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ABSTRACT
The breakup phenomenon of a ferrofluid droplet in a simple shear flow under a uniform magnetic field is numerically investigated in this
paper. The numerical simulation, based on the finite element method, uses a level set method to capture the dynamic evolution of the droplet
interface between the two phases. Focusing on small Reynolds numbers (i.e., Re ≤ 0.03), systematic numerical simulations are carried out
to analyze the effects of magnetic field strength, direction, and viscosity ratio on the breakup phenomenon of the ferrofluid droplet. The
results suggest that applying a magnetic field along α = 45○ and 90○ relative to the flow direction initiates breakup in a ferrofluid droplet at
a low capillary number in the Stokes flow regime, where the droplet usually does not break up in a shear flow alone. At α = 0○ and 135○,
the magnetic field suppresses breakup. Also, there exists a critical magnetic bond number, Bocr , below which the droplet does not rupture,
which is also dependent on the direction of the magnetic field. Additionally, the effect of the viscosity ratio on droplet breakup is examined at
variable magnetic bond numbers. The results indicate a decrease in the critical magnetic bond number Bocr values for more viscous droplets.
Furthermore, more satellite droplets are observed at α = 45○ compared to α = 90○, not only at higher magnetic field strengths but also at larger
viscosity ratios.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124134., s

I. INTRODUCTION

Droplet dispersion in another immiscible liquid is commonly
experienced in a number of industrial applications that deal with
cosmetics, food processing,1 pharmaceutical design,2 and polymer
processing.3–5 Most of these applications utilize highly concen-
trated emulsions, where the morphology of the dispersed phase
component plays a crucial role in determining the physical and
rheological properties of the emulsions. Consequently, these drop
sizes become key to the design of processing equipment for cer-
tain emulsion properties and conditions, which is often compli-
cated by the interplay between the flow field and fluid components
behavior.6,7

When a droplet is subjected to shear flow, it deforms. More-
over, if the flow field exceeds a specific critical value, the droplet rup-
tures and gives rise to daughter droplets via a process called “elonga-
tive end pinching,” which also reduces the mean size of the droplets.8

Smaller sized droplets, having a larger total interfacial area, produce

more stable emulsions and are considered a fundamental scaling
parameter for a number of mass transfer and chemical reactions.9

In the existing literature,10 three different droplet breakup mecha-
nisms (i.e., binary breakup, capillary breakup, and tipstreaming) are
studied, but in this study we will restrict ourselves to binary breakup
in a simple shear flow.

In binary breakup, the behavior of an isolated drop is mainly
governed by two dimensionless numbers: The first one is known as
the capillary number Ca, which denotes the competition between
two forces: the viscous shear stress of the continuous phase ηcγ̇
which causes deformation, and the Laplace pressure σ/R0 which
resists deformation, where ηc, γ̇, σ, and R0 represent the con-
tinuous phase viscosity, shear rate, interfacial tension, and ini-
tial radius of the droplet, respectively. The second one is the
viscosity ratio λ = ηd/ηc, where ηd denotes the viscosity of the
droplet phase. There exists a critical capillary number, Cacr , above
which the droplet ruptures, and from the experimental analysis of
Grace11 it is realized that this critical capillary number is strongly
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dependent on the viscosity ratio [i.e., Cacr = f (λ)]. The results
show that an isolated droplet experiences rotational motion in
a simple shear flow which eventually prevents the droplet from
breakup at a higher viscosity ratio (i.e., λ = 3.8). Rumscheidt and
Mason12 also found that at λ > 4, the droplet initially tumbles
and eventually turns into an ellipsoidal shape aligned with the flow
direction.

Following the pioneering work of Taylor,13,14 several numer-
ical and theoretical investigations have been conducted to analyze
droplet breakup in emulsification and mixing.15–19 Li et al.20 per-
formed a numerical simulation on the breakup mechanism of a
viscous droplet in a simple shear flow and found that it is pos-
sible to induce droplet breakup at a low capillary number in the
Stokes flow with an increased Reynolds number. Debruijn10 built
a Couette device with the aim to investigate the breakup phenom-
ena of non-Newtonian droplets in a quasisteady simple shear flow.
Barthes-Biesel and Acrivos21 studied the breakup conditions of a liq-
uid droplet freely suspended in a linear shear field and observed
that the droplet yields a burst criterion for λ ranging between 0.1
and 3.6. De Menech22 numerically examined droplet breakup in a
three dimensional T-shaped junction and observed that the criti-
cal capillary number at which the droplet experiences breakup is
related to the viscosity ratio. Also, a two-dimensional numerical
study on droplet deformation and breakup has been performed by
van der Sman and van der Graaf23 using the lattice Boltzmann
model.

In experimental analyses, breakup of a solitary drop is usu-
ally investigated either by direct observation of a droplet in a flow
field or by observing the change in droplet size distribution. Sibilo
et al.24 studied the effect of the matrix elasticity on the breakup
of an isolated Newtonian drop in a shear flow and concluded that
matrix elasticity hinders breakup in a droplet. Vananroye et al.25

conducted experiments on droplet breakup in sheared emulsions
and found that, even at λ > 4, it is possible to induce breakup in
droplets by applying a shear field to a larger confinement. Further-
more, an experimental study on the droplet formation and breakup
in a microfluidic T-junction has been done by Garstecki et al.26 and
Leshansky and Pismen.27

In addition to hydrodynamic forces, external force fields (i.e.,
electric or magnetic fields) can also manipulate the overall rheol-
ogy of the droplets.28,29 Taylor30 performed both theoretical and
experimental investigation on the disintegration of water droplets
in an electric field, while Collins et al.31 performed simulations and
experiments to investigate the mechanisms of cone formation, jet
emission, and breakup of charged drops under the presence of an
electric field. Also, the deformation and breakup of aqueous drops
under large electric fields have been experimentally investigated by
Eow and Ghadiri,32 which shows that initial drop sizes greatly influ-
ence the magnitude of the electric field strength for the onset of
droplet stability. Interestingly, instead of using electric and mag-
netic fields as an external means of manipulation, an alternative
algorithm approach based on logic operations has been adopted to
control droplets in a parallel manner by Katsikis et al.33 Moreover,
an excellent experimental study on the manipulation of droplets
under electric fields in microfluidic devices has been performed by
Link et al.34

A magnetic field can also be used to manipulate the shape
of a droplet;35 however, magnetic manipulation requires either the

droplet or continuous phase to be a ferrofluid—a dispersion of mag-
netic nanoparticles (diameter typically around 10 nm and volume
fraction about 5%). Due to the presence of magnetic properties,
additional Maxwell stresses occur at the fluid-fluid interface in addi-
tion to the hydrodynamic stresses. Ferrofluid droplets involved in
multiphase flows have notable biomedical applications in the treat-
ment of retinal detachment,36 and the ease of both integration and
flexibility of operation render a magnetic field as a popular means
of droplet manipulation in microfluidic devices. Banarjee et al.37

investigated the behavior of confined ferrofluid droplets under weak
magnetic fields applied in a direction parallel to the direction of the
computational domain. Varma et al.38 experimentally studied the
merging of ferrofluid droplets under uniform magnetic fields on a
lab-on-a-chip platform and also developed a micro-magnetofluidic
numerical model to explain the ferrofluid droplet behavior in both
uniform and hybrid magnetic fields.39 Also, an investigation on the
manipulation of ferrofluid droplets by a permanent magnetic field
has been carried out by Ray et al.40 Moreover, a thorough anal-
ysis on the controlled deformation and orientation of a ferrofluid
droplet in a simple shear flow by means of a uniform magnetic field
is presented in our recent work.41

However, the existing studies in the literature are mainly
focused on the breakup of droplets in external flow conditions.11,42,43

Recently, Cunha et al.44 numerically studied magnetic field induced
droplet breakup in shear flows at a higher Reynolds number (i.e., Re
= 1). Their results suggest that when a magnetic field acts in a direc-
tion parallel to the direction of the flow field, it delays the breakup
process and reduces the size of the satellite droplets. Instead, if the
magnetic field is applied in a direction perpendicular to the flow
direction, droplet breakup can be induced, delayed, or even pre-
vented through some adjustments in magnetic field intensities. But
until now, as per our knowledge, no one has ever studied the breakup
mechanism of a droplet in a Stokes flow at low capillary numbers
(where a droplet usually does not breakup) under the effect of mag-
netic fields, which is more applicable to a range of different microflu-
idic applications.45–49 Also, a comprehensive study on the effect of
the viscosity ratio on droplet breakup in shear flows under a uniform
magnetic field is missing in the literature. Therefore, in this paper,
we focus on investigating the effect of a uniform magnetic field on
the droplet breakup phenomenon at the Stokes flow limit in a simple
shear flow along some specific directions. Here, a two-dimensional
(2D) simulation model is chosen in order to study a wide range of
parameters, including magnetic field strength, direction, and viscos-
ity ratio. Prior studies show that 2D numerical models are capa-
ble of qualitatively and correctly capturing the deformation of a
ferrofluid droplet under a uniform magnetic field with great com-
putational efficiency.41,50 Our numerical model, based on a com-
mercial FEM solver, is implemented to model the droplet interface
by using the level set method and coupling the magnetic and flow
fields.

The rest of the paper is categorized as follows: the numerical
model is described in Sec. II. In Sec. III, we present the numerical and
mathematical methods that are required to solve our computational
model. In Sec. IV, we first validate our results against the existing
theories in the literature and then examine the effect of the mag-
netic field strength and viscosity ratio on the droplet breakup phe-
nomenon at different magnetic field directions. Finally, the major
findings are summed up in Sec. V.
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II. NUMERICAL MODEL
Figure 1 depicts the motion of a viscous, neutrally buoyant fer-

rofluid droplet dispersed in another viscous fluid medium, bounded
by two plane walls translating in opposite directions and subjected
to a uniform magnetic field, H0. Initially, the density and viscos-
ity of both the phases are treated equal to each other (i.e., ρc = ρd
and ηc = ηd). The magnetic susceptibility of the ferrofluid droplet is
considered 1 (χd = 1), while the continuous phase is treated as a non-
magnetic fluid medium (χc = 0). The magnitude of the coefficient of
the interfacial tension σ is considered equal to 0.0135 N/m.

Placing the ferrofluid droplet initially at the center, a simple
shear flow with a constant shear γ̇ is generated by moving the top
wall of the computational domain with a velocity ut = 1

2 γ̇Hdex,
while the bottom wall of the domain moves with a velocity of the
same magnitude as the top wall, but in the opposite direction (i.e.,
ub = − 1

2 γ̇Hdex). The velocity is continuous at the interface of the
droplet although the surface force experiences a discontinuity at the
droplet interface due to the surface tension effect. The droplet also
experiences a symmetric flow field with respect to its initial position,
while the velocity is zero along the center line of the flow domain.
In order to simulate infinite periodicity in the x-direction, a peri-
odic flow condition is implemented not only at the left wall but also
at the right wall of the flow domain. The application of a uniform
magnetic field, H0, along different directions of the flow domain
is denoted by the angle α. When the droplet undergoes deforma-
tion, the deformation is determined using the largest major-axis
and smallest minor-axis dimensions, which are denoted by L and
B, respectively. The orientation angle, defined by θ, is measured as
the angle between the positive x-direction and the major axis of the
droplet in a counterclockwise direction.

III. NUMERICAL SIMULATION METHOD
A. Level set method

In the study of droplet motion in a shear induced flow, most of
the problems arise in tracking the free interface of the droplet, which
moves to different locations following severe deformation including
breakup. Therefore, in our model, an Euler approach based con-
servative level set method is implemented to solve the dynamically

evolving droplet interface between the two fluid phases. The level set
method uses a smeared Heaviside scalar function ϕ to distinguish
the two fluid phases, and the value of ϕ undergoes a smooth tran-
sition between 0 and 1 across the interface. In the droplet phase,
the value of ϕ is considered 1, while it is zero in the continuous
phase. The interface of the droplet is defined by the 0.5 isocontour
of ϕ. The level set function ϕ moves with the velocity of fluid u
through the following equation:51

dϕ
dt

+ u ⋅ ∇ϕ = γ∇ ⋅ (ϵ∇ϕ − ϕ(1 − ϕ) ∇ϕ∣∇ϕ∣ ). (1)

In the above equation, ϵ is a parameter used to define the
droplet interface thickness, and its magnitude equals half the largest
mesh size of the region passed by the droplet in the domain. How-
ever, during the pinching stage, when the value of ϵ encounters a
mesh size less than half of the largest mesh size in the pinching
region, it fails to resolve the interface of the droplet and eventually
initiates a breakup in the middle. In our study, the magnitude of the
largest mesh element size is considered equal to 4% of the diameter
of the droplet, and using a mesh size lower than 4% of the droplet
diameter generates a similar type of breakup phenomenon with rea-
sonably identical shaped droplets; however, a slight increase in the
breakup time is observed with the decrease in the largest mesh size.
On the other hand, the re-initialization parameter γ needs a care-
ful tuning for specific problems since too small or too high values
of γ can give rise to numerical instabilities and incorrect interface,
respectively. In general, the maximum magnitude of the velocity
observed in the flow domain is considered an optimum value for the
re-initialization parameter γ. Also, the unit normal to the interface n
can be calculated using the level set function as

n = ∇ϕ∣∇ϕ∣ . (2)

The level set method usually considers the multiphase flows as
a single phase flow, where the level set value ϕ smoothen the jump
of different parameters, such as density (ρ), magnetic permeability
(μ), dynamic viscosity (η), and magnetic susceptibility (χ), across the
droplet interface through the following equations:

ρ = ρc + (ρd − ρc)ϕ, μ = μc + (μd − μc)ϕ, (3)

FIG. 1. Schematic of the computational domain, including
a ferrofluid droplet dispersed in another fluid medium in a
simple shear flow subjected to a uniform magnetic field, H0.
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η = ηc + (ηd − ηc)ϕ, χ = χc + (χd − χc)ϕ, (4)

where the continuous phase and droplet phase are represented by
the subscripts c and d, respectively.

B. Governing equations
The incompressible laminar fluid flow motion, involving a vis-

cous ferrofluid droplet suspended in another viscous fluid, can be
described by the time-dependent Navier-Stokes equations, which are
defined as follows:

∇ ⋅ u = 0 (5)

and
ρ(∂u

∂t
+ u ⋅ ∇u) = −∇p +∇ ⋅ τ + Fσ + Fm. (6)

Equations (5) and (6) also obey the law of conservation of mass and
momentum, and the symbols p and τ denote pressure and viscous
stress, while the surface tension and magnetic forces are represented
by Fσ and Fm, respectively.

Again, the viscous stress tensor equals to η[(∇u) + (∇u)T],
and the surface tension force Fσ can be related to the coefficient of
surface tension σ through the following equation:

Fσ = ∇ ⋅ [σ{I + (−nnT)}δ], (7)

where I is the identity operator and δ is the Dirac delta function,
which can also be approximated by the level set function ϕ as

δ = 6∣ϕ(1 − ϕ)∣∣∇ϕ∣. (8)

Also, the additional magnetic stresses generated due to the
application of a uniform magnetic field can be represented by the
magnetic stress tensor τm, which is eventually required to calculate
the applied magnetic force Fm in the computational domain. The
calculation of the magnetic force Fm is as follows:52

Fm = ∇ ⋅ τm = ∇ ⋅ (μHH − μ
2
H2I), (9)

where μ is the permeability of the fluid that varies according to the
level set function ϕ, and H2 = |H|2. A comprehensive understand-
ing of the Maxwell equations and the constitutive relations among
magnetic induction B, magnetic field H, and magnetization M is
necessary for the calculation of magnetic stress tensor τm, which also
maintain the following relationships:53

∇×H = 0, M = χH, ∇ ⋅ B = 0,

and
B = μ0(H + M) = μ0(1 + χ)H. (10)

The symbol μ0 denotes the permeability of vacuum, which is equal to
4π × 10−7 N/A2. A scalar magnetic potential ψ is defined under the
consideration that it follows the relation H = −∇ψ, which ultimately
leads to the following equation:

∇ ⋅ (μ∇ψ) = 0. (11)

Moreover, in order to have a better understanding of the
parameters that govern the overall dynamics of droplets, we rewrite
the governing equations in terms of dimensionless groups. To

achieve this, the droplet radius in the initial condition (R0) is used
as a scaling parameter for the length, whereas the time is scaled by

the inverted shear rate
1
γ̇

. The scaling for the nondimensionalization

of other parameters is as follows:

p∗ = p
ηγ̇

, η∗ = η
ηc

, ρ∗ = ρ
ρc

, μ∗ = μ
μ0

, H∗ = H
H0

,

where H0 is a scaling parameter that denotes the magnitude of
the magnetic field H0 applied along different directions. Now, the
Navier-Stokes equations in nondimensionalized form can be written
as follows:

∇∗ ⋅ u∗ = 0, (12)

Re(ρ∗Du
∗

Dt∗
) = −∇∗p∗ +∇∗ ⋅ τ∗ + 2

Bom

Ca
∇∗ ⋅ τ∗m +

1
Ca

F∗σ . (13)

In Eqs. (12) and (13), the asterisk (∗) represents the nondimen-
sional variables, and Ca, Re, and Bom represent the capillary number,
Reynolds number, and magnetic bond number, respectively, which
can be elucidated as follows:

Ca = ηcR0γ̇
σ

, (14)

Re = ρcR0
2γ̇

ηc
, (15)

and

Bom = R0μ0H0
2

2σ
. (16)

Several other important nondimensional groups, such as the
viscosity ratio λ and permeability ratio ζ can be written as follows:

λ = ηd
ηc

and ζ = μd
μ0

. (17)

Keeping the flow field restricted to the Stokes flow regime (i.e., Re
≲ 0.03), in this paper, the effects of different dimensionless groups
Ca, Bom, λ, including α on the breakup phenomenon of the droplet
will be investigated.

IV. RESULTS AND DISCUSSIONS
A. Droplet deformation in the high limit of shear flow
(Ca ≥ 0.35)

At a small Reynolds number (i.e., Re ≤ 0.03), the flow is gov-
erned by Stokes flow equations. When a droplet is subjected to a
simple shear flow, it deforms. According to Taylor,13,14 the defor-
mation of a neutrally buoyant, viscous droplet suspended in another
viscous medium under a simple shear flow at the Stokes flow limit
can be defined as

Dtaylor = L − B
L + B

= 19λ + 16
16λ + 16

Ca. (18)

Taylor formulated the above equation assuming that the shear
flow is unbounded with a vanishing Reynolds number; however, in
numerical studies, a simple shear flow is usually generated by two
plane walls translating in opposite directions, which gives rise to the
so-called confinement effect. This confinement effect, characterized
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by the confinement ratio
2R0

Hd
, has a negligible effect on the defor-

mation of the droplet when
2R0

Hd
< 0.4.54,55 In our case, the confine-

ment ratio is equal to 0.1, and therefore, the confinement effect can
be neglected. In this section, we study the evolution of equilibrium
droplet shapes in the high limit of shear flow under the Stokes flow
regime and then compare the numerical results against the existing
theories in the literature.

Figure 2 represents the time evolution of droplet deformation
parameter D and the corresponding equilibrium droplet shapes at
different capillary numbers. From Fig. 2(a), it can be seen that as the
shear rate increases, the deformation increases. Also, it takes a very
small amount of computational time to reach the steady state defor-
mation. Moreover, we compared our numerical results against the
asymptotic theory for small deformation given by Cox.56 Accord-
ing to Cox, the deformation of a droplet can be approximated as
follows:

Dcox = Dtaylor[1 + (19Caλ
20
)

2

]
−

1
2

, (19)

where Dtaylor is the Taylor deformation parameter defined in
Eq. (18). From Fig. 2(b), it can be inferred that the numerical results

are in very good agreement with the Cox deformation theory. Even
for the maximum shear rate considered in our study (i.e., Ca = 0.5),
the error between the numerical and theoretical results is found to
be approximately 3.5%.

Furthermore, the corresponding equilibrium droplet shapes are
shown in Fig. 2(c). The droplet shapes reveal that with an increasing
capillary number, the droplet is more stretched toward the direc-
tion of the flow field, which is also consistent with our previous
findings.41 The droplet experiences maximum shear stress along its
poles. Also, the velocity field acts tangentially at the droplet inter-
face, and near the droplet, the flow field follows the curvature of
the droplet, which is also consistent with the free surface conditions.
A closed circulation is observed inside the droplet due to the com-
petition between the surface tension driven flow and the flow field
outside the droplet, which is represented by the arrow in the velocity
fields.

Moreover, we performed simulations at higher Reynolds num-
bers (i.e., Re = 1) to verify that our numerical model is capable of
capturing droplet breakup at higher Reynolds numbers. Figure 3
shows the transformation of an ellipsoidal droplet into multiple
droplets following a breakup at Re = 1, Ca = 0.5, and λ = 1.2.
These droplet breakup results agree well with the findings of Cunha
et al.,44 except the fact that in their case, one satellite droplet was

FIG. 2. Droplet deformation in the high limit of shear flow. (a) D vs time; (b) comparison of numerical results against the Cox theory;56 and (c) equilibrium shape of the
droplet.
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FIG. 3. Droplet breakup in a simple shear flow at Re = 1, Ca = 0.5, and λ = 1.2.

observed, while in our numerical model, we observed two satel-
lite droplets after the breakup. The primary reason behind this
phenomenon can be attributed to the resolution of the interface
thickness of the droplet, i.e., in their numerical model the inter-
face thickness was considered 1.5 times the largest mesh element
size h (ϵ = 1.5h), whereas in our study, a better interface resolution
is considered (ϵ = 0.5h). Additionally, the validation of the droplet
deformation results under the influence of uniform magnetic fields
against the findings of Afkhami et al.57 is presented in our previous
work.41

B. Droplet breakup under the effect of the magnetic
field

When applied, an external magnetic field can significantly
affect the deformation and orientation of a ferrofluid droplet, which
in turn offers the possibility of controlling the emulsion rheology
of a droplet by inducing or suppressing the topological changes of
the suspended droplet in a simple shear flow. The existing stud-
ies in the literature show that it is possible to induce breakup at
a low capillary number in a Stokes flow (where the droplet does
not break) by increasing the Reynolds number.20 Recently, Cunha
et al.44 have studied field induced droplet breakup in a shear flow

at a higher Reynolds number where the magnetic field is applied
in a perpendicular and parallel direction to the flow field. In this
section, at a fixed viscosity ratio (i.e., λ = 1) and capillary number
(i.e., Ca = 0.45), we study the effect of an external uniform magnetic
field on the rupture of a ferrofluid droplet in the Stokes flow regime
along some specific directions. Also, note that in the absence of any
external forces (i.e., Bom = 0), at Ca = 0.45 and λ = 1, the orienta-
tion angle of the droplet is found to be approximately 21.9○. In the
remaining portion of the study, the Reynolds number is considered
0.03 (i.e., Re = 0.03).

1. α = 45○

Figure 4 represents the effect of a uniform magnetic field on the
droplet rheology in a simple shear flow at α = 45○. From Fig. 4(a), it
can be seen that as the magnetic field strength increases, the defor-
mation D of the ferrofluid droplet increases. The droplet shape also
attains a steady state within a very small amount of computational
time; however, at a magnetic bond number equal to 2.09 (i.e., Bom
= 2.09), the droplet deformation shows an unsteady behavior for
a longer period of time and reaches a steady state around 0.02 s.
Furthermore, as we continue increasing the magnetic bond number
beyond 2.69 (i.e., Bom ≥ 2.69), the droplet deforms even more with-
out reaching a steady state, and this unsteady behavior ultimately
initiates the breakup. The sudden decline in the droplet deformation
in Fig. 4(a) denotes that a breakup has been initiated by the external
magnetic field. Also, at α = 45○ we found the critical deformation
(deformation at which the droplet disintegrates) to be approximately
0.87, i.e., Dcr ≈ 0.87. Additionally, the droplet is found to rup-
ture earlier under a higher magnetic field strength, i.e., Bom = 3.72.
Figure 4(b) displays the estimated rupture time τb as a function of
magnetic bond number Bom, which clearly indicates that τb fol-
lows a nonlinear relationship with Bom. As the intensity of magnetic
field increases, the droplet ruptures even quicker. These results also
demonstrate that at α = 45○, a critical magnetic bond number exists
below which the droplet does not break up anymore, and the numer-
ical simulations suggest this value to be approximately 2.23 (i.e., Bocr
≈ 2.23).

Figure 5 shows the evolution of droplet breakup over time at
different magnetic bond numbers, Bom. From Fig. 5(b), it can be
seen that as time proceeds, the droplet transforms into a dumbbell
shape from an ellipsoidal shape along with the bulbs at the ends
of the droplet with a fixed diameter. As the droplet stretches itself

FIG. 4. Droplet under the effect of a mag-
netic field in a simple shear flow at 45○

(i.e., α = 45○), Ca = 0.45, and λ = 1. (a)
D vs time; (b) droplet breakup time, τb vs
Bom.
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FIG. 5. Evolution of droplet breakup
under the magnetic field effect in a sim-
ple shear flow at 45○ (i.e., α = 45○), Ca
= 0.45, and λ = 1. (a) Bom = 3.72; (b) Bom

= 5.81; and (c) Bom = 8.38.

toward the direction of the flow field, a neck is developed at the cen-
ter of the droplet that continuously thins over time. In this case,
the magnetic field aids the droplet more in stretching toward the
flow field direction. Moreover, due to the presence of circulation
inside the bulbous ends of the droplet, the surface tension driven
flow acts stronger near the bulbous end while the flow is much
weaker near the neck. As a result, this unstable neck eventually leads
to ends pinching off (τb = 9.41) and gives rise to satellite droplets

with the remaining liquid thread in the middle; however, at Bom
= 3.72 [Fig. 5(a)], we observed an eventual breakup of the mother
droplet into two daughter droplets. Now, as we go on increasing the
magnetic field strength (i.e., Bom = 8.38), multiple satellite droplets
appear in the computational domain. Interestingly, from Fig. 5(c)
we can see that the size of the second pair of satellite droplets seems
smaller compared to the first pair of satellite droplets. According
to Marks,58 if the original volume fraction is not totally used by
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the breakup process for a large droplet, the ends of the remain-
ing volume fraction will go through a similar breakup process as
before and give rise to another pair of smaller satellite droplets, and
our results agree very well with the experimental observations of
Marks.58

2. α = 90○

Now, we apply the magnetic field at an angle α = 90○ to observe
its effect on the breakup phenomenon of the droplet suspended in a
shear flow. Figure 6(a) displays the evolution of deformation param-
eter D over time when the magnetic field is applied at an angle α
= 90○. It can be seen that with the increase in magnetic field strength,
deformation D increases and reaches a steady state around 0.008 s;
although at Bom = 3.01, the droplet starts to show unsteady behavior.
Moreover, as we continuously increase the magnetic field strength
to Bom = 3.72, similar to the case mentioned above, we observe the
first breakup where the mother droplet breaks into two daughter
droplets. In this case, the critical deformation is found to be approxi-
mately 0.85 (i.e., Dcr ≈ 0.85). Also, at α = 90○ the first breakup is seen
at a magnetic bond number, Bom = 3.72, which is slightly above the
magnetic bond number that is required to initiate the first breakup
at α = 45○ (i.e., Bom = 2.69). The primary reason behind this fact is
that at α = 45○, the magnetic field aids the droplet in stretching in the
same direction as the velocity field, which in turn initiates the droplet
breakup faster. Figure 6(b) illustrates the relationship between the
droplet breakup time, τb, and magnetic bond number, Bom, and the
numerical results suggest that the critical magnetic bond number in
this case lies around 3.63 (i.e., Bocr ≈ 3.63).

Figure 7 demonstrates the evolution of droplet shapes under
the magnetic field effect at α = 90○, and it shows that the droplet
continuously deforms and eventually breaks up at some point; how-
ever, no satellite droplets are observed until we apply a magnetic
field strength that corresponds to a magnetic bond number, Bom
= 8.38 [Fig. 7(c)]. In all these cases, the droplet follows a simi-
lar type of evolution from the initial stage to the breakup stage
as described in Sec. IV B 1 (i.e., the droplet stretches itself from
spherical to the dumbbell shape followed by an ellipsoidal shape,
then the ends pinch off due to the presence of instabilities at the
central portion, which in turn generate multiple droplets). Interest-
ingly, in Fig. 7(c) fewer satellite droplets appear compared to the
number of satellite droplets that we observed at α = 45○ [Fig. 5(c)]

for the same magnitude of magnetic field strength (i.e., Bom
= 8.38). The reason behind this could be attributed to the fact that
in this case, the magnetic stress acts in a direction perpendicu-
lar to the flow field while the hydrodynamic stress acts along 45○,
and the competition between hydrodynamic and magnetic stresses
along two different directions results in a few number of necks
along the droplet interface, which in turn produces fewer satellite
droplets.

3. α = 0○

Figure 8 represents the effect of the magnetic field on the
droplet shape in a simple shear flow at α = 0○. From Fig. 8(a), it
can be seen that initially as the magnetic field strength increases
up to Bom = 2.09, the magnetic field has negligible effect on the
deformation of the droplet since up to this point the shear flow is
dominant and controls the deformation of the droplet. However, as
the magnetic field strength starts to increase beyond Bom ≥ 3.72,
the magnetic field tends to become dominant, and as a result the
deformation of the droplet D increases and reaches a steady state
within a very small amount of computational time. Figure 8(b) por-
trays the outline of the equilibrium droplet shapes at different mag-
netic bond numbers, Bom. The droplet shapes reveal that with the
increase in magnetic field strength, the droplet aligns itself more
toward the direction of the magnetic field with greater deformation.
Even at a higher magnetic bond number, i.e., Bom = 8.38, we did not
observe any breakup. The primary reason behind this phenomenon
is that with the increase in magnetic field strength, the magnetic field
rotates the droplet from the extensional quadrant to the compres-
sional quadrant of shear, and as a result the droplet is now so aligned
with the flow direction that the shear stress is not strong enough to
induce rupture, which also acts as a restorative mechanism of the
droplet shape.

4. α = 135○

Finally, we apply the magnetic field along 135○ (i.e., α = 135○)
to understand its effect on the droplet deformation in a signifi-
cantly strong shear flow. Figure 9 represents the droplet deforma-
tion behavior under a uniform magnetic field in a shear flow at α
= 135○. From Fig. 9(a), we can see that as the magnetic field strength
gradually increases, the droplet deformation D decreases. This hap-
pens because, on the one hand, the shear flow is trying to deform

FIG. 6. Droplet under the effect of a mag-
netic field in a simple shear flow at 90○

(i.e., α = 90○), Ca = 0.45, and λ = 1. (a)
D vs time; (b) droplet breakup time, τb vs
Bom.
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FIG. 7. Evolution of droplet breakup
under the magnetic field effect in a sim-
ple shear flow at 90○ (i.e., α = 90○), Ca
= 0.45, and λ = 1. (a) Bom = 3.72; (b) Bom

= 5.81; and (c) Bom = 8.38.

the droplet along 45○, while, on the other hand, the magnetic field
is acting along 135○, which is also the exact opposite direction to
the favorable direction of the shear flow, thus resulting in a smaller
deformation. Also, the outline of equilibrium droplet shapes is illus-
trated in Fig. 9(b), which confirms that with the increase in magnetic
field strength, the droplet changes from an ellipsoidal shape to a
spherical shape followed by a smaller deformation. Moreover, at Bom
= 8.38 the magnetic field strength starts to orient the droplet along

135○, while for the other cases, the shear flow takes control of the
orientation of the droplet.

Moreover, further simulations have been carried out at very
high magnetic bond numbers (i.e., Bom = 33.5) along both α = 0○

and 135○ to investigate if the droplet breaks under extreme con-
ditions, and interestingly, no breakup is observed in the compu-
tational domain even in these situations; instead, droplets with
nearly pointed ends are generated, which also shows good agreement
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FIG. 8. Droplet under the effect of a magnetic field in a simple shear flow at 0○ (i.e., α = 0○), Ca = 0.45, and λ = 1. (a) D vs time; (b) outline of equilibrium shapes at different
magnetic bond numbers, Bom.

FIG. 9. Droplet under the effect of a magnetic field in a simple shear flow at 135○ (i.e., α = 135○), Ca = 0.45, and λ = 1. (a) D vs time; (b) outline of equilibrium shapes at
different magnetic bond numbers, Bom.

with the findings of Afkhami et al.57 Overall, the results for dif-
ferent arbitrary directions suggest that it is possible to initiate
droplet breakup in the Stokes flow regime by proper manipulation
of a uniform magnetic field along 45○ and 90○, while breakup can
be suppressed by applying the magnetic field along both 0○ and
135○.

C. Effect of the viscosity ratio on droplet breakup
In external flow conditions, viscosity ratio plays an important

role on the dynamics of isolated drops in a shear flow, and from the
experimental analyses of Grace11 and Debruijn10 it is found that the
droplet reaches a steady state deformation up to a certain critical
capillary number, Cacr , and above Cacr , the droplet keeps deforming
until rupture occurs, which is also dependent on the viscosity ratio.
Conversely, in particular, a detailed study on the critical droplet
deformation Dcr at a low Reynolds number is missing in the lit-
erature. Here, in this section, we analyze the effect of the viscosity
ratio on the droplet breakup phenomenon in the Stokes flow regime
under a uniform magnetic field. Keeping the droplet size and capil-
lary number fixed (i.e., Ca = 0.45), the magnetic field is applied along
different directions for different viscosity ratios.

1. α = 45○

Figure 10 shows the effect of the viscosity ratio on the droplet
breakup time under a uniform magnetic field at α = 45○. It can

FIG. 10. Effect of the viscosity ratio on droplet breakup under a uniform magnetic
field at α = 45○ and Ca = 0.45. Droplet breakup time, τb vs Bom.
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FIG. 11. Evolution of droplet breakup
under a uniform magnetic field in a sim-
ple shear flow at 45○ (i.e., α = 45○), Ca
= 0.45, and Bom = 8.38. (a) λ = 0.5; (b) λ
= 1; and (c) λ = 5.

be seen that at a fixed viscosity ratio, as the magnetic bond num-
ber Bom increases, the droplet rupture time decreases. Also, there
exists a critical magnetic bond number, Bocr , for all viscosity ratios
below which the droplet does not breakup anymore. Moreover, at
a fixed magnetic bond number Bom, as the viscosity ratio increases,
the breakup time increases, except when the magnetic bond num-
ber is near the critical magnetic bond number Bocr . This is because
with the increase in viscosity ratios, the droplet shows more resis-
tance to droplet deformation. As a result, it takes more time for a
particular magnetic field strength to induce rupture to a more vis-
cous droplet compared to a less viscous droplet. Interestingly, the
critical magnetic bond number Bocr also decreases for more viscous
droplets.

Figure 11 shows the evolution of droplet breakup under a
magnetic field at α = 45○ for different viscosity ratios. It can be
seen that at a magnetic bond number Bom = 8.38 for all viscosity
ratios, the droplet goes through a similar kind of evolution from the

FIG. 12. Effect of the viscosity ratio on droplet breakup under a uniform magnetic
field at α = 90○ and Ca = 0.45. Droplet breakup time, τb vs Bom.
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initial stage to the point where it ruptures, as discussed in Secs. IV
B 1 and IV B 2; however, more necks appear near the center of
the droplet due to the increased resistance toward droplet defor-
mation with the increase in the viscosity ratios, which in turn give
rise to more number of satellite droplets after the droplet disinte-
grates. Also, we observed the subsequent production of smaller and
larger satellite droplets [Figs. 11(b) and 11(c)] followed by the for-
mation of the largest daughter droplets by the first elongative end
pinching during the droplet breakup process, which also agrees with
the experimental findings of Marks. Furthermore, the size of the

daughter droplets decreases with the increase in the viscosity ratio,
due to the increased resistance to droplet deformation.

2. α = 90○

Now, we apply the magnetic field in a direction perpendicular
to the flow field (i.e., α = 90○) to investigate its effect on the droplet
breakup phenomenon for different viscosity ratios. Figure 12 dis-
plays the relationship between the breakup time τb and the magnetic
bond number Bom at three different viscosity ratios. Similar to the
α = 45○ case mentioned above, in this case at a fixed viscosity ratio,

FIG. 13. Evolution of droplet breakup
under a uniform magnetic field in a sim-
ple shear flow at 90○ (i.e., α = 90○), Ca
= 0.45, and Bom = 8.38. (a) λ = 0.5; (b)
λ = 1; and (c) λ = 5.
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FIG. 14. Relationship between the critical magnetic bond number, Bocr , and
viscosity ratio, λ, for different arbitrary magnetic field directions.

the droplet rupture time decreases with increasing the magnetic field
strength. Also, a critical magnetic bond number, Bocr , exists for all
viscosity ratios, which gradually decreases for more viscous droplets.
Figure 13 shows the evolution of the droplet shape from the ini-
tial stage to the breakup stage under a uniform magnetic field at
α = 90○, and it can be seen that for all the cases, the droplet initially
tends to orient itself along the direction of the magnetic field over
time, followed by the transformation of the spherical droplet into a
dumbbell shape with fixed diameter bulbs at both ends. Eventually,
more necks are developed due to the shear and magnetic stresses
acting along the interface near the center, which in turn give rise
to multiple satellite droplets; however, at α = 90○ we observed the
production of smaller and larger satellite droplets only at a higher
viscosity ratio (i.e., lambda = 5). Moreover, the size of the daughter
droplets appears smaller at α = 90○ compared to α = 45○. Further-
more, at α = 90○ as the viscosity ratio is increased beyond λ ≥ 1, fewer
satellite droplets are found in the computational domain compared
to the number of satellite droplets that appear at α = 45○.

Finally, the relationship between the critical magnetic bond
number, Bocr , and the viscosity ratio, λ, for different directions
is demonstrated in Fig. 14. It shows that at a fixed λ, the critical

magnetic bond number Bocr always has a higher value at α = 90○

than at α = 45○. This is because the magnetic field additionally
stretches the droplet along the flow direction at α = 45○, which ulti-
mately induces rupture in the droplet at a faster rate. As a result, the
critical magnetic bond number Bocr appears earlier at α = 45○ com-
pared to α = 90○, where we apply the magnetic field in a direction
perpendicular to the flow domain.

3. α = 0○

Figure 15 illustrates the effect of the viscosity ratio on droplet
breakup under a uniform magnetic field at α = 0○. From Fig. 15(a),
it can be seen that at a fixed magnetic bond number Bom, the defor-
mation of the droplet D decreases with the increase in the viscosity
ratio. This is due to the fact that as the droplet becomes more vis-
cous, it shows more resistance to deformation, which in turn results
in a more spherical droplet shape. Interestingly, for a more viscous
droplet (i.e., λ = 5) at a smaller magnetic field strength (i.e., Bom
= 2.09), we observed a rapid decline in deformation compared to
less viscous droplets (i.e., λ = 0.5 and 1). Figure 15(b) depicts the
outline of the final equilibrium droplet shapes at Bom = 2.09, which
also confirms that with the increase in viscosity ratio, the droplet
tends to align itself more toward the direction of the magnetic field
(i.e., orientation angle θ decreases).

4. α = 135○

Finally, the magnetic field is applied along 135○ to investi-
gate its effect on droplet rheology at different viscosity ratios. From
Fig. 16(a), it can be seen that, similar to the case mentioned above,
the droplet deformation D decreases with the increase in the vis-
cosity ratio. But in this case, at a particular magnetic field strength
and viscosity ratio, the droplet deformation appears much smaller
compared to the deformation at α = 0○. The primary reason behind
this could be attributed to the fact that at α = 135○, the magnetic
field induced deformation acts along the exact opposite direction of
the shear induced deformation, i.e., deformation D decreases. Fur-
thermore, the droplet aligns itself more toward the direction of the
magnetic field with the increase in the viscosity ratio [Fig. 16(b)],
which is also similar to the orientation trend observed at α = 0○.

Overall, the results suggest that at Ca = 0.45, increasing the vis-
cosity ratio along both α = 45○ and 90○ initiates a delayed breakup.

FIG. 15. Effect of the viscosity ratio on droplet deformation under a uniform magnetic field at α = 0○ and Ca = 0.45. (a) D vs time; (b) outline of equilibrium shapes at Bom

= 2.09.
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FIG. 16. Effect of the viscosity ratio on droplet deformation under a uniform magnetic field at α = 135○ and Ca = 0.45. (a) D vs time; (b) outline of equilibrium shapes at Bom

= 2.09.

At a fixed viscosity ratio, the critical magnetic bond number Bocr
always has a higher value at α = 90○ than at α = 45○. On the other
hand, at a specific magnetic field strength (i.e., Bom = 2.09), increas-
ing the viscosity ratio along both α = 0○ and 135○ results in a smaller
deformation; however, the deformation of the droplet along α = 135○

is found comparatively smaller than the deformation at α = 0○.

V. CONCLUSION
The breakup of a ferrofluid droplet in a simple shear flow under

the influence of a uniform magnetic field along different directions
at a low Reynolds number (i.e., Re = 0.03) is systematically stud-
ied in this paper. The results show that at a low capillary number
(i.e., Ca ≤ 0.5), in the absence of any external forces, the droplet
reaches a steady state deformation when suspended in another vis-
cous medium in a shear flow; however, when a magnetic field is
applied along 45○ and 90○, the droplet starts to show unsteady
behavior with the increase in magnetic field strength and eventu-
ally ruptures. We found that there exists a critical magnetic Bond
number, Bocr , above which the droplet shows this behavior, which
is also dependent on the direction of the magnetic field. For exam-
ple, at α = 45○, the magnitude of Bocr is found to be approximately
2.23 (i.e., Bo45○

cr ≈ 2.23), while at α = 90○ it is found to be approx-
imately 3.63 (i.e., Bo90○

cr ≈ 3.63). Also, as we increase the magnetic
field strength beyond Bocr for both cases, the time to induce rup-
ture in the droplet decreases. Moreover, for the same magnetic field
strength, more satellite droplets are observed at α = 45○ compared
to α = 90○. On the other hand, applying a magnetic field along 0○

and 135○ suppresses droplet breakup. Even at a higher magnetic field
strength, a steady state deformation was observed in both cases.

Furthermore, we investigated the effect of viscosity ratios on
the droplet breakup phenomenon under a uniform magnetic field
at different directions and found that for both α = 45○ and 90○, at
a fixed magnetic bond number, the breakup time increases as the
viscosity ratio λ increases, except when Bom is near the critical mag-
netic bond number Bocr . Also, the critical magnetic bond number
Bocr decreases for a more viscous droplet. Additionally, with the
increase in viscosity ratio at a fixed magnetic bond number, more
satellite droplets are observed although, for the same Bom and λ, a
larger number of satellite droplets are observed at α = 45○ compared

to 90○. Moreover, at a fixed λ, Bocr always has a higher value at α
= 90○ than at α = 45○. Conversely, when the magnetic field is directed
along 0○ and 135○, at a particular magnetic field strength, the droplet
deformation D decreases with an increase in viscosity ratio and the
droplet tends to orient itself more toward the magnetic field direc-
tion. These findings indicate the enormous potential of magnetic
fields as a useful tool for controlling breakup of ferrofluid droplets
and emulsion rheology, which are relevant to a variety of applica-
tions in the fields of microfluidics, polymer processing, and chemical
engineering.
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