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ABSTRACT 

Plants directly interact with surrounding water, air, and soil, collecting and storing 

chemicals and elements from the surrounding environment. Two new and innovative 

sampling methods have been developed in which this valuable data can be accessed to 

replace as well as supplement contaminated-site investigations.  When determining the 

extent of the plume on a contaminated site, groundwater sampling may be limited due to 

time, site access, and expense. Using new techniques that place sampling devices in trees 

on site, we can sample trees naturally occurring on a contaminated site or those planted in 

phytoremediation or redevelopment efforts.  Using these sampling devices, Solid Phase 

Microextraction (SPME) and Solid Phase Samplers (SPSs), the plume size can then be 

evaluated and changes in concentration can be detected.  An array of data can be 

collected using these quick sampling techniques to help the efficiency in placement of 

groundwater monitoring wells.  These new methods can save time and money as well as 

undue impact to the ecosystems at hand or personal property. 
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1. INTRODUCTION 

1.1. BACKGROUND 
 

Volatile organic compounds (VOCs) are compounds with high vapor pressure.  

Past extensive uses of these solvents lead to widespread releases through spills and leaks 

in the handling and transport of the immense volumes.  As well, dumping of the 

contaminants “out the back door” after use in dry cleaners, auto mechanic shops, and 

many industrial facilities were common and accepted disposal practices.  Due to this past 

indiscriminate disposal of VOCs, these contaminants are the most common pollutants in 

the country.  Chlorinated volatile organic compounds, such as Trichloroethylene (TCE) 

and Tetrachloroethylene (PCE), are major contaminants of the soil and groundwater in 

the United States.  Both contaminants are found on the Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA) Priority List of Hazardous 

Substances (ATSDR 2007).  The chemical properties make PCE and TCE dense non-

aqueous phase liquids (DNAPLs) which tend to sink to the bottom of aquifers where they 

form a contaminant plume in the aquifer.  Once in the aquifer, PCE and TCE will 

undergo slow dissolution and persist in the aquifer for decades.  

Due to the numerous and vast PCE and TCE plumes, detection and sampling are 

problematic.  As well, many of these plumes are found in urban areas causing issues with 

public acceptance of groundwater monitoring and sampling.  Tree core analysis can be 

conducted to delineate these chlorinated ethylene groundwater plumes (Vroblesky et al. 

1999).  Vegetation interacts with environmental media including air, water, and soil.  

Through the process of phytovolatilization, plants move volatile contaminants from soil 

and groundwater into the atmosphere.  Transport of contaminants has been shown to 
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occur from the vadose zone, vapor phase, as well as the saturated zone, aqueous phase 

(Stuckhoff et.al. 2005).  This previous research has proven that cores can be taken from 

the tree and analyzed using gas chromatography to determine contamination within the 

subsurface, particularly for chlorinated solvents (Vroblesky et al. 1999; Larson et al. 

2008).  The cores are a good qualitative analysis, but the heterogeneity of the cores leaves 

a range of unpredictability and error.  As well, diversity amongst varying species sampled 

on a site can also affect peak areas detected from trees under similar contamination 

conditions.  In order to reduce these variables, new methods have been designed. 

One of the new methods is using a Solid Phase Microextraction (SPME) sampler 

to directly sample the VOC concentration qualitatively in cores.  SPME samplers consist 

of fibers of varying matrixes that have high sorption capacities.  SPME samplers 

passively extract the VOCs through absorption and then the concentration of the sample 

can be determined by using gas chromatography for analysis (Skaates et al. 2005; Legind 

et al. 2007).  SPME sampling of trees can also decrease the mobilization costs, site 

impacts, permanent capital costs and repeat sampling costs.  As well, the sensitivity was 

increased over coring analysis by 20-100 times (Sheehan 2009). 

In this research, sampling methods were brought into the trees, rather than taking 

a small portion of the tree to the laboratory. SPME samplers and a new sampling device 

called Solid Phase Samplers (SPSs) were placed into trees to show they have potential for 

rapid, improved sampling of trees for groundwater delineations. The following results 

show there clearly is great potential for this application and the patent-pending 

technology may greatly increase the accuracy of Phase I site investigations and 

concurrently decrease costs and damage to property and the environment.  Another 
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possible use for this new technology is the use of the sampler for phytoremediation 

research projects.  The samplers can be used for repeat analysis to determine uptake of 

contaminants and degradation compounds which will give more insight and 

understanding of phytoremediation processes.  

1.2. GOALS AND OBJECTIVES 

 The overall goal of this study was to develop a new, innovative sampling 

technique to help the efficiency of placement of groundwater monitoring wells.  Methods 

derived must have a low ecological impact as well as cost and time effective.  Known 

sampling methods of sampling trees to determine VOC contamination in the groundwater 

through core removal was investigated further.  New and old methods of sampling were 

compared against each other under the same conditions.   

 To accomplish this goal, specific objectives were established.  The objectives of 

the current study are to: 

• Evaluate increased sensitivity of SPME methods relative to tree cores. 

• Design and test in-planta solid phase sampler for use in vegetative sampling 

approaches. 

• Develop methods for sampling with solid phase samplers and identify potential 

limitations. 

• Relate in-planta sampling results to groundwater on contaminated sites using data 

analyzed from SPME and SPS. 
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2. REVIEW OF LITERATURE 

2.1. PHYTOREMEDIATION AND PLANT SAMPLING 

Phytoremediation is the use of plants to de-contaminate a site that has previously 

been contaminated.  Phytoremediation has many benefits such as cost effectiveness, 

minimal impacts and aesthetically appealing.  Low maintenance, great ecological 

benefits, and public acceptance as a viable remediation solution are all positive aspects of 

phytoremediation (Burken 1999).  Uptake and transpiration through shoots and 

subsequent volatilization to the atmosphere is a primary pathway in VOC removal from a 

phytoremediation site.  Previous research found that plants can be used as biosensors for 

subsurface contamination.  This information can be used for contaminant detection by 

using plants as sampling points.  In the beginning, concentrations of contaminants in tree 

tissues were analyzed using direct measurement of volatilization through the use of 

diffusion samplers.  Diffusion samplers are either a collar or a bag that is placed around a 

selected section of a tree.  A pump is attached to the collar or bag and air is drawn 

through a matrix of an adsorptive material such as activated carbon for collection of 

contaminants.  Tree core samples were also analyzed and were shown that VOCs can be 

detected in tree biomass when roots are exposed to contaminated groundwater and soil. 

(Stuckhoff et.al. 2005, Vroblesky et al. 1999, Orchard 2000).  In order to understand this 

relationship between groundwater and the concentration of the contaminant in the tree 

cores, partitioning coefficients between the air, water, and woody biomass for several 

chlorinated solvents were investigated (Ma 2002).  Through further modeling of the 

behavior of chlorinated solvents through a tree, Ma and Burken found in laboratory and 

field sampling that chlorinated solvents in the transpiration stream decreased both with 
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height and in the radial direction through diffusion and volatilization from leaves and 

stem tissues (Ma 2003).  Diffusion coefficients have also been determined through direct 

measurement of the diffusion through a tree to better understand the transpiration of 

VOCs through plant tissues (Baduru 2008). 

2.2. SOLID PHASE MICROEXTRACTION (SPME) 

New sampling techniques can be developed from this new knowledge of transport 

and diffusion of VOCs through plant tissues.  SPME technology can be used for in-planta 

sampling offering benefits such as fast and easy sample preparation, as well as increased 

sensitivity.  SPME is a method in which organic molecules from a variety of matrices can 

be sampled in the laboratory and field site setting.  SPME has distinct advantages over 

traditional air or water sampling methods primarily because it will not deplete the sample 

concentrations during extraction (Mayer 2003).  SPME is a passive method of extraction 

of a chemical from a matrix through adsorption, and the majority of the contaminant 

mass extracted is delivered directly into the analytic instrumentation.  After adsorption, 

the concentration of the sample can be determined by using a Gas Chromatograph (GC) 

or HPLC. The direct deliver and affinity of the SPME for the contaminant, can offer low 

detection limits with minimal steps. 

The appeal of the SPME sampler is its versatility and ability to take readings of a 

wide range of contaminants, including hydrophobic contaminants (Mayer 2003). The 

majority of SPME analyses performed in the environmental field are equilibrium-based 

sampling.  The SPME sampler is a portable sampler, resembling a needle with a fiber that 

extends out when the plunger is pushed, Figure 2.1.  After adsorption, the sample then is 

run through analyses in using a Gas Chromatograph (GC), Figure 2.2.  The fiber 
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equilibrates with the surrounding environmental sample. The retractable fiber is then 

withdrawn back into the sampler barrel when equilibrium between the coating and the 

sample is reached.  From then on, longer extraction times do not result in larger amounts 

of contaminants extracted.  This process is limited to the surface of the coating.  

Depending upon the SPME coating type, this means that a molecule with higher affinity 

to the coating can displace a molecule with lower affinity (Muller 2000).   

 

 

Fig. 2.1:  Exposure of SPME fiber from sampler into contaminated matrix 
(Adapted from Ormsby 2005). 
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Fig. 2.2:  SPME fiber desorption inside a GC injector (Adapted from Koziel 2001). 

 

2.3.  SPME-TWA 

SPME can be also used as a time-weighted average (TWA) sampler for gas phase 

contaminants, specifically VOCs.  In this method, the fiber is retracted a known distance 

into the needle during the sampling period which prevents the contaminants from 

reaching equilibrium with the fiber, Figure 2.3 (Koziel 2001).  Therefore, sampling using 

TWA is accomplished by leaving the fiber inside the needle during the sampling session.  

Contaminate sampling rate is controlled by the diffusion coefficient of the contaminant 

and the concentration gradient inside the needle.  Analysis by this method yields the 

concentration of a contaminant averaged over the entire sampling period (Muller 2000).  

Three TWA assumptions must be followed during sampling.  The fiber is a zero sink; 

therefore the analytes extracted are 5-10% of equilibrium so it remains a first-order 

uptake rate.  Also, the analyte concentration at the opening of the sampling device is 

equal to the bulk concentration of the analyte in the headspace sample (Koziel 2001).  
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The amount of contaminant reaching the fiber is directly proportional to the contaminate 

concentration outside of the sampler.  Good sampling techniques are very important so 

that contaminate molecules trapped inside the sampler are not re-released to the 

surrounding atmosphere.  As well, the contaminant molecules can not further affect 

uptake of other contaminant molecules. 

TWA-SPME is very well suited for field applications, especially when the 

analysis is carried out on-site.  The fiber can be exposed directly to the medium analyzed 

without knowing the exact volume of the sample the fiber is exposed to.  Field analysis is 

rapidly gaining more and more importance, responding to the need for immediate results 

in environmental monitoring (Muller 2000, Jia 2000).  

 

 

Fig. 2.3:  SPME fiber is retracted into barrel a set distance for Time Weighted 
Average (TWA) Analysis (Adapted from Koziel 2001). 

 
 
2.4. PASSIVE SAMPLERS 
 
 Semipermeable Membrane Device (SPMD) is a sampling device designed to 

sample hydrophobic semivolatile organic contaminants from water and air.  The SPMD 
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consists of a neutral, high molecular weight lipid such as triolein which is encased in a 

thin-walled polyethylene membrane tube.  The nonporous membrane allows the nonpolar 

chemicals to pass through to the lipid where the contaminants are concentrated (Cranor 

2006).  The SPMDs provide a highly reproducible means for monitoring contaminant 

levels and are largely unaffected by many environmental stressors that affect other forms 

of sampling.  SPMDs provide a time-weighted average concentration of contaminants 

over a time period ranging from days to months (Huckins 2002).  The SPMD also enables 

in situ concentration of trace organic contaminants that may otherwise be undetectable.   

2.5. SPME SAMPLING WITHIN TREES 

Using the concepts of SPME sampling with phytoremediation, contaminates from 

inside the tree can be repeatedly analyzed.  The fiber would be left in the tree long 

enough to equilibrate and then it would be removed for GC analysis (Muller 2000).  On-

site analysis and monitoring using SPME fibers can also allow for faster analysis.  Also, 

better spatial data and time efficiency may be gained using a portable GC machine to 

determine if more or fewer samples need to be taken in a given area (Ouyang 2006).  This 

new concept could mean more effective phytoremediation techniques and better estimates 

of the groundwater contaminants at sites. 

 When a core is taken, the data extracted through different analytical methods will 

only give a snapshot of the contamination.  Many environmental factors such as 

temperature, light, and precipitation can have an effect on the concentration of 

contaminant in a tree. Vroblesky et al. showed the tree species, rooting depth, dilution by 

rain, and within-tree VOC degradation are all factors that affect the concentration of 

VOCs within tree cores (2008).  Also, to gain a better idea of contamination in the 
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subsurface, a time-weighted average over a week will give a better understanding of the 

contamination in the tree.  Using the Solid Phase Samplers, a better understanding of the 

concentration of the VOC in the tree can be quantified. 

2.6. TETRACHLOROETHYLENE 

 The contaminant of concern during the course of this investigation was 

tetrachloroethylene or otherwise known as perchloroethene (PCE).  PCE was chosen 

because both field site investigations mentioned in this report are contaminated primarily 

with PCE.  Also, it degraded forms also exist such as TCE, cis-dichloroethene (c-DCE), 

trans-dichloroethene (t-DCE), and vinyl chloride (VC).  PCE has the chemical formula of 

C2Cl4 while TCE has a chemical formula of C2HCl3. 

 PCE as an environmental contaminant, along with TCE is one of the most 

common occurring contaminants in the United States causing environmental concern.  

The number of PCE and TCE plumes is numerous because of the processes in which they 

were used and the methods they were disposed (Collins 2002).  PCE is a suspected 

carcinogen with an EPA regulated maximum contaminant level in drinking water set as 5 

parts per billion (ppb) (EPA 2006).  PCE is a possible human carcinogen which typically 

affects the liver (Henschler 1990).   PCE forms dense non-aqueous phase liquid 

(DNAPL) pools in groundwater aquifers because of its specific gravity of 1.623 making 

PCE denser than water (ToxProbe 2003).    Rather than being confined to the upper 

portions as light non-aqueous phase liquids may be, non aqueous phase PCE sinks to the 

bottom of the aquifer due to its density.  PCE is more likely to contaminate the entire 

depth of an aquifer because of its dense property.  Also, if a clay lens or other isolated 

aquitards are present in an aquifer, the DNAPL can form perched pools contaminating 
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that level of the aquifer causing multiple contamination zones.  DNAPLs also have the 

unfortunate characteristic of becoming concealed from traditional treatment methods by 

sinking into bedrock fractures that are not accessible to groundwater flow (Ma 2002).  

Another problematic characteristic of DNAPLs is the small droplets of pure product left 

behind after a recovery or remediation process occurs. 
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3. PAPER 

In-planta Solid Phase Samplers to Delineate VOC Plumes 
 
Kendra Waltermire and Joel G. Burken* 
Missouri University of Science and Technology, Civil Engineering Department, 1870 
Miner Circle, Rolla, MO 65409 
 
3.1. ABSTRACT 

Plants directly interact with surrounding water, air, and soil, collecting and storing 

chemicals and elements from the surrounding environment. Tree coring methods have 

shown that groundwater contamination can be assessed without directly sampling the 

groundwater. In this work, two new and innovative sampling methods that place 

sampling devices inside the plant, i.e. “in-planta”, were developed to access this valuable 

data that can direct and perhaps replace traditional methods for contaminated-site 

investigations. Traditional site assessments may be limited due to time, site access, and 

expense, resulting in incomplete understanding of the contaminated plumes and 

inefficient remedial approaches. The new techniques presented include placing 

established solid phase microextraction fibers (SPMEs) and newly developed solid phase 

samplers (SPSs) that have greater sensitivity and reproducibility and can also provide 

repeated sampling of the same trees with minimal damage, offering new possibilities in 

using plants to monitor contaminated sites as well as doing initial investigations. These 

methods are also much faster and can be accomplished with little of no property and 

ecological damage, and with acceptance by property owners.  

3.2. INTRODUCTION 

Field site investigations using groundwater sampling can be very time consuming, 

expensive ‘per sample’ costs, and have big mobilization costs.  As well, most of the time 
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there is not enough information and direction for initial placement of groundwater wells.  

Methods to reduce labor, time, cost, and environmental disruption are needed.  Studies 

using tree cores collected from contaminated sites have shown VOC concentrations in 

plants correlate with the groundwater and soil vapor concentration of VOCs.  Previous 

research has proven that cores can be taken from the tree and analyzed using gas 

chromatography to determine contamination within the subsurface, particularly for 

chlorinated solvents (Vroblesky et al. 1999; Larsen et al. 2008, Struckhoff et al 2005).  

Previous research has also modeled partitioning coefficients from wood to water of 

contaminants to understand more accurately the correlation between concentrations of 

contaminants in cores to groundwater concentration (Baduru 2008).  Although this 

modeling can be used, the heterogeneity of the cores leaves a range of unpredictability 

and error, and the sensitivity is not fully understood relative to environmental conditions. 

Vroblesky and colleagues clearly showed that a simulated rainfall event can lead to 

changes in tree core analysis results in a matter of hours (Vroblesky et al. 2004).  In order 

to improve the use of plants for environmental assessment and monitoring, new 

breakthroughs in analytical chemistry can be implemented.  

One of the new analytical methods that have promise uses Solid Phase 

Microextraction (SPME) sampling.  SPME samplers consist of fibers of varying matrixes 

that have high affinities for different chemicals.  SPME samplers passively extract the 

VOCs from a sample matrix and then can introduce the entire sample into a gas 

chromatograph for analysis (Skaates et al. 2005; Legind et al. 2007) or can be extracted 

into minute volumes of solvent for liquid chromatography.  Using SPME fibers can also 

be very rapidly analyzed and used repeatedly.  This can allow for sampling of mixed 
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matrices as well.    SPME fibers can sample water, air, slurries, and have even been used 

in plant sampling for food contamination (Lord 2004). 

Another sampling method used for environmental monitoring is solid phase 

passive samplers.  Semipermeable Membrane Device (SPMD) is a sampling device 

designed to sample hydrophobic semivolatile organic contaminants from water and air.  

The SPMD consists of a neutral, high molecular weight lipid such as triolein which is 

encased in a thin-walled polyethylene membrane tube.  Another passive sampler uses 

Polydimethylsiloxane (PDMS) as the matrix to absorb the contaminant (Laak 2008).  

Using this concept of passive samplers, a new sampling device and method was 

developed to sample contamination in trees.   

In this research, novel analytical methods were brought into trees, in the first in-

planta sampling methods development.  In-planta methods place a high affinity solid 

phase sampling device in the tree, rather than taking a small portion of the tree to the 

laboratory.  Advantages herein reveal improved sensitivity and reproducibility.  

Additionally coring the tree results in damage to the trunk and frequent sampling is not 

possible without significantly damaging or causing the death of the trees (Gopalakrishnan 

2007).  The following results show there clearly is great potential for this application and 

the patent-pending technology may greatly increase the accuracy of Phase I site 

investigations and concurrently decrease costs and damage to property and the 

environment.  Placing these sampling devices inside the trees on site, we can sample trees 

naturally occurring on a contaminated site or those planted in phytoremediation or 

redevelopment efforts, evaluate the plume size, and even monitor changes in 

concentration. These methods will have a minimal footprint and can be accomplished 
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with little materials cost, time, or labor demands. These quick sampling techniques can 

provide an array of data within a short amount of time to help the efficiency in placement 

of groundwater monitoring wells, saving time and money as well as undue impact to the 

ecosystems at hand or personal property. 

3.3. MATERIALS AND METHODS  

3.3.1. Tree Coring The tree cores obtained during this project were taken with a 

0.5 cm diameter increment borer manufactured by Forestry Services, Inc.  Tree cores 

were taken either 30 cm above the ground surface or at breast height depending on the 

diameter of the tree.  Tree cores were immediately stored in 20 mL headspace vials caped 

with Teflon coated septa and crimp tops until analysis.  Cores were allowed to equilibrate 

for ~24 hours in all analyses.  Headspace concentrations were then determined using 

headspace analysis using a Tekmar 7000 headspace autosampler and a HP 5890 gas 

chromatograph with electron capture detection. 

3.3.2. Solid Phase Microextraction (SPME) Dilution vials of chloroethenes 

were made up using chloroethenes in PDMS stock solution of concentration of 1 g/L.  

The standards were made with a dilution rate of 10% in 25 mL glass vials containing 5 

mL of PDMS.  The vials were then capped with Teflon septa caps to form a seal.  

Allowing the vials to equilibrate with the headspace overnight, the next day SPME-

PDMS fibers were exposed for two minutes and run in the GC in duplicates.  Gas 

Chromatography methods are presented in Appendix A. 

3.3.3. SPS development and Testing A new sampling device, Solid Phase 

Sampler (SPS), consisting of PDMS tubing was designed for in-planta sampling.  The 

tubing is permeable and absorbs the contaminant into its matrix.  The mass of the tube is 
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much greater than a SPME fiber; therefore, more contaminant can absorb into the tube 

allowing for detection levels higher than SPME. 

SPSs were constructed and exposed to a steady concentration of PCE and TCE to 

evaluate absorption rates. SPSs were constructed using polydimethyl silicone (PDMS) 

tubing cut into sections with mass ~0.5g. Mass was measured, and each section was 

placed on a threaded stainless steel #4, 1 ¼” bolt and secured with a nut, Figure 3.1. SPSs 

were placed in methanol for two days and allowed to dry under a hood to remove any 

contamination from production or shipping and storage.  The SPS’s were then placed in 

an incubator for 2 days at 100°C.  The cooled tubes were then placed into a 100 mL 

beaker within a 300 mL screw top jar also containing 50 mL of PDMS oil dosed with 

PCE/TCE at a concentration of 10 ppm, Figure 3.2. This controlled the chemical activity 

(i.e. concentration) in the gas phase at low levels, without depleting the mass from PDMS 

via absorption into the SPSs. There was no direct contact of SPSs with PDMS oil 

containing PCE/TCE. The SPSs were placed within the PCE/TCE environment at the 

same time. To determine the uptake rates, one SPS was removed at varying times: 1 hour, 

2 hour, 12 hour, 24 hr/1 day, 2 days, 3 days, 4.25 days, 7 days, 11 days, and 14 days.  

When a SPS was removed from the vial with tweezers, the tube was placed within a 20 

mL headspace sampling vial and immediately capped then stored at 4 ˚C.  Once all SPSs 

were removed, they were run at once in a headspace autosampler at 35 ˚C with direct 

injection to an HP 5890 GC with ECD for detection. The data was plotted versus 

exposure time. 
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#4-40 
Nut #4-40 

Bolt; 
1 ¼” 
long 

Solid PDMS (Silicon) Tubing 
 
Figure 3.1. Solid Phase Sampler (SPS) assembly.  PDMS mass was 0.5 g with a 
thickness of 3 mm and an outer diameter of 4 mm. 

 

 

Figure 3.2. SPSs were placed in an open beaker inside a closed beaker containing 
PCE and TCE dosed PDMS oil.  
 

3.3.4. Comparison of SPSs Versus Cores To compare the affinity of tree cores 

and the SPSs, the two materials were compared in side by side testing.  As tree cores are 

highly variable in their collection and the chemical composition (Gopalakrishnan et al. In 

Press) surrogate, uniform xylem tissue was used and constructed by cutting poplar dowel 

rods at a mass of ~0.5g, diameter 0.4 cm, and the mass of each was recorded. The SPSs 

and surrogate cores were placed in a 100 mL beaker, as noted above, with an added 

aluminum foil divider placed in the center to separate the cores from the SPSs, Figure 

3.3. The SPSs and cores were exposed for 3 weeks to PCE and TCE at a concentration of 
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10 ppm allowing them both to come to equilibrium with the surrounding environment. 

Partitioning coefficients for the solvents and PDMS oil were determined in related studies 

and is shown in supporting information.  The resulting vapor concentration was 

calculated using partitioning coefficients of 2000 for PCE and 1200 for TCE.  SPSs and 

cores were removed using tweezers and placed into separate vials and capped for analysis 

as noted above. 

 

Figure 3.3. Solid Phase Samplers and dowel rods were placed in an open beaker 
inside a closed beaker containing PCE and TCE contaminated PDMS oil. 
 

3.3.5. Comparison of PDMS-SPME, Carboxen-SPME, and Tree Cores To 

evaluate the relative sensitivity of different SPME methods, SPS analysis, and traditional 

tree coring methods, 4 methods were tested in the same contaminant activities. This 

testing also evaluates the linearity of the methods over a wide range of concentrations. 

Dilution vials of chloroethenes were made using chloroethenes in PDMS stock solution 

of concentration of 1 g/L.  The standards were made with a dilution factor of 10% in 25 

mL glass vials containing 5 mL of PDMS.  The vials were then capped with Teflon septa 

caps to seal off air exchange.   
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Allowing the vials to equilibrate with the headspace overnight, the next day 

headspace analysis with a 1 mL air-tight syringe was performed on the vials in duplicate.  

After the initial headspace analysis, SPME-PDMS fibers were exposed for two minutes 

and run in the GC in duplicate.  The inlet temperature was increased from 220°C to 

250°C.  Time-weighted average (TWA) analysis was then performed using a Carboxen 

fiber with z=5 mm for ten minutes.  Next, multiple fibers were exposed at the same time 

in a large-mouthed glass vial with a Teflon septa cap.  In order to compensate for more 

headspace, 25 mL of PDMS oil was used at the same concentrations as the original stock 

solutions.  The fibers were exposed at 1, 2, 3, 4, 6, and 16 hours for 10 ppm concentration 

at z=5mm.  One and two hour exposure times were also observed at concentration 100 

ppm and 1 ppm. 

3.3.6. Sequential Repeated Headspace Analysis of SPSs To evaluate the 

potential for multiple analyses of single SPS samplings, three SPSs were exposed to PCE 

and TCE in the environment using the method explained above (Fig. 3.2.).  After the 

SPSs had been allowed to equilibrate with the PCE/TCE environment, the SPS were 

removed and immediately vialed and capped.  The tubes were then run with the GC in the 

autoheadspace sampler.  Without removing the tubing from the vial, the tubes went 

through eight sequential runs in the autosampler with two hours in-between analysis runs.  

The results were found using the mean value of peak area for the SPSs.  The initial peak 

area was the baseline results.  For every analysis, the percentage was found by dividing 

the peak area of a run by the baseline peak area. 

3.3.7. Field Sampling Using SPME In New Haven, MO, PCE contaminated 

groundwater has impacted the city water supply and tree-core sampling was critical in 
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delineating the sources on the contamination (Schumacher et al. 2004). On the Kellwood 

Site (OU2) five trees were cored and then tested using in-planta SPME analysis. Cores 

were collected as previously described and in the borehole remaining, SPME analysis 

was conducted using time weighted average (TWA) methods using 100 μm Carboxen 

SPME fibers supplied by Supelco Analytical (Sigma-Aldrich Co., Bellafonte, 

Pennsylvania).  The fibers were exposed in the trees at the New Haven Kellwood Site 

(OU2) site for 70 – 75 minutes, Figure B.3 in Appendix B, capped and transported to the 

Missouri S&T environmental engineering laboratory for analysis using an Agilent 6890 

GC with ECD detection.   

3.3.8. Field Sampling Using SPS Tygon (silicon) tubing was cut into pieces with 

a mass of .45g.  The mass of the tubing was limited by the length of the bolts to be used.  

The bolts used for this experiment were size #4, 1 ¼” length bolts.  The SPSs were 

cleaned and assembled as mentioned previously.  Each SPS was individually wrapped in 

foil and then placed into the oven for two hours at 100°C.  Once the SPSs were removed 

from the oven, one SPS was removed from the foil and placed in a vial as a blank.  The 

other SPSs remained individually wrapped in foil.  This foil was placed in a 1 L jar with a 

screw-on Teflon cap.  This is to prevent any contamination of the SPSs. 

On arrival at New Haven, one SPS was removed from its foil and placed into a 

vial and capped for a field blank.  Tree cores were taken and SPS was placed into all core 

holes, Figure B.6 in Appendix B.  Tags were attached to the SPS for flagging on return 

trip to remove SPSs from trees.  The SPS were unwrapped partially from its individual 

wrapping and then using the foil to hold onto the SPS, the SPS will be placed inside the 
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core hole completely exposed.  Then, a screw with a ¼” diameter was placed in the hole 

to seal the headspace inside from the outside exposure. 

Using gloves, the foil was removed from three SPSs and wire was wrapped 

around them.  One SPS was then hung from each of the three trees from the wire to 

evaluate the background concentration and potential for cross contamination from the 

surrounding air at the VOC contaminated site.  The SPSs were placed so they would not 

touch the tree.  At the end of the sampling trip, a SPS was removed from the foil and 

placed into a vial as the trip background. 

On the return trip to remove the SPSs from the trees, another SPS was removed 

from its foil and used as a third background.  This was then vialed and capped.  To 

remove the SPS from the tree, tweezers were used to extract the SPS from the tree hole.  

The SPSs were then immediately vialed and capped with the wire being cut from the tag.  

All of the samples were analyzed at the Missouri S&T environmental engineering 

laboratory using an Agilent 6890 GC with ECD detection. 

3.4. RESULTS AND DISCUSSION 

3.4.1. Sorption Rates for SPSs Results for the absorption rates showed a clear 

relationship for both PCE and TCE absorption, Figure 3.4. Absorption as measure by the 

mass transferred to the SPSs increased rapidly over the first 96 hours and then reached 

apparent equilibrium at approximately 10 days. Equilibrium was determined as being 

reached if the change was less than 1 % over 72 hours.  
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Figure 3.4. SPS-controlled absorption rate of PCE and TCE, showing equilibrium in 
approximately 10 days. 
  

This experiment shows that the SPSs do take at least 8-10 days to equilibrate with their 

surroundings, assuming there are no limitations in the kinetics to supply the 

contaminants. This study also shows that while equilibrium may take many days, the 

predictable uptake can allow for rapid sampling after 1 or 2 days to get initial results, 

perhaps positive negative presence, and longer terms are needed for active equilibrium 

sampling with maximum sensitivity. While the sensitivity is beneficial for getting the 

lowest possible method detection limits, the predictability of the uptake lets short term 

sampling (24 hours) be extrapolated to actual equilibrium concentrations. 

3.4.2. Comparison of SPS and Core Equilibrium Concentration The 

equilibrium comparison of cores and SPSs exposed to the same headspace concentration 

revealed that the SPSs were more sensitive for PCE while core with headspace analysis 
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was slightly more sensitive for TCE, Figure 3.5.  The SPS peak area response was 97% 

higher than the core analysis for PCE.  The SPSs had lower variability for both PCE and 

TCE.  As well, the SPSs were more reproducible. Although ten SPSs and dowel rods 

were dosed, only four are shown.  The four dowel rods and SPSs shown are the four sets 

of samples that have a peak area closest to the mean peak area.  All ten samples were 

analyzed for statistical findings.  The average standard deviations for the peak area of the 

cores were 122428 and 84835 for PCE and TCE respectively.  The average standard 

deviations for the peak area of the SPSs for PCE and TCE were 77987 and 20942 

respectively.  The 95% confidence interval was only 0.9% and 0.8% of the mean for SPS 

analysis of PCE and TCE respectively, where as these values were 2.7% and 2.4 % for 

the cores analyzed. 
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Figure 3.5. Ten samples of SPSs and Dowel Rods were averaged.  When exposed to 
PCE and TCE under the same conditions, multiple replicates of SPSs have peak 
area sensitivity 97% higher for PCE and 61% less for TCE than cores.  For both 
PCE and TCE reproducibility was increased in SPSs compared to cores.  SPSs had 
a variability of only 1.2% versus 4.9% for the cores with PCE and 2.4% versus 
7.2% for the cores with TCE. 

 

3.4.3. Comparison of SPME, SPME-TWA Analysis, and Tree Cores 

Comparison of Carboxen Time Weight Average (TWA) Analysis, SPME-PDMS 

analysis, and traditional headspace analysis resulted in the TWA analysis was much more 

sensitive to PCE and TCE, Figure 3.6. and Figure 3.7. respectively.  If TWA analysis 

rules are adhered to, then as the time increases, the expected linear response will increase 

in sensitivity for these compounds (Sheehan 2009).  The peak area response was close to 

four times higher for TWA for two hours exposure and had a slightly higher sensitivity 

for TWA for one hour exposure compared to headspace analysis.  On the other hand 

SPME-PDMS had similar peak area sensitivity compared to headspace analysis with 
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TCE and more than twice the sensitivity in peak area with PCE.  TWA analysis 

performed at a short time of 10 minutes resulted in a peak area sensitivity of 22% lower 

compared to headspace analysis.  
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Figure 3.6. Comparison of Carboxen Time Weighted Average (TWA) Analysis, 
SPME-PDMS analysis, and traditional headspace analysis at different 
concentrations of PCE.  TWA Analysis produces greater peak area sensitivity than 
SPME-PDMS and headspace analysis. 
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Figure 3.7. Comparison of TWA Analysis, SPME-PDMS analysis, and traditional 
headspace analysis at different concentrations of TCE.  TWA Analysis produces 
greater peak area sensitivity than SPME-PDMS and headspace analysis. 
 

3.4.4. Sequential Headspace Analysis of SPS Through repeat analysis of dosed 

SPSs, a set amount of PCE and TCE were removed after each sampling, Figure 3.8.  

After four runs, SPSs still contained over half of PCE and TCE within its matrix.  This 

repeat analysis proves that even after an initial determination run, a known mass was 

removed which allows for determination of initial concentration.  One thing to note, the 

more analysis runs on a tube increases uncertainty of back calculating the initial mass in 

the SPS.  This predictive decrease can help to determine analytical results under multiple 

analysis using different detectors.  Standard deviation was found for PCE and TCE.  The 

averaged standard deviation was found to be 3.4% for PCE and 3.9% for TCE. 
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Figure 3.8. Repeat analysis of SPS analysis, showing that samples can be analyzed 
numerous times with predictable results.  Standard Deviation for PCE is 3.4% and 
for TCE is 3.9%.  
 

3.4.5. Field Comparison of In-planta SPME Methods, Tree Core Analysis, 

and SPS Methods Sampling of trees at the New Haven Kellwood Site (OU2) was 

conducted on 4 trees known to be contaminated from previous sampling as well as a tree 

believed to be free of contamination.  Results of tree core analysis using accepted 

methods revealed contamination of both TCE and PCE in the trees as well as the tree 

previously believe to be free of contamination, Figure 3.9. and Figure 3.10.  The in-

planta SPME methods had peak areas 4 to 230 times higher using the same GC methods 

for analysis.  Also, an average increase in the peak area of 13 times for TCE and 62 times 

greater for PCE was also detected.  As well, SPSs used to sample reached similar results 

within the same log scale as the SPME fibers and resulted in higher sensitivity than tree 

cores.  This analysis shows that SPME and SPS in-planta analysis have potential for 
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providing improved method detection limits with similar variability in analysis. The 

SPME analysis also has the benefit of potentially rapid analysis. 

 

 

Figure 3.9. Site map of New Haven Kelwood Site (OU2) with repeat sampling 
information. 
 

Tree # Cores-TCE Cores-PCE SPME-TCE SPME-PCE SPS-PCE 
Tree 1 3.8 x 102 2.1 x 104 5.8 x 103 1.2 x 106 2.1 x 104  
Tree 2 6.1 x 102 1.9 x 104 1.7 x 104 4.4 x 106 2.8 x 104 
Tree 3 9.4 x 101 5.2 x 102 5.8 x 102 2.5 x 103 ND 
Tree 4a 5.3 x 101 2.8 x 103 3.7 x 102 3.3 x 104 ND 
Tree 4b 3.6 x 102 6.2 x 103 4.3 x 103 7.1 x 104 ND 
Tree 5 ND 1.4 x 102 ND 7.2 x 103 7.7 x 105 

 
Figure 3.10. Comparison of peak areas from standard tree cores, SPME in-planta 
TWA, and in-planta SPS analysis.  
 
3.5. FINDINGS 

Using the SPME fibers and SPSs to sample trees in the field appears to have 

benefits relative to traditional tree coring analyses. These methods may improve the 
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vegetation-sampling approaches that have great benefits for Phase I site assessments and 

also for monitoring groundwater concentrations at phytoremediation sites.  Actual 

groundwater concentrations still require sampling groundwater wells, but these methods 

can give relative quantifications (Schumacher et al. 2004, Ma 2002).  Using plant 

sampling to gain relative quantifications, benefits can be gained that could not with 

groundwater monitoring such as minimal environmental or property disturbance as well 

as little materials cost.  Sampling is accomplished with very little energy use or labor 

demands. As well, with the reproducibility of the SPME fiber and SPSs, groundwater 

monitoring can be replaced or become more efficient through these methods that are at 

the very infancy of development. Using these new methods, continuous groundwater 

sampling used in natural attenuation monitoring could also be replaced.  This new 

approach is patent-pending and appears to have a bright future if optimized further.  
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1. CONCLUSIONS 

From these results, SPS and SPME are definitely a viable option for sampling 

contaminated sites to determine a contamination plume.  Uptake rates of SPSs were 

found with the result of equilibrium is reached at ten days.  SPSs were also placed in the 

same PCE and TCE contaminated environment as tree cores to see a comparison between 

the two methods.  SPSs were found to have almost twice the sensitivity for PCE 

compared to the tree cores.  For TCE, the SPSs seem to actually have a slightly lower 

sensitivity compared to the tree cores.  Repeat analysis was also performed on dosed 

SPSs.  It was found that a predictable loss is removed from the tubing after every run.  

This will allow for repeat analysis of the tubing from different detectors while SPME and 

tree cores would have been depleted after the initial analysis.  Different sampling 

methods of SPME were also looked into to compare peak area sensitivity to traditional 

headspace analysis.  What was found is that TWA analysis at one and two hours gave 

greater sensitivity at up to four times compared to headspace analysis.  The PDMS fiber 

was found to be comparable if not having better sensitivity for PCE and TCE compared 

to headspace analysis as well.  Field sampling using the SPSs and SPME in-planta 

samplers demonstrated the use of solid phase samplers as a substitute for tree core 

sampling.  Lower detection limits were also shown with the SPME and SPS methods in 

comparison to tree core sampling. 

Sampling using tree cores is cost effective and takes little time, but it does 

damage the tree with repeat analysis.  Using the new, innovative methods of SPME and 

SPS, repeat analysis of trees can occur saving money, time, and damage to the tree.  As 
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well, the heterogeneity of tree cores allow for a large variability in peak area sensitivity 

between repeat sampling.  SPME and SPS allow for uniformity between sampling with 

greater reproducibility.  Through these new methods, groundwater monitoring can be all 

together replaced or these methods can supplement groundwater data. 

4.2. RECOMMENDATIONS 

There is much to learn about the improvement of these samplers, especially with 

the SPSs.  The SPSs used PDMS tubing as the sampling matrix for these methods.  With 

the PDMS tubing, PCE had increase sensitivity, but TCE was lower than tree core 

sampling.  New matrices such as polyethylene, latex, or neoprene needs to be further 

investigated to determine if other tubing can be used for better sensitivity or better 

attractiveness for specific contaminants such as TCE.  As well, depletion of headspace 

after removal of SPSs should be investigated to see how many repeat samplings can 

occur in the core space before the headspace is depleted.  If SPME sampling occurs 

directly after removal of SPS, peak area might be affected with such a large removal of 

contaminant on the SPS from the core space. 

To fully understand the quantified concentration of the groundwater with respect 

to the peak area observed using SPSs, partitioning coefficients for different contaminants 

to the SPS samplers need to be determined.  This will allow calculations to be performed 

and relative close quantifications of the groundwater contamination concentration can be 

found.  As well, non-volatile organic compounds should be investigated using SPME and 

SPS detection methods. 

These achievements demonstrate that SPME and SPS sampling methods are 

successful and should be used for detection of certain chlorinated solvents in vegetative 
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systems.  Also demonstrated by this work is the vast potential of SPME and SPS 

sampling techniques for use with other volatile organic compounds and the possibility 

with non-volatile organic compounds. 
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APPENDIX A 

GAS CHROMATOGRAPHY METHODS 
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GC Set-up for Headspace and SPME-Carboxen Analysis 

Time (min) Injector Temp. Detector Temp. Oven Temp. 

0-2 220°C 250°C 50°C 

2-4.5 220°C 250°C 50→100°C 

4.5-6.5 220°C 250°C 100°C 

Flow:  ~20    

 

GC Set-up for SPME-PDMS 

Time (min) Injector Temp. Detector Temp. Oven Temp. 

0-2 250°C 250°C 50°C 

2-4.5 250°C 250°C 50→100°C 

4.5-6.5 250°C 250°C 100°C 

Flow:  ~20    
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APPENDIX B 

PHOTOS OF SAMPLING WITH SPME AND SPS
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Figure B.1:  Core removal from tree on site in Toronto, Canada 

 

 

Figure B.2:  Core extraction from tree 
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Figure B.3: SPME in-planta application photo from field application of SPME 

analysis 

 

  

Figure B.4:  SPS placed inside core space left after removal of the tree core 
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Figure B.5:  Once SPS is placed inside open core, a screw used to seal the hole from 

the outside environment. 

 

 

Figure B.6:  In-planta schematic and application photo from field application of SPS 
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APPENDIX C 

MAP OF NORTHSTAR SITE, CANADA 
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Figure C.1:  Map of PCE plume on Northstar Site, Canada.  Green lines and 

shading indicate contamination gradients found using groundwater well samples.  

The red, orange, and yellow circles indicate PCE concentrations found in trees 

sampled on site.  Red: High concentration; Red-Orange: Medium concentration; 

Orange:Medium-low concentration; Yellow: Low concentration 
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