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ABSTRACT 

Resiliency is an important characteristic of any system. It signifies the ability of a 

system to survive and recover from unprecedented disruptions. Various characteristics 

exist that indicate the level of resiliency in a system. One of these attributes is the 

adaptability of the system. This adaptability can be enhanced by redundancy present 

within the system. In the context of system design, redundancy can be achieved by 

having a diverse set of good designs for that particular system. Evolutionary algorithms 

are widely used in creating designs for engineering systems, as they perform well on 

discontinuous and/or high dimensional problems. One method to control the diversity of 

solutions within an evolutionary algorithm is the use of combinatorial graphs, or graph 

based evolutionary algorithms. This diversity of solutions is key factor to enhance the 

redundancy of a system design. In this work, the way how graph based evolutionary 

algorithms generate diverse solutions is investigated by examining the influence of 

representation and mutation. This allows for greater understanding of the exploratory 

nature of each representation and how they can control the number of solution generated 

within a trial. The results of this research are then applied to the Travelling Salesman 

Problem, a known NP hard problem often used as a surrogate for logistic or network 

design problems. When the redundancy in system design is improved, adaptability can be 

achieved by placing an agent to initiate a transfer to other good solutions in the event of a 

disruption in network connectivity, making it possible to improve the resiliency of the 

system.  
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1. INTRODUCTION 

A system can fail when it faces unprecedented events that lead to its disruption of 

normal activities. Resiliency is a characteristic of a system which can provide the 

necessary elements to manage these disruptive events. Basic definition of resiliency is 

“the capacity of a system to tolerate disturbances while retaining its structure and 

function” [71]. Resiliency in a system is composed of three elements: accident avoidance, 

survival, and recovery. Certain elements are placed in a system that may avoid the 

occurrence of accidents. If it fails, the system can be designed to survive and may be able 

to recover from the disruption. Disruptions are of two types, type A or disruption of input 

and type B. Disruptions of input are disruptions which are caused by external random 

phenomenon. Disruptions due to change in environments are type A. When the disruption 

is systematically conceived is type B disruptions. Generally technical problems are 

categorized as type B. One of the important characteristic in achieving resiliency is 

adaptability. It is the capability of the system to adapt to unforeseen changes in the 

operating conditions. Apollo 13 is a good example of adaptability. Once the accident 

happened the crew of Apollo 13 adapted to manage on low power and survive. 

Redundancy is another attribute which helps in increasing adaptability. Redundancy is 

defined as multiple ways of performing a same function. A heuristic known as the 

functional redundancy heuristic states that there must be multiple ways to perform critical 

functions. In case of a disruption, the system can have the opportunity to perform those 

critical functions. In biological systems a high level of redundancy exists. Millions of 

cells perform identical functions. Also cells are generated and produced continually 

making loss of individual cells little difference [70]. These characteristics help to 

improve the resiliency of the system. 

Evolutionary Algorithms are widely used optimization technique, also used in 

designing a system. EAs mimic the natural evolution from a solution population through 

computer simulation. It is highly used in the optimization problems from various fields 

like biology, art, mathematics, physics, and engineering design. The popularity of EAs is 

due to their flexibility, self adaptive and parallel search properties. Researchers like 

Goldberg [10], Maher [65] have used EAs as an exploratory tool in conceptual design. 
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Gero et al. [66], Parmee et al. [67] used EAs searches which progresses outside the initial 

design variable limits. Some of the applications of EAs include control system design 

[68], transportation problems and job scheduling and many more applications are 

discussed in [69]. 

An artificial geography can be imposed on the population of evolutionary 

algorithms using combinatorial graphs to control the rate at which information is shared 

during the process of the algorithms. This novel approach is referred as graph based 

evolutionary algorithms (GBEAs). This restriction on the mating behavior improves the 

diversity of solution in the population. The diversity in the population helps in avoiding 

local optima in deceptive problems and also generating diverse solutions.  The diverse 

solutions created by GBEAs are a key to improve redundant solutions. Even though in 

some problems we can find an exact optimal solution, to improve redundancy multiple 

solutions are needed. The ability to provide a collection of good solutions for a particular 

system is invaluable when future system conditions are uncertain. The diverse solutions 

created by the GBEAs are a key to improving the redundancy. 

The organization of the thesis is as follows. Section two contains information 

about evolutionary algorithms, their history and development. It also contains an 

overview of previous research completed in EA and its parameters along with the 

fundamentals of GBEAs, its characteristics and taxonomical properties are explained. 

Section three comprises of two computational experiments with their respective results. 

Experiment one studies the impact of representation on GBEAs and experiment two 

analyzes the dynamics of diversity. Section four contains the experiment conducted better 

understand the results of experiments one and two by applying it on traveling salesman 

problem. Section five summarizes conclusions and future work. In the appendix, an 

overview of graph theory and description of graphs are included.  
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2. EVOLUTIONARY ALGORITHMS 

2.1. BACKGROUND 

 One of the ways to interpret the term ‘evolutionary system’ is to apply the 

Darwinian Theory of Evolution. Populations of individuals competing for limited 

resources, dynamically changing populations due to birth and death of individuals, an 

idea of fitness to each individual and variational inheritance are the main components 

which embraces Darwinian Theory of evolution.  One of the earliest notions of 

evolutionary system can be seen in Friedman [1], where evolutionary mechanisms are 

suggested as a means of evolving control circuits for robots. In 1957, Box [2] uses a 

technique called evolutionary operation for improving industrial process. During the 

1960s, the availability of digital computers for use as a modeling and simulation tool 

influenced the scientific community to use a simple idea such as evolutionary models for 

complex problem solving. Most of the current work in evolutionary algorithms can be 

traced to three strongly related but independently developed approaches: genetic 

algorithms, evolutionary strategies and evolutionary programming. 

  Holland used evolutionary processes in design and implementation of robust 

adaptive systems which deals with uncertain environment [3, 4]. These papers composed 

the fundamentals of “simple genetic algorithms” and subsequently studied by De Jong [5, 

6, 7, 8], Goldberg [9, 13]. Rachenberg [14, 15] and Schwefel [16, 17] systematically 

approached on using evolutionary processes to solve difficult real-valued parameter 

optimization problems developed the basis of “evolutionary strategies”. It is extended by 

Herdy [18], Kursawe [19]. Evolutionary programming, introduced by Fogel [20, 21] and 

broadened by Burgin [22, 23], Atmar [24] and Fogel [25, 26, 27] was initially attempted 

to create artificial intelligence. It was attempted to evolve finite state machines to predict 

events on the basis of earlier observations.  

 Evolutionary algorithms (EAs) are a powerful optimization technique following 

survival of the fittest. To understand the theory of evolution some basic definitions in 

biology are required. Chromosomes are thread like structures containing 

Deoxyribonucleic acid (DNA). DNA is a genetic material present in all living organisms 

and some viruses and a gene is a sequence of DNA. A gene may exist in alternate forms 
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that determine the expression of some particular characteristic (e.g. eye color, height). 

These forms are called alleles. Evolution is defined as the variations of allele frequencies 

in population over time. Here allele frequency means proportion of different alleles of a 

particular gene in a given population. So, if a creature is born or dies, the allele 

frequencies in the population change. For more details on molecular biology refer to [28]. 

Evolutionary algorithms are a stochastic search algorithm operating on a 

collection of randomly generated data structures (or creatures) referred to as the 

population. The population contains candidate solutions with explicitly computed fitness 

values.  The fitness value is calculated using a fitness function, which is a measure of the 

quality of the solutions found by the heuristic. New solutions (children) are generated by 

blending (referred to as mating) existing individual data structures (parents), referred to 

as mating. The fitness values are used for replacement schemes, using newly found 

solutions to replace population members chosen randomly or with a bias based on fitness 

of that solution. A sample evolutionary algorithm is shown below. 

Create an initial population. 

Evaluate the fitness of the population. 

Repeat 

    Select pairs from the population to be parents, with a fitness bias. 

    Copy the parents to make children. 

    Perform crossover on the children (optional).  

    Mutate the resulting children (probabilistic; optional). 

    Place the children in the population. 

    Evaluate the fitness of the children. 

Until Done. 

 The parameters which influence the initialization of an EA are population size 

and representation. Representation is the data structure used and the crossover and 

mutation operators, called the variation operator when taken together. Crossover, 

mutation, and selection method mimic natural evolution, and are usually described as 

crossover rate and type, mutation rate and type, and the technique of how better offspring 

are passed on to next generation. These parameters within an EA influence the rate and 
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nature of convergence. The parameters are population size, representation of data 

structures, crossover, and mutation.  

 

 

2.2. EVOLUTIONARY ALGORITHM PARAMETERS 

2.2.1. Population Size.  One of the earliest studies on population size by De Jong 

[5]. The results indicated the EAs achieved good performance when the population size is 

between 50 and 100. In the later part of 1980’s and 1990’s the size of the population 

selected was dependent on the perceived complexity of the problem [29] [12]. Smith 

proposed an algorithm which adjusts the population size with respect to the probability of 

selection error [30]. In early research, the population size for an algorithm is specified 

before running the algorithm until 1994, when the idea of variable population size was 

introduced [31]. This work introduced Genetic Algorithms with Varying Population Size 

(GAVaPS) which does not use any variation of selection. This algorithm applies the 

concept age of a chromosome, which is equivalent to the number of generations the 

chromosome stays alive. Thus, the age of chromosome replaces the concept of selection 

and it depends on the fitness of individual, influences the size of the population at every 

stage of the process. In GAVaPS lifetime of all individuals in the population is decreased 

at each generation. In 2000, Adaptive Population Size (APGA) was introduced by Back 

et al., where the life time of the fittest individual in each generation remains unchanged 

[62]. 

2.2.2. Models of Evolution.  The technique followed in selecting parents and 

inserting children back into population is collectively called as models of evolution. 

Within a population, recombination between individuals is permitted. This information 

sharing is one of the reasons behind the creation of similar individuals causing a diversity 

loss or genetic drift. This diversity loss may result in convergence to a suboptimal 

solution in many types of problems. There are several techniques for selection of parent 

solutions, with the only requirement being that the method should be biased towards 

more fit individuals. Some of the popular selection methods include tournament selection 

where the population is shuffled randomly and divided into small groups where the fit 

individuals chosen to be parents and the resulting children replace the least fit individuals 
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In fitness proportional selection, parents are chosen in direct proportion to their fitness. In 

rank selection, individuals are ordered by ranks based on fitness and selected 

proportionately on the basis of that rank. A child insertion method is needed to insert 

children back into population. One method is to place the children in  population  at 

random (random replacement.) If the individuals are replaced with a probability inversely 

to their fitness is called fitness proportional replacement. In rank replacement, individuals 

are ranked opposite to rank selection and chosen to replace proportionately on the basis 

of ranks. Another method is to replace parents only if the children are more fit, referred to 

as elite replacement method. 

2.2.1. Crossover.  Sharing of material (or information) between data structures is 

referred to as crossover. One popular crossover technique is single point crossover [32], 

where a single point for crossover is selected uniformly at random along the length of the 

parent strings. An offspring is then generated by copying the first parent string until the 

crossover point is reached, then copying the second parent string from the crossover point 

to the end.  Multiple point crossover can be performed by selecting two or more 

crossover points. Uniform crossover [32] works on each offspring gene independently, 

making a random choice as to which parent it should inherit information from. Crossover 

rate is the frequency with which the crossover operator is applied. Grefenstette [33] 

studied crossover types and rates as part of a study on evolutionary algorithm parameters. 

Kurusawe [34] showed the appropriate choice of crossover operator depends on the 

objective function, topology, and dimension of the objective function. Goldberg [29] 

showed that crossover rate highly influenced the diversity preservation in the population 

while studying the effects of altering evolutionary algorithm parameters. 

2.2.2. Exploration and Exploitation.  Exploration and exploitation are vital 

elements in problem solving by search. Exploration is provided by search operators 

(recombination and mutation) and exploitation achieved through selection. In graph 

based evolutionary algorithms by restricting the choices of co-parent exploration is 

emphasized more and selecting the best fit individual improves the exploitation. 

Improving resiliency in designing a system can be achieved by generating diverse designs 

for a same system. It is beneficial to have many novel designs to a system. As sometimes 

a  selected  design can be  undesirable or  unusable in an  accident.  Exploration  helps  in  
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attaining diverse solutions. Various studies about exploration and exploitation have been 

done over the years, producing many hypotheses about exploration and exploitation, but 

no general consensus has been reached on the fundamentals of exploration and 

exploitation [61]. One of the few characteristic which was proved is that exploration   and  

is that exploration and exploitation is highly influenced by the representation of the 

problem [60]. 

2.2.3. Mutation.  Mutation is the variation achieved by random changes in the 

data structures, facilitating local search and gradual introduction of diversity in the 

population. Mutation operators together with crossover operators are called variation 

operators. The frequency with which mutation is applied is the mutation rate. In binary 

strings mutation is performed by inverting bits. Some of the earliest work on mutation 

rate was done by De Jong [5].  Research conducted by Eiben has proven that mutation 

rates were helpful in improving convergence reliability [35]. There is evidence 

suggesting that different values of EA parameters might be optimal at different stages of 

algorithm [63]. One way to achieve this is to use self adaptive mechanisms to control 

mutation rate [36]. In these instances, varying mutation rates can improve the 

performance of EAs. 

2.2.4. Representation.  Representation in an evolutionary algorithm is the 

structure used together with the choice of variation operators. Classification of 

evolutionary algorithms is typically based on the choice of the representation. Genetic 

algorithms use bit strings, real-valued strings are used in evolutionary strategies and the 

application of expression trees resulted in genetic programming. There are more complex 

representations such as finite state machines, GP-automata, ISAc lists (if-skip-action). 

The choice of the data structure can greatly influence the effect of the variation operators. 

 

 

2.3. GRAPH BASED EVOLUTIONARY ALGORITHMS 

2.3.1. Motivation.  There is no single measure of diversity in an evolutionary 

algorithm it can be thought of as a measure of number of different solutions present. 

Generally, the number of different values present is used as a measure although statistical 

measures like entropy are also used. In nature, there have been few problems with
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diversity loss. There are few theories which explain why there is less diversity in nature. 

Irrespective   of their fitness individuals are separated geographically in nature [37] 

genetic information. In some, mating provide the necessary diversity giving rise to robust 

life forms which are required to survive the environment. 

In evolutionary algorithms, maintaining a useful diversity is important. In some 

problems no useful level of diversity is required while in some others a very rich set of 

diverse solutions may lead to converge in an undesirable local optimum or sometimes 

consume more computational time. In EAs, loss of diversity is managed through 

techniques such as high mutation rate, reducing the fitness of a population member in 

proportion to the other solutions that are essentially the same (niche specialization [32]), 

implementing memory structures and rejecting duplicate solutions (TABU search [38], 

[39]). 

One way to handle diversity loss is to break the total population down into 

subpopulations of strings. Each one of these subpopulations could then execute as a 

normal genetic algorithm. At a predetermined number of generations, the subpopulations 

swap some solutions. This migration allows subpopulations to share genetic material. By 

introducing migration the island model is able to exploit differences in the various 

subpopulations this variation in fact represents a source of genetic diversity. Each 

subpopulation is an island and there is some designated way in which genetic material is 

moved from one island to another [64]. Some of the illustrations used in this study are 

shown in below (Fig. 2.1). 

 

 

 

Figure 2.1  Illustration of graphs used in the study 
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2.3.2. Background.  Imposing geography on the population also manages 

diversity in the population [40]. One method of imposing geography on a solution 

population is to use graph based evolutionary algorithms (GBEAs) [41].The degree of 

genetic information sharing within the population is controlled by the choice of 

combinatorial graphs, thus giving a balance between exploration and exploitation. A 

novel approach in preserving diversity is using combinatorial graphs which limit the 

spread of information within the population. A combinatorial graph or graph G is a 

collection V (G) vertices and E (G) edges where E (G) is a set of unordered pairs from V 

(G). Two distinct vertices of the graph are neighbors if they are members of the same 

edge. Degree of the vertex is the number of edges it contains. If all the vertices in the 

graph have the same degree, the graph is said to be regular. If the common degree of a 

regular graph is k, then the graph is called k-regular. A graph is connected if one can go 

from any vertex to any vertex by traversing in a sequence of vertices and edges. The 

diameter of a graph is the longest that a shortest path between any two of the vertices can 

be. The diameter is can be defined as the shortest path across the graph. A graph used to 

constrain mating in a population will be called the population structure. Choose a graph 

with vertex set V (G) and edges E (G), place an individual in each vertex of the graph G. 

For a mating, pick a vertex v from V (G) uniformly at random. A neighbor of v is chosen 

for mating with a fitness bias. Crossover and mutation are used to produce a single 

individual which may or may not be used to replace the individual with the old individual 

follows the local mating rule of the GBEA. The local mating rule will pick neighbors in 

individual with the old individual follows the local mating rule of the GBEA. The local 

mating rule will pick neighbors in direct proportion to their fitness (fitness proportional 

selection) and let the new individual replace the old if it is at least as fit as the individual 

it replaces. For mathematical background and types of graphs refer appendix. GBEAs 

have shown better performance that a standard evolutionary algorithm in some problems. 

An example of the use of GBEAs is the design wood-burning stove [42], where 

convergence time to an acceptable solution was decreased using an appropriate graph 

[43].  
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2.3.3. Taxonomy.  Taxonomy is the science of classification based on measurable 

characters, with the resulting categoriation used to provide a conceptual framework of the 

parameters which conceptual framework of a priori knowledge  of the  parameters  which 

the parameters which may have a high chances of yielding a better performance. A 

cladogram is a tree like diagram which shows the relationship between the problems used 

in the experiment. The data collected in the experiment used to create taxonomy of the 

problems used.  Using the taxonomic characters, hierarchical clustering produces a 

cladogram that classifies the problems as more or less similar. The method used to 

construct the cladogram was a clustering technique called the “Unweighted Pair Group 

Method with Arithmetic mean” (UPGMA), which uses the performance of the graphs to 

construct a vector and then calculates the Euclidean distance between the problems to 

show similarity.  

The selection of taxonomical character is very important. GBEAs provide 

taxonomical characters that are computable for any evolutionary computation problem 

that has a detectable solution. The time to solution varies for each problem and each 

graph in a complex manner. This complexity gives rise to the taxonomical character. 

These taxonomic characters are the normalized mean solution times for the problem on 

each graph. The taxonomy can be used to determine the importance of representation in 

algorithms, by analyzing the location and grouping of the problems. 
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3. COMPUTATIONAL EXPERIMENTS 

3.1. BACKGROUND 

Representation of a problem heavily influences the outcome of the algorithm, 

having an impact on the exploration and exploitation element of the search. Graph based 

evolutionary algorithms have been shown to provide taxonomical information on a 

variety of computational intelligence problems, but they have not been used to examine 

the differences due to multiple representations of the same problem. This experiment 

investigates the use of graph based evolutionary algorithms to provide information about 

the impact of representation on evolutionary algorithms. This information can enable a 

priori selection of a method that provides better performance when applied to a problem 

with a similar representation and/or solution search space. This experiment examines five 

optimization problems using three different representations: binary, gray coding, and real 

value encodings. The impact of these representations is explored using their performance 

on graphs as taxonomical characters. Also the study of representations will help in 

understanding of their explorative nature, as this phenomenon is very important in 

generating good redundant solutions. 

For many evolutionary algorithms a key obstacle to finding the global optima is 

insufficient solution diversity, causing the algorithm to become mired in local optima. 

The diversity in solutions can be influenced by algorithm parameters including 

population size, mutation operator and diversity preservation techniques. A trade off can 

be seen between the initial diversity of the population size, introduction of new diversity 

from mutation, and the preservation of diversity from combinatorial graph. With an 

appropriate fusion of these three factors a level of diversity can be achieved to decrease 

the time to find the global optima and also to produce more diverse solutions. The trade 

off can be analyzed by using difference population size and different mutation values for 

a same problem. 
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3.2. EXPERIMENTAL DESIGN 

The problems used in this study are common test problems from the literature 

[44]. Ackley path is a minimization problem with a continuous multimodal function 

obtained by modulating an exponential function with a cosine wave of moderate 

amplitude. Its topology has a flat outer region and a central hole or peak where the 

modulation by the cosine wave is more influential. The Dropwave function is a 

multimodal function with two variables. Its topology is like ripples on water at the outer 

‘edges’ and a hole in the center. The Shubert is a multimodal function with the value 

equal to the product of summation of two cosine functions of the two variables. It has 

global optimum towards the center and local optima spreading out from center forming a 

shape similar to a plus sign. The version of the Schwefel function used here is a four 

variable, sinusoidal minimization problem. Rastrigin is based on the sum of squares De 

Jong function with the addition of a cosine function to introduce more local optima, 

making it more deceptive. Two versions of this problem were examined, one with four 

dimensions and one with six. All of these problems are highly multimodal and display 

some amount of deceptive behavior. The stopping criteria for each of these experiments 

was selected to be the actual optimum value for the Ackley, Dropwave, and Shubert 

functions, and a value within +/- 0.1% of the optimal solution for the Schwefel and the 

two Rastrigin functions.  

The three representations used are also common methods from the literature; real-

valued, binary, and gray coding representations. To generate initial population for all the 

problems except Ackley path, a string of fours integers is generated, where the first value 

being 0 or 1 and the rest of the string can contain values between 0 and 9. This string was 

used to produce an integer from 0 to 1023, with any values outside this range discarded 

and a new value determined. For Ackley path a string of 5 integers is generated where the 

first value ranging from 0 to 6 and the rest of the string contains values between 0 and 9. 

This string was used to produce an integer from 0 to 65535.  The binary and gray coding 

representations used a bit string of length 10 that was evaluated to give an integer value 

from 0 to 1023, for Ackley path a bit string of 16 is used that was evaluated to give an 

integer value from 0 to 65535. In this way all of the representations used operated on the 

same range of integers with the only difference being how the string and its evaluation 
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represented the problem. The difference between the binary and the gray coding 

representations is the mapping used when the binary string is translated into an integer. A 

single point mutation in a binary representation has a much different effect when it occurs 

at different areas of the string. A single mutation at any location using gray coding has 

the same effect, making the mutation operator much less disruptive [45]. Two kinds of 

experiments were designed. For each of these representations single point crossover and 

single point mutation were used, with mutation flipping a bit for the binary and gray 

coding, while a value ranging from -200 to 200 selected uniformly at random was added 

to the real value representation. For the second experiment design only real encoding was 

used, but variations in mutation value are performed. Four different ranges of numbers 

are used in this study: -50 to 50, -100 to 100, -150 to 150, and –200 to 200 selected 

uniformly at random. All of the problems used a range of values from -5.12 to 5.11 for 

each of the variables of the search space, achieved by subtracting 512 from the integer 

value and dividing by 100. 

For experiment-I, simulations were performed for 6 test problems using three 

different representations on each of the 15 graphs given in Table 3.1. All the graphs used 

are of population size 512 except one graph regular tree 510 which has 510 vertices. For 

each problem, 5000 independent simulations were made and the number of mating events 

required to find the correct solution was saved for each of these 1,350,000 simulations. If 

more than 10,000,000 mating events were required, the simulations were recorded as 

having failed to have found an answer. For each graph and problem, the mean and 

standard deviation of the number of mating events to solution were used to construct 95% 

confidence intervals for the mean time to solution. These results were first compared to 

evaluate graph performance (how many mating events were required to find the solution), 

and then they were used to determine similarities between the 18 different 

problem/representation combinations. For experiment-II, simulations were performed on 

real encoding using the graphs in Table 3.2. This table includes graphs with lower 

numbers of vertices (8 and 64) along with graphs containing 512 vertices. Simulations 

were performed on 6 test problems using the four different ranges of mutation values on 

each of the 20 graphs given in Table 3.2. For each problem 5000 independent simulations 

were conducted and the number of mating events required to find the correct solution was 
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recorded for each of these 2,400,000 simulations. If more than 10,000,000 mating events 

were required, the simulation was recorded as having failed. Again for each graph and 

problem, the mean and standard deviation of the number of mating events to solution 

were used to construct 95% confidence intervals for the mean time to solution. Based on 

these calculations, two types of figures were created; Type I figures contain only graphs 

with a number of failures below 250, with the number of failures (if any) encountered by 

the graphs indicated within the brackets. Mean, standard deviation and confidence 

interval are calculated only for the successful experiments. Type II figures are used to 

include the results of failed simulations of the graphs on these problems, with the number 

of mating events for the failed simulation recorded as 10,000,000.   

 

 

Table 3.1 Graphs used in experiment I 

Graph      Index  Regularity Diameter Mean Degree 

Cycle C512 2 256 2 

Hypercube H9 9 9 9 

Complete K512 511 1 511 

Peterson-1 P256_1 3 129 3 

Peterson-3 P256_3 3 46 3 

Perterson-7 P256_7 3 22 3 

Peterson-17 P256_17 3 18 3 

Random Toroid Rtor07_1 No 19 7.445 

Toroid 16,32 T16_32 4 24 4 

Toroid 4,128 T4_128 4 66 4 

Toroid 8,64 T8_64 4 36 4 

Simplexified Z 4 19 4 

RegularTree512,3 RT1n512de 3,1 16 1.996 

RegularTree512,4 RT1n512d4 4,1 11 1.996 

RegularTree510,5 RT1n512d5 5,1 9 1.996 
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Table 3.2 Graphs used in experiment II 

Graph Index Name Vertices Diameter Degree 

Hypercube3 H3 8 3 3 

Cycle8 C8 8 4 2 

Complete8 K8 8 1 7 

Hypercube64 H6 64 6 6 

Cycle64 C64 64 32 2 

Complete64 K64 64 1 63 

Toroid 8,8 T8_8 64 10 4 

Peterson 32,7 P32_7 64 6 3 

RegularTree64,3 RT1n64d3 64 10 1.969 

Complete510 K510 510 1 509 

Hypercube9 H9 512 9 9 

Cycle512 C512 512 256 2 

Complete512 K512 512 1 511 

Toroid 4,128 T4_128 512 66 4 

Toroid 16,32 T16_32 512 24 4 

Peterson256,7 P256_7 512 22 3 

Peterson256,23 P256_23 512 16 3 

RegularTree510,5 RT1n510d5 512 9 1.996 

RegularTree512,3 RT1n512d3 512 16 1.996 

Simplexified Z 512 19 4 

 

3.3. EXPERIMENTAL RESULTS 

3.3.1. Experiment-I. This section contains results for all five problems. 

3.3.1.1 Ackley path function.  The hypercube graph using gray encoding had the 

 best performance (lowest mean time to solution) when compared to all the other graphs, 

including binary and gray representations. The gray encoding on the hypercube is 

followed by random toroid and the worst performance is shown from cycle graph (Fig 
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3.1). In the case of binary encoding the results are not statistically significant with the 

exception of the hypercube and complete graphs, which displayed poor performance (Fig. 

3.2). All the other graphs have shown fairly similar performance. In real encoding 

hypercube graph shows the best performance followed by the complete graph (Fig. 3.3). 

These highly connected graphs are followed by intermediately connected graphs and then 

sparsely connected graphs. 

 

 

 

Figure 3.1  Ackley path function, gray encoding 
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Figure 3.2  Ackley path function, binary encoding 

 

 

 

 

Figure 3.3  Ackley path function, real encoding 
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3.3.1.2 Dropwave function.  In the context of mean time to solution gray 

encoding performed better than binary and real encodings. In gray encoding highly 

connected graph hypercube has performed best followed by complete (Fig. 3.5). The 

pattern followed in gray encoding is highly connected graphs performing well followed 

by intermediately connected graphs and the worst performing graphs being sparsely 

connected graphs. In binary encoding, the intermediately connected simplexified graph 

performed best followed by another intermediately connected graph, the random toroid 

(Fig. 3.5).  Even though intermediately connected graphs performed best, the graphs did 

not show a clear pattern in performance on the basis of connectivity. Also, to be noted is 

that the highly connected graphs (hypercube, complete) performed poorly. Real encoding 

does not give statistically significant results due to very large confidence intervals (Fig. 

3.6).  

 

 

 

Figure 3.4  Dropwave function, gray encoding 
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Figure 3.5  Dropwave function, binary encoding 

 

 

 

 

Figure 3.6  Dropwave function, real encoding 
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3.3.1.3 Rastrigin function (4 variables).  In four dimensional Rastrigin function 

gray encoding has performed best, in which highly connected graphs have performed 

best. Highly connected graphs are followed by intermediately connected graphs and then 

sparsely connected graphs (Fig. 3.7). In binary encoding, highly connected graphs have 

performed badly. But rest of the graphs does not show a clear pattern in performance on 

the basis of connectivity (Fig. 3.8). Again real encoding provided statistically 

insignificant results (Fig. 3.9). 

 

 

 

Figure 3.7  Rastrigin function (four dimensions), gray encoding 
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Figure 3.8  Rastrigin function (four dimensions), binary encoding 

 

 

 

Figure 3.9  Rastrigin function (four dimensions), real encoding 
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3.3.1.4 Rastrigin function (six variables).  In the six dimensional Rastrigin 

function, again gray encoding performed best and highly connected graphs (such as the 

hypercube) performed best (Fig. 3.10). One interesting fact here is that the other highly 

connected graph (complete) had much poorer performance; it is essentially ranked 

between intermediately connected graphs and sparsely connected graphs. In binary 

encoding, sparsely connected graphs performed best (Fig. 3.11). Also a clear pattern is 

visible, where sparsely connected graphs are followed by intermediately connected 

graphs and then highly connected graphs. In case of real encoding, there are no 

differences due to very large confidence intervals contributing to statistically insignificant 

result (Fig. 3.12). 

 

 

                      

Figure 3.10  Rastrigin function (six dimensions), gray encoding 
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Figure 3.11  Rastrigin function (six dimensions), binary encoding 

 

 

 

Figure 3.12  Rastrigin function (six dimensions), real encoding 
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3.3.1.5 Schwefel function.  The hypercube graph in gray and real encoding and 

the random toroid graph in binary encoding are best performers for the Schwefel 

function. In gray encoding (Fig. 3.13) and real encoding (Fig. 3.14) highly connected 

graphs are  followed by  intermediately connected graphs  and  sparsely  

 

Figure 3.13  Schwefel function, gray encoding 

 

Figure 3.14  Schwefel function, binary encoding 
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connected graphs. Also sparsely connected graphs are well separated from other graphs. 

But in binary encoding there is no clear pattern in the graph performance (Fig. 3.15). 

 

 

 

Figure 3.15  Schwefel function, real encoding 

 

 

3.3.1.6 Shubert function.  In the Shubert function the hypercube graph 

performed best in gray and binary encodings, while in real encoding the random toroid 

graph performed best. In gray encoding, it is interesting to find the other highly 

connected graph; complete graph has performed poorly (Fig. 3.16). Similarly in the 

binary encoding the complete graph performed poorly (Fig. 3.17). In real encoding, both 

intermediately connected graphs and highly connected graphs performed well and 

sparsely connected graphs are grouped separately from other graphs (Fig. 3.18). 
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Figure 3.16  Shubert function, gray encoding 

 

 

Figure 3.17  Shubert function, binary encoding 

  



27 

 

 

 

Figure 3.18  Shubert function, real encoding 

 

 

3.3.1.7 Cladogram.  The graph performance information from this work was 

used as input to the UPGMA algorithm to construct a cladogram (Fig. 3.19) to display 

similarity between problems. The results of the cladogram give no absolute groupings, as 

the problems and representations were mixed, but there were some observable trends. 

There was some clustering by problem type, such as the Shubert function performance in 

both the binary and gray coding representations. However, the largest clustering was by 

representation type, as five of the six gray coding representations were located at the far 

right of the figure. The real valued representations were found to the right of the 

cladogram, with a larger separation between the problems. Finally, the binary 

representation problems were mainly spread through the middle section of the cladogram. 
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Figure 3.19  Cladogram 
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3.3.1.8 Summary.  For all of the problems investigated here, the real value 

representations typically had no statistically significant differences in performance. The 

only exceptions were the Schwefel (Fig. 3.15) and Shubert functions, where the sparser 

graphs performed worse than the highly connected graphs. The gray coding 

representation had several statistically significant results, and of the three representations 

it performed best. For the Dropwave, Schwefel, and Rastrigin problem in four 

dimensions, the most highly connected graphs performing best, followed by the 

intermediate graphs, and the graphs performing the worst were the sparse graphs (Fig. 

3.4). This remained true for the remaining three problems with the exception of the 

complete graph. For the gray coding Ackley path function, the complete graph had a 

performance similar to the intermediate graphs. For the gray coding six dimensional 

Rastrigin function, (Fig. 3.10) it performed worse than most of the intermediate graphs, 

although better than the sparse graphs. For gray coding Shubert function, the complete 

graph was one of the lowest performers, with a mean and confidence interval similar to 

the sparse graphs (Fig. 3.16). 

The complete graph continued to perform poorly for the binary representation of 

the Shubert and Dropwave functions (Fig. 3.5), although the trend for these functions 

indicates that the intermediate graphs performed best. The remaining binary 

representation problems had results that were similar to each other, with the sparsest 

graphs performing best followed by the intermediate graphs and the most connected 

graphs performing the worst (Fig. 3.11). The real representation has produced statistically 

insignificant results characterized by large confidence intervals. The most likely cause of 

this is the disruptiveness of the mutation operator on real representation.. As the 

disruptiveness of the mutation operator increased, the amount of variation between the 

problems increased, as did the variation in time to solution. This disruptiveness allows 

the algorithms to explore the fitness space more than the other representations. 

Exploration of fitness space is critical in achieving redundant solutions. As this 

exploration can lead to diversity, a second experiment was conducted to study about 

diversity in real encoding. Even though diversity is a very useful element, unnecessary 

diversity can have negative impact on the performance of the algorithm. So, it is 

important to study about the dynamics of diversity, by understand it can help in 
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generating diverse solutions. Adapting to these diverse solutions in the event disruptions 

of its operations, these diverse solutions can help in continuing normal activities and 

improving the resiliency of the system. 

3.3.2. Experiment-II.  There are several trends prevalent in the problems 

examined here. The mutation value +/- 50 has shown better performance in the context of 

mean time to solution. In addition, for each problem and graph combination the mean 

time to solution increased as the mutation value increased when the number of failures is 

disregarded, although the number of failures decreased. For this experiment, if a graph 

fails to converge more than 250 times, the graph is considered as unsuitable for the 

problem with those particular parameters. 

3.3.2.1 Ackley path function.  For mutation value +/-50, all graphs of population 

size 8 and 64 had 250 or more failures. Graphs with a population size 510 or 512 had no 

failures, with highly connected graphs performing best (Fig. 3.20). When the mutation 

value is increased to +/- 100 and +/- 150, the number of failures for graphs with 

population sizes of 8 and 64 exceeded 250. The highly connected graphs (Hypercube, 

then complete) with population sizes of 510 and 512 performed best, although there was 

an increase in mean time to solution. For mutation value +/- 200, all graphs with 

population size 64 and 8 has failures except three dimensional Hypercube (population 

size 8, highly connected) and six dimensional Hypercube (population size 64, highly 

connected) (Fig 3.21). But the mean time to solution increases for all the graphs, as the 

mutation value is increased, the mean time to solution increases and the highly connected 

graphs perform best. 

Except for the cases with a mutation value of +/- 200, population size 512 graphs 

were the best performers. This shows that this problem prefers an initial diversity through 

population size rather than mutation value and graphs. When the mutation value is 

increased, mean time to solution for population size 512 graphs increases. When the 

mutation value is increased to +/- 200, the six dimensional hypercube graph (population 

size 64, highly connected) becomes best performer. This is most likely due to the 

mutation operator now being able to range further across the search space making it 

easier for solutions to escape local optima. This allows the highly connected graphs to 

find solution pieces with the mutation operator and then benefit from quickly sharing 
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what they found. The larger population sizes are less likely to share this information due 

to the number of potential mating partners. This is evident from the increase in mean time 

to solution. 

 

Figure 3.20  Type-I Ackley path function, mutation 50 

 

 

 

Figure 3.21  Type-II Ackley path function, mutation 200 
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3.3.2.2 Dropwave function.  When solved with mutation value +/- 50, graphs 

with a population size of 8 performed best, followed by population size 64 and 512 (Fig. 

3.22). The best performing graphs for this problem were the eight vertex graphs. The 

impact of population size is evident from the distinct grouping of graphs based on 

population size. When mutation value is increased to +/- 100, the separation by 

population appears to remain consistent, although both confidence interval and mean time 

to solution increases so that no statistically significant results are given between the 

population size 8 and population size 64 graphs. This indicates that the required diversity 

is already being met, so an increase in mutation value only makes the solution harder to 

find (Fig. 3.23).  

These characteristics continue for mutation value +/- 150. When further increased 

to mutation value +/- 200, the 8 vertex complete graph fails more than 250 times but the 

only other statistically significant results is that the size 64 cycle graph performs better 

than the nine dimensional hypercube (Fig. 3.24). This problem is best solved with an 

initial population of size 8 and relatively low mutation value. Increasing the mutation 

value causes the mean time to solution and the confidence interval to increase. This is 

likely due to the larger mutation value creating too much disruption in the evolutionary 

mechanism as solutions jump from one fitness trough to another. The disruption at a 

mutation value of +/- 200 was sufficient to cause the population size 8 complete graph to 

fail more than 250 times, and likely would cause more failures as it approached re-

sampling of the search space. 
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Figure 3.22  Type-II Dropwave function, mutation 50 

 

 

 

Figure 3.23  Type-II Dropwave function, mutation 100 
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Figure 3.24  Type-II Dropwave function, mutation 100 

 

3.3.2.3 Rastrigin function (4 variables).  For mutation value +/- 50, highly 

connected graphs with population size 64 graphs performed best, followed by population 

size 512. The graphs with a population size of 8 all failed more than 250 of the runs. The 

graphs are grouped distinctly on the basis of population size (Fig. 3.25), and to a lesser 

degree by connectivity. As the highly connected graphs were preferred, the diversity 

needed for the problem was sufficient using a population size of 64. As the mutation 

value is increased, highly connected graphs of population size 8 no longer failed and 

displayed the best performance, followed by the graphs of population size 64 and the 

population size 512. The separation of graphs into population sizes also becomes much 

more distinct at this mutation value. When mutation value is increased further to +/- 150, 

graphs of population size 8 continues to perform better but with a significant increase in 

mean time to solution (Fig. 3.26). For mutation value +/- 200, mean time to solution and 

confidence intervals continued to increase for all the graphs and with the same distinct 

grouping of population sizes. This indicates that the problem is best solved in mutation 

value +/- 50, with the highly connected graphs of population size 64. When the mutation 

value is increased, the diversity introduction in population size 64 graphs becomes 

unnecessary increasing the mean time to solution. This increase in mutation value also 
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enables the population size 8 graphs to perform find solutions by allowing for a wider 

exploration of the search space. This indicates that the diversity created by mutation 

value is not necessary unless a small population size is used and diversity preserving 

graphs are not preferred for all mutation values. 

 

Figure 3.25  Type-I Rastrigin function (four dimensions), mutation 50 

 

 

Figure 3.26  Type-I Rastrigin function (four dimensions), mutation 150 
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3.3.2.4 Schwefel function.  For mutation value +/- 50, all graphs of population 

size 8 failed in more than 250 of their runs. Graphs with a population size of 64 

performed better, but they all had failures of between 1 and 6 runs while the graphs with 

a population size of 512 had no failures but a larger mean time to solution (Fig. 3.27). 

The 64 vertex cycle graph yielded best performance when the failures were considered, 

preserving diversity in the algorithm as the diversity created by population size and 

mutation were insufficient. As mutation value is increased to +/- 100, the graphs with a 

population size of 64 had fewer failures and continued to outperform the population size 

512 graphs, although with a significant increase in mean time to solution. Again, all 

graphs with a population size of 8 failed more than 250 times. The sparsely connected 64 

vertex cycle graph was replaced by the highly connected six dimensional hypercube (Fig. 

3.28). At mutation value +/- 150, graphs with population size 64 continues to perform 

best, but again with a high increase in mean time to solution. 

When the mutation value was increased to +/- 200, none of the population size 8 

graphs failed and they became the best performers, although mean time to solution again 

increased (Fig. 3.29). This shows that a population size of 8 has insufficient diversity to 

find the solution without a large mutation value (over +/- 150) to add diversity. It is 

interesting to note that when the number of failures and the mean time to solution are 

considered for the Schwefel function with a low mutation value, the sparse graphs 

outperformed the more connected graphs. This could indicate a trade off point between 

diversity types for these problems. As the mutation value is increased, the diversity from 

initial population and mutation value is sufficient for graphs with a population of size 64, 

and so they were preferred the larger population size graphs. When mutation is at +/- 200, 

all the population size 8 graphs start to converge with no failures, demonstrating another 

tradeoff between the types of diversity necessary for the problem to be solved. This 

shows that necessary diversity for this problem is a small population size of 8 and a 

higher mutation value. In addition, a sparsely connected graph may also perform well.  
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Figure 3.27  Type-I Schwefel function, mutation 50 

 

 

 

Figure 3.28  Type-I Schwefel function, mutation 100 
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Figure 3.29  Type-I Schwefel function, mutation 100 

 

 

3.3.2.5 Shubert function. As highly connected graphs are preferred the  diversity 

needed for this problem is already contributed by the initial population and mutation 

value (Fig. 3.30). When the mutation value was increased to +/- 100, the mean time to 

solution of all population size 64 increased, although there were fewer failures in the 

graphs with a population size of 8 (Fig. 3.31). This trend continues when the mutation 

value is increased to +/- 150 (Fig. 3.32). When the mutation value was increased to +/- 

200, the graphs with a population size of 8 had fewer failures, with the sparser graph 

having the fewest. This is likely due to the required diversity being augmented by the 

increase in mutation value (Fig. 3.33). 
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Figure 3.30  Type-I Shubert function, mutation 50 

 

 

 

Figure 3.31  Type-I Shubert function, mutation 100 
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Figure 3.32  Type-I Shubert function, mutation 150 

 

 

 

Figure 3.33  Type-I Shubert function, mutation 200 
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3.3.2.6 Summary.  The problems in this experiment show that the type of 

diversity introduced by a diversity control mechanism has a strong influence on time to 

convergence to global optima. Using the same representation, this set of problems 

responded differently to different types of diversity. For example, the Ackley path 

problem requires a high initial diversity, while the Dropwave function needs low initial 

diversity and a relatively low mutation value. From the problems used in the study, only 

the Ackley path problem prefers a relatively high initial diversity through a population 

size of 512 while the others prefer population sizes of 8 or 64. When we consider the runs 

with a population size of 8, the solution for the Ackley path problem was found either 

quickly or not at all. This is likely due to a need for certain building block components 

which would need to be found by mutation if not in the initial population. If these pieces 

did not exist, the population could be taken over by solutions with local optima and 

impeding convergence. Once the mutation value was increased sufficiently to aid in 

developing these pieces, the small population graphs started to outperform the large 

population graphs, although the required number of mating events increased as the 

mutation value increases. In all of the problems, diversity preservation provided by 

graphs has a smaller effect, typical of this problem type [46].  From the results of 

experiment-I, it is clear that real encoding explores more than gray and binary encoding 

and is more likely to generate diverse solutions. This redundancy in solutions can be 

selected in place of the existing solution or design and help in continuing the operations 

of a system in the event of an accident. From experiment-II the importance of the extent 

of the diversity in the population is evident. It is critical to have moderate level of 

diversity as unnecessary diversity may lead in to undesirable performance of the 

algorithm. 
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4. IMPROVING TRAVELLING SALESMAN PROBLEM SOLUTION 

DIVERSITY USING GRAPH BASED EVOLUTIONARY ALGORITHMS 

4.1. BACKGROUND 

The traveling salesman problem (TSP) is one of the widely known non-

deterministic polynomial time (NP) combinatorial optimization problem [47]. A salesman 

travels to a set of cities, visiting each only once. The solution is to find the shortest 

distance to visit each of these cities and then return to the starting city. Links of cities that 

are good in the short term do not necessarily lead to optimal complete routes. Many 

problems in science, engineering, bioinformatics, and scheduling can be formulated as 

traveling salesman problems. A simple explanation of a supply chain network is 

explained in this work. Supply chain models can be evaluated using traveling salesman 

problem, where each city can be considered as a warehouse or customer. The problem 

faced by the supply chain model is the vulnerabilities in the routes. The vulnerabilities 

can be caused by various problems like consequences from natural disasters, road 

conditions, etc. These can result in damages which can be immense and may cripple 

entire sections of the network, causing extensive financial damage. One of the methods to 

mitigate these risks is to build a resilient supply chain model capable of rerouting the 

transportation vehicles to circumvent these occurrences. One method to build a resilient 

supply chain network is to generate multiple good solutions and provide methods to 

transition between these solutions. This gives an opportunity to reroute the network if a 

hazard is encountered in the network. These multiple solutions do not add or delete cities 

but supply alternative solutions to the same problem. A similarity measure based on 

transposition of cities is used to determine the degree to which routes differ.  

Evolutionary algorithms have been applied on TSP obtaining differing levels of 

success. Some of the earliest uses of evolutionary algorithms on TSP were by Goldberg 

et al. [48] and Grefenstette et al. [49]. Follow on research efforts using evolutionary 

algorithms have been applied to improve the performance and running time of TSP. 

various studies on the representation of TSP, crossover, mutation operators have been 

studied [29, 49, 51, 52, 53]. These have given several insights to the use of EAs for 

solving TSP. Improvements are continually made in EAs to solve TSP. Recently Wang et 
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al. proposed an improved greedy algorithm by combined with local search methods for 

TSP [76]. A memetic algorithm was used by Liu [75]. For some of the other recent 

research on approaching TSP using EAs refer to [77, 78, 79, 80] 

Due to their flexibility and scalability EAs are used to improve resiliency in some 

domain specific systems. Hybrid genetic algorithm was used by He et al. [71] designed to 

generate back-up routing in telecommunications network based on shortest path problem. 

Abdullah et al. used hybrid genetic algorithms to design resilient high speed 

communication networks [72, 73]. Evolutionary algorithms were used in managing traffic 

in internet networks [74].  

 

 

4.2. EXPERIMENTAL DESIGN 

TSP is a problem in which there are N cities and a salesman must travel to all the 

cities, but only once and returns to the city where the salesman started. For each pair of 

cities the distance is known. Tour length, the order of the cities in which the salesman 

visits the cities, must be as small as possible. Let G = (V, E) be a complete, weighted 

graph. A Hamilton cycle of graph G is a cycle graph that connects each vertex of the 

graph only once. Each vertex can be considered as a city and the weights on the edges as 

distance or cost for traveling between the two cities. The traveling salesman problem is to 

find the Hamilton cycle with the minimum weight. TSP can be represented in various 

methods. The method used in this study is path representation, where i= (1, 2...N), a 

positive integer represents a city. It is perhaps one of the natural forms of representation. 

A tour 2-3-1-5-4-6 is represented as T= (2 3 1 5 4 6). Each city can be located in a two 

dimensional space using Euclidean co-ordinates. The distance between two cities can be 

found using Euclidean distance formula. Sum of all the Euclidean distances in a tour T 

gives the tour length. 

Real value encoding is used as representation in evolutionary algorithm to match 

with the path representation of TSP. Creating initial population has two steps. First the 

population is generated using nearest neighbor algorithm. A greedy algorithm which 

selects the nearest unvisited city to the current city is used. In the next step a 2-optimal 

algorithm is applied to the population which was generated earlier using nearest 
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neighbor. Although the basic moves for 2-opt were first suggested by Flood [54], it was 

proposed by Croes [55] as an algorithm to be used on TSP. It is a local search algorithm 

where typically two edges are deleted from the tour and the nodes are reconnected in 

other possible positions that still yield a valid tour. This step is done only when the 

reconnected new tour is shorter. Continue removing and reconnecting the edges until no 

improvements can be made in the tour length. Now the tour is 2-optimal. Using 2-optimal 

algorithm will result in a tour length less than 5% above the Held-Karp bound [56]. The 

crossover operator used in partially mapped crossover (PMX). The crossover builds by 

swapping a subsequence of a tour between the two parents. The rest of the offspring are 

constructed from the original parents for which there is no conflict in the cities. For more 

details refer to [57]. Mutation rate is 100% and mutation operator is a simple form of 

mutation, swapping of two cities selected uniformly random. This simple form of 

mutation may not result in high disruptiveness to the algorithm.  Graphs used in this 

study can be divided on the basis of number of vertices. Eight different types of graphs 

are used with a combination of different vertices creating 34 different graphs (Table 4.1). 

The number vertices used are 8, 64, 512, 1024. 

 

Table 4.1 Graphs used in TSP experiment 

Graph Index Vertices Diameter Degree 

Hypercube3 H3 8 3 3 

Cycle8 C8 8 4 2 

Complete8 K8 8 1 7 

Hypercube64 H6 64 6 6 

Cycle64 C64 64 32 2 

Complete64 K64 64 1 63 

Toroid 8,8 T8_8 64 10 4 

Peterson 32,7 P32_7 64 6 3 

Regular Tree 64,3 RT1n64d3 64 10 1.969 

Hypercube9 H9 512 9 9 

Cycle512 C512 512 256 2 
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Table 4.1 Graphs used in TSP experiment continued. 

Complete512 K512 512 1 511 

Toroid 4,128 T4_128 512 66 4 

Toroid 16,32 T16_32 512 24 4 

Toroid 8,64 T8_64 512 36 4 

Peterson 256,1 P256_1 512 129 3 

Peterson 256,3 P256_3 512 46 3 

Peterson 256,7 P256_7 512 22 3 

Peterson 256,17 P256_17 512 18 3 

Peterson 256,23 P256_23 512 16 3 

Peterson 256,23 P256_23 512 16 3 

RegularTree510,5 RT1n510d5 512 9 1.996 

RegularTree510,4 RT1n510d4 512 11 1.996 

RegularTree512,3 RT1n512d3 512 16 1.996 

Simplexified Z 512 19 4 

Random Toroid RTor07_1 512 19 7.445 

Hypercube 10 H10 1024 10 10 

Cycle1024 C1024 1024 512 2 

Peterson 512,1 P512_1 1024 257 3 

Peterson 512,3 P512_3 1024 88 3 

Peterson 512,7 P512_7 1024 42 3 

Peterson 512, 17 P512_17 1024 25 3 

Toroid 16, 64 T16_64 1024 40 4 

Toroid 4, 256 T4_256 1024 130 4 

Toroid 8, 128 T8_128 1024 68 4 

 

The two TSP problems used in this study each contain 100 cities. For each of the 

34 graphs 100 independent simulations of the two problems were computed and the 

ending criterion for each run is 10000 mating events. Once the ending criteria were 

reached the loop was terminated and the highest fitness tour of that particular simulation 
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is recorded. After 100 simulations, the first tour recorded was selected as a reference and 

compared with the rest of the tours. The tours which were different from the reference 

tour were noted and the reversal distance [58] between the reference tour and the tour 

under comparison was calculated and recorded. 

TSP solutions can be represented as permutations of tours. Consider tours Ta and 

Tb, where Ta = (Ta1 Ta2 Ta3.......Tan) and Tb = (Tb1 Tb2 Tb3......Tbn). In this notation Tai is 

denoted Ta (i). Typically, reversal of an interval [i, j] is the permutation Ta = (j j-1 ..... i). 

To calculate the reversal distance given permutations Ta and Tb, find a series of reversal 

R1, R2 ...Rn such that Ta · R1 · R2 · ····Rn = Tb, and where n is minimum. In general, the 

reversal distance between Ta and Tb are equal to the reversal distance between Ta
-1 · Tb 

and the identity permutation i, where Ta
-1 denotes the inverse of Ta. Next, the input is 

taken as Π = Ta
-1 · Tb and its reversal distance from the identity matrix i is calculated. 

After each reversal, the number of transpositions required for that particular reversal is 

noted and continued until the total reversal distance is computed. Here transposition is 

deletion and reinsertion of a edge from its original site. The number of transpositions 

between the permutations gives a dissimilarity measure between the two tours. 

 

 

4.3. EXPERIMENTAL RESULTS 

The two problems used in the study are kroA_100 and kroC_100 from TSPLIB 

[59] with optimal distance at 21282 and 20749 respectively. The columns in Tables 4.1 

and 4.2 represent: A – Percentage of difference between the optimal distance and the 

distance of the reference tour, B – Number of dissimilar routes produced by that graph, C 

– Percentage of difference between the distance of the reference tour and the best tour 

distance produced by that graph, D - Percentage of difference between the distance of the 

optimal tour and the best tour distance produced by that graph, E – number of 

transpositions required to change the reference tour into the best tour found by the graph. 
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4.3.1. KroA.  Of all 34 different graphs only 16 graphs gave dissimilar solutions 

indicating that all of the other graphs found the same best tour in every simulation. Only 

2 graphs (C1024, T16_64) has generated diverse solutions in 1024 vertices group. In 

graphs with 512 vertices five graphs generated diverse solutions. They are complete 512, 

Hypercube 9, Peterson 256_7, Peterson 256_17 and Toroid 8_64. All the graphs with 

vertices 64 and 8 produced diverse solutions. The number of dissimilar solutions 

generated from graphs with vertices 1024 and 512 is 1. For graphs with 64 vertices the 

number of dissimilar solutions is one of 4, 5 and 6. All the graphs with eight vertices 

have generated 29 different solutions. The number of different solutions generated 

increases by the decrease of number of vertices of the graph. 

 

 

Table 4.2 Results of KroA 

Graphs A B C D E 

C1024 1.932 1 0.11 1.81 27090 

T16_64 1.932 1 0.11 1.81 27090 

K512 1.932 1 0.12 1.8 186 

K64 1.932 5 0.06 2 22971 

K8 3.198 29 1.22 1.93 24060 

C64 1.932 6 0.06 2 22971 

C8 2.471 29 0.65 1.8 11484 

H3 2 29 0.06 1.93 23175 

H6 2 4 0.06 1.93 23175 

H9 1.932 1 0.12 1.8 186 

P256_17 1.932 1 0.11 1.81 27090 

P256_7 1.932 1 0.18 1.74 23385 

P32_7 1.932 4 0.06 2 22971 

RT1n64d3 2 5 0.06 1.93 23175 

T8_64 1.932 1 0.11 1.82 27090 

T8_8 1.932 4 0.11 1.82 22971 
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4.3.2. KroC.  All the graphs with vertices 8 and 64 have produced different 

solutions and the rest of the graphs did not. For this instance, the number of dissimilar 

routes for graphs with 64 vertices was between 3 and 6. The complete graph with 8 

vertices produced 26 dissimilar solutions and the three dimensional hypercube and cycle 

graph with eight vertices produced 30 dissimilar solutions. Again the number of 

dissimilar solution increases with the decrease in the number of vertices of the graphs.  

 

 

 

Table 4.3 Results of KroC 

Graphs A B C D E 

K64 1.429 5 0.21 1.64 23928 

K8 4.806 26 3.22 1.42 44700 

C64 1.429 3 0.21 1.64 23928 

C8 1.429 30 0.21 1.64 23928 

H3 5.674 30 4 1.42 34302 

H6 1.647 4 0.21 1.42 22272 

P32_7 1.429 3 0.21 1.64 23928 

T8_8 1.429 6 0.2 1.22 12 

RT1n64d3 1.429 3 0.21 1.64 23928 
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4.3.3. Summary.  The use of GBEAs has produced diverse tours in both 

theproblems, kroA and kroC. In both the problems the number of dissimilar routes 

increases with the decrease in population size. This may due to the emphasis of the 

disruptivness created in the algorithm. In high polation size, this disruptivness is 

undermined, but in low population size it will be oppsite. A small disruptivess can be 

enhanced due to a very less choice of population members. The number of transpositions 

can be take as a metric which can be used to determine the difference between tours. The 

graphs with fewer vertices produced more tours that are dissimilar. In both these 

problems the graphs which produced the best tours among the graphs are the 

intermmediately connected graphs. 
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5. CONCLUSIONS AND FUTURE WORK 

Resiliency is improved by redundancy and redundancy can be achieved in system 

design by using GBEAs to create diverse designs. The ability of GBEAs to control 

solution diversity allows the system design to be provided with several elements that 

helps to improve resiliency. One of the ways to achieve resiliency is to improve the 

adaptability of the system, and adaptability can be improved by redundancy.  

Redundancy in system design is the having multiple designs of the system. Adaptability 

can be implemented by placing an agent within the system to take advantage of the 

diverse solution set. It can be a software agent or a human agent capable of switching to 

the other design in an event of disruption. GBEAs are used to improve redundancy in 

system design by generating diverse solutions. To obtain the best results some important 

characteristics of GBEAs impacting diversity control, such as representation, must be 

considered. 

Representation is the data structure used along with the choice of variation 

operators. This plays a significant part in the outcome of the results. In the experiment-I 

gray, binary and real encodings are used on the same problem. When compared with the 

gray and binary encoding, the real encoding has statistically insignificant results, 

although two characteristics are discernable in the real encoding results. The mean 

number of mating events varied widely, producing large confidence intervals and a high 

mean number of mating events. These two characteristics can be attributed to the element 

of exploration in the algorithm, where the algorithm is searching for building blocks to 

find the solution.  The most likely cause of this is the disruptiveness of the mutation 

operator in the real valued representations compared to the gray coding and binary 

encoding. As the disruptiveness of the mutation operator increased, the amount of 

variation of number of mating events between the problems increased, as did the 

variation in time to solution. This phenomenon improves the level of diversity in the 

solutions. Diversity in solutions is resulted from the diversity in the population. 

For some problems, too much diversity in the population can hinder the 

performance of the algorithm, so it is important to control the diversity in the population. 

By tuning the mutation value, the diversity in the population can be controlled to an 
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extent. As real encoding exhibits the element of exploration more than the other two 

representations it is further studied. Diversity is created initially by generating a random 

population. As the algorithm progresses diversity is induced through the mutation 

operator or preserved by a mechanism incorporated in the algorithm, in this case the use 

of GBEAs. High mutation value and rate may bring unnecessary diversity in the solutions 

and increase the time to solution very high.  The requirement of diversity is mainly based 

on the fitness landscape of the problem. From the results of experiment-II it is evident 

that a trade off can be seen in each problem between diversity from population size, 

mutation value, and diversity preservation. For these problems, graphs come into play 

only when the diversity offered by the population size and mutation value is inadequate. 

In addition, different problems require different combinations of diversity, whether 

initial, injected, or maintenance, and so a single approach will not be adequate to provide 

the necessary diversity to all problems. 

To better understand the results of experiment-I and II, consider the traveling 

salesman problem. It is a problem which is similar real encoding. The results from TSP 

experiment show that the diversity in the solution is mainly offered by the population 

size. As the number of vertices decreases the rate of information shared between the 

vertices increases. This allows for the evolving tours to quickly combine building blocks 

to form a high performance solution, generating diverse solutions in the graphs with 

lower vertices. As the number of number of vertices increases rate of information sharing 

decreases and it is more difficult to form the necessary building blocks. This can be seen 

in the column B in the Tables 4.2 and 4.3. Also to determine the diversity in the solutions 

the number of transpositions between two paths can be taken as a metric which can be 

used to determine the difference between tours. The graphs with fewer vertices produced 

more tours that are dissimilar. In both these problems the graphs which produced the best 

tours based on the distance are the intermediately connected graphs.  This study shows 

that the diversity of the population is very important in generating diverse solutions. The 

diversity in solutions is a result from the appropriate combination of representation, 

mutation value and graphs. These diverse solutions increase the redundancy of the system 

design. In an event of accident, one of the diverse solutions can be used which allows the 

system to survive and recover from the accident. In order to use the other good solution, 
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the system must be adaptable. This adaptability can be realized by an agent based 

behavior, either by a human or software agent, sequentially improving the resiliency of 

the system. 

Additional TSP problems with varying number of cities can be analyzed to better 

understand the working of this algorithm. This can result in changing of certain 

parameters as the number of cities varies. An improvement to the present algorithm can 

be made by using k-opt method, which will improve the quality of solutions. To 

understand more on generating diverse solutions using GBEAs, other parameters have to 

be studied. Mainly, the combined effect of representation and population size can be 

analyzed. Also the exploratory nature of other forms of representation has to be 

investigated; as all the real world problems cannot be represented using real valued 

encoding.  
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APPENDIX 

GRAPH THEORY OVERVIEW 

A combinatorial graph or graph (G), is a collection of vertices (V (G)) and edges 

(E(G)) where E(G) is a set of unordered pairs from V(G).  Two vertices of the graph are 

neighbors if they are members of the same edge.  The degree of the vertex is the number 

of edges containing that vertex.  If all vertices in a graph have the same degree, the graph 

is said to be regular, and if the common degree of a regular graph is k, then the graph is 

said to be k-regular.  If you can go from any vertex to any other vertex traveling along 

vertices and edges of the graph, the graph is connected.  The diameter of a graph is the 

longest that the most direct path between any two of the vertices can be, or in other 

words, the shortest path across the graph.  A graph used to constrain mating in a 

population can be called the population structure.  The general strategy for graph based 

evolutionary algorithms is to use the graph to specify the geography on which a 

population lives, permitting mating only between neighbors, and finding graphs that 

preserve diversity without hindering progress due to heterogeneous crossover.  

Additional information on combinatorial graphs can be found in (West 1996) 

List of graphs 

In this section, the graphs used in this study are defined, as well as those 

necessary to properly describe those used. 

Definition 1 The complete graph on n vertices, denoted Kn, has n vertices and all 

possible edges.   

 

Definition 2  The n-cycle, denoted Cn, has vertex set Zn.  Edges are pairs of vertices that 

differ by 1 (mod n) so that the vertices form a ring with each vertex having two 

neighbors.   

Definition 3  The n-hypercube, denoted Hn, has the set of all n character binary strings as 

its set of vertices.  Edges consist of pairs of strings that differ in exactly one position.   

Definition 4 The n x m-torus, denoted Tn,m, has vertex set Zn x Zm.  Edges are pairs of 

vertices that differ either by 1 (mod n) in their first coordinate or by 1 (mod m) in their 

second coordinate, but not both.  These graphs are n x m grids that wrap (as tori) at the 

edges.   
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Definition 5 The generalized Petersen graph with parameters n, k, denoted Pn,k, has 

vertex set 0,1,…,2n-1.  The two sets of vertices are both considered to be copies of Zn.  

The first n vertices are connected in a standard n-cycle.  The second n vertices are 

connected in a cycle-like fashion, but the connections jump in steps of size k(mod n).  

The graph also has edges joining corresponding members of the two copies of Zn.   

Four classes of random graphs were added to the graph set in hopes that more 

insight into the usefulness of the technique.  The first three graphs are generated using 

edge moves (Ashlock, Walker and Smucker 1999) in a randomized algorithm that 

corresponds to a type of random graph (a probability distribution on some set of graphs).   

 

Definition 6 An edge move is performed as follows.  Two edges {a, b} and {c, d} are 

found that have the property that none of {a, c}, {a, d}, {b, c}, or {c, d} are themselves 

edges.  The edges {a, b} and {c, d} are deleted from the graph, and the edges {a, c} and 

{b, d} are added.  Notice that edge moves preserve the regularity of a graph if it is 

regular. 

 

Random Graphs 

The random graphs were generated by randomly placing vertices on a unit torus 

(a unit square that is wrapped at the edges).   In order to place a control on the degree of 

the graph, this distance was varied with the population size.  Starting with a regular 

graph, 3000 edge moves are performed on vertices selected uniformly at random from 

those that are valid edge moves.  Initially, the random graphs were labeled according to 

the degree of the graph, but since the degree of the graphs may change when the number 

of vertices is changed, these numbers are now merely labels, only necessarily showing 

the degree of the graphs for population size of 512.  For 3-regular graphs, the Petersen 

size one graph was the starting point.  For 4-regular graphs, the starting point was Tn,m 

graph with the largest radius for that population size (ie T4,8 for 32 vertices, T8,m for 64 

and 128 vertices, and T16,m for 256 vertices and above), and the 9-regular graph was 

started with a hypercube graph.  These graphs are denoted Rt (n, k, i) in this study, with n 

being the number of vertices, k being the degree for population size 512 (as described 

above), and i is the instance of the graph. 
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For the final set of three random graphs, a number of points equal to the 

population size were placed on a unit torus.  Edges were created with these points if they 

were within a certain distance from each other, varying for each population size, as 

outlined in Table 3.  These values were selected to try to maintain a roughly equal degree 

of graph for each population size.  After generation, the graph was checked to see if it 

was connected, and rejected if the test failed.  These graphs are denoted RT(r,i), where r 

is the maximum separation from another point where an edge would still be created, and i 

is the instance of the graph.   
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