixture 
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of zircon and silica as filler in an aqueous based colloidal silica solution with 50/80, 

30/80 and 16/30 molochite stucco used for the prime, second and third coat respectively. 

The specific heat capacity was measured using the differential scanning calorimeter for 

1
st
, 1

st
 + 2

nd
 and 1

st
 + 2

nd
 + 3

rd
 layers after the samples were fired to 800°C for one hour. 

The maximum temperature, for which specific heat capacity was measured, was 750°C. 

The measured specific heat capacity was then compared with the one obtained using the 

rule of mixtures. The difference was less than five percent. (Variation of results for 

differential scanning calorimetry is ± 5%, acceptable). Authors 
9 

concluded that the 

specific heat capacity of an investment casting shell can be predicted with a reasonable 

accuracy using the rule of mixtures.  

 Sabau and Viswanathan
 10 

measured the thermo-physical properties of zircon and 

fused silica based investment casting shells. They 
10

 treated the investment casting shell 

as a packed bed. Equations used to measure the thermal conductivity of packed beds were 

used. The authors 
10

 measured the thermal conductivity of the prime coat (zircon slurry 

and zircon stucco) and back up coats (fused silica based slurry and stucco) separately. 

Shells were prepared with zircon based prime coat or fused silica based backup coats. 

The hot wire method was used for experimental measurements. The authors 
10

 observed 

that the specific heat of the zircon face coat was similar to that of pure zircon and since 

the zircon face coat did not exhibit radiation effects. The thermal conductivity did not 

increase with temperature. For fused silica based coats, a third order polynomial fit was 

assumed to describe the overall shell thermal conductivity since the thermal conductivity 

of pure fused silica did not vary strongly with temperature. Authors 
10

 observed that the 
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thermal conductivity for the ten backup coat shell obeyed the constitutive equation for a 

packed bed. 

Richards, Kruse 
11

 studied thermal and moisture characterization during autoclave 

dewaxing in investment casting. Ceramic shells were built on a copper plate. 

Thermocouples were inserted in the plates, prime coat, back up coats and the seal coat. 

During autoclave dewaxing, the shell absorbs water and its thermal conductivity 

drastically changes. By placing a thermocouple on the surface of the shell and the surface 

of the copper, the temperature of the shell surface and the copper surface were 

determined. Area of the shell and thickness of the shell being known, thermal 

conductivity of the shell was determined from the following equation. 

MCu.CpCu(∆TCuc/t) = (KsAs/Xs).(Tss – TCus) 

Where MCu = Mass of Copper, CpCu = Heat capacity of Copper, t = time, Ks = Thermal 

conductivity of shell, As = Area of the shell, Xs = Avg. thickness of the shell, Tss = 

Temperature of shell surface, TCus = Temperature of the Copper surface, TCuc = Cooper 

center temperature. It was observed that during autoclave cycle, the thermal conductivity 

of the shell began at around 0.5 W/mK and as moisture saturated the shell, thermal 

conductivity of around 1.4 W/mK was achieved.  

Many models 
12

 have been developed to predict the thermal conductivity of two-

phase mixtures or porous materials. These models include the series model, parallel 

model, Eucken model, Kingery model, Russell model, Son Frey model, Rayleigh-Devries 

model, Maxwell model and the Bruggeman model. The equations of these models are 

summarized in appendix table 3. These models can be applied to a ceramic shell by 
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taking into account the thermal conductivities each phase, the continuous phase (solid 

ceramic) and the discontinuous phase (porosity), and the volume fraction of each.  

Attempts were made to use these models to predict the thermal conductivity of 

investment casting shells. It was observed that the models don’t accurately predict the 

thermal conductivities of the ceramic shells. First, the ceramic shell is not a continuous 

phase but a mixture of two or more phases like fused silica, zircon, aluminosilicate etc. 

Each of these materials conducts heat differently. Hence the term Kc in the models should 

be modified to a new term taking into account the thermal conductivities of all solid 

phases. Second, the thermal conductivity models fail to account for the effect of 

connected porosity. Connected pores will have a significant effect on the term used in the 

models (Kd). Third, the process parameters (binders, viscosities of the slurry, stucco 

application method, pattern removal methods, firing processes etc) used during the shell 

building process can have considerable effect on properties such as the pore sizes and the 

layered structure of ceramic shell.  The models fail to consider any of these parameters.    

It was observed that the thermal conductivities and specific heat capacities 

measured varied for the research done so far. They are summarized in appendix table 1 

and table 2. There is no substantial data which is accepted by commercial simulation 

software. This study was intended to contribute to the database for modeling investment 

casting. 

1.2.2. Metal – Ceramic Shell Interactions.  With technological advances like rapid 

prototyping, CNC foam machining, the investment casting industry is moving towards 

large and geometrically complex parts. Although it is possible to cast these parts 
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successfully using the investment casting process, there are certain areas which need 

more attention. With an increase in size there has also been an increase in solidification 

time of the castings. Complex geometry led to variations in the temperature history 

different regions of the solidifying casting. As a result the ceramic shell can experience 

high temperature in certain regions for considerable time which could lead to metal-

ceramic shell interactions. 

 Metal-mold interactions have been studied for decades in the casting industry but 

most of the work was dedicated to the study the specific burn-in/burn-on surface defect 

formation when using green sand and wash-coated no-bake sand molds.  

Gililland 
13

 conducted experiments by casting grey, ductile iron and steel into 

sand molds and examined the effect of hot metal on sand adherence with a scanning 

electron microscope. Special attention was given to the effect of hot spots on sand burn-

in. Molds were extensively instrumented with thermocouples to obtain time-temperature 

data in locations like hot spot interfaces, cold spot interfaces, and different locations in 

the sand away from casting. Gililland 
13

 observed that the interface temperature reached 

the solidus. Examinations of the metal and sand surfaces had been performed using 

energy dispersive microprobe analyzer. Microprobe analysis of the reaction interface 

showed that Fe, Mn, Si, P and Ni were the major components. 

   Brooks, Beckermann and Richards 
14

 developed a method to predict burn on and 

penetration defect locations using casting simulation. The suggested method for burn-on 

prediction is based on the simulation of the locations where mold is above a certain 
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critical temperature, generally above the steel solidus temperature, while adjacent casting 

regions have not yet solidified.  

Richards 
15 

studied mold-metal penetration in steel castings. Zircon coatings are 

used for cores and in the molds because of various advantages of like greater surface 

tension at the mold metal interface, lower thermal expansion etc. The higher thermal 

conductivity of the zircon coating leads to more rapid solidification of the casting surface 

skin. In the first case study, extensive penetration in a zircon core located beneath the 

riser was analyzed. Metallographic and SEM analysis revealed that the integrity of the 

coating was an important issue. Failure of the coating was due to flaws produced during 

drying, shrinkage giving rise to stresses, failures due to variation in coating thicknesses 

which lead to mechanical pressure driven penetration. Another possibility observed was 

localized decomposition of zircon to zirconia and silicate glass. This phenomenon could 

be important due to the sixteen percent difference between in the thermal expansion of 

zirconia and zircon. 

Two more case studies 
16

 were performed for a zircon sand core in a lightener 

pocket of a thirty-two ton large gear casting and a thin piece of adherent sand from zircon 

wash coated green sand mold using chromite and zircon sand mixed. Polished section 

examination of a penetrated core sample revealed pressure driven flow rather than 

capillary action. SEM also revealed a reaction product containing aluminum, silicon, iron 

and manganese oxide. Zircon showed a tendency to form a liquid reaction product and 

zirconium oxide, in equilibrium with the reoxidation products such as FeO and MnO. 

This suggested that coatings will perform better when foundry practices limit reoxidation 

product formation. Zircon coatings will not survive extended contact with a liquid phase 
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formed from reoxidation products. The following conclusions 
17 

were drawn from 

fundamental understanding of the mold penetration phenomenon and various case 

studies: (1) Coating failure could be due to exceeding the coating toughness limitations 

during drying, core material thermal expansion or thermal shock, (2) material handling 

effects can damage the coating and (3) localized decomposition of coatings, for example, 

zircon to zirconia and silicate glass, when in contact with a liquid reoxidation product.  

 Rasquinha, Richards 
18

 studied burn in/burn on case studies on samples from 

different commercial foundries. Analysis showed one of the causes for burn in/burn on 

was liquid chemical reaction penetration mechanism. Thermodynamic analysis of the 

reaction product showed it was substantially liquid at steel pouring temperatures. Steel 

can become partially oxidized during pouring and the reaction product can possibly form 

by the reaction between partially oxidized steel and the mold coating zircon. It was 

observed that unlike steel which does not wet silica sand, iron oxide readily wets and 

dissolves silica sand. In addition to the formation of liquid oxide at mold metal interface 

wetting the sand and allowing burn in and burn on, liquid phase sintering also occurs 

causing the sand near the surface to densify non-uniformly, thus leading to disruption.   

 Richards, Kruse 
19

 studied burn in/ burn on with respect to coating 

characterization. Parameters assessed were composition, density, viscosity of the coat, 

surface geometry, drain angle of cores and molds. As solids’ loading was decreased for a 

coating the degree of penetration increased and the layer thickness on the surface of sand 

decreased. At optimal solids loading there was less effect of the drain angle on coating 

quality. The pseudoplastic nature of the coatings suggested yield stress for flow was an 

important indicator of ability to resist runs and thick spots in coating. 
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 Hayes, Barlow, Stefanescu, Piwonka, Owens, Lane 
20,22,23,24

 studied mechanical 

penetration of liquid steel in sand molds. Sessile drop experiments were run to evaluate 

the effect of steel chemistry on contact angle for different substrates. The sessile drop 

data was used to develop a mechanical penetration model. The model was based on the 

following equation. 

Pst + Pdyn = Py + Pgas + Pf 

The static pressure (Pst) and dynamic pressure (Pdyn) promote penetration, whereas 

capillary pressure (Py), gas pressure (Pgas) and frictional pressure (Pf) oppose it. A 

penetration index was defined as the ratio of actual contact angle between the molten 

steel and mold aggregate and the critical contact angle was calculated. The model gave 

satisfactory results for different metallostatic heads, carbon contents etc. It was observed 

that the mechanical penetration can occur in all ferrous castings. When mechanical 

penetration occurred, no reaction between the sand and the steel was observed. The 

variables that influence its occurrence the most were metallostatic head, metal velocity in 

the mold and grain size of the molding aggregate. Steps suggested to eliminate 

mechanical penetration were the application of the mold coating, decreasing the flow rate 

of the metal into the mold and choosing a molding aggregate that is less susceptible to 

wetting. 

 Hayes, Barlow, Stefanescu, Piwonka, Owens, Lane 
21,22,23,24

 also studied chemical 

penetration in sand molds in steel castings. A thermodynamic model for the evaluation of 

critical carbon content (minimum carbon content required at interface to prevent iron 

oxidation) was created. Steel castings were poured in different mold materials like green 
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sand, sodium silicate, furan sand etc. Probes for the sampling of gases were placed in 

molds with and without cores. Gases were analyzed with a mass spectrometer and gas 

chromatograph. Cross sections of the castings were viewed optically as well as with a 

scanning electron microscope to determine the extent and type of penetration present. 

Also experiments were performed to study the evolution of the contact angle of steels of 

different chemistries on a variety of substrates like silica, alumina, mullite, olivine, 

zircon, chromite etc.  

It was observed that the more oxidizing the mold atmosphere caused chemical 

penetration. High carbon steels were less prone to penetration defects than low carbon 

steels because the high carbon protects the metal from oxidizing. The atmosphere at the 

mold-metal interface during solidification of steel depended on the type of binder, 

specifically mold carbon and moisture content. All uncoated sand molds regardless of 

binder composition suffered chemical penetration, indicated by iron oxide and fayalite 

found on casting surface. It was observed that iron oxide produced a FeO layer next to 

the steel matrix and a fayalite layer next to silica sand. Sessile drop experiments revealed 

that most ceramics, with the exception of olivine and chromite were suitable for carbon 

steels in neutral atmosphere. For stainless steels the best performance was observed for 

zircon, alumina and magnesite molding materials. High Mn steels were found to be 

compatible only with alumina and magnesite based sands. Silica sand should be avoided 

since it forms low melting eutectic with MnO resulting from the oxidation of Mn in the 

steel.  

Colligan, Van Vlack, and Flinn 
25

 studied factors affecting metal-mold 

interactions by casting AISI 1080 steel in green sand molds and resin bonded sand molds 
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with different Mn contents. The effect of Mn additions and atmosphere on interface 

reaction was qualitatively evaluated. The authors 
25

 explained the interaction 

phenomenon on the basis of penetration and interface reaction, Mn addition and mold 

material effect. The surface finish and interface reaction zone exhibited a pronounced 

influence of Mn by extensive liquid silicate melt formation over entire range of Mn 

additions. The atmosphere produced by phenolic resin bonded shell molds, oxidized to a 

lesser degree than that of green sand molds, resulted in slight interface reaction over the 

range of Mn content.  

Tani, Ueda, Mori 
26

 studied interfacial reaction between cast steel and olivine 

sand. Authors 
26

 observed that Mn in molten high Mn steel volatilized and penetrated 

mostly through serpentine and cracks in the olivine sand grains. The penetrated Mn 

lowered the melting point on the surface of the olivine sand grains and a partially fused 

layer was formed at the metal-mold interface. A similar reaction was observed in green 

sand. Comparison was made between the olivine sand and silica sand, and the effect of 

Mn coating on the olivine sand grains against burning was investigated in their work. 

Cingi, Vainola, Orkas 
27

 studied the role of oxygen in mold-metal interactions in 

investment casting of magnesium alloy AZ91E. They 
27 

observed during pouring and 

filling that the Mg melt reacted with oxygen and the formed MgO reacted with the mold 

material. External oxygen reacted with Mg melt after filling and caused mold-metal 

reactions. Thermodynamic calculations indicated the function of free oxygen is to react 

with Mg melt and supply energy for the mold-metal reaction to occur. The authors 
27

 

recommended that the shell should be flushed with protective gas such as SF6 to 

eliminate reactions. Authors 
26

 also suggested that in order to eliminate reactions due to 
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external oxygen, shell molds should be sealed by either a glaze layer or by applying an 

additional layer of zircon on the sintered mold.  

Jones, Marquis and Page 
28

 characterized thermal profiles and metal-mold 

interaction within investment casting molds. Two types of molds (5kg and 60 kg) were 

prepared with a prime coat consisting of zircon based slurry and zircon stucco, back up 

coats were made with the same slurry and molochite stucco. Thermocouples were 

inserted into the pattern and at different levels in the shell to measure the temperatures at 

each coat of the shell. Shells were poured with martensitic stainless steel and low alloy 

steel. For the 5kg mold authors observed some alloying elements appeared to have 

leached or diffused into the mold structure, possibly through melting of the binder 

followed by capillary action. The interactions appeared to be 85 µm deep inside the shell 

after which the structure was unaffected by metal. For 60 kg mold aluminum, zirconium, 

iron, sodium etc were observed, possibly due to partial melting, to a depth of 

approximately 75 µm. The authors 
28 

observed more interaction layer in the 60 kg mold 

due to the fact that primary coats of the mold were at high temperature for longer periods 

of time which allowed the refractories to melt and recrystallize during cooling.      

Zhang, Morin 
29

 studied the effect of inhibitor gas on mold-magnesium reactions 

in investment casting. Ceramic shell molds with different binder and refractory particles 

were prepared for pouring AZ91 magnesium alloy. Inhibitor gas was guided into the shell 

molds for removal of oxygen and formation of barrier between the mold and the 

magnesium. The results of experiments showed that a mixture of CO2 and proper 

concentration of SF6 used as inhibitor gas can effectively limit mold-magnesium 

reactions. A surface analysis with auger electron spectroscopy and electron spectroscopy 
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for chemical analysis had been performed on the surface of magnesium parts cast under 

inhibitor gas. It was discovered a special layer appeared on the part surface, in which 

elements such as magnesium, oxygen, fluorine, aluminum, sulphur, silicon etc were 

detected. 

Sikkenga 
30

 analyzed gases in air melt investment casting alloys. He 
30

 suggested 

it was easier and more effective to limit gas pickup than it was to attempt any substantial 

removal of gas in the foundry. He recommended following ways to minimize negative 

effects of gases in cast metals. 

1. Start with lowest oxygen melts stock available. 

2. Keep superheats low. 

3. Keep melting times as short as possible. 

4. Use an effective argon cover to prevent gas absorption. 

5. Minimize additions to melt. 

6. Use only dry refractories. 

7. Realize the potential for entrapped air which exist with primary vertical gating 

arrangements.  

8. Adequate pouring practice to prevent reoxidation.  
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1.3. FOCUS OF RESEARCH 

Most of the work done so far in the thermo-physical properties measurement of ceramic 

shells was limited to the maximum temperature of 800°C. It was also observed that the 

thermal conductivity models developed cannot be directly applied to predict the thermal 

conductivity of the ceramic shell.  The porosity in the shell structure accounts for the 

considerable variation in the measurement of thermo-physical properties. Hence it is 

necessary to measure the thermo-physical properties at the temperatures higher than 

800°C, close to the steel castings temperature as possible.   

This research deals with thermal conductivity and specific heat capacity 

measurements at temperature up to 1200°C of different compositions of investment 

casting shells. The obtained data will be incorporated in Magmasoft and will be used for 

simulation of the investment casting process. 

Metal-mold interactions have been studied by many authors but most of the work 

was done on wash coated sand molds and burn in/on. Hardly any work has been done for 

steel-ceramic shell interactions in investment casting. With growth of the steel investment 

casting industry, increasingly complex geometry and larger sizes of the castings, this 

phenomenon has received more attention. Also due to the complex structure of the 

ceramic shells and the limited scope of thermal measurement techniques, thermodynamic 

modeling is not easy.   

During an industrial trial for a casting of complex geometry which was conducted 

by Missouri S&T, the presence of interaction products was observed and hence this study 

was undertaken. This work combined Magmasoft simulation and Factsage modeling to 
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study metal-mold interactions. The comparison of thermodynamic predictions and 

experimental results helped to provide recommendations for material selection for shell 

making. It can also contribute to understand the foundry practices to limit the reaction.   
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2. EXPERIMENTAL PROCEDURES 

2.1. SLURRY PREPARATION  

The slurry used for making investment casting shells plays a major role in 

determining final properties of the mold such as thickness of the shell, permeability, 

strength etc. The flours used were fused silica, zircon and alumina. The binder used, 

Megasol contained 45 wt% amorphous silica (in suspension) and less than one weight 

percent sodium hydroxide in water solution. The flours used were Ranco-Sil fused silica, 

alumina and zircon. The flour and binder were combined in a 2:1 weight ratio. Initial, 

high shear mixing of the ingredients was done using 333 RPM/40 HP, DC motor. Once 

the flour was adequately dispersed into the binder, the bucket containing the binder and 

the flour was placed onto a plate rotating at 15.7 RPM with a scraper bar, as shown in 

figure 2.1. The scraper bar helped to prevent the solids from settling. 

 

   

Figure 2.1 Mixing plate and scraper bar shown with an empty mixing bucket 
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After preparation, the slurry was left under low shear for minimum of twelve 

hours to allow air bubbles which were introduced during flour addition to float out. Once 

the entrapped air had escaped the slurry and the slurry’s viscosity had stabilized, the 

viscosity of the slurry was tested using a Brookfield DV-II + Pro viscometer with a LV3 

spindle operating at 30 RPM as shown in Figure 2.2. The LV3 spindle was selected 

because the viscosities tested were well within its testing range. Based on previous trials 

at Missouri S&T a spindle speed of 30 RPM was selected.  

 

 

Figure 2.2 Brookfield DV-II+ Pro viscometer used to measure slurry viscosity 

 

To lower the viscosity of the slurry, de-ionized water was added in controlled 

volumes. The added water was given minimum of fifteen minutes to disperse throughout 

the slurry before additional rheological readings were taken. In the event that viscosity of 
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the slurry was below the target range (700-1000 cP), natural evaporation was used to 

lower the water concentration.  

2.2. PATTERNMAKING 

The surface of the pattern is another important parameter since it’s replicated to 

the interior surface of the ceramic shell which in turn is responsible for surface quality of 

the castings. High density (EPS) foam was used to make the patterns for both thermo-

physical property measurements as well as steel-ceramic shell interactions study. In order 

to obtain the final shape of the designed pattern pieces cut from the foam were glued 

together and the final required design was constructed. To promote the slurry wetting on 

the pattern, the surface of the foam was modified using 150-grit sandpaper.   

2.3. PATTERN COATING 

When the viscosity of the slurry was in the target range, the pattern was dipped 

for coating. Either the top inch or the attached pouring cup of the pattern was used as grip 

area while the rest of the pattern was submerged into the slurry for at least five seconds 

and then rotated 360° to allow all parts to be fully coated. The pattern was then gradually 

removed from the slurry to allow excess slurry to naturally drain off. The patterns were 

held at 45° angle to the horizontal and were rotated along their axis. The rotation 

prevented over draining from a single edge thus created a uniform coating thickness 

across the surface. Once the interval between the drips from the shell exceeded three 

seconds, stucco was applied using the rainfall method where the stucco was sprinkled 

onto the pattern through a grated container suspended two feet above the pattern. The 



24 

 

pattern was rotated so that dipped surface gets coated uniformly and no area was missed. 

The stuccos used were Ranco-Sil fused silica, aluminosilicate and zircon.  

2.4. SHELL FIRING 

The prepared shells were fired at 900°C with heating rate of 3°C/min, were held at 

900°C for four hours and then furnace cooled to the room temperature. After firing all 

shells were checked for any visible cracks. Shells obtained from industrial foundries used 

the same pattern designed at Missouri S&T and were fired with the same parameters.  

2.5. DENSITY MEASUREMENT BY ARCHIMEDES METHOD  

An experimental procedure 
3,38

 based on ASTM C20 was used for density 

measurement of investment casting shell samples. Samples of approximately 1”x 1” x 

0.4” were cut from the fired shells were then heated to 150°C for minimum of one hour 

and then allowed to cool to the room temperature. The samples were weighed 

immediately to determine their dry weight (without moisture). Then the samples were 

placed in an aluminum wire cradle. The cradle was suspended from wire supports on top 

of one liter beaker filled with water. The samples were allowed to hang freely in water 

without coming in contact with other samples or beaker floor or walls. Once the samples 

were placed, the beaker was placed on hot plate for boiling. Following two hours of 

boiling, the heat source was turned off and the water was allowed to cool back to room 

temperature overnight. Without removing the samples from the water, the wire cradles 

holding the samples were moved to a hanging weight scale one at a time. The differences 

between submerged cradles’ weight with and without shell samples were recorded. When 

removing the samples, care was taken not to draw out water from within the sample. For 
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this, contact with hands was minimized to only small patches on sides and the samples 

were suspended by plastic clamps. The samples were weighed a third time by suspending 

them in air while still wet. The apparent porosity and bulk density of the samples were 

calculated from the following equations taken from ASTM C20. 
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Where WD is dry sample weight, WS is the submerged sample weight and WW is wet 

sample weight. (All measured in grams) 
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3. THERMO-PHYSICAL PROPERTIES OF CERAMIC SHELLS 

Ceramic shell molds have complex structure and phase transformations that occur 

during both firing and pouring thermal cycles. These factors influence the thermal 

properties of the shell mold. Knowledge about the time and temperature dependency of 

heat capacity and heat conductivity is important for investment casting process 

development and computational simulation of casting solidification.  

Thermo-physical properties of investment casting shells include specific heat 

capacity, thermal conductivity, gas permeability, density and surface emissivity. All of 

them play an important role during casting solidification. This research is focused on 

measuring the Cp and K of investment casting shells. 

When investment casting shells are poured, heat is transferred through three 

different heat transfer mechanisms, conduction, convection and radiation.  It is difficult to 

measure the thermo-physical properties for many reasons. First, the shell is composed of 

layers with different thermal properties. Second, each layer is composed of binder and 

refractory which conduct heat at different rates. Third, the porous structure presents 

computational difficulties because some pores are connected to pores in adjacent layers. 

Fourth, there is a glassy phase is formed in the shell at elevated temperatures which 

conducts heat locally by radiation.  

The measurement techniques used in this study are differential scanning 

calorimetry and laser flash thermal diffusivity. Also it was important to compare 

experimental data on heat capacity of pure components
 
with multi-layered shells in the 

green condition, during firing and pouring cycles. The purpose of this study was to 
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understand whether process temperature history has a significant effect on shell thermal 

properties.  

Shells prepared around wax or foam patterns during investment casting are 

subjected to high temperature cycles from pattern removal, firing, preheating just before 

pouring and finally during casting pouring and solidification. High temperature thermo-

physical properties including thermal conductivity (K) and specific heat capacity (Cp) of 

the shell materials influence all these processes. Powerful simulation software like 

Magmasoft for metal casting processes have been developed and are commercially 

available. Properties of the known and newly developed alloys as well as those of the 

mold materials used need to be included in the software databases. The reliability of the 

model depends on including accurate materials properties in the database. In application, 

it must be considered that these thermal-physical properties depend significantly on 

temperature and process history. 

3.1. SHELL PREPARATION 

Three different types of shells were prepared in the Missouri S&T foundry to 

determine the effect of the refractory materials used on the specific heat capacity and 

thermal conductivity of investment casting shells. Two industrial foundry shells (foundry 

A and foundry B) were also tested for comparison. Foundry A had zircon based prime 

coat and aluminosilcate as stucco in back up coats. Foundry B had fused silica based 

prime coat and coraser mesh silica as stucco in the back up coats. Table 3.1 shows the 

materials used for shell preparation. Shells prepared in the Missouri S&T foundry had 

one prime coat, five back up coats and a seal coat. All the shells were fired to 900°C for 
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three hours before testing. The percentage of open porosity in each type measured by 

Archimedes method is shown in appendix table 4. 

 

Table 3.1 Compositions of shells prepared at Missouri S&T lab for Cp and K measurement 

Type of shell Binder Flour Stucco 

% Open 

porosity 

Fused silica 

Colloidal 

silica 

Fused silica 

Silica 30-50 

mesh 

13.64 

Fused silica + 

Zircon 

Colloidal 

silica 

Fused silica + 

fused zircon 

Silica 30-50 

mesh 

9.38 

Fused silica + 

Aluminosilicate 

Colloidal 

silica 

Fused Silica 

Aluminosilicate 

30-60 mesh 

14.48 

Foundry A 

Colloidal 

silica 

Zircon Aluminosilicate 21.57 

Foundry B 

Colloidal 

silica 

Fused silica silica 17.86 

 

3.2. LASER FLASH TEST 

The laser flash test 
31

 is used to determine the thermal diffusivity of primarily 

homogenous isotropic solid materials. Thermal diffusivity values ranging from             

10
-7

 to 10
-3 

m
2
/s are readily measurable by this test method from about 75K to 2800K. 

This method is typically applicable to fully dense materials; however, in some cases it 

has shown to produce acceptable results when used with porous samples. The magnitude 
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of porosity, pore shapes, sizes and parameters of pore distribution influence the behavior 

of thermal diffusivity. 

The essential components of the apparatus are a flash source, a specimen holder, 

an environmental enclosure, a temperature response detector and a recording device. The 

flash source generates a short duration of pulse, less than 2% of the time required for the 

rear face temperature rise to reach one half of its maximum value to keep the error due to 

finite pulse width less than 0.5%. An environmentally controlled chamber is required for 

measurements above and below room temperature. The detector provides a linear 

electrical output proportional to a small temperature rise. The data acquisition system is 

of adequate speed to ensure that time resolution in determining half of the maximum 

temperature rise on the thermogram is at most one percent for the fastest thermogram for 

which the system is qualified.  

 

 

Figure 3.1 Block diagram of a laser flash system 
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In the laser flash test
 31,32

 a small thin disc of the specimen is subjected to a high 

intensity short duration radiant pulse. The energy of the pulse is absorbed on the front 

surface of the specimen and the resulting rear face temperature rise is recorded. The 

thermal diffusivity value is calculated from the specimen thickness and the time required 

for the rear face temperature to reach certain percentages of its minimum value. 

Assuming ideal conditions, the temperature response on the rear face of the 

specimen is obtained by the one dimensional equation: 
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where: α is the thermal diffusivity, L is the thickness of the specimen, ∆T is temperature 

rise of specimen, ∆Tm is maximum temperature rise of the specimen and t is the time after 

pulse heating. When the temperature reaches ∆T/ ∆Tm time is set as t1/2 and the thermal 

diffusivity (a) can be calculated from the following equation: 

2
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In the laser flash test, a reference specimen (graphite) and the test specimens 

(shells), are mounted together under the same conditions and irradiated uniformly with a 

laser beam. To insure similar emissivity, the front and rear faces of both the reference and 

the test specimens were covered with a graphite spray coating. Thermal diffusivity values 

are measured from transient temperature curves on the rear face of both specimens by a 

curve fitting method. The rear face temperature rise of the reference (graphite) with 

known specific heat capacity and the specimen are measured with non-contact infrared 

radiation thermometer. If the density (ρ) of the specimen (shell) is known then specific 

heat capacity (cp) of the shell can be calculated from following equation: 
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 Where: LR and LM are the thicknesses of the reference and specimens, respectively.  

Thermal conductivity (K) of the shell can be calculated by substituting measured value of 

specific heat capacity into following equation 

                                                          K Cpρ α=                                                                

 Following figure 3.2 shows the laser flash equipment (FLASHLINETM 5000, Anter 

Corporation) used for the study. 

 

 

Figure 3.2 FLASHLINETM 
5000 (Anter Corporation) laser flash equipment  
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To prepare laser flash test samples, small samples were cut from the fired shells. 

The final sample size of 12.7 × 12.7 mm and two mm thick was achieved by grinding to 

ensure they have exactly flat surfaces. The laser was flashed on the prime coat side of the 

shell. Figure 3.3 shows the samples before and after graphite coating.     

 

    

                                  (a)                                                                             (b) 

Figure 3.3 Samples and standard (a) before graphite coating and (b) after graphite 

coating. 

 

 

Figure 3.4 Shell samples and standard placed in holder before laser flash test 
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For measurement of thermal diffusivity, required temperature was stabilized, 

three laser shots were taken and average of the three was recorded. The laser flash 

operating program requires sample thickness to be entered before it starts a run. Thermal 

diffusivity values were obtained from 200°C to 1200°C at the intervals of 100°C. The 

laser flash equipment runs a built in standard to measure thermal diffusivity. Densities of 

the samples were measured using Archimedes method.
 
Four runs of each type of sample 

were conducted in laser flash test and the average values are reported in results.  

 

3.3. DIFFERENTIAL SCANNING CALORIMETRY (DSC) 

 Differential scanning calorimetry (DSC) determines the temperature and heat 

flow associated with material transitions as a function of time and temperature. It also 

provides quantitative and qualitative data on both endothermic and exothermic reactions 

occurring in materials during phase changes, melting, oxidation, and other heat related 

changes. 

 In DSC, a sample and an inert reference are heated at a known rate in a controlled 

environment. The increase in the temperature of the sample and reference will be the 

same unless an endothermic or exothermic reaction takes place in the sample. The 

temperature difference between sample and reference during such a heat change is 

directly related to the differential heat flow.   

 The sample and reference thermocouple are connected in series opposition (back-

to-back) so that if the sample and reference temperatures are same, the resulting electrical 

potential is zero. If the sample temperature is higher than the reference, the output 

electrical potential is one polarity; if the sample temperature is lower, the polarity is 
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reversed. DSC measures the differential voltage between the thermocouples at the sample 

and reference platforms. 

 Phase transformations in silica play an important role during firing, preheating 

and pouring in the investment casting process. Hence it is necessary to understand the 

effect of process history on the specific heat capacity of the shell. Fused silica based 

shells were tested using DSC to study the effect of phase transformations on specific heat 

capacity of the shell. Three different types of samples were measured: green or unfired 

shell, shell fired to 800°C and shell fired to 1200°C.  Each type of sample was heated at 

the rate of 15°C/min to 1200°C and then held 1200°C for one hour before cooling down 

to room temperature. Samples were then given another run with the same 15°C/min 

heating rate to 1200°C and cooled down to room temperature.  

 

3.4. RESULTS 

Figure 3.5 shows an example of raw data obtained from laser flash method.  

 

 

Figure 3.5 Example of thermal diffusivity measurement of reference and sample 
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Figure 3.6 to Figure 3.10 show the Cp results obtained for Missouri S&T and 

industrial shells with using laser flash method. The specific heat capacity substantially 

increased with increasing temperature in all cases.  

Figures 3.11 to 3.13 show the results of DSC of fused silica based shells. Three 

different types of samples were measured: green shell, shell fired to 800°C and shell fired 

to 1200°C.  Each type was heated at the rate of 15°C/min to 1200°C and then held at 

1200°C for one hour before cooling to room temperate. Samples were then run again with 

the same procedure. 

 

 

Figure 3.6 Specific heat capacity of the silica shell prepared at Missouri S&T foundry 

from the laser flash test (fired at 900°C) 
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Figure 3.7 Specific heat capacity of the silica + zircon shell prepared at Missouri S&T 

foundry from the laser flash test (fired at 900°C) 

 

Figure 3.8 Specific heat capacity of the silica + aluminosilicate shell prepared at Missouri 

S&T foundry from the laser flash test (fired at 900°C) 
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Figure 3.9 Specific heat capacity of the shell (fired at 900°C) 

 measured by the laser flash test for foundry A (flour – zircon, stucco – aluminosilicate) 

 

Figure 3.10 Specific heat capacity of the shell (fired at 900°C) 

 measured by the laser flash test for foundry B (completely fused silica based) 
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Figure 3.11 Specific heat capacity of fused silica based shell not fired (Run 1-first firing 

heating of green shell and Run 2 - second heating cycle the same shell) 

 

Figure 3.12 Specific heat capacity of fused silica based shell fired to 800°C (Run 1-first 

firing, heating of green shell and Run 2 - second heating cycle the same shell) 
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Figure 3.13 Specific heat capacity of fused silica based shell fired to 1200°C  

(Run1 - heating cycle of preliminary fired at 800°C shell and 

Run 2 – second heating cycle the same shell) 

 

Figure 3.14 to Figure 3.18 show thermal conductivity measurement results for 

Missouri S&T and industrial shells. Thermal conductivity increased for all type of shells 

with the increase in the temperature.  
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Figure 3.14 Thermal conductivity of the silica shell prepared at Missouri S&T foundry  

(fired at 900°C) by the laser flash test  

 

Figure 3.15 Thermal conductivity of the silica + zircon shell prepared at Missouri S&T 

foundry (fired at 900°C) by the laser flash test  
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Figure 3.16 Thermal conductivity of the silica + aluminosilicate shell prepared at 

Missouri S&T foundry (fired at 900°C) by the laser flash test  

 

Figure 3.17 Thermal conductivity of the shell (fired at 900°C) measured for foundry A 

(flour – zircon, stucco – aluminosilicate) by the laser flash test 
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Figure 3.18 Thermal conductivity of the shell (fired at 900°C) measured for foundry B 

(completely fused silica based) by the laser flash test 

 

3.5. DISCUSSIONS  

High temperature thermal properties of the ceramic shells that were studied were 

compared to the properties of pure refractory materials.
33

 There is considerable difference 

between Cp and K of pure materials used for shell building and the shells prepared from 

it. The Cp and K data of pure materials are of zero porosity. While ceramic shells 

prepared from pure refractory materials have complex structure. Parameters like binder 

content, surfactants, method of stucco application, closed and open porosity and sintering 

can have a significant effect on Cp and K. Also the layered structure which is produced 

affects K. 
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Figure 3.19 Comparison of specific heat capacity data for pure refractory materials 

obtained from Factsage (Fused silica, aluminosilicate-kyanite) with the data obtained 

from laser flash test for the shells prepared at Missouri S&T fired at 900°C   

 

Figure 3.20 Comparison of thermal conductivity data of pure refractory materials
 33 

with 

the data obtained from laser flash test for the shells prepared at Missouri S&T fired at 

900°C 



44 

 

The heat capacity of fused silica based shells showed a similar trend to pure silica. 

The Cp value increased with increase in temperature. The silica + zircon shells had Cp 

values higher than pure materials of both forms. For silica + aluminosilicate shells, it was 

observed that Cp values were higher than pure aluminosilicate. Foundry A and foundry B 

used different shell formulations which produced different values of heat capacities. Both 

foundry A and foundry B had same firing history. 

For fused silica based shells, the one prepared at Missouri S&T as well as foundry 

A had K values higher than pure fused silica. Pure zircon and aluminosilicate have higher 

thermal conductivity than silica and decreases with increasing temperature. For shells 

prepared from these materials, it was observed that thermal conductivity increases with 

temperature. The highest measured K-values of silica + zircon and silica + 

aluminosilicate shells (having 40 to 50% fused silica in their structure) were still less than 

thermal conductivity of pure zircon and aluminosilicate at that temperature. 

Changes in the heat capacity of the fired shell can be explained using silica phase 

transformation 
34, 35

 data. At atmospheric pressure, α-quartz will transform to hexagonal 

β-quartz at 573°C, upon further heating it will transform to hexagonal  β-tridymite at 

870°C and then to β-cristobalite at 1470°C and at 1705°C it melts (Figure 3.21-route a). 

However tridymite does not form from pure β-quartz unless certain amounts of trace 

elements are added (Figure 3.21-route b). The process (Figure 3.21-route b) is reversible 

if the temperature changes are slow. If quartz crystal is heated quickly then α-quartz will 

get converted to β-quartz but after that β-quartz will directly melt. The stability of β-

quartz is less than β-cristobalite at melting temperature and hence its crystal structure is 

easily broken up (Figure 3.21-route c).  
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If melted silica is cooled fast then it gets converted to amorphous silica glass 

(Figure 3.21-route d). When silica glass is heated it skips the transition to β-quartz, β-

tridymite and gets converted to β-cristobalite and at 1705°C it melts.  

From figure 3.11 and 3.12 in the first run of the samples, a drop in Cp was 

observed after 1000°C. In figure 3.13 it was not observed since shell was already fired to 

1200°C and already transformed to β-cristobalite at 1000°C during firing. If polymorph β-

cristobalite is cooled quickly its crystal structure is preserved and will transform to α-

cristobalite at 270°C. This transformation is reversible. In figure 3.11 and 3.12, during the 

second run transformation of α-cristobalite to β-cristobalite is clearly observed indicated 

by the peak after shell samples had reached 1200°C during first run. For the shell fired to 

1200°C this transformation was observed in both runs. However the shell structure after 

1200°C is not 100% cristobalite. Previous XRD work at Missouri S&T had shown there 

are trace amounts of trydimite present in the shell which may have a significant effect in 

Cp value and could be cause of decrease in the Cp value observed in first run of figure 

3.11 and 3.12. This is subject of future work going on in Missouri S&T. 
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Figure 3.21 Possible phase transformations 
34 

in silica shells 
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Figure 3.22 Presence of cristobalite and tridymite in the shell fired to 1200°C 
36

 

 

From Figure 3.11 in the first run of the samples, a drop in Cp was observed after 

1000°C. In Figure 3.13, this drop in Cp was not observed since shell was already fired and 

already transformed to β-cristobalite during firing. If polymorph β-cristobalite is cooled 

quickly its crystal structure is preserved and will transform to α-cristobalite at 270°C. 

This transformation is reversible. During the second run transformation of α-cristobalite 

to β-cristobalite is clearly observed. Hence for solidification modeling, if the shells are 

already fired to 800°C and then preheated to 800°C again just before pouring Cp values 

can be assumed from figure 3.12 following the curve from point A to point D. 

Cristobalite 

Tridymite 



48 

 

 

Figure 3.23 and Figure 3.24 show the databases developed in Magmasoft for different 

type of Investment casting shells. 

   

(a)                                                                                       (b) 

 

(c) 

Figure 3.23 Specific heat capacity database shown in Magmasoft for (a) fused silica 

based shells, (b) silica + zircon based shells, and (c) silica + aluminosilicate based shells. 
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(a)                                             (b) 

 

(c) 

Figure 3.24 Thermal conductivity database shown in Magmasoft for (a) fused silica based 

shells, (b) silica + zircon based shells, and (c) silica + aluminosilicate based shells. 
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3.6. CONCLUSIONS 

The thermo-physical properties of investment casting shells at high temperatures 

were successfully measured using the laser flash test and differential scanning 

calorimetry. A ceramic shell database for simulation software (Magmasoft) was 

developed.  

The composite structure of the shell was observed to behave in a significantly 

different manner when compared to the data of pure refractory materials used for the 

shell building process. Parameters such as binder content of the shell, total amount of 

open and closed porosity and thermal history of the shell (pattern removing, firing, 

preheating temperatures) can have significant effect on thermal conductivity and specific 

heat capacity of investment casting shells due to fused silica phase transformations. The 

displacive transformations of fused silica have an important influence during pattern 

removal and breakout of the molds in investment casting. 

 

3.7. FUTURE WORK 

 In future work for measurement of thermal conductivity of investment casting 

shells a new approach will be tested with two different methods, a single thermocouple 

method and an inverse method using two thermocouples. 

 In the single thermocouple method, solidification parameters will be determined 

for unknown steel solidified in known ceramic mold. For the inverse method two 

thermocouples will be inserted, one to measure the temperature of the steel and the other 

inside the shell. In this case the thermal properties of the unknown ceramic mold can be 

determined by pouring a metal with known properties like nickel etc.  
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 Further measurements with laser flash test and DSC will be continued and 

compared with the new methods developed. 
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4. LIQUID STEEL-CERAMIC SHELL INTERACTIONS IN INVESTMENT 

CASTING 

After the investment casting molds are poured, during the break out of the molds, 

difficulty in removing shell from the pocket regions of a casting is observed. In the 

investment casting industry, high pressure air, pressurized water jets, shot blasting, 

solution bath and other methods are used to remove shell materials attached to castings.  

 During a previous project at Missouri S&T, a complex geometry casting of 

approximately 150 lb was cast at an industrial foundry. Before cutting the casting it was 

necessary to remove the shell from the pocket regions. Attempts were made with high 

pressure water jets, and were not successful to remove it. Hence a small piece of steel in 

contact with ceramic was cut from the castings, polished and analyzed using SEM/EDS. 

Reaction products were observed deep inside the ceramic shell. Figure 4.1 shows 

examples of the interaction products observed. When steel is poured into preheated 

ceramic shells, the prime coat of the shells comes in contact with the melt and its oxides. 

Thus, there is the possibility of melting and/or chemical reactions at the mold-metal 

interface. This phenomenon has not been investigated in detail in the investment casting 

industry. However, prevention or reduction of interaction products could be beneficial in 

reducing scrap, cleaning and finishing costs. Hence it was decided to study liquid steel-

ceramic shell interactions in detail with pattern design, Magmasoft simulations, 

thermodynamic predictions and SEM/EDS analysis. 

During setting goals of the project it was found that three industrial foundries 

were interested in studying the same phenomenon. Hence it was decided to compare the 

results of shells prepared at Missouri S&T foundry with industrial shells. 
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Figure 4.1 Reaction product (Mn-Si-O) penetrating inside ceramic shell 

  

4.1. PATTERN DESIGN  

Industrial trials of large complex castings showed that ceramic shell material in 

the deep pocket regions adjacent to heavy sections of the castings is most difficult to 

remove during break out of the shell molds. Hence it was necessary to study the 

interaction products in this type of region. A special 4”x4”x6” specimen with a cube-

shaped internal cavity having ½” side wall thickness and 1½” bottom thickness was 

designed as shown in Figure 4.2. The vertical downsprue was attached to the bottom of 

the cube. A vent was attached to prevent gas entrapment and fill the shells completely 

during the pour. 
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Figure 4.2 Foam Patterns 

 

4.2. MAGMASOFT SIMULATIONS 

Magmasoft software was used for simulation to design the experiment. To 

determine the temperature history in the prime and the backup coats as well as in casting, 

three control points were placed in the shell and one was placed in the casting near the 

corner of internal pocket as shown in Figure 4.3 and 4.4. The one in the casting denotes 

the temperature of the solidifying steel and the other three monitored temperature in the 

prime and back up coats at points placed 0.5 mm, 3 mm, and 6.5 mm from casting 

surface respectively. 

User defined thermal property databases 
37

 were created for steel (HY130) and 

fused silica based investment casting shell. A fine mesh was selected for the shell to 
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accurately predict the temperature at the control points. The simulation was started at a 

pouring temperature of 1650°C with shells preheated to 800°C and ran until the casting 

was completely solidified.  

 

    

Figure 4.3 Control points 

 

 

Figure 4.4 Cross sectional view of the shell 
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Simulation results predicted that the temperature of the prime coat of the shell 

goes above the liquidus temperature of the steel in the pocket region while the adjacent 

casting region still has some amount of liquid phase. The combination of these conditions 

increases the probability of steel-shell interactions in the internal pocket region being 

studied. Figure 4.5 shows the temperature distribution at 100% fraction solid steel in the 

casting which shows that the internal corners remain at high temperatures. Figure 4.6 

shows the temperatures of the shell at selected control points during steel solidification. 

 

 

Figure 4.5 Temperature distribution at 100% fraction solid which shows that the internal 

corners remain at high temperatures  
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Figure 4.6 Temperature histories for control points at the corner of the casting and at 

0.5(control point 1), 3.5 (control point 2) and 6 mm (control point 3) from the casting 

surface inside the ceramic shell during steel solidification 

 

4.3. FACTSAGE MODELING 

A thermodynamic model of liquid HY130 steel in equilibrium with the prime 

layer (solid phase), and a limited amount of oxygen (gas phase) was used to study the 

possible formation of a slag layer (liquid phase) on the steel. Thermodynamic modeling 

was done using FactSage software to study the amount and compositions of the possible 

liquid products of the reaction. Fact-Felq, Fact-Stel and Fact 53 databases were selected. 

Preliminary calculations showed that pure steel does not react with pure oxides in the 

shell at pouring temperatures in an inert gas atmosphere. The possible liquid products on 
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the metal – ceramic mold interface can be formed when the atmosphere contains oxygen. 

Calculations for this case were done in two steps. In step one, the equilibrium 

composition of the slag phase formed on the liquid steel surface in contact with 1.5% O2 

was calculated. The second model was run considering the reaction of the liquid 

reoxidation product (slag) formed in step one, with the solid prime coat material (silica, 

zircon, or alumina) to predict any liquid/solid product formation.  

4.4. SHELL PREPARATION 

Three types of shell with different prime coats were prepared in Missouri S&T 

Foundry. Dipping slurries for the prime coat were made of colloidal silica binder. The 

binder was mixed with one of three different types of 200 mesh flour: silica, zircon and 

alumina.  These are referred to as silica, zircon and alumina prime coats. Fused silica 

stucco (50-100 mesh) was applied directly on the prime coat in all cases. All of the other 

five coats used the fused silica based slurry with the same colloidal silica as binder. 30-50 

mesh silica stucco was used for these coats. Finally, one seal coat was given to all shells. 

Table 4.1 summarizes shelling procedure of three types of shells made at Missouri S&T. 

In addition, shells prepared around the same pattern were obtained from three 

different commercial foundries A, B, C. Foundry A had zircon based prime coat and 

aluminosilicate as the stucco in the back up coats. Foundry B had the fused silica based 

prime coat and coarser mesh silica stucco in the back up coats. Foundry C had zircon 

based prime coat and silica as the stucco in the back up coats. All the shells were fired to 

900°C for 3 hours at Missouri S&T Foundry. Figure 4.7 shows the shells prepared at 

Missouri S&T and castings after pouring.  
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Table 4.1 Investment casting shells prepared at Missouri S&T foundry 

 

Silica Shells Zircon Shells Alumina Shells 

Prime coat 

 

Stucco 

Slurry – (Fused silica 

+ Binder) (2:1) 

Silica 100-200 mesh 

Slurry – (Zircon 

flour + Binder) (2:1) 

Silica 100-200 mesh 

Slurry – (Alumina 

flour + Binder) (2:1) 

Silica 100-200 mesh 

4 Back up 

coats 

Stucco 

Slurry – (Fused silica 

+ Binder) 

Silica 30-50  mesh 

Slurry – (Fused 

silica + binder) 

Silica 30-50  mesh 

Slurry – (Fused silica 

+ binder) 

Silica 30-50  mesh 

Seal coat 

 

Stucco 

Slurry – (Fused silica 

+ Binder) 

- 

Slurry – (Fused 

silica + Binder) 

- 

Slurry – (Fused silica 

+ Binder) 

- 

% Open 

porosity 

13.64 12.15 14.08 

 

Table 4.2 Shells obtained from the commercial foundries 

 Foundry A Foundry B Foundry C 

Prime coat Zircon based Fused silica based Zircon based 

Back up coats 

stucco 

Aluminosilicate Silica Silica 

% Open porosity 21.57 17.86 17.96 
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(a)                                                                   (b) 

Figure 4.7 (a) Missouri S&T shells before pouring (b) castings after pouring  

     

(a)                                                        (b) 

  

(c) 

Figure 4.8 Industrial shells: (a) foundry A (b) foundry B (c) foundry C 
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Figure 4.8 shows shells obtained from industrial foundries. The box-shaped part 

of the shells was covered with kaowool (Figure 4.9) in order to keep it at high 

temperature after pouring. Low carbon alloy steel (HY130) was melted in 100 lb 

induction furnace. A cover of argon gas was maintained on top of the melt to prevent 

reaction of liquid steel with atmosphere. Shells were preheated to 800°C before pouring. 

Melt was poured into the ladle and deoxidized using 0.06% aluminum followed by 0.06% 

Ca-Si wire. Two heats were conducted. Shells prepared at Missouri S&T foundry were 

poured in first one and industrial shells in second one. Chemistries of the HY130 steel in 

two heats are shown in Table 4.3  

 

     

Figure 4.9 (a) Shells coated with kaowool and (b) preheating in kiln 

 

Table 4.3 Chemistry of HY130 steel in two heats poured at Missouri S&T 

 C Si Mn Cr P S Ni Al 

Heat 1 .17 .31 .52 .63 <.001 .005 4.1 .06 

Heat 2 .17 .31 .50 .64 <.001 .006 4.1 .06 
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After the castings had solidified, the shells were knocked off except from the 

pocket region. Figure 4.7 (b) shows the castings with ceramics intact in the pocket 

regions of cube castings. Mixture of epoxy resin and hardener was poured in these 

pockets and kept for 10 hours to get it hardened. Epoxy helped to keep the ceramic shell 

in contact with steel during sample preparation. After being stabilized by the epoxy the 

samples of the steel/ceramic shell interface were cut from the pocket region and mounted 

again in epoxy in order to have the specific sample size for ESM/EDS analysis. Samples 

were then polished from 180 to 800 grit SiC paper and after that they were polished with 

diamond paste 3, 1 and ½ micron using low speed cutting fluid. Samples were then 

carbon coated to decrease electrical charging under scanning electron microscope (SEM). 

SEM/EDS ASPEX PICA-1020 system (Particle Identification and Characterization 

Analyzer) was used to observe interaction products. 

 

4.5. RESULTS 

4.5.1. Silica Prime Coat Shells.  Figure 4.10 shows the interaction products observed for 

silica prime coat shells. Al-Si-Mn-O phases were observed at the exact corner region (in 

the right angled portion). SEM images clearly show their penetration into the shell. Fe-Si-

Mn-O phases were observed near the corner region but slightly away from it. Figure 4.10 

shows that the reaction products had no penetration in steel and were located on the shell 

side. Al-Si-Mn-O phases had more tendencies to penetrate when compared to Fe-Si-Mn-O 

phases. Open porosity measured by the Archimedes method was 13.5% for the silica 

prime coat shells. (Appendix – table 3) 



63 

 

4.5.2. Alumina Prime Coat Shells.  Figure 4.11 shows reaction products observed for 

alumina prime coat shells. Al-Si-Mn-O phases were observed at the exact corners similar 

to the silica prime coat shells. It can be seen in Figure 4.11 that they have penetrated 

more into the shell than silica prime coat shells. Fe-Si-Mn-O phases were observed 

slightly away from the corner and in some cases they can be seen at the higher depths 

into the shell. Open porosity measured by the Archimedes method was 12% for the 

alumina prime coat shells. (Appendix – table 3) 

4.5.3. Zircon Prime Coat Shells.  Figure 4.12 denotes the interaction products observed 

for the shells with zircon prime coat. Fe-O-Zr-Si products were observed which showed 

there has been some melting of the prime coat at the interface. These phases were 

observed only near the contact surface between casting and shell. Another type of product 

observed distinctly was Mn-Si-Al-O phase which was in the corner region. This phase 

was found near surface and also inside the prime coat (Figure 4.12 - b). Open porosity 

measured by the Archimedes method was 14% for the zircon prime coat shells. 

(Appendix – table 3) 

4.5.4. Industrial shells (foundry A, B & C).  Figures 4.13-4.15 show the interaction 

products observed for industrial foundry shells, foundry A, B and C respectively. Similar 

to results observed for the Missouri S&T shells Al-Si-Mn-O products were observed to be 

present at the corners for foundry A and B with foundry B showing greater penetration 

into the shell. Fe-Si-O-Mn products were observed in the samples from of all three 

foundries with the maximum penetration in foundry B. Foundry C samples showed least 

penetration into the shell.  
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During SEM analysis it was confirmed that the foundry A had zircon based prime coat 

and aluminosilcate as the stucco in back up coats. Foundry B had fused silica based prime 

coat and coraser mesh silica as stucco in the back up coats. Foundry C had zircon based 

prime coat and silica as the stucco in the back up coats. Archimedes method was used to 

obtain the data of percent open porosity in industrial shells. The percentages of open 

porosity found were, foundry A had 21.5%, foundry B had 18% and foundry C had 18%. 

(Appendix – table 3) 

 All industrial foundries showed some penetration of reaction products on the steel 

side. However this is a subject of future research at Missouri S&T. No surfactants, 

polymers were used for Missouri S&T shells and also binder content of the shells were 

very low. However it should be noted that higher binder and polymer content is important 

for green strength of the shell. Surfactants are important for wetting of the slurry to 

pattern (prime coat) and getting flour in to the slurry in a stable manner. 
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(a) 

 

            

                                              

(b) 

Figure 4.10 Silica prime coat shells interaction products (a) Al-Si-Mn-O and (b) Fe-Si-

Mn-O phases  
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(a) 

        

                                                  

(b) 

Figure 4.11 Alumina prime coat shells interaction products (a) Al-Si-Mn-O (b) Fe-Si-

Mn-O
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(a) 

     

                                                   

(b) 

Figure 4.12 Zircon prime coat shells interaction products (a) Fe-Zr-O-Si (b) Al-Si-Mn-O
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(a) 

                    

                                              

(b) 

Figure 4.13 Interaction products Al-Si-Mn-O (a) and Fe-Si-Mn-O (b) phases observed in 

shell samples from foundry A 
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(a) 

      

                                                         

(b) 

Figure 4.14 Interaction products Al-Si-Mn-O (a) and Fe-Si-Mn-O (b) phases observed in 

shell samples from foundry B 
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Figure 4.15 Interaction products Fe-Si-Mn-O phase observed in shell from foundry C 

 

4.6. DISCUSSIONS 

4.6.1. Thermodynamic predictions.  Preliminary calculations from Factsage showed 

liquid steel (low and medium carbon) does not directly react with pure oxides (silica, 

alumina and zircon) at pouring temperatures in an inert atmosphere. When the 

atmosphere contains oxygen, steel will spontaneously react to form different reoxidation 

products.  Reoxidation products were denoted as reoxidation product (slag) in this report. 

For the purpose of the thermodynamic modeling using Factsage, it is denoted as “slag” in 

the solutions menu.  

4.6.1.1. Factsage first model.  The first equilibrium model was run in Factsage to predict 

the possible reoxidation product (slag) composition which could be formed when the 

liquid steel comes in contact with the oxygen from the atmosphere during ladle transfers 
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and mold pouring. The reoxidation product on liquid steel surface will contain a mixture 

of oxides in the ratio of 40-50%Si, 10-20%Fe, 20-30%Mn with small amount of Al and 

Cr oxides. The reoxidation slag thus formed has a long solidification interval and could 

be liquid below the solidus temperature of steel (Figure 4.16).  The reoxidation product 

(slag) also has high solubility for the shell component oxides. The main solid phases in 

the solidified slag (steel reoxidation product) are solid solution (FexMn1-x)SiO3 and solid 

solution mullite (Al2O3-SiO2). This type of liquid reoxidation product (slag) can readily 

react with the prime coat during melt cooling and casting solidification in the shell. 

4.6.1.2. Factsage second model.  The second equilibrium model was run to predict the 

complex reactions which could take place between the reoxidation product (slag) and the 

solid prime coats containing silica, alumina or zircon. The main goal of these calculations 

was prediction of possible liquid products that could form with the prime coat at 

temperatures predicted from Magmasoft thermal modeling. If a predicted liquid reaction 

product has larger solubility of the solid ceramic it will indicate a higher severity of the 

possible metal/mold interaction. The predicted possible reaction products are shown in 

Table 4.4. The silica ceramic can readily react with the reoxidation product (slag) 

containing Mn and Fe oxides at steel pouring and solidification temperatures resulting in 

the formation of a liquid phase. This liquid phase has the possibility of dissolving a large 

amount of solid silica from the shell without solid precipitates. Reaction of reoxidation 

slag with alumina also creates a liquid phase region stable at steel pouring and 

solidification temperatures. Only the reaction of reoxidation slag with zircon produces a 

lower quantity of the stable liquid phase at 1550°C.  
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For the comparison of the possible behavior of the different prime coats (C) in 

contact with the liquid reoxidation product (S), the reactions between the reoxidation slag 

and the prime coats were analyzed with respect to the formed liquid product (D). The 

formation of the liquid product (D) indicates the dissolution of the prime coat in slag. Fig. 

4.17 shows the equilibrium amount of the dissolved prime coat (D) versus initial reactant 

composition as S/(S+C). These thermodynamic calculations were done at maximum 

predicted temperature in the shell (1550°C). The alumina prime coat has significantly 

larder dissolved fraction D of the prime coat as compared to the zircon prime coat for the 

same amount of liquid slag S/(S+C). 

Figure 4.17 also confirms that a pouring practice which controls the melt 

reoxidation will result in less volume of interaction products if the zircon prime coat shell 

is used. Steel reoxidation slag can dissolve significantly larger amount of silica and 

alumina prime coats when compared to the zircon prime coat. The experimentally 

observed chemistries of the phases in interaction regions were compared with the 

thermodynamically predicted reaction products and similarity was confirmed. 

4.6.2. Possible steps involved in liquid steel - prime coat reactions 

 Possible steps responsible for liquid steel – prime coat reactions could be given as 

follows 

1. Formation of steel reoxidation product (slag) on steel surface during pouring 

2. Formation of liquid reaction products between the  reoxidation product (slag) and 

the prime coat  

3. Growth of the liquid interaction product and its penetration into the ceramic shell.
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Table 4.4 Equilibrium model prediction for interaction products by Factsage 

Reactions  Interaction product 

Liquid steel reoxidation slag +               

SiO2 prime coat 

Liquid slag + SiO2+ (FexMn1-x)SiO3 + 

mullite (Al2O3-SiO2). 

Liquid steel reoxidation slag +             

Al2O3 prime coat 

Liquid slag + Al2O3 + (FexMn1-x)SiO3 + 

mullite (Al2O3-SiO2). 

Liquid steel reoxidation slag +           

ZrSiO4 prime coat 

Liquid slag + ZrSiO4+ (FexMn1-x)SiO3 + 

mullite (Al2O3-SiO2). 

 

 

Figure 4.16 Solid phase formation during cooling reoxidation slag (Factsage). 

Liquidus 
Solidus 
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Figure 4.17 Equilibrium amount of the dissolved prime coat (D) versus initial reactant 

composition as S/(S+C) at 1550°C 

 

The studied interaction products are the liquid solutions of oxides formed due to 

the reaction of the slag with the solid prime coat materials. The reoxidation product (slag) 

has a low melting temperature and could aggressively react with the prime coat if the 

temperature is sufficient for the reaction. The reoxidation product (slag) dissolves the 

prime coat. As a result the liquid reaction product and metal gains access to the more 

porous stucco layer that is very easy to penetrate because the pores are larger and the 

fraction porosity is higher. The best but most expensive way to prevent interaction 

product formation is to cast in vacuum or otherwise protect the pouring stream from 

reoxidation. Also some improvements could be made to limit active liquid steel 

reoxidation for regular air pouring practices. For example introducing a 

reducing/protection gas in the shell or removing oxygen from protection cover after 
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pouring can potentially help to prevent interaction product formation to a certain extent. 

Counter gravity pouring also can prevent steel reoxidation. 

Pouring temperature also has an important effect on intensity of formation of 

interaction products. It is important to note, that reactions take place when shell 

temperature rises above steel solidification temperature. More superheat will result in a 

greater amount of liquid slag formed and the ceramic shell will be subjected to the 

temperatures above reoxidation product (slag) solidus for longer time. Hence care must 

be taken to minimize superheat before the shells are poured.  

Casting geometry, for example deep pockets connected to hot spots in the casting 

body, can presumably have more surface reaction products. This will largely depend on 

the porosity of the prime coat. In investment casting amount of porosity of the prime coat 

is important because some level of porosity is necessary for overall shell permeability. If 

porosity is too high, there could be greater penetration of reaction product into the prime 

coat. 

4.6.3. Depth of penetration of interaction products.  It was observed that the amount of 

interaction products and their depth of penetration in the shell were higher for silica and 

alumina prime coat. For the shells with a zircon prime coat both interaction products and 

their depth were lower. Finally, Figure 4.18 show the maximum depth of reaction 

products in shells that were studied as a function of percentage apparent porosity. The 

varying results for the industrial shells were caused by a combination of varying prime 

coat composition and shell porosity.  

 



76 

 

 

Figure 4.18 Maximum depth of reaction product location in prime coat of studied shell 

versus percentage apparent porosity 
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4.7. CONCLUSIONS 

Metal-ceramic shell interaction products were studied in investment casting of 

low carbon alloy steel. Al-Si-Mn-O and Fe-Si-Mn-O were observed as the most common 

interaction products at the interface between shell and steel. Depth of the penetration 

depended on composition of the prime coat and the shell porosity at constant pouring 

temperature and the casting geometry. Shell with zircon in the prime coat had least 

amount of interaction products and less depth of reaction.  

Thermodynamic prediction by Factsage and experimental results showed similar 

interaction products. The possible mechanism for liquid steel-ceramic shell interaction 

could be given as reaction of the reoxidation slag with the solid prime coat materials.  

4.8. RECOMMENDATIONS 

 From the observations and conclusions found during the research following 

recommendations can be made. 

1. Prevent re-oxidation 

Reduce exposure of the melt to atmospheric oxygen. 

2. Use minimum superheat required to fill the shells completely. 

a. Superheat increases re-oxidation. 

b. Low superheat limits reaction time with the shell. 

3. Use zircon as prime coat refractory.  

4. Minimize deep pockets if possible in design. 
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4.9. AREAS OF FUTURE INTEREST 

 During this research it was observed that many parameters could be involved 

simultaneously affecting liquid steel – ceramic shell interactions in investment casting. 

Due to limited time and resources they were not explored in detail. 

 The following studies can be conducted to understand the interactions 

phenomenon. 

4.9.1. Effect of superheat: The research conducted involved investment casting shells 

poured one after the other once desired superheat was achieved in the induction furnace. 

However, the same study can be done to evaluate effect of superheat. Similar shells can 

be poured with different superheats. Analysis of the interaction products and depth of 

penetration in prime coat can give better insight of the phenomenon. 

4.9.2. Effect of inhibitor gas: An inert gas can be used to prevent liquid-steel ceramic 

shell interactions and its extent to reduce reactions can be determined. Furthermore, 

composition of the gas can be changed and similar analysis can be performed. 

4.9.3. Vacuum induction melting: Investment casting shells with the same geometry can 

be poured in vacuum and the results can be compared with shells poured without 

vacuum.  

 Since there are many parameters involved and each can have considerable effect 

during on results shell composition and shell making procedure should be kept 

unchanged. 
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APPENDIX 

Table 1. Thermal conductivities measured by different authors 
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Table 2. Specific heat capacities measured by different authors 
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Table 3. Thermal conductivity models for two phase mixtures  

Name of the model Equation of the Model 

Eucken 
2 (1 / ) / (2 / 1)

1 (1 / ) / (2 / 1)

c c d c d
mix

c d c d

K P K K K K
K

P K K K K

+ − +
=

− − +
 

Kingery ( )1/ 1 / /mix d c d dK V K V K= − +  

Parallel (1 )mix d
d d

c c

K K
V V

K K
= − +  

Series 

1

(1 )

mix

dc
d d

c

K

KK
V V

K

=

− +

 

Russell 

2/3 2/3

2/3 2/3

1

1 ( )

d
d d

mix c

dc
d d d d

c

K
V V

K K

KK
V V V V

K

− +

=

− + + −

 

Son Frey 

1/3 1/3

1/3 1/3

1 ( )

1

d
d d d d

mix c

dc
d d

c

K
V V V V

K K

KK
V V

K

− + + −

=

− +

 

Rayleigh-Devries 10/3

3
1

2 / 1 /
...

1 / 4 / 3 /

mix d

c d c d c
d d

d c d c

K V

K K K K K
V V

K K K K
α

= −
   + −

+ − +   
− +   
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Table 3. (Continued) 

Maxwell 

2 2 1

2 1

d d
d

c cmix

c d d
d

c c

K K
V

K KK

K K K
V

K K

 
+ − − 

 
=

 
+ + − 

 

 

Bruggeman 1/3
1

1

mix d

c c
d

mix d

c c

K K

K K
V

K K

K K

−

− =
   

−   
   

 

 

Kc = thermal conductivity of continuous phase 

Kd = thermal conductivity of discontinuous phase 

Vd = volume fraction of discontinuous phase 

Kmix = thermal conductivity of the mixture 

P = porosity 
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The themo- physical properties developed during the research are compiled here 

Table 4. Density measurement for shells using Archimedes method 

  

Dry Weight 

(g) 

Water 

Suspended (g) 

Air 

Suspended (g) 

% Open 

porosity 

Bulk Density 

(g/cm3) 

silica (silica 

prime coat) 
12.20 6.31 13.13 13.64 1.79 

silica + zircon 16.40 9.06 17.16 9.38 2.02 

silica + 

aluminosilicate 
9.60 5.29 10.33 14.48 1.90 

alumina prime 

coat 
11.20 5.63 11.97 12.15 1.77 

zircon prime 

coat 
10.70 5.45 11.56 14.08 1.75 

foundry A 10.00 5.20 11.32 21.57 1.63 

foundry B 11.60 7.00 12.60 17.86 2.07 

foundry C 12.50 6.93 13.72 17.96 1.84 
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Properties of fused silica based investment casting shells by laser flash test 

Table 5. Specific heat capacity and thermal conductivity 

Temperature (°C) Cp (J/KgK) K (W/mK) 

200 939 1.06 

300 1047 1.18 

400 1137 1.30 

500 1210 1.41 

600 1311 1.57 

700 1428 1.76 

800 1508 2.02 

900 1560 2.37 

1000 1730 2.81 

1100 1811 3.37 

1200 1807 4.14 

1300 1807 4.14 

1400 1807 4.14 

1500 1807 4.14 

1600 1807 4.14 
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Properties of zircon and fused silica based investment casting shells by laser flash test 

Table 6. Specific heat capacity and thermal conductivity 

Temperature (°C) Cp (J/KgK) K (W/mK) 

200 745 1.01 

300 823 1.08 

400 907 1.19 

500 985 1.30 

600 1099 1.49 

700 1198 1.67 

800 1256 1.75 

900 1410 2.14 

1000 1551 2.48 

1100 1517 3.13 

1200 1551 3.64 

1300 1551 3.64 

1400 1551 3.64 

1500 1551 3.64 

1600 1551 3.64 
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Properties of fused silica and aluminosilicate based investment casting shells by laser 

flash test 

Table 7. Specific heat capacity and thermal conductivity 

Temperature (°C) Cp (J/KgK) K (W/mK) 

200 792 0.86 

300 898 0.94 

400 1006 1.05 

500 1091 1.14 

600 1252 1.31 

700 1368 1.49 

800 1470 1.62 

900 1622 1.85 

1000 1996 2.32 

1100 2187 2.66 

1200 2383 3.22 

1300 2382 3.22 

1400 2382 3.22 

1500 2382 3.22 

1600 2382 3.22 
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