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Fig. 2. Detection performance of Carlyle narrow-band Wilcoxon detector 
for Pf - 10e3 with M  as parameter. Broken-line curve-optimum 
parametrtc detector. 
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Fig. 3. Detection performance of Carlyle narrow-band Wilcoxon detector 
for P, 3 10-e with M  as parameter. Broken-line curve-optimum 
parametrtc detector. 
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Fig. 4. Solid line-equivalent loss in signal-to-noise ratio for Pd = 0.5 
from Figs. 2 and 3. Dash-dotted line-asymptotic loss of 0.2 dB. Broken 
line-corresponding results for the Helstrom version of the detector. 
Additional results for Pr = 10-l and IO-* are also shown for the 
Carlyle version of the detector. 

The asymptotic loss in this case depends  on  the particular 
values of Pd and  Pf assumed.  For large M the detector given by  
(13), (!4), and  (IO) essentially adds  a  bias to the absolute value 
of each  of the components  tcw’ and  tsw’ before squar ing and  
summing. The  resulting effect will be  similar to the loss resulting 
from approximating an  envelope detector by  the sum of the 
absolute values of the two quadrature components.  This loss has  
been  found in recent work by  Nathanson and  Luke  [7] to be  
about  0.5 dB for P,- =  10m3 and  about  0.7 dB for Pf =  1Qp6.  
Adding the asymptotic loss of 0.2 dB for the W ilcoxon detector 
to these values, the asymptote of the curves in Fig. 4  for the 
Helstrqm version of the detector are estimated to be  0.7 and  
0.9 dB, respectively. 

V. CONCLUSIONS 

The detection performance for a  coherent  train of narrow-band 
signal pulses in stationary Gaussian noise has  been  determined 
for two adaptat ions of the nonparametr ic W ilcoxon test. It has  
been  shown that the equivalent loss in signal-to-noise ratio for 
the best of the two detectors is asymptotically within 0.2 dB of 
the optimum. When  the number  of observat ions is M = 50, the 
loss for Pd = 0.5 and  Pf =  10m6 is about  1  dB, and  it increases 
rapidly as  M decreases further. Thus, these results demonstrate 
the inadequacy of asymptotic results in predicting detector per- 
formance for a  small number  of observations. 

The  major complication in a  practical implementation of the 
W ilcoxon detector is the requirement for a  ranking of the 
absolute values of the quadrature observations. This requirement 
is avoided in the narrow-band adaptat ion of the sign detector at 
the cost of an  additional loss of l+ - 2  dB.* 

s These detailed results will be presented in a subsequent paper 
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Reconstruction of Finite Duration Signals 

JOHN A. STULLER 

Absrracr-The problem of reconstructing a finite-duration finite- 
energy signal that has been band limited and sampled is considered. 
An interpolation formula is derived that, in principle, permits perfect 
signal reconstruction in the noiseless case provided only that the sampling 
frequency exceeds the cutoff frequency of the band-limiting filter. The 
degradation introduced by measurement noise on the samples is evaluated. 

In recent years much attention has  been  given to the problem 
of reconstructing a  finite-duration finite-energy (FDFE) signal 
that is observed through an  ideal low-pass filter. The  original 
analytical work in this subject is apparent ly due  to Slepian and  
Pollak [I], who  showed that this reconstruction could be  
performed without error by  expanding the time-limited signal 
into a  series of prolate spheroidal wave functions. Thus: I) 
the prolate spheroidal wave functions form a  complete set in the 
class of FDFE functions; 2) they are the eigenfunct ions of the 
transformation descr ibed by  band  limiting the time-limited 
signal; and  3) each  eigenfunction is associated with a  nonzero 
eigenvalue. Hence,  by  represent ing the observed band-l imited 
waveform by a  prolate spheroidal wave-funct ion expansion 
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(which is also complete in the class of band-limited functions), 
the filter input signal may be obtained by dividing each coefficient 
in the expansion by the corresponding eigenvalue and time 
limiting the result. Barnes [2] described how this technique 
applies to the problem of object restoration in a one-dimensional 
diffraction-limited imaging system. Rushforth and Harris [3] 
extended the analysis to include both diffraction and noise. An 
alternative method of reconstructing the finite-duration signal 
is described by Harris [4]. 

The purpose of this correspondence is to point out that by 
combining the series described in [l]-[3] with certain time- 
domain sampling arguments, one may obtain an interesting 
interpolation rule for reconstruction of an FDFE signal from 
equally spaced samples of the observed band-limited waveform. 
We show that in the noiseless case perfect reconstruction of the 
FDFE signal can be obtained when the sampling rate exceeds 
one-half the minimum rate specified by the Shannon-Whittaker 
interpolation formula [5]. The limitations imposed by measure- 
ment noise are also described. 

Assume that an FDFE signal x(t) having duration T is put 
through an ideal low-pass filter having cutoff frequency W  hertz; 
i.e., 

x(t) = x(t) rect (t/7) (1) 

If W  < fO < 2W then, of course, the spectral components in 
z(t) will be aliased for frequencies exceeding JO - W. Com- 
ponents of z(t) associated with frequencies less than JO - W  
are identical, however, to those of y(t) in this range. We now 
consider the problem of reconstructing x(t) from the samples 
{r(mta)}. For the moment we consider the noiseless case. Then 
we generalize the result to include the effects of noise. 

NOISELESS DATA 

In the noiseless case, z(t) and v(t) are equal. We form a new 
function 

s 

+oO 
z’(t) = z(t)2f, sine [2f,(t - r)] dr, (11) 

-m 
where 

f _ 
i 
fo - w, W<f,< 2w 

1 
W, 2w 5 f& (12) 

Note that this step amounts to passing z(t) through an ideal 
low-pass filter having cutoff frequency fi Equation (12) defines 
fi in such a way that only those spectral components in z(t) 
that are identical to those of y(t) will appear in z’(t). Since y(t) 
is itself the result of ideal low-pass filtering of x(t), we have 

with tTl2 

s 

tTl2 z’(t) = x(z)2f, sine [2fi(t - z)] dr. 
x*(r) dt = E < 00 (2) s -T/2 

-T/2 

and 
In addition, it follows from (7) and (11) that 

Y(t) = 
s 

tTl2 
x(z)2W sine [2W(t - T)] dz. (3) z’(t) = +f y(mto)2fito sine [2f,(t - mt,)]. 

-T/2 In-m 

The observed quantity considered here is not y(t) as discussed Now form an approximation x,Jt) to x(f) given by 
in [l]-[3], but rather noisy samples r(mto) of y(t): 

r(mt0) = YWO) + nW0>, m = 0, *I, +2;... (4) 
XNtf) = “r: xi4iCr), If/ < T/2 

i=O 

The sampling rate in samples per second is 

fo = l/to. 

with 

s 

+Tl2 

(5) 
xi = x(f)di(t 

-T/2 
(16) 

Although the measurement noise n(t) may have its physical such that 
origin in the detector that samples y(t) and therefore may be lim xN(t) = x(t), It/ 
defined only for t = mt,, we extend the definition of n(t) to N+CC 

< T/2. (17) 

(13) 

(14) 

(15) 

include all values of its argument by setting 

(6) 

Similarly we set 

f-2 t - ml, z(t) = z y(mto) smc ~~ 
In=--4 L I to 

(7) 

and 

r(t) = mI<;, r(mt,) sine ’ --rornto 
L I 

= z(t) + n(t). (8) 

Note that if f. exceeds 2 W  then the Shannon sampling theorem 
[5] is satisfied for perfect reconstruction of y(t) from the 
Mmtdl. Thus 

z(t) = v(t), f. > 2w. (9) 

We do not so restrict f. however, but only require that f. exceed 
K 

fo ’ W. (10) 

The di of (15) are chosen to be a complete orthonormal set 
over the interval It/ < T/2. In particular we choose the di to 
be the solutions to the integral equation 

s 

tTl2 

c,di(T)2fi sine [2f,(t - 5)] ds = d,&(t). (18) 
-T/2 

As discussed by Rushforth [3], the solutions to (18) are given 
by 

dt(C,X) = [~oi(C,~/ST)l~i(c)]~ (19) 
where 

s 

tTl2 

[“i(c>12 = [Soi(c,t/+T)]” dt. (20) 
-T/2 

Soi(c,r/cc) is the angular prolate spheroidal wave function in the 
notation of Flammer [6] and c = nfiT. By this normalization 
the & have the properties 

s 

tTl2 

4i(t)Ij(t) dt = 6ij (21) 
-T/2 

s 

+a, 

4i(t)dj(t) dt = fiij/J-1 (22) 
-m 
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with 
It,(C) = (2C/7r) [ROicl’(C l)]’ , 9 (23) 

where R,,“‘(c,l) is the radial prolate spheroidal wave function 
in Flammer’s notation. Substitution of (15) into (13) and use of 
(18) then yields an approximation to z’(t), 

where 

Hence 

zN’(t) = i zi’4i(t), (24) 
i=O 

zi ’ = Xi&. (25) 

, 1 Xi = zi = -.. 

f 

+TI2 

Izi li -T/2 

z’(t)&(t) dt. (26) 

To express the xi in terms of the observed samples y(mto) we 
introduce (14) into (26) and again simplify by (18). The result is 

Xi = Y Y(mto)di(mto)lo. 
In=--03 

Substitution of (27) into (15) gives the final result 

(27) 

N +‘X 

X,(t) = to 72 I2 Y(mto)di(mfo)4i(t), It I < T/2, (28) 
i=O WI-m 

where f. satisfies (10). In the limit, (17) applies: 

X(t) = 10 Z ‘27 Y(mto)4i(mto)di(t), ltj < T/2. (29) 
i=O m=-cc 

Equation (29) states that x(t) may be reconstructed exactly 
from knowledge of noiseless samples of its band-limited version 
y(t) (3) provided that the samples occur at a rate& exceeding the 
highest frequency component in y(t). This result is in sharp 
contrast with the well-known Shannon rate [5] and is of course, 
due to our consideration of the restricted set of FDFE signals. 
For finite N, the orders of summation may be interchanged in 
(28), giving the interesting result 

xN(t) = Y y(mt0Ydt,mt0), ltl < T/L (30) 
In=-cc 

where 

hN(t,mto) = t0 ,io di(t)Mmto). (31) 

For infinite N, the sum over m must be taken first as in (29). 

NOISY DATA 

If now our measured data are not {y(mt,)} but rather the 
{r(mto)} of (4), then use of (28) [with r(mto) substituted for 
y(mto)] gives a noisy estimate ZN(t) of xiv(t) 

where 
&V(t) = XN(t) + eN(t), IfI < T/L (32) 

e,(t) = t0 i y  ~~(mtO)~i(mto)bi(t), ItI < T/2. (33) 
i=O m=-cc 

We assume that the noise samples n(mto) are zero-mean un- 
correlated random variables with variance cr2. The variance of 
e,(t) averaged over the interval It I < T/2 is then easily found 
from (33) and (21) 

1 

s 

+ T/2 

r -T/2 
E{eN2(t)} dt = ‘$C j. .,=t ;, diYmt0). (34) 

This expression may be simplified by noting that the di have no 
frequency components beyond fi. Furthermore, (12) implies 

that f. Z- 2f,. Hence 
tm 

ditt) = ,Cm 4i(mto) sine 
t - mt, L I. (35) 

to 

Substitution of (35) into (22) then yields the identity 

(36) 

from which (34) becomes 

E{eN2(t)} dt = %f i 1 
T i=o A,(c) ’ 

(37) 

where the a,(c) are given by (23). 
Slepian and Pollak have shown that for a fixed value of c, the 

Izi approach zero very rapidly for i > 2f, T. Therefore the 
largest N we might expect to use in practice without introducing 
excessive noise error will be on the order of 

N x 2f,T. (38) 
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An Error Bound for Lagrange Interpolation of 
Low-Pass Functions 

R. RADZYNER AND P. T. BASON 

Abstract-The well-known error formula for Lagrange interpolation 
is used to derive an expression for a truncation error hound in terms of 
the sampling rate and Nyquist frequency for regular samples and central 
interpolation. The proof is restricted to pulse-type functions possessing a 
Fourier transform. The formula finds application to the estimation of 
convergence rate in iterative interpolation, thus providing a criterion for 
the choice of sampling rate to achieve a specified truncation error level 
in a given number of steps. The formula can also he used as a guide when 
the samples are not regular hut fairly evenly distributed. 

I. INTRODUCTION 

Whittaker [I ] established the equivalence between Lagrange 
interpolation in the limit for equispaced tabular values, 

(1) 

and the cardinal function (or Shannon-Kotelnikov [2], [3] 
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