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ABSTRACT 

The purpose of the present study is to determine whether a mineral phase is 

precipitating from solution in the natural Maramec Spring system giving the spring water 

a milky blue color, to identify the mineral phase, and to investigate potential mechanisms 

for inducing precipitation.  Maramec Spring is a first-order magnitude spring located 11 

km southeast of St. James, Missouri. 

The water that expels from Maramec Spring varies between being near saturation, 

but undersaturated in calcium, with respect to calcite (saturation index of 0.994 mg/L).  

Moving downstream, away from the conduit, the spring waters increase in pH and 

temperature.  Eh is observed to decrease, in response to increasing pH.  Conductivity, 

calcium, magnesium, and total hardness, as well as alkalinity were measured to be 

constant along the entire stream reach.  Conductivity tends to be higher on sampling dates 

following local rainfall events.  A positive CO2 flux, greatest at the point of upwelling, is 

observed at the spring. 

At this time the particulate material which is responsible for giving Missouri 

spring waters their milky blue color cannot be positively identified.  Spring water 

chemistry favors calcium carbonate precipitation through CO2 degassing, but vacuum 

filtration suggests calcite is not a major phase.  The milky blue color of the spring water 

is hypothesized to be a combination of calcium carbonate, or suspended colloidal quartz 

and clay minerals (kaolinite, smectite, or chlorite) from deeper within the spring conduit. 
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1. INTRODUCTION 

The water emanating from many Missouri springs is relatively clear under normal 

flow conditions, but generally retains a milky blue color due to the presence of fine-

grained colloidal particles.  The milky blue color is present under all seasonal conditions 

except during flood stages when particulate materials suspended in the water column 

impart a brownish color and increase water turbidity.  The waters of Missouri springs can 

be undersaturated to supersaturated in calcium and magnesium with respect to calcite and 

dolomite.  The calcium and magnesium are derived from the dissolution of carbonate 

strata in the spring recharge area.  To the authors’ knowledge, no studies have ever been 

conducted to identify the precipitate material in this or other springs in southeastern 

Missouri.  

Maramec Spring is Missouri’s fifth largest cold-water spring.  It is located in 

Phelps County, Missouri, 11 km southeast of St. James.  The spring expels, on average, 

approximately 3.6 x 10
8
 liters of water/day (9.6 x 10

7
 gallons/day) from a large open 

conduit hosted in the Ordovician dolomite of the Gasconade Formation.  The recharge 

area of the spring is estimated to encompass 800 square kilometers to the south and west 

(Unklesbay and Vineyard, 1992; Vandike, 1996).   The spring conduit has been mapped 

by scuba divers over a distance of approximately 940 meters, and a maximum depth of 

approximately 61 meters, but this survey conducted by the divers included only a 

minuscule portion of the cave system. 

The Gasconade Formation hosts many well developed karst features (e.g., caves, 

springs, etc.) across central and southern Missouri, including Maramec Spring (Orndorff 

et al., 2006).  The Gasconade Dolomite is on average 100 meters thick, varies in color 

from gray to buff, is finely to coarsely crystalline, moderately to thickly bedded, and 

contains one prominent sandstone bed, the Gunter Sandstone Member (Thompson, 1991).  

The Gasconade is unofficially broken into the “lower Gasconade” and “upper 

Gasconade.”  The lithologic feature for this distinction is the abundance of chert within 

the “lower Gasconade,” while the “upper Gasconade” is relatively chert free.  The basal 

sandstone bed of the Gasconade is classified as the Gunter Sandstone Member and occurs 

along the base of this unit and marks the contact between the Eminence (Cambrian) and 
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Gasconade (Ordovician) Formations.  The Gunter Sandstone is on average 10 meters 

thick, varies in color from white to reddish-brown, is medium grained, and is thinly 

bedded with some minor cross-bedding.  It is generally a quartz sandstone, but in some 

places the Gunter is described as a sandy dolomite.  This sandstone is a major aquifer for 

municipal wells throughout Missouri and most likely the major conduit for waters 

expelling from Maramec Spring. 

 

 

 

1.1. PREVIOUS STUDIES 

The hydrology of Maramec Spring has been extensively studied by various 

researchers.  For a complete discussion on the hydrology of Maramec Spring refer to 

Vandike (1996) and the references cited therein.   Most of the studies in the literature 

were in response to a liquid fertilizer pipeline break that affected the spring in November 

of 1981.  They examined water quality, and evaluating hydrologic modeling (Vandike, 

1985, 1996; Wicks and Hoke, 2000).  

Calcium carbonate precipitation kinetics is of great importance to scientists and 

engineers.  Precipitation mechanisms need to be well understood in order to minimize 

problems of scale buildup in residential and industrial settings.  Calcium carbonate 

precipitation from supersaturated solutions is known to reduce the permeability and 

porosity in reservoir rocks, the efficiency of water softening devices, and clog the piping 

of residential and commercial water systems utilizing hard water. 

1.1.1. Conductivity, pH, pCO2, and [Ca
+2

].  The [Ca
+2

] in solution (Dove and 

Hochella, 1993), CO2 loss (Dreybrodt et al., 1997; Zhang and Grattoni, 1998), and pH 

(Wilson, 1975) are considered to be the three dominant factors influencing calcium 

carbonate precipitation.  Groundwater usually contains dissolved CO2 contents 10 to 100 

times greater than atmospheric levels, especially in carbonate strata (Lebron and Suarez, 

1996).  A decrease in solution pH is observed during the experimental crystallization of 

calcium carbonate.  This pH change is attributed to the loss of CO2 from the system 

(Reddy and Nancollas, 1971; Lakshtanov and Stipp, 2010).  Theoretically, one mole of 

CO2 should be released for every mole of calcium carbonate precipitated (Zhang and 
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Grattoni, 1998).  Since pH can easily be measured in situ, many scientists use pH as a 

proxy to estimate for the amount of calcium carbonate precipitated from solution. 

Several studies propose that the degree of calcium saturation in solution, with 

respect to calcite, is the dominant factor influencing calcium carbonate crystallization in 

aqueous systems (Kamkha et al., 1989; Dove and Hochella, 1993; Gómez-Morales et al., 

1996; Teng et al., 2000; Dickinson et al., 2002; Lakshtanov and Stipp, 2010).  In this 

scenario conductivity can be used as a proxy, in addition to pH, to measure the relative 

change in [Ca
+2

] over time.  Gómez-Morales et al. (1996) were able to measure induction 

times using pH and [Ca
+2

], but found that [Ca
+2

] was not as sensitive an indicator to the 

induction of calcite crystallization as was pH. 

1.1.2. Calcium Carbonate Polymorphs and Crystal Forms.  Laboratory 

crystallization experiments can produce all three polymorphs of calcium carbonate (i.e. 

calcite, aragonite, and vaterite).  However, the most commonly occurring polymorph is 

calcite (Reddy and Nancollas, 1976).  Swinney et al. (1982) experimentally determined 

that hard waters are softened more efficiently by the precipitation of rhombohedral calcite 

rather than aragonite; vaterite was never observed.  This is attributed to the variation in 

crystal habit between calcite and aragonite, i.e. the aragonite crystals take up more space 

reducing the efficiency of the water softener.  Vaterite was only observed precipitating in 

unseeded supersaturated solutions where concentrations were extremely high (Gómez-

Morales et al., 1996). 

Not only are the rates of precipitation of all the polymorphs of calcium carbonate 

important, but so are the transformation rates from one polymorph to another.  

Polymorphic transformations are believed to occur by the dissolution of the parent 

phase(s), aragonite or vaterite, and the growth of the more stable phase, calcite (Ogino et 

al., 1990).  Calcite growth is also believed to be the rate limiting step in polymorphic 

transformation, and not the dissolution of the less stable polymorph.  Transformation 

rates between all polymorphs are slowed in the presence of Li
+
. 

1.1.3. Calcium Carbonate Crystal Growth.  The growth of calcium carbonate 

crystals from solution is predominantly studied in one of two ways.  The first and most 

common way is with the addition of calcite seed crystals, which act as nucleation sites for 

the calcium carbonate crystallization from supersaturated solutions.  The second, but 
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much less common method is the spontaneous nucleation of calcium carbonate from 

supersaturated solutions in the absence of seed crystals.  The calcium carbonate 

precipitation mechanics appear to be the same for seeded crystallization experiments as 

they are for spontaneous nucleation experiments.  Spontaneous nucleation occurs almost 

instantaneously and is not ideal for studying the rates of calcium carbonate precipitation 

since extremely high saturation indices are necessary to initiate spontaneous nucleation.  

Spontaneous nucleation of calcium carbonate is ideal for estimating the amount of 

calcium carbonate precipitated from solution since there is no crystalline material prior to 

induced crystallization.  For these reasons the spontaneous nucleation method of 

precipitating calcium carbonate will not be discussed any further.  Seed crystals are 

usually euhedral, transparent, approximately 10μm in size (Reddy and Nancollas, 1971), 

and retain their euhedral shapes throughout calcium carbonate growth (Goodarz-nia and 

Motamedi, 1980).   

Several authors propose that calcium carbonate precipitation in a seeded 

experiment is surface area controlled (Reddy and Nancollas 1971; Nancollas and Reddy 

1971; Reddy and Gillard, 1981; Ogino et al., 1990; Dove and Hochella, 1993).  The 

growth rate of calcite is believed to be proportional to the number of available growth 

sites, thus making the process controlled by crystal surface area (Ogino et al., 1990).  

This surface area controlled process may be the rate limiting step for calcite crystal 

growth (Nancollas and Reddy, 1971; Zhang and Grattoni, 1998).  Calcite growth is 

proposed to occur in a stepwise (Reddy and Gillard, 1980) or spiral fashion (Dove and 

Hochella, 1993). 

1.1.4. Calcium Carbonate Precipitation in the Presence of Contaminants.   

The effect of natural contaminants (e.g., Mg, Mn, Sr, Si, SO4
-2

, PO4
-3

, and dissolved 

organic carbon) on the precipitation of calcium carbonate is of great industrial 

importance.  Of these natural contaminants, Mg (Reddy and Nancollas, 1976), Si 

(Lakshtanov and Stipp, 2010), PO4
-3

 (Reddy and Nancollas, 1973, Nancollas, 1979), and 

dissolved organic carbon (DOC) (Lebron and Suarez, 1996) all have a dramatic effects on 

the rate of calcium carbonate precipitation.  DOC and PO4 affect crystal growth by 

attaching to and reducing the number of potential precipitation sites on crystal surfaces 

(Reddy and Nancollas, 1973; Dove and Hochella, 1993; Lebron and Suarez, 1996).   
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Some studies propose that the formation of an amorphous phase of calcium 

carbonate occurs prior to crystallization in the presence of certain contaminants (Reddy 

and Nancollas, 1976; Sӧhnel and Mullin, 1982).  In the presence of PO4, amorphous 

shapes and jagged edges were common during calcite growth (Dove and Hochella, 1993).  

The crystalline calcite precipitated from supersaturated solutions with Mg present was 

preceded by an amorphous calcium carbonate phase and then conversion to a crystalline 

form similar to calcite crystals observed to grow in the absence of Mg.  The size of the 

calcite crystals also appear to be correlated to the amount of impurities incorporated 

within the calcite crystal structure, i.e. more impurities yielded smaller crystals (Sӧhnel 

and Mullin, 1982).   

Gebauer et al. (2008) also observed an amorphous phase that preceded the 

crystalline phase.  They proposed the growth of stable calcium carbonate clusters through 

the binding of ions.  Ca
+2

 and CO3
-
 ions bind together to form an amorphous phase 

without any crystalline structure.  These non-crystalline clusters then convert into the 

most thermodynamically stable calcium carbonate polymorph.  All steps associated with 

ion binding are anticipated to be pH dependent. 

Contaminants are also observed to affect the polymorph of calcium carbonate 

precipitated from supersaturated solutions, the crystallization induction rate, as well as 

the polymorphic transformation rate.  The presence of silica appears to have an effect on 

the calcium carbonate polymorph precipitate and the rate of induction (Lakshtanov and 

Stipp, 2010).   

1.1.5. Calcium Carbonate Reaction Rates.  The exact role of kinetics and 

thermodynamics in calcium carbonate precipitation is not well understood.  In calcite 

precipitation there is an initial rapid growth surge of calcium carbonate that eventually 

slows to follow kinetic rate equations for the precipitation of calcium carbonate 

(Nancollas and Reddy, 1971).  The most commonly proposed rate limiting steps are CO2 

production (Dreybrodt et al., 1997; Zhang and Grattoni, 1998), the number of available 

growth sites (Dove and Hochella, 1993; Zhang and Grattoni, 1998), system flow 

characteristics (Dreybrodt et al., 1997), and [Ca
+2

] saturation levels (Dove and Hochella, 

1993). 
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Most researchers are in agreement that the most important thermodynamic factor 

is the [Ca
+2

] in solution, but the most important kinetic factor is still debatable.  For 

example, Kamkha et al. (1989) and Dickinson et al. (2002) had differing views about 

kinetic factors.  Kamkha et al. (1989) suggested that pH, specifically the [HCO3
-
], 

controlled the kinetics of calcium carbonate precipitation, but Dickinson et al. (2002) 

proposes that the kinetics of the growth reactions were controlled by CO2 release.  The 

genetic linkage between CO2
 
release and [HCO3

-
] suggests that both authors may be 

correct. 

The [Ca
+2

] in solution intuitively is the most plausible kinetic factor affecting 

calcium carbonate crystallization.  Varying the [Ca
+2

] relative to the saturation level 

within a system has a profound effect on growth rates and mechanisms of calcium 

carbonate.  In solutions with saturation levels greater than 1 but less than 2, calcite 

exhibits two different types of growth.  First, calcite growth is dominated by surface 

nucleation and coalescence, but transitions to a mechanism resembling spiral growth over 

time.   In undersaturated solutions, which are close to equilibrium, both surface 

dissolution and precipitation of calcium carbonate appear to occur simultaneously (Dove 

and Hochella, 1993). 

Theoretically, one mole of CO2 is produced for every mole of calcium carbonate 

precipitated.  Thus, the rate at which CO2 can be produced and removed from the system 

can also be a rate limiting step for calcium carbonate precipitation.  In natural settings 

aquatic organisms may have a positive effect on the rate of calcium carbonate 

precipitation as they consume CO2 for vital processes (Lebron and Suarez, 1996).  

Dreybrodt et al. (1997) studied the effect of enzymes on the HCO3
-
 + H

+
 → H2O + CO2 

reaction rate to determine if CO2 production could be enhanced.  They observed that this 

reaction was enhanced in the presence of the enzymes, suggesting a linkage of CO2 

removal and carbonate precipitation. The exact role the enzymes play is not well 

understood (Zhang and Grattoni, 1998). 

In the simplest of systems one parameter may act as the rate limiting step in 

calcium carbonate precipitation.  In more complex systems, such as a natural system, 

many parameters may affect the rate at which calcium carbonate is precipitated from 

solution.  For example, in turbulent flow systems concentration gradients have a limited 
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ability to form, thereby homogenizing the surface fluid chemistry near the crystal surface 

and directly affecting the calcium carbonate precipitation rate.  To further complicate 

issues, some studies observed a quasi-equilibrium phase prior to true chemical 

equilibrium.  The quasi-equilibrium is represented in the data as a change in slope of the 

concave parabolic curve of [Ca
+2

] in solution.  Initially, [Ca
+2

] in solution decreases very 

rapidly, but slows over time.  The quasi-equilibrium is maintained for a substantial period 

of time until the system reaches true chemical equilibrium (Dreybrodt et al., 1997). 

 When comparing all these studies, it becomes apparent that calcium carbonate 

precipitation rate laws need to be carefully selected and applied (Teng et al., 2000).  

Analyzing the change in bulk chemistry of a system may not be the most accurate way to 

derive rate laws of calcium carbonate precipitation (i.e. discrepancies between rate law 

equations from studies of different scales).  For example, Goodarz-nia and Motamedi 

(1979) observed an interesting phenomenon during their experimental precipitation of 

calcium carbonate that was not noted in any other study.  When precipitating calcium 

carbonate, they observed that the overall crystal size increased with time until 

approximately 50 minutes after initial precipitation.  After this time, the crystal sizes 

were observed to decrease, rather than continuing to grow.  They could not explain this 

phenomenon, which could have been the result of the system reaching equilibrium, 

achieving slightly undersaturated conditions, or transformation from one polymorphous 

phase to another with lower equilibrium solubility values. 

1.1.6. Calcium (
45

Ca) Isotope Exchange.  Using a calcium (
45

Ca) radiotracer, 

calcium isotope exchange between seed crystals and solution was measured (Reddy and 

Nancollas, 1971).  Calcium isotope exchange between seed crystals and solution is 

dependant upon the saturation of solution with respect to Ca.  For example, in a saturated 

solution isotope exchange occurs between the seed crystal and solution, but very little 

exchange occurs during the first hour of crystallization.  In contrast, Ca isotope exchange 

does not take place in supersaturated solution (i.e. calcite is precipitated in isotopic 

equilibrium with the solution). 
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1.2. STUDY OBJECTIVES 

The purpose of the present study is to: (1) determine whether a mineral phase is 

precipitating from solution in the natural Maramec Spring system to give the spring water 

its milky blue color; (2) identify the mineral phase; and (3) investigate potential 

mechanisms for inducing precipitation (Figure 1.1).  In today’s society, calcium 

carbonate precipitation and dissolution processes are of the extreme importance with 

respect to CO2 sequestration.  A good understanding of carbonate system behavior under 

varying natural conditions is necessary to enhance CO2 sequestration attempts.  Natural 

analogs such as Maramec Spring and the Bahamian Platform act as natural laboratories to 

study carbonate precipitation and dissolution (i.e. sedimentation and karstification), 

which can then be applied to CO2 sequestration studies. 

 

 

 

 

Figure 1.1.  Photograph of Maramec Spring from sampling location 3 looking towards 

sampling location 1.  The swell of the spring is located in the top left-center portion of the 

photograph just below the base of the rock wall.  Note the milky blue color of the 

Maramec Spring water in the pool. 
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2. EXPERIMENTAL METHODS 

2.1. FIELD SAMPLE LOCATIONS AND SITE LOCATIONS 

The Maramec Spring branch is approximately 1,400 meters in length from its 

point of initial upwelling from the subsurface to its termination where it merges with the 

Meramec River (Figure 2.1).  The spring branch flows from south to north.  The stream 

originates at the spring swell (sampling location 1) and is comprised of a series of rapids 

(sampling locations 3, 6, 7, and 8), shallow riffles (location 4), slow moving water pools 

(locations 2; Figure 1.1), and deeper ( >2 meters), slower moving pools (locations 5) 

(Table 2.1).  

Field measurements were collected by experienced and supervised inexperienced 

personnel.  Experienced data collectors included undergraduate geology students, 

geology graduate students and geology faculty.  Inexperienced data collectors included 

high school summer camp students and undergraduate students from other disciplines.  

All inexperienced data collectors were supervised by experienced data collectors.  The 

data collected by the inexperienced personnel is valid, but not as precise as the data 

collected by experienced personnel. 

The first eight trips to the site from 2002 and 2007 were in association with the 

Jackling summer camp for high school student hosted by Missouri University of Science 

and Technology each summer.  The eight sampling locations were selected to analyze the 

water chemistry of Maramec Spring (Figure 2.1).  Spring water chemical data and lab 

samples were collected over 12 sampling trips during the summer months from 2007 to 

2010 (Table 2.2). Not all eight locations were sampled on each trip because of time 

restrictions imposed by the detailed sampling process.  Water pH and Eh measurements 

from these earlier trips are referenced in the present study, although used with caution 

given the inexperience of the various student samplers. 
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Figure 2.1.  Aerial photograph outlining the sampling locations at Maramec Spring 

utilized in this study, 11 km southeast of St. James, Missouri.  The spring conduit is 

located at sampling location 1.  Stream flow is from south (bottom of photograph) to 

north (top of photograph).  The roadway in the lower right corner of the photograph is 

Missouri Highway 8. 
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Table 2.1.  Maramec Spring sampling locations and their respective distances from 

conduit, and flow characteristics 

Sampling Location Distance Downstream Location/Stream Characteristics

1 0 m Conduit; variable flow depending upon amount of rainfall

2 55 m Steady flow, 0.5 m deep water along flank of deeper pool

3 85 m First rapids below conduit and pool

4 285 m Next to steps below bridge on the oppsite side of the sidewalk, shallow water (~15 cm)

5 670 m Across from deep water sign, slow moving water, > 2 m deep, lots of aquatic plants

6 800 m Rapids, just below outhouse

7 1200 m Rapids

8 1300 m Rapids, just after suspension bridge

Meramec River 75 m East of sampling location 8; much slower flow rates than spring arm

 

 

 

Table 2.2.  Maramec Spring sampling information including personnel, locations 

sampled, relative flow conditions, and weather.  Jackling = Jackling Introduction to 

Engineering summer camp participants; GEO 376/Env. Eng 261 = Aqueous 

Geochemistry/Environmental Aquatic Chemistry Class. 

Date Help Locations Sampled Flow Conditions Weather Prior to Sampling

6/14/2001 Jacking 1,2,3,4 Rain night before

6/13/2002 Jacking 1,2,3,4 Rain night before

6/20/2002 Jacking 1,2,3,4 No rain for week

6/28/2002 Jacking 1,2,3,4,5 Light rain

6/12/2003 Jacking 1,2,3,4,5 High discharge Heavy rain

6/20/2003 Jacking 1,2,3,4,5 Slightly higher discharge Light rain

6/27/2003 Jacking 1,2,3,4,5 Heavy rain day before

7/10/2007 1,2,3,4,5 Normal discharge No rain

9/21/2007 1,2,3,4,5,6,7,8 Normal discharge No rain

10/4/2007 GEO 376/ Env. Eng 261 1,2,3,4,5,6,7,8

3/12/2008 1,2,3,4,5,6,7,8

8/29/2010 1,2,3,4,5,6,7,8 Normal discharge No rain

10/6/2010 1,2,3,4,5,6,7,8 Normal discharge No rain

 

 

 

2.2. FIELD MEASUREMENTS 

Measurements collected in situ include: temperature, pH, Eh, conductivity, and 

dissolved oxygen. Calcium hardness, total hardness, and alkalinity were measured ex situ 

on site using portable Hach field titration kits.  Turbidity measurements (i.e, the 

scattering of light within a water sample) were attempted on several occasions, but the 

constant high humidity of the spring area combined with the cool water temperatures 
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induced condensation on the sample vial. For these reasons turbidity was only accurately 

measured on the March 12, 2008 sampling. 

All instruments utilizing standards (e.g., pH and conductivity probes) were 

calibrated with their respective commercial laboratory standards prior to use. In the field 

all instruments were continually checked to measure the amount of instrument drift, and 

re-calibrated if instrument drift exceeded preset parameters (Appendix A). 

Temperature, pH, and Eh were all measured using a Fisher Scientific Accumet 

AP115 portable pH/ORP meter.  Temperature, pH, and Eh measurements have a factory 

accuracy of ±0.3°C, ±0.1, and ±2 mV, respectively.  The pH probe was calibrated using 

factory pH standards of 4.00 ± .01, 7.00 ± .01, and 10.00 ± .01.  Temperature, pH, and Eh 

were measured at all eight sampling locations, but not at every location on every sample 

trip. 

Conductivity was measured using a WTW Cond 330i/SET portable conductivity 

meter.  The conductivity meter was calibrated using commercial standards of 100.6, 

398.7, and 1002 μSiemens/cm. The conductivity meter, which has a factory accuracy of 

±0.1 μSiemens/cm, did not drift (i.e., the 100.6 standard read 100.6 after all 

measurements) after calibration.   Conductivity measurements were conducted at all eight 

sampling locations, but not on all sampling trips. 

Dissolved oxygen (DO) was measured using a Fisher Scientific Accumet AP64 

portable dissolved oxygen meter with an Au/Ag cathode/electrode.  The DO probe a 

reporting accuracy 0.12 mg/L with a precision of ±0.02 mg/L.  It was calibrated by 

saturating a sponge with de-ionized water and allowing it to equilibrate in a 100% 

relative humidity environment.  No drift was observed within the DO probe from location 

to location.  The DO measurements were collected at all eight sampling locations on the 

last round of sampling.  To test the accuracy of the measurements the DO probe was 

immersed in a CO2 rich/O2 poor atmosphere.  It reported less than 0.12 mg/l of dissolved 

oxygen in this environment. 

Turbidity and CO2 flux measurements were each only collected during one trip.  

Turbidity was measured using a HACH 2100P Turbidimeter.  The turbidity meter was 

calibrated using Gelex standard of 6.11 NTU with an accuracy of ± 0.04 NTU.  These 

CO2 flux measurements are not referenced to a standard. 
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Alkalinity, calcium, and total hardness were measured on site using Hach 

Colorometric titration kits.  All titrations were completed following the procedures 

distributed with each kit.  Magnesium hardness was calculated by subtracting the 

measured calcium hardness from the total measured hardness. Alkalinity, calcium, and 

total hardness data were only collected at the first four sampling locations and only 

measured on unfiltered water samples during the last three sampling trips.  On one 

sampling expedition (October 4, 2007), the total hardness, calcium hardness, and 

alkalinity were measured using unfiltered water at sampling locations 1 through 5.  This 

detailed sampling was only completed once. 

 

 

2.3. SOLUTION ANALYSES 

The spring water was collected for geochemical analysis on one sample trip.  

Filtered water samples were collected using a disposable 60 mL sterile syringe and 5 μm 

nylon, 0.45 μm cellulose acetate, and 0.02 μm alumina Whatman filters at locations 1, 2, 

3, and 4.  These unfiltered and filtered water samples were acidified using ultra-pure 

HNO3 to a pH of 2.  These acidified samples were then analyzed on a inductively coupled 

plasma – optical emission spectrometer (ICP-OES) to determine the spring water 

chemistry.  Unfiltered and filtered spring water samples, approximately 120 mL each, 

collected from the first four sampling locations were acidified with 1 mL of high purity 

HNO3 to a pH of two or lower prior to analysis.  All resulting solutions were analyzed for 

Ca, Mg, K, Na, Si, Al, Fe, and Mn. 

Spring water collected only at sampling location 1 was filtered using Millipore 

cellulose filters to collect and examine the particulate material on two sampling dates.  

On August 29th, 2010 a four liter water sample was filtered on site using a 0.22 μm 

cellulose filter and a mechanical vacuum filtration system.  On October 6, 2010, a liter of 

water at sampling location 1 was filtered sequentially using 5.0 μm, 0.45 μm, 0.22 μm, 

and 0.05 μm cellulosic filters using the vacuum filtration system.  These filters were 

returned to the Missouri S&T campus and examined using a scanning electron 

microscope (SEM) with energy dispersive spectroscopy (EDS) system.   
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Also on October 6, 2010, a liter of unfiltered spring water was collected at sample 

location 1 for total dissolved solids (TDS) and total suspended solids (TSS) analysis.  

TDS and TSS analyses were completed using a 0.45 μm cellulose filter and vacuum 

filtration.  The filter was dried at 103°C for 1 hour and then weighed using a precision 

four decimal place balance.  The filter was pre-wetted and placed on a pre-cleaned filter 

apparatus for filtration.  After filtration, the filter paper was removed from the apparatus, 

covered, and allowed to dry at room temperature.  After drying the filter paper was 

further dried in a 103°C oven for 1 hour.  TSS was calculated by subtracting the 

difference in the weight of the filter paper.  This difference is then divided by the known 

volume of water sample passed through the filter.  The filtrate was then placed in a pre-

weighed 150 mL beaker, covered with a watch glass, and placed in an oven at 90°C until 

the sample evaporated.  The beaker was allowed to cool at room temperature for 45 

minutes, and then was weighed on a four decimal place balance.  TDS was calculated by 

subtracting the difference in the weight of the 150 mL beaker and then dividing the 

difference by the known volume of sample evaporated. 

 

 

2.4. PARTICULATE ANALYSES 

2.4.1. Scanning Electron Microscopy.  Particulate material collected by 

centrifuging and filtering the spring water was examined by using reflected light 

microscopy and scanning electron microscopy (SEM) analysis.  SEM analysis is one of 

the most important techniques that allowed us to visually examine the colloidal material 

present in Maramec Spring and determine their bulk composition.  SEM analysis was 

conducted on a Hitachi S-570 with a LaB6 filament, an accelerating voltage of 15 kV, and 

a working distance of 15 mm under vacuum.  For energy dispersive spectroscopy (EDS) 

the working distance was increased to 20 mm and all other parameters were unaltered. 

Samples used for SEM analysis were collected and prepared in multiple ways.  At 

the beginning of the study 32 liters of spring water was collected in the field, brought 

back to the laboratory, centrifuged and decanted until enough particulate material was 

collected for petrographical and geochemical analyses.  The crystals accumulated by the 

centrifuge technique were selected by hand using a Nikon binocular microscope and 
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stainless steel probe.  This material was then mounted on an aluminum SEM stub using a 

carbon mounting adhesive.  Other SEM samples were prepared by pipetting a small 

aliquot of centrifuged material onto a glass slide and allowing the remaining water to 

evaporate prior to being mounted on a round aluminum stub.  Other samples were carbon 

coated and examined on the SEM. 

Collecting water samples in the field and returning them back to the laboratory for 

centrifugation was not considered to be an ideal sampling protocol because degassing of 

CO2 from the water might induce chemical changes in the water (e.g., a pH increase) that 

could lead to additional precipitation or digestion reactions.  Filtration techniques were 

therefore employed to collect the particulate material present in the Maramec Spring 

water solution directly in the field.  For this analysis four liters of water was filtered on 

site ex situ using a 0.22 μm cellulose filter.  The filter and collected particulate material 

were mounted on an aluminum stub and coated with Au + Pd for 120 seconds at 10 

mAmps.  A “blank” sterile filter sample was also prepared for analysis on the SEM to 

help distinguish particulate material from the filter substrate.  The blank sterile filter is 

composed predominately of O with lesser C. 

In order to better classify the size distribution of the particulate material, a single 

one liter water sample collected on October 6, 2010 was sequentially filtered in a 

stepwise fashion using cellulose filters which decreased in size.  This sample was first 

filtered using 5.0 μm cellulose filter.  The filtered water was then re-filtered using 0.45 

μm, 0.22 μm, and 0.05 μm cellulose filters in succession.  A small portion of each filter 

with corresponding particulate material was then mounted on an aluminum SEM stub 

using a carbon adhesive and Au + Pd coated as noted previously.  These samples were 

then analyzed using energy dispersive spectroscopy (EDS) on the SEM.  SEM-EDS 

analyses, which identify Al, may actually be penetrating both the particulate material and 

cellulose filter, thus measuring and identifying Al from the underlying aluminum SEM 

stub. 

2.4.2. X-Ray Diffraction.  Particulate material filtered in the field using 

cellulose filters were analyzed using a X’PERT SW X-ray diffractometer.  The XRD 

analysis was a continuous, fast scan with CuKα1 monochromatic x-rays with a 

wavelength of 1.54056 and a 2θ scan range of 5.015° to 59.975°. The stream particulate 
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material collected on the 0.45 μm and 0.22 μm cellulosic filters were also used for X-ray 

diffraction and ICP-OES analyses by halving the filter paper as closely as possible.  The 

particulate material was analyzed on the filter substrate of the 0.45 μm and 0.22 μm 

filters.  Analysis of an unused sterile filter sheet revealed that no crystalline structured 

material was detected within the blank filter over the 2θ scan range used with the XRD.  

2.4.3. Inductively Coupled Plasma – Optical Emission Spectroscopy 

Inductively coupled plasma – optical emission spectrometer (ICP – OES) analysis was 

employed to determine the major constituents of the particulate material collected by 

filtration from Maramec Spring.  For ICP – OES analysis, the solid particulate material 

filtered ex situ, but on site, using the cellulosic filters and vacuum filtration techniques at 

sample location 1 were digested using undiluted, high purity HNO3. 

ICP-OES analyses were also conducted on the particulate material to determine 

its chemical composition.  The remaining halves of the 0.45 μm and 0.22 μm filters used 

for TSS and XRD, respectively, were each placed in an ultrasonic cleaner for 30 minutes 

in 15 mL of a 3% ultra-pure HNO3 acid solution to remove the particulate material from 

the filter paper.  The filter papers were then re-dried and re-weighed on a four decimal 

precision balance to determine the amount of material liberated from each filter.  

Approximately 3 mg of particulate material was liberated from each filter. This 

particulate material was then further digested using undiluted, ultra-pure HNO3 to a 

solution pH of 2 or less and analyzed on the ICP-OES.  ICP-OES measured accuracies 

and calculated precisions for all the elements analyzed are giving in Table 2.3.  The 

precisions are the standard deviations of known standards which were measured 

periodically throughout analysis.  The calculated accuracy of the ICP-OES for the 1ppm 

quality control standards for Si, Fe, Ca, Mg, K, Na, Mn, and Al are: 1%, 1%, 1%, 7%, 

5%, 4%, 1%, and 5%, respectively.  The calculated accuracy of the ICP-OES for the 10 

ppm quality control standards for Si, Fe, Ca, Mg, K, Na, Mn, and Al are: 1%, 1%, 1%, 

6%, 5%, 3%, 1%, and 5%, respectively. 
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Table 2.3.  ICP-OES quality control standards measured values, mean values, and 

standard deviations for concentrations of 1 and 10 ppm. 

Si Fe Ca Mg K Na Mn Al

1 ppm 1.00 1.00 1.01 1.07 1.06 1.04 1.02 1.06

1 ppm 0.99 0.99 0.99 1.06 1.03 1.03 1.00 1.04

1 ppm 1.00 1.00 1.00 1.06 1.05 1.04 1.01 1.05

MEAN 0.99 1.00 1.00 1.06 1.05 1.04 1.01 1.05

Standard Deviation 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01

10 ppm 9.99 10.20 9.94 10.60 10.50 10.30 10.00 10.40

10 ppm 9.96 9.91 9.98 10.40 10.40 10.20 9.87 10.50

10 ppm 10.00 10.10 9.78 10.60 10.40 10.40 10.10 10.50

MEAN 9.98 10.07 9.90 10.53 10.43 10.30 9.99 10.47

Standard Deviation 0.02 0.15 0.11 0.12 0.06 0.10 0.12 0.06

Measured Concentration (ppm)

Quality Control Standards
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3. RESULTS 

3.1. SOLUTION ANALYSIS 

A noticeable increase in pH is observed moving downstream away from the point 

of upwelling (Figure 3.1, Table A1).  The range of data from 12 different sampling dates 

for pH measurements for sampling locations 1 through 8 are: 6.87 - 7.39, 6.87 - 7.30, 

6.77 – 7.39, 7.04 – 7.51, 6.99 – 7.46, 7.22 – 7.59, 7.28 – 7.63, 7.33 – 7.50, respectively.  

Eh values are observed to decrease slightly downstream with only minor variability, and 

inversely correlate with measured pH values (Figure 3.2, Table A2).   

 

 

 

 

Figure 3.1. Measured pH values of the Maramec Spring’s stream waters from the five 

most recent sample trips.  Overall, pH values tend to increase in the downstream 

direction. 

 

 

 

 

As with the pH measurements, the water temperature of the spring increased 

slightly downstream.  The mean water temperatures for stations 1, 2, 3, 4, 5, 6, 7, and 8 

are: 13.8 ± 0.5, 13.7 ± 0.6, 13.7 ± 0.5, 13.9 ± 0.7, 14.2 ± 0.8, 14.1 ± 1.4, 14.2 ± 1.0, 14.3 

± 1.0 
o
C, respectively (Figure 3.3, Table A3).  The high standard deviations reported for 
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stations 6, 7, and 8 are due to the lack of data.  These stations were only measured on the 

last three sample trips, and therefore may reflect a statistical variation more than seasonal 

anomalies.  Lowest temperatures were measured during the early spring months whereas 

the highest recorded temperatures were measured in the late summer. 

 

 

 

 

Figure 3.2.  Measured Eh values of Maramec Spring’s stream waters from the last five 

sample trips.  Eh values are inversely correlated to measured pH values, decreasing in the 

downstream direction. 

 

 

 

Unlike pH, Eh, and temperature, conductivity was relatively consistent throughout 

the sampling reach of the stream for each individual date sampled.  These conductivity 

measurements tended to be higher on days following local rain events with an overall 

range for all dates falling between 180.6 and 321.0 μSiemens/cm (Table A4).  The 

amount of TSS and TDS in the spring water were 1.93 x 10
-6

 g/ml and 2.05 x 10
-4 

g/ml, 

respectively. 
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Figure 3.3.  Maramec Spring’s measured water temperature on the last three sampling 

trips.  Temperature increases in the downstream direction, away from the point of 

upwelling. 

 

 

 

Turbidity of the Maramec Spring waters was measured successfully only on the 

March 12, 2008 sampling date.  Measured turbidities, in NTU’s, for stations 1, 2, 3, 4, 5, 

6, 7, and 8 were: 7.53 ± 0.04, 7.54 ± 0.04, 7.67 ± 0.04, 7.53 ± 0.04, 7.74 ± 0.04, 8.48 ± 

0.04, 8.24 ± 0.04, and 7.78 ± 0.04 (Table A5). 

CO2 flux was measured on one occasion at three sampling locations a few days 

following a heavy rain.  Flux values, in μmoles CO2/m
2
sec, for sampling locations 1, 3, 

and 5 are: 17.5 ± 3.3, 8.5 ± 3.9, and 2.6 ± 6.1, respectively (Figure 3.4, Table A6). 

Total, calcium, and magnesium hardness, as well as alkalinity (buffering capacity) 

measurements were only preformed on the last two trips (Table A7).  These 

measurements, as with the conductivity measurements, remained relatively constant 

throughout the spring system on each of the sampling dates.  On August 29, 2010, the 

total, calcium, and magnesium hardness values, as well as alkalinity mean values for 

stations 1, 2, 3, and 4 are 162 ppm, 90 ppm, 72 ppm, and 162 ppm, respectively.  
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Figure 3.4.  Measured CO2 flux at Maramec Spring.  These measurements were collected 

three days after a heavy precipitation event.  Spring turbidity, as well as flow rate, 

showed a visual increase.  The relatively high coefficient of variation (CV) noted at site 5 

is believed to be the result of photosynthetic activities of aquatic algae at this location.  

Measurements are in moles of CO2/meter
2
*second. 

 

 

 

ICP-OES analysis of the spring’s water was performed on unfiltered and filtered 

water samples that were filtered on site, but ex situ.  Filtering the water did not appear to 

have a significant affect on the chemistry of the water, i.e. the filtered water samples had 

a similar composition as the unfiltered water samples. Ca was the most abundant cation 

observed in solution with a mean concentration of 32.96 ± 0.11 ppm (Figure 3.5 and 

Table 3.1).  The second most abundant cation was Mg with a mean concentration of 

19.72 ± 0.12 ppm.  Si, K, and Na were detected and have mean concentrations of 4.24 ± 

0.02 ppm, 1.71 ± 0.01 ppm, and 1.41 ± 0.01 ppm, respectively.  Al, Fe, and Mn were 

below instrument detection limits (Figure 3.6).  The sample labeled “5.0 SPIKE” is a 

water sample collected from the spring with a 6 ppm laboratory standard added. 
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Figure 3.5. Measured calcium concentrations by ICP-OES of unfiltered and filtered water 

samples collected from sampling locations 1, 2, 3, and 4 on 8/29/2010.  Note that there is 

only minor variation in measured [Ca
+2

] in the downstream direction.  Filtering does not 

appear to have any effect on the [Ca
+2

]. 

 

 

 

 

Table 3.1. ICP-OES results for unfiltered and filtered water samples and digested 

particulate material collected on 8/29/2010.  Note that there is a noticeable difference 

between the chemistry of the water samples and digested particulate material.  Cations 

with a negative sign indicates that the sample was below instrument detection limit. 

Sample Location Filter Size (μm) Si Fe Ca Mg K Na Mn Al

1 Unfiltered 4.30 -0.07 34.00 19.90 1.51 1.38 0.00 -0.04

1 5.00 4.26 -0.08 33.30 19.50 1.75 1.44 0.00 -0.04

1 0.45 4.29 -0.09 34.10 19.90 1.74 1.45 0.00 -0.05

1 0.45 DUPLICATE 4.22 -0.08 32.60 19.60 1.68 1.39 0.00 -0.05

1 0.22 4.31 -0.08 33.40 19.90 1.87 1.49 0.00 -0.05

1 0.02 4.25 -0.09 33.00 20.00 1.53 1.38 0.00 -0.03

2 Unfiltered 4.25 -0.07 33.70 19.70 1.63 1.40 0.00 -0.04

2 5.00 4.23 -0.08 33.80 19.90 1.64 1.40 0.00 -0.05

2 0.45 4.24 -0.09 33.50 19.90 1.63 1.39 0.00 -0.05

2 0.02 4.23 -0.08 33.20 19.90 1.64 1.38 0.00 -0.03

3 Unfiltered 4.25 -0.08 32.50 19.30 2.16 1.46 0.00 -0.04

3 5.00 4.29 -0.08 32.60 19.90 1.91 1.44 0.00 -0.05

3 5.00 SPIKED 10.20 6.30 37.30 25.00 8.22 7.92 6.30 6.64

3 0.45 4.19 -0.09 32.10 19.50 1.89 1.43 0.00 -0.05

3 0.02 4.22 -0.09 32.30 19.70 1.70 1.40 0.00 -0.03

4 Unfiltered 4.19 -0.07 31.90 19.50 1.68 1.36 0.00 -0.04

4 5.00 4.17 -0.08 31.90 19.40 1.58 1.35 0.00 -0.05

4 0.45 4.15 -0.08 32.30 19.50 1.58 1.35 0.00 -0.05

4 0.02 4.20 -0.08 32.70 19.80 1.65 1.39 0.00 0.00

1 0.45 PARTICULATE 2.06 0.81 2.69 0.46 1.07 0.39 0.02 1.34

1 0.22 PARTICULATE 7.16 2.07 1.27 0.78 1.41 0.65 0.04 3.43

Concentration (ppm)Sample
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Figure 3.6.  ICP-OES of unfiltered and filtered spring water from sampling location 1 

collected 8/29/2010.  Note that filtering does not appear to have an effect on the water 

chemistry. 

 

 

 

3.2. CENTRIFUGED PARTICULATE ANALYSIS 

The suspended particulate material collected from Maramec Spring has been 

identified as a carbonate mineral with the aid of a 5% HCl solution.  This test consisted of 

centrifuging unfiltered spring water and conducting a “fizz test” on the collected 

particulate material.  Since the precipitate material fizzed readily when put into contact 

with the weak acid it was assumed to be a carbonate mineral. A Nikon binocular scope 

with magnification capacity up to 126-X magnification was used at the start of the project 

to image the crystals, but due to the extremely fine size of the particulate material no 

sound conclusions could be drawn with respect to the form and habits of the grains. 

The particulate phase collected from centrifuging spring water was also analyzed on the 

SEM.  The first samples analyzed using the SEM were the samples that were made using 

the evaporative material on the aluminum stubs and glass slides.  The particulate phase 

has a rhombohedral form and crystal sizes of approximately 10 μm (Figure 3.7).  Some 

organic debris, described as filaments, and occasional diatoms are observed on the SEM.  

EDS results from the SEM indicate that the particulate phase collected by centrifuging 

the spring water is predominately composed of calcium (84 atomic %) and magnesium (4 
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atomic %) (Figure 3.8).  The SEM-EDS data is not referenced to a standards thus giving 

semi-quantitative values. 

 

 

3.3. VACUUM FILTERED PARTICULATE ANALYSIS 

The particulate materials collected on the different sized cellulose filters have 

visible differences when examined with the naked eye as discussed below (Figure 3.9).  

An unknown yellow particulate material is observed to be present on the 5.0 μm and 0.45 

μm filter fractions and is present in much greater abundance on the 0.45 μm filter when 

compared to the 5.0 μm.  This yellow particulate material is not observed on the 0.22 μm 

or 0.05 μm filters.  The yellow phase does not appear to be texturally different from the 

material collected on the 0.22 μm or 0.05 μm filters in SEM analyses, but is observed to 

be compositionally different. 

The particulate material collected by sequential filtering using 5 μm, 0.45 μm, 

0.22 μm, and 0.05 μm Millipore cellulose filters were also examined in the SEM.  Unlike 

the isolated particles collected after centrifugation (Figure 3.7), a large quantity of 

particulate material was collected on the filters.  This particulate material varied greatly 

in both quantity and features between filter sizes.  The particulate material collected on 

the 5 μm filter included elongated organic matter, elongated tubular structures, and a 

subhedral rectangular mineral phase (Figure 3.10).  The 0.45 and 0.22 μm filters collected 

the most material.  There is a bimodal size distribution of the particulate material 

collected upon the filters (Figure 3.11).  There is a much finer particulate material that 

fills the filter’s pores.  On top of this finer grained particulate material are larger 

particulates displaying very diverse morphologies.  These larger particles are observed to 

be rectangular to semi-rhombohedral with sharp crystal faces, spherical, elongate tubular, 

and anhedral in shape (Figure 3.10).  The 0.05 μm filter collected the least amount of 

material.  The phases collected on this filter have a rectangular outline and are observed 

to cluster together (Figure 3.12). 

Energy dispersive spectroscopy (EDS) analysis was conducted on the particulate 

phases during SEM analysis.  For the euhedral rectangular phase collected on the 0.45 
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μm filter EDS spectra display sharp peaks for Si, Al, and S.  A very small diffuse peak 

was observed for iron. 

 

 

 

 

Figure 3.7.  Rhombohedral carbonate material collected via centrifuging Maramec 

Spring’s water (9/21/2007).  (A) A rhombohedral crystals acting as a nucleation point for 

further calcite growth.  The dendritic arms are not a primary feature, but the result of 

sample preparation including the drying of the sample plus fluid.  (B) Larger dendritic 

structure with a rhombohedral carbonate crystal as a nucleus.  (C)  A cluster of 

rhombohedral carbonate crystals. 

 

 

 

The rhombohedral phase observed on the 0.22 μm filter displayed sharp peaks for 

S and to a much lesser extent Si (Figure 3.13.A).  The finer grained material (0.5 μm to 1 
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μm) which fills the pores of the 0.45 and 0.22 μm filters display sharp peaks for Si, Al, O, 

C, and S (Figure 3.13.B).  The rectangular particulate material collected on the 0.05 μm 

filter displayed a sharp sulfur peak.  EDS analysis of a blank filter produced Si, Al, and C 

peaks.  It is important to note that when analyzing small particles using EDS that the 

resultant x-ray counts may not be generated solely from the particulate material of 

interest, but also from the surrounding or underlying material. 

 

 

 

 

Figure 3.8.  EDS spectra of the rhombohedral crystal in Figure 3.7.A.  Peaks occur for Si, 

Ca, Mg, K, and Na.  The Si is from the glass slide substrate on which the particulate 

material was collected on.  The K and Na appear to be the result of contamination during 

sample preparation. 

 

 

 

X-ray diffraction (XRD) was conducted on the 0.22 μm cellulose filter plus 

particulate material.  Peaks were observed at 2θ angles of approximately 6.3°, 8.8°, 12.3°, 

20.8°, 24.8°, and 26.6° (Figure 3.14).  The most prominent peak is at 26.6°.  A blank 0.22 

μm filter was analyzed by the XRD and did not display any peaks.  Thus, all peaks 
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observed on the filter plus particulate spectrum are interpreted as being valid 

measurements.  The observed peaks appear to be for quartz (20.8° and 26.6°), chlorite or 

smectite (6.3°, 12.3°, and 24.8°), and illite (8.8°). 

 

 

 

 

Figure 3.9.  Particulate material collected on the (A) 5.0 μm, (B), 0.45 μm, (C) 0.22 μm, 

and (D) 0.05 μm cellulose filters from sampling location 1 on 10/6/2010.  A yellow 

particulate phase was collected on the 5.0 μm, and 0.45 μm filters (A and B), but is not 

observed on the 0.22 μm or 0.05 μm (C and D) filters.  The diameter of the plastic 

container is 47 mm. 

  

 

 

The ICP-OES analysis of the acid digested particulate material reveals a 

composition much different than that of the spring waters.   Si, Al, Fe, Ca, Mg, Na, and K 

are all detected (Figure 3.15; Table 3.1).  The 0.45 μm particulate material 

D 
C 
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(predominately yellow) is compositionally different than the 0.22 μm (predominately 

white) particulate material.  Si, Al, and Fe are the major components of the 0.45 μm 

particulate material, but Ca, Si, Al, Fe, and K are the major components of the 0.22 μm 

particulate material. 

 

 

 

 

Figure 3.10.  Material observed on the 5.0 μm cellulose filter collected on 8/29/2010. 

Material collected on the filter included (A) filaments, (B) elongate tubular structure, and 

(C) subhedral blocky particulate material. 
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Figure 3.11.  Bi-modal size distribution of particulate material collected on the 0.22 μm 

cellulose filter.  The larger particulate grains have anhedral to euhedral forms and are 

observed sitting on top of a finer grained particulate material. 

 

 

 

 

 

Figure 3.12.  Cluster of particulate material collected on the 0.05 μm cellulose filter. 

Large grains 

Finer grained particulate 
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Figure 3.13.  Energy Dispersive Spectrum (EDS) for a cubic mineral phase (A) and finer 

grained particulate material (B) collected on the 0.22 μm cellulose filter.  Note the 

difference in composition of the two materials. 
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Figure 3.14.  X-ray diffraction spectra for particulate material collected on a 0.22 μm 

from 8/29/2010.  Peaks are observed at 2θ angles of 6.3°, 8.8°, 12.3°, 20.8°, 24.8°, and 

26.6°.  “Blank” refers to the XRD spetra collected on an unused 0.22 μm filter. 
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Figure 3.15. ICP-OES analysis of the digested particulate material collected on the 0.45 

μm and 0.22 μm cellulose filters at sampling location 1 on 10/6/2010.  Note the varying 

composition between the two filter sizes. 
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4. DISCUSSION 

The chemistry of the Maramec Spring system greatly favors the precipitation of 

calcium carbonate.  This hypothesis is supported by the rhombohedral material collected 

by centrifuging Maramec Spring’s water.  The chemical reactions necessary for the 

precipitation of CaCO3 are (Stumm and Morgan, 1996; Langmuir, 1997; Anderson, 2002; 

Drever, 2002): 

 

CO2(g) ↔ CO2(aq)       (1) 

H2O + CO2(aq) ↔ H2CO3(aq)     (2) 

H2CO3(aq) ↔ H
+
 + HCO3

-      
(3) 

CaCO3 + H
+
 ↔ Ca

+2
 + HCO3

-     
(4) 

 

The Maramec Spring waters have been calculated to be slightly undersaturated to 

saturated in Ca, with respect to all calcium carbonate polymorphs, but close to 

equilibrium.  Using Visual MINTEC freeware saturation indices (i.e. (αCa*αCO3
-2

)/Ksp 

of Calcite) were calculated at a fixed pH and temperature of 6.97 and 14.3°C, 

respectively, using the following parameters: [Ca
+2

] of 34 mg/l,  [Mg
+2

] of 19.9 mg/l, and 

[CO3
-2

] of 144 mg/l.  MINTEC calculated the spring waters to have a saturation index for 

calcium of -0.994 mg/l with respect to calcite.  These values are measured values of the 

unfiltered spring waters collected from sampling location 1 on August 29, 2010.  The 

saturation index of the spring water likely varies from day to day and is influenced by 

various factors, especially temperature and local precipitation events.  The vaules for Ca 

and Mg were determined by ICP-OES analsis while alkalinity was determined by 

colorametric titration using HACH field kits.  Calcium carbonate precipitation can be 

achieved via Ca
+2

 and CO3
-
 ion binding resulting in amorphous calcium carbonate 

clusters which then transform into crystalline calcite (Gebaur et al., 2008), or by changing 

the spring water chemistry (i.e. CO2 degassing). 

Multiple mechanisms for calcium carbonate precipitation have been proposed.   

Wilson (1975) described eight mechanisms that encourage the precipitation of CaCO3.  

They are: an increase in temperature, increased evaporation, influx of Ca supersaturated 
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water to CaCO3 nucleation sites, upwelling from higher pressure to lower pressure, 

mixing of waters with high [CO3
-2

] and low [Ca
+2

] with sea water, organic processes in 

body fluids, bacterial decay producing ammonia, rising pH with increased carbonate 

concentration, and CO2 removal via photosynthetic processes.  Measurements collected in 

situ at Maramec Springs (i.e. pH, CO2 flux, and temperature) support calcium carbonate 

precipitation through a mechanism involving the degassing of CO2.  Theoretically, as the 

spring waters upwell from depth within the conduit there will be a decrease in pressure.  

This decrease in pressure would effectively reduce the amount of CO2 dissolved in 

solution for the spring waters forcing its escape from the water and into the atmosphere.  

The observed temperature increase along the Maramec Spring branch, although minor, 

will further aid in the degassing of CO2.  This hypothesis is supported by in situ CO2 flux 

measurements which show that CO2 is being degassed at the point of upwelling at 

Maramec Spring (Figure 3.4).  Using the chemical reactions outlined above, the process 

of degassing CO2 from solution would cause reaction (1) to be driven to the left.  In order 

for the system to maintain equilibrium, reactions (2), (3), and (4) must also proceed left.  

If these reactions all proceed at the same rate, then there should be no measured change 

in pH, and one mole of CO2 (g) should be produced for every mole of CaCO3(s) 

precipitated.  However, if equation (3) is forced to the left at a faster rate than equation 

(4), then an increase in solution pH should be observed and the CaCO3(s) precipitation 

will still be linked to CO2(g), but not in a quantitative sense.  Calcium carbonate (calcite) 

is precipitated via the mechanism depicted in equation (4) as it moves to the left provided 

the activity of Ca is at or above the saturation level.  When the Maramec Spring waters 

are saturated to supersaturated in calcium, with respect to calcite, the degassing of CO2 

from solution, reaction (1), is believed to be the rate limiting step for calcium carbonate 

precipitation (Lebron and Suarez, 1996, Dreybrodt et al., 1997; Zhang and Grattoni, 

1998). 

Unlike the pH increase measured along the Maramec Spring stream reach, many 

experimental laboratory studies have observed a pH decrease upon the onset of calcium 

carbonate precipitation (Reddy and Nancollas, 1971; Lakshtanov and Stipp, 2010).  This 

disagreement arises because reactions (3) and (4), moving right to left, both may 

influence solution pH of the system.  In reaction (4), moving right to left, hydrogen ions 
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are produced, thus lowering solution pH.  Conversely, in reaction (3) hydrogen ions are 

consumed and solution pH increases.  Calcium carbonate precipitation from 

supersaturated solutions will also cause reaction (4) to move to the left.  In a scenario of 

supersaturated solution, reaction (4) is the rate limiting step in calcium carbonate 

precipitation.  In an attempt to maintain chemical equilibrium reactions (1), (2), and (3) 

are forced to move to the left in response to reaction (4).  If this process results in the 

number of hydrogen
 
ions produced in reaction (4) to outpace the rate hydrogen ions that 

are consumed in reaction (3), then a pH decrease should be observed when precipitating 

calcium carbonate from supersaturated solutions.  For example, calcium carbonate 

crystallization occurs very rapidly at first (i.e. reaction (4) is the rate limiting step), and 

slows as the solution approaches equilibrium (Kamkha et al., 1989; Dove and Hochella, 

1993; Gómez-Morales et al., 1996; Teng et al., 2000; Dickinson et al., 2002; Lakshtanov 

and Stipp, 2010). 

A comparison of all experimental results suggests that calcium carbonate 

precipitation in Maramec Spring is induced by CO2 degassing rather than due to [Ca
+2

] in 

solution being supersaturated, i.e. reaction (1).  Evidence for this conclusion includes 

CO2 degassing (Figure 3.4), pH rise in solution (Figure 3.1), and solution [Ca
+2

] that are 

near saturation for calcite, but not highly supersaturated.  This process causes reactions 

(1), (2), (3), and (4) to be forced to react to the left in sequence, resulting in an overall pH 

increase.  This pH increase occurs because reaction (4) is dependent upon reaction (3) 

since reaction (1) is the rate limiting step.  Essentially, more hydrogen ions are consumed 

much quicker during calcium carbonate precipitation in this system than produced.  In 

laboratory experiments which utilize calcium supersaturated solutions to induce 

precipitation reactions occur in reverse order, i.e. (4), (3), (2), then (1), causing more 

hydrogen ions to produced much quicker than they are consumed. 

Evidence that supports precipitation of carbonate material in the spring rather than 

transportation of the carbonate particulate material from other locations in the cave 

includes composition of the centrifuged particulate material (i.e. calcite rather than 

dolomite), the euhedral crystal shapes (Figure 3.6), and measured pH increase along the 

Maramec Spring stream reach.  The predominately Ca composition of the particulate 

phase reflects the chemistry of the water, but may also be the result of many other 
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examples including non-biogenic calcium carbonate or the presence of kinetic inhibitors 

preventing dolomite formation. The pH increase and water chemistry both favor calcium 

carbonate precipitation as outlined above.  The euhedral crystal shapes further supports a 

model invoking the precipitation from solution rather than erosion and transportation 

from the Gasconade Formation since the sharp corners of the crystal are preserved.  

During transportation these corners would be physically rounded or abraded.  Additional 

support is the absence of defects, i.e. dissolution pits, on the crystal surface.  Transported 

crystals eroded from the host rock would be expected to have evidence of chemical 

weathering processes.  Based upon the evidence stated above, the reaction with 5% HCl 

of the particulates, and the measured SEM-EDS composition, the precipitate material 

collected by centrifuging spring water appears to be calcite.  Analysis of the particulate 

material collected via centrifuging the spring water supports the hypothesis that the 

particulate material precipitated within Maramec Spring is calcite whose precipitation is 

induced by CO2 degassing. 

Samples collected by way of vacuum filtration are mineralogically and 

geochemically different than the particulate material collected through centrifuging 

spring waters using cellulose filters.  The particulate material collected by sequential 

filtering of one liter of spring water is composed of primarily of Si and Al.  This suggests 

that the particulate material causing the milky blue color at Maramec Spring may simply 

be suspended clays or clays mixed with other particles.  The presence of calcite, quartz, 

illite, chlorite, smectite, or kaolinite were confirmed by SEM-EDS, XRD, and ICP-OES  

and are summarized in Table 4.1.   Results of EDS analyses of large particulate grains are 

different from those of the finer particulate grains which comprise the bulk of the >5.0 

μm, 5.0 - 0.45 μm, and 0.45 - 0.22 μm filter fraction samples.  The large particulate 

grains have a distinct S peak which is not observed in the EDS spectra for the finer 

particulate grains.  Both the large particulate grains and finer particulate grains display 

sharp peaks for Si and Al with a broad peak for Fe (Figure 3.13).  The cubic material 

clusters collected on the 0.05 μm sample also display a sharp EDS spectra peak for peak 

for S. 

XRD analysis confirmed the presence of clays by displayed peaks at 2θ angles of 

6.3°, 8.8°, 12.3°, 20.8°, 24.8°, and 26.6° (Figure 3.14).  The other peaks correspond to the  
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Table 4.1.  Summary of all analyses conducted on the particulate material collected from 

Maramec Spring sampling location 1.  Cations are listed in order of decreasing 

concentration or quantity. 

Sample Color Morphology SEM-EDS ICP-OES XRD

Centrifuged White and Yellow Rhombohedral Ca, Mg - -

5.0 μm Filter Yellow Rectangular Si, Al, S, Fe - -

0.45 μm Filter Yellow Rectangular Si, Al, S, Fe Ca, Si, Al, K, Fe, Mg, Na -

0.22 μm Filter White Rhombohedral Si, S Si, Al, Fe, K, Ca, Mg, Na Quartz, Illite, Smectite or Kaolinite (Chlorite?)

0.22 μm Filter White Finer grained Si, Al, O, C, S Si, Al, Fe, K, Ca, Mg, Na Quartz, Illite, Smectite or Kaolinite (Chlorite?)

0.05 μm Filter White Rectangular S - -

Blank Filter - - O, C - -

Observations/Results

 

 

 

 

clay minerals kaonilinte, chlorite, or smectite (6.3°, 12.3°, and 24.8°), and illite (8.8°). 

The peaks for chlorite overlap with kaolinite and smectite clays and thus are difficult to 

distinguish from one another.  Additional analyses are needed to confirm this hypothesis.  

Given the post-depositional geological history of the host rocks the clays are most likely 

kaolinite and smectite.  Kaolinite is mined from paleo-sinkoles around the Rolla area 

(Keller et al., 1954).  The kaolinite clays are the result of weathering the Precambrian 

basement rocks.  These diagenetic clays were deposited in sinkholes.  Over time, leaching 

increased the grade of the clay deposits making them economical in Missouri.  The most 

dominant peaks are observed at a 2θ angle of 20.8° and 26.6° which are indicative of 

quartz.  The height of the quartz peaks at 20.8° and 26.6° suggest that quartz may be the 

dominant phase present, but SEM-EDS analysis does not support this hypothesis.  The 

quartz may fills the filter’s pores and is thus detected using SEM-EDS, but cannot be 

physically seen on the SEM.  Perhaps the intensity of the peaks at angles of 20.8° and 

26.6° is reflects how efficient quartz is able to diffract the x-rays in comparison to the 

clay minerals. 

The absence of a distinct calcium carbonate phase from the vacuum filtered 

samples cannot be easily explained since calcite was collected by centrifuging the spring 

water.  One hypothesis which can be used to explain this absence is that filtering the 

water samples under vacuum causes pressure sensitive phases (i.e. calcium carbonate) to 

dissolve.  Another hypothesis is that the calcium carbonate material is smaller than 0.05 
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μm, and was not collected in the finest filter sizes used.  This latter hypothesis seems 

highly unlikely since the calcite which was found in the centrifuged samples was 

approximately 5 μm across.  The calcite crystals may have grown in size after collection 

through the loss of CO2 influencing the Ca saturation level with respect to calcite.  It is 

highly plausible that the calcite crystal could increase in size by 1 to 2 μm.  A third 

hypothesis is that the calcium carbonate material is still being precipitated from solution, 

but just not in as large of quantity as previously assumed.  The calcite may be intermixed 

with the colloidal clays, but below the detection limits of the instrumentation utilized in 

this study (e.g., XRD).  SEM analysis should be able to image sub-micron colloidal 

material, but EDS may not necessarily be able to accurately identify the materials 

composition at such substantial magnification.  It is important to reiterate that calcite 

grains have been collected from the spring waters by centrifuging. 
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5. CONCLUSIONS 

To summarize, a positive identification of the colloidal material present within 

Maramec Spring that gives the springs water its milky blue color cannot be confidently 

made at this time.  The 0.45 μm and 0.22 μm filters trapped the largest volume of 

particulate material after filtration of Maramec Spring waters. A yellow color is observed 

in the particulate material collected on the 5.0 μm and 0.45 μm cellulose filters.  The 

yellow particulate material collected on the 0.45 μm has a chemical composition of 

dominantly Si, Al, and Fe.  A white particulate material is observed on the 0.22 μm and 

0.05 μm filters.  The material collected on the 0.22 μm filter particulate has a chemical 

composition dominantly composed of Ca, Si, Al, and Fe. Given the results of the ICP-

OES, SEM-EDS and XRD analyses on the particulate material collected on the 0.22 μm 

filter it is hypothesized that calcite, quartz, chlorite, kaolinite and/or smectite, and illite 

are present in the Maramec Spring water.  Further analyses are needed to positively 

identify the mineralogy of the particulate phases observed, determine their relative 

proportions, and to determine whether they are in a large enough abundance to give the 

spring waters a milky blue color.  The colloidal particulate material collected on the 0.45 

μm filter may also be comprised of clay minerals given the XRD and ICP-OES results, 

but not necessarily be the same as the clay minerals observed on the 0.22 μm filter. 

The observed pH increase of the spring water at Maramec Spring is believed to be 

induced as a result of CO2 degassing.  This degassing process theoretically favors the 

precipitation of calcium carbonate from solution.  Initially, it was hypothesized that the 

milky blue color resulted from the precipitation of calcium carbonate induced by CO2 

degassing and an increase in temperature.  Particulate material collected via centrifuging 

the spring’s water supported this hypothesis.  The particulate material, identified as 

calcite, has a rhombohedral morphology, is composed predominately of Ca with minor 

amounts of Mg, and reacts with weak HCl acid.  Additional attempts to isolate the 

particulate material using a vacuum filtration sampling technique directly at the Maramec 

Springs site shows that clay minerals of kaolinite, smectite, or chlorite, illite, and 

colloidal quartz are the dominant particulate phases collected.  SEM-EDS, ICP-OES, and 

XRD all support this hypothesis.  XRD analyses show strong peaks for quartz when 
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analyzing the 0.22 μm filter and particulate material, but SEM-EDS examination of 

filter’s trapped particles did not reveal the presence of any quartz. 

The discrepancies observed between the two different sampling techniques (i.e. 

centrifuging spring water vs. vacuum filtration) show that sampling methods should be 

evaluated very carefully.  Pressure sensitive phases, such as calcium carbonate, may be 

selectively dissolving during filtration, thus skewing the particulate fractions.  

Conversely, calcium carbonate may only be a minor fraction of the particulate material 

present within the spring water.  The only phase observed in both the centrifuged spring 

water and the vacuum filtration analyses is the yellow particulate phase observed on the 

5.0 μm and 0.45 μm filters.  This phase is speculated to be suspended clay minerals from 

the Maramec Spring pool floor or eroded from the host rocks within the spring system 

recharge area.  At this time the primary colloidal material present within Maramec Spring 

is a mixture of calcite, colloidal quartz, and clay particles.  It is not known which phase 

gives the springs their milky blue color, assuming a particulate phase is responsible for 

the milky blue color.  XRD peaks from the 0.22 μm filters were the most intense for 

quartz, suggesting this may be the dominant phase present.  Caution is exercised here 

with this interpretation as phase abundance is only one of several factors affecting XRD 

peak heights. 

Future studies should include the sampling of sediments within the spring conduit 

to determine if the hypothesized clay particulate material or another particulate phase is 

being suspended from the Maramec Spring pool floor.  Also, sampling the spring waters 

at depth within the conduit may also provide better insight as to how the system behaves 

before rising to the surface, although this would require the aid of divers.  A different 

filtering technique may be employed to confirm that pressure sensitive phases are not 

being selectively dissolved during sampling, thus producing a skewed representation of 

the particulate phases present within the spring waters.  Filtration under lower pressures 

may increase filtration time, potentially allowing mineral phase preservation, or possibly 

even growth as was observed in the centrifuged samples. 

Theoretically, the Maramec Spring system could provide some insight on natural 

systems acting as both CO2 sources and reservoirs.  Following the simplified model 

outlined at the beginning of the discussion, CO2 is being dissolved into groundwater in 
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the recharge portion of the spring system due to the absorption of CO2 from the 

atmosphere, soil gases, and the dissolution of the carbonate bedrock that hosts the spring 

system.  This CO2 is transported though the spring system in solution as H2CO3(aq), 

HCO3
-
, CO3

-2
, and CO2(aq), and in potentially suspended carbonate particulate phases 

such as calcite.  Some of this CO2 is then released back into atmosphere as a gas at the 

point of upwelling.  This natural system provides valuable insight into how solution 

chemistry may influence CO2 precipitation as carbonate phases following a decrease in 

pressure.  Such processes may cause precipitation to occur in areas where potential future 

CO2 repositories develop leaks along fractures.  Such a process could theoretically cause 

a leaking system to self-seal by precipitating carbonate minerals along the fracture 

system.  This process also provides an analogue to evaluate carbonate precipitation 

events occurring in the carbonate platform settings such as the Red Sea or Bahamas. 
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APPENDIX 

Table A1. Maramec Spring measured water pH. 

Measurement Date 1 2 3 4 5 6 7 8 Maremec River

pH 6/14/2001 7.13 7.30 7.39 7.48 - - - - -

6/13/2002 6.89 7.14 7.10 7.31 - - - - -

6/20/2002 7.06 7.10 7.16 7.20 - - - - -

6/28/2002 7.15 7.13 7.22 7.38 7.44 - - - -

6/12/2003 7.05 7.06 6.77 7.14 7.22 - - - -

6/20/2003 6.87 6.87 6.94 7.04 6.99 - - - -

6/27/2003 6.95 7.00 7.06 7.14 7.26 - - - -

7/10/2007 7.07 7.05 7.26 7.34 7.35 - - - -

9/21/2007 6.96 7.11 7.23 7.26 7.42 7.47 7.44 7.35

10/4/2007 7.39 7.28 7.35 7.51 7.46 7.59 7.63 7.50 8.32

3/12/2008 7.13 7.13 7.17 7.32 7.31 7.25 7.37 7.36 8.08

8/29/2010 6.94 7.06 7.23 7.40 7.24 7.25 7.34 7.37 -

10/6/2010 6.97 6.99 6.86 7.25 7.20 7.22 7.28 7.33 -

pH Check 6/14/2001 - - - - - - - - -

(7.0 standard) 6/13/2002 - - - - - - - - -

6/20/2002 - - - - - - - - -

6/28/2002 - - - - - - - - -

6/12/2003 - - - - - - - - -

6/20/2003 - - - - - - - - -

6/27/2003 - - - - - - - - -

7/10/2007 - - - - - - - - -

9/21/2007 7.00 6.98 6.96 7.05 7.05 7.05 7.05 7.05 -

10/4/2007 7.08 7.10 7.11 7.10 7.13 - 7.10 - -

3/12/2008 7.04 7.05 7.05 7.05 7.06 7.07 7.06 7.05 7.07

8/29/2010 6.99 7.04 6.99 7.00 6.99 7.01 7.00 7.00 -

10/6/2010 7.00 7.01 7.00 7.00 6.96 7.00 7.00 6.97 -

Sampling Location

 

 

 

 

 

Table A2. Maramec Springs measured Eh values. 

Measurement Date 1 2 3 4 5 6 7 8 Maremec River

Eh 6/14/2001 - - - - - - - - -

(mV) 6/13/2002 - - - - - - - - -

6/20/2002 - - - - - - - - -

6/28/2002 - - - - - - - - -

6/12/2003 - - - - - - - - -

6/20/2003 - - - - - - - - -

6/27/2003 - - - - - - - - -

7/10/2007 -4.0 3.0 -5.0 -10.0 -13.0 - - - -

9/21/2007 2 -3.0 -9.0 -7.0 -16.0 -17.0 -17.0 -12.0 -

10/4/2007 2 -1.0 1.0 -10.0 -7.0 -11.0 -16.0 -9.0 -60.0

3/12/2008 13 11.0 10.0 0.0 3.0 4.0 -3.0 -1.0 -41.0

8/29/2010 -6.2 -13.3 -20.6 -31.8 -26.2 -25.0 -29.7 -32.0 -

10/6/2010 -5.8 -6.4 -3.0 -21.8 -19.1 -20.3 -24.0 -28.1 -

Sampling Location
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Table A3.  Maramec Spring measured water temperature. 

Measurement Date 1 2 3 4 5 6 7 8 Maremec River

Temperature 6/14/2001 14.0 13.9 13.9 14.1 - - - - -

(
o
C) 6/13/2002 14.2 14.0 14.2 14.3 - - - - -

6/20/2002 14.0 14.1 14.0 14.3 - - - - -

6/28/2002 14.3 13.7 13.8 14.2 14.4 - - - -

6/12/2003 13.6 13.3 13.6 13.6 14.4 - - - -

6/20/2003 13.6 13.4 13.4 13.5 14.0 - - - -

6/27/2003 13.6 13.5 13.6 13.7 14.1 - - - -

7/10/2007 13.7 14.1 13.7 14.0 14.7 - - - -

9/21/2007 - - - - - - - - -

10/4/2007 - - - - - - - - -

3/12/2008 12.4 12.4 12.4 12.5 12.5 12.5 12.5 12.6 9.5

8/29/2010 14.1 14.3 14.2 14.5 14.6 14.6 14.8 15.0 -

10/6/2010 14.3 14.4 14.4 14.9 15.0 15.2 15.4 15.3 -

Sampling Location

 

 

 

 

 

Table A4.  Maramec Spring measured water conductivity. 

Measurement Date 1 2 3 4 5 6 7 8 Maremec River

Conductivity 6/14/2001 - - - - - - - - -

(μSiemens/cm) 6/13/2002 - - - - - - - - -

6/20/2002 - - - - - - - - -

6/28/2002 - - - - - - - - -

6/12/2003 248.0 249.0 249.0 249.0 249.0 - - - -

6/20/2003 195.6 195.8 195.9 195.6 195.2 - - - -

6/27/2003 229.0 230.0 230.0 230.0 230.0 - - - -

7/10/2007 - - - - - - - - -

9/21/2007 - - - - - - - - -

10/4/2007 - - - - - - - - -

3/12/2008 180.6 180.7 180.6 181.0 180.9 181.6 180.6 201.0 -

8/29/2010 320.0 319.0 321.0 320.0 319.0 320.0 321.0 320.0 -

10/6/2010 306.0 305.0 306.0 305.0 306.0 305.0 304.0 305.0 -

Sampling Location

 

 

 

 

 

Table A5.  Maramec Spring measured turbidity. 

Measurement Date 1 2 3 4 5 6 7 8 Maremec River

Turbidity 3/12/2008 7.53 7.54 7.67 7.53 7.74 8.48 8.24 7.78 4.15

(NTU)

Turbidity Check 3/12/2008 6.21 - - 6.16 6.14 6.10 6.17 6.13 6.15

(6.11 standard)

Sampling Location
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Table A6.  Maramec Spring measured CO2 flux. 

Measurement Date 1 2 3 4 5 6 7 8 Maremec River
CO2 flux 8/29/2010 17.50 - 8.50 - 2.60 - - - -

Sampling Location

   (μmoles/m
2
sec)

  

 

 

 

 

Table A7.  Maramec Spring measured calcium hardness, magnesium hardness, total 

hardness, and alkalinity. 

Measurement Date 1 2 3 4 5 6 7 8 Maremec River

Ca Hardness 7/10/2007 101 - - - - - - - -

(ppm) 10/4/2007 80 90 90 88 80 85 - - -

3/12/2008 54 54 - - - - - 55 -

8/29/2010 105 89 84 81 - - - - -

- - - - - - - -

Mg Hardness 7/10/2007 61 - - - - - - - -

(ppm) 10/4/2007 80 66 72 77 87 73 - - -

3/12/2008 40 39 - - - - - 35 -

8/29/2010 50 71 85 83 - - - - -

- - - - - - - -

Total Hardness 7/10/2007 162 - - - - - - - -

(ppm) 10/4/2007 160 156 162 165 167 158 - - -

3/12/2008 94 93 - - - - - 90 -

8/29/2010 156 160 169 163 - - - - -

- - - - - - - -

Alkalinity 7/10/2007 123 - - - - - - - -

(ppm) 10/4/2007 129 120 125 127 124 123 - - -

3/12/2008 73 70 - - - - - 74 -

8/29/2010 144 131 223 149 - - - - -

Sampling Location

  

 

 

 

 

Table A8.  Maramec Spring water dissolved oxygen measurements. 

Measurement Date 1 2 3 4 5 6 7 8 Maremec River

8/29/2010 4.55 4.40 6.68 7.10 7.20 7.80 6.42 7.18 -

10/6/2010 4.04 4.30 6.65 7.84 8.60 8.27 9.00 7.16 -

(mg/l)

Sampling Location

Dissolved 

Oxygen
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