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ABSTRACT 

The objective of this research study is to evaluate the technical feasibility of 

liberating metal entrapped in the spent melting furnace linings obtained from a non- 

ferrous metal producer and develop an economic technique to recycle all of the materials 

presently landfilled. Five to six million pounds of spent melting furnace linings are 

landfilled annually from this non-ferrous producer. 

Samples from different types of refractory linings were characterized by scanning 

electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to determine the 

size, shape and form of the metallic content in the ceramic matrix and predict possible 

metal penetration mechanisms. Crushing and grinding were used to liberate brass through 

the formation of strips which could be separated from the crushed refractory by 

screening. In the laboratory trials, 70% to 90% of the brass was recovered in a high 

copper product (~90% Cu) which could be directly re-melted. A refractory mix was 

developed to recycle the remaining crushed refractory size fractions by mixing with 

virgin refractory materials for manufacturing low duty refractory castables for furnace 

backup and refractory mortar. 

The energy expended in separating the entrapped metal from the spent refractory 

lining was evaluated using the Bond Work Index test. An industrial process design model 

was developed with METSIM software using Bond Work Index test data to summarize 

the cost benefits associated with the proposed recycling program for spent refractory 

linings.  
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1. LITERATURE SURVEY 

The concept of waste minimization and recycling has gained importance in 

modern research with emphasis shifting toward resource conservation and environmental 

protection. Approximately three million tons of spent refractory materials are generated 

annually in US by the ferrous, non-ferrous, and glass industries [1]. Spent refractory 

linings constitute a major percentage of the industrial waste generated by metal 

manufacturing plants. The major constituents of refractory linings are silicates, 

aluminates, magnesia, zirconia, carbides, oxides, fused materials and various 

combinations thereof. The blend for each refractory lining is prepared specifically based 

on performance resulting in the use of special additives, often without concern for 

recycling. 

 

 

1.1. CONCEPT OF WASTE MINIMIZATION AND RECYCLING 

The most effective method of waste minimization is to generate less waste [2]. 

This can be achieved by improving the life of refractory materials and also by applying 

different refractories in the different zones of the furnace to increase effective refractory 

utilization. Recycling spent refractory linings in the ferrous industry has been extensively 

studied and corresponding recycling procedures have been established. The introduction 

of slag splashing in steelmaking furnaces has extended the life of refractories wherein the 

viscous slag is splashed on the sidewalls of the furnace at the end of the blow forming a 

protective adhesive layer. However, due to process differences, similar techniques cannot 

be used in the non-ferrous industry.  

The most common reasons for landfilling spent refractories are the high costs 

associated with the re-use of the spent linings, the perceived poor quality of re-used 

materials due to the presence of contaminants, and the low cost of space in a landfill [2].  

The value of the material recovered in the recycling process has a major impact on 

recycling efforts. The reduction in the quality of the material and also the added costs for 

recycling inhibits the implementation of large scale recycling programs. The recycling 

program is generally based on factors such as binding materials, possible contaminants, 
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hazardous components (such as hexavalent chrome or lead) and beneficiation costs. A 

lack of understanding of the economics associated with refractory recycling in the non-

ferrous industry contributes to most users landfilling rather than recycling because 

recycling processes are not perceived as adding economic benefit. 

The factors impacting refractory recycling are the frequency of generation, 

economics of beneficiation, volume of refractories landfilled, value of recovered 

components, the type of refractory, and the mix of lining materials. The type of refractory 

was identified to play a role because monolithic refractories are difficult to handle in 

comparison with the refractory bricks as monolithics are large structures anchored to the 

base of the furnace. 

Legislative regulations have classified certain materials like lead and hexavalent 

chromium as hazardous waste. Hazardous waste is banned from landfills, leading to the 

development of recycling and recovery techniques for chromium oxide containing 

refractories [1]. However, for non-hazardous waste, the economic incentive associated 

with the recycling process is the main driving force for industries to recycle the generated 

waste. The economic benefits associated with the re-use of the spent refractories and 

recovery of valuable byproducts make recycling process more economical than 

landfilling. Possible applications identified [1-4] are soil conditioner, slag conditioner, 

components in cement aggregates, landscape material and grog in ceramic materials. 

The initial step in developing a typical refractory recycling process is sorting the 

materials based on the type of refractory [3]. Sorting allows the segregation of similar 

types of refractories for more economical beneficiation. After sorting, the spent refractory 

linings are sampled and characterized. Characterization helps to identify metal 

penetration and erosion-corrosion of the refractories due to high temperature wear and 

exposure to molten metal. Visual examination at the macro level identifies changes in the 

refractory after extended use and characterization using tools like microscopy, chemical 

analysis, x-ray diffraction provide insights to possible beneficiation techniques [2, 3].  

Crushing and grinding followed by screening facilitates ease of handling and also 

helps in liberation of recoverable products [4]. An appropriate separation technique or 

techniques liberate re-usable byproducts and eliminate impurities. Magnetic separation is 

effective for magnetic byproduct or contaminant like steel/iron. Solvent extraction and 
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electrowinning (SX/EW) are common separation techniques used for non-magnetic 

contaminants. 

 

  

1.2.  REFRACTORY RECYCLING PRACTICES   

As a background to previous recycling efforts for spent refractory linings, the 

recycling of spent MgO-C [5], Magnesite-ZAS (zirconium aluminum silicate) bricks [6], 

Al2O3 refractories [7, 8] and magnesia-chrome refractories [9-11] are briefly described. 

1.2.1. MgO-C Refractories Recycling Practices. The MgO-C and MgO 

refractories are used extensively in EAF steelmaking. The recycled product can be used 

as gunning mix to repair cracks and crevices in the highly erosive zones of the furnace. 

MgO is added to slags to prevent furnace lining wear during steelmaking. Recycled MgO 

can be used as a potential slag conditioner [5]. 

The recycling program established by Kwong and Benett [5] established a model 

to optimize the MgO content in foamy slag and to determine the optimum amount of 

MgO to be added. The spent refractory chunks were crushed and optimum aggregate size 

was determined to control the dissolution rate of MgO. To increase dissolution rates in 

slag, a 4-5mm aggregate size was proposed. 

1.2.2. Recycling of Magnesite and ZAS Refractory Bricks. Magnesia is 

extensively used in ferrous industries due to its resistance to FeO rich slags. Al2O3, TiO2 

and ZrO2 are added to improve the mechanical properties of magnesia [6]. The bonding 

between magnesia grains can be improved by increasing the CaO/SiO2 molar ratio to 2.0.  

Recycling magnesite and ZAS bricks was done by Othman and Nour [6] and they 

investigated the properties of magnesite refractory brick with recycled ZAS additions (1-

10 wt. %). The crushed bricks of spent magnesite and ZAS refractories were tested for 

refractoriness under load (RUL) and thermal shock resistivity. Refractoriness under load 

determines the deformation point of the refractory under constant load. A 5% ZAS 

addition increases the thermal shock resistivity and refractoriness under load for the new 

bricks and resulted in higher shock resistance and refractoriness than that of the pure 

magnesia bricks [6]. 
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1.2.3. Recycling of 70% Al2O3 Spent Refractory. Brass companies use neutral 

refractories like alumina silicates in melting furnaces. Typically most of the companies 

landfill their refractories. Characterization of spent refractories is a primary step for 

refractory beneficiation. It allows selective separation of desired and undesired materials 

thereby saving time and cost of analysis. In the study by Kwong, Benett and Collins [7], 

refractory samples representative of different areas of the furnace were characterized 

using scanning electron microscopy (SEM) and energy dispersive X ray analysis 

(EDAX/EDS). The SEM results provided the basis for liberation of the penetrated layer 

and recycling of the crushed lining.  

The alumina silicate refractories have gained importance to replace magnesite-

chrome refractories [8] so that hexavalent chromium formation can be avoided and the 

spent refractory linings can be landfilled as non-hazardous waste. Magnesia-alumina and 

alumina silicates were considered as suitable replacement owing to their good erosion-

corrosion properties. 

1.2.4. Recycling of Spent Magnesia-Chrome Refractories. Magnesia-chrome 

refractories have been widely used in copper smelting furnaces until they were identified 

as hazardous waste. In one study, the spent refractory linings were subjected to water 

leaching to remove sulfates. The sulfur ion removal also effectively dissolves chromium 

and the remaining residue was re-usable [8].  

Several attempts [9-11] have been made to find suitable replacements for 

magnesia-chrome refractories. Magnesia-alumina based refractories seem to have the 

potential to replace magnesia-chrome in copper smelting furnaces. If copper penetration 

is significant, then liberation of the penetrated copper could add economic benefit. 

Copper and copper alloys have a tendency to penetrate into refractory lining and 

appropriate material blends for longer service life of refractories in copper smelting 

furnaces need to be developed.  

In recycling studies [9-11], copper contaminated bricks from copper smelting 

furnaces were ground and subjected to leaching or flotation and the residue was re-used 

[9-11]. Important considerations during recycling were that the end re-usable product not 

contains contaminants and the beneficiation costs should not exceed the costs for 
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transportation and landfill. The various copper beneficiation techniques have been 

described in the next section.  

 

 

1.3. COPPER BENEFICIATION METHODS 

The continuous wear and erosion-corrosion of refractories facilitate metal 

penetration into the refractory filling cracks and pores. The recovery of entrapped metal 

can improve the economics of recycling. Metal penetration is inevitable in melting 

furnaces; however the mechanism of penetration can assist in recovering the entrapped 

metal. There are several methods of recovering copper from spent refractory linings 

including solvent extraction, segregation roasting and simple comminution techniques 

such as crushing and grinding.     

1.3.1. Solvent Extraction and Electrowinning (SX/EW). Leaching is the first 

step in solvent extraction and electrowinning of copper. Leach solution is generally pure 

acid or mixed acid solution in which copper is dissolved and the solution is then 

subjected to SX/EW. 

Solvent extraction is the process in which copper contained in the low-acid leach 

solution is extracted [12] by an organic reagent and then re-dissolved in highly 

concentrated acid solution which is used as an electrolyte in electrowinning. The organic 

layer after extraction is re-used. The leach solution after two extractions would still be 

rich in copper. This is called raffinate. The raffinate is recycled back to leach liquor for 

re-extraction. 

Electrowinning is a copper liberation step in which a lead containing anode and 

pure sheet copper cathode and leach solution (electrolyte) complete the electric circuit 

and copper from electrolyte is deposited on the cathode. The entire SX/EW process is an 

economical process for copper extraction from ores. However, as a preparatory step, the 

copper ores or copper rich material are first subjected to crushing and grinding since fine 

particles have more surface area and hence are more suitable for dissolution in low acid 

solution.  

 Various processes were developed relative to the value of ore/mineral, the 

concentration of metal, the cost of the raw materials, and energy consumed for crushing 
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and grinding for fine particle size matrix. The successfully recycling practices for 

recovering copper from secondary sources include leaching and electrochemical recovery 

of copper from printed circuit board scrap [14]. However due to the presence of various 

metal parts, the leaching process for copper recovery from printed circuit board scrap was 

complicated. Selective extraction of copper was done by using aqueous nitric acid 

solution at various concentrations and the process was optimized to recover copper and 

other precious metals. Mechanical recovery through crushing and grinding is also 

possible but requires high energy. 

Solvent extraction was suitable when two or more precious metals had to be 

recovered and separated. Nitric acid in conjunction with sulfuric acid was generally used 

in copper recovery processes from highly concentrated secondary sources. Molybdenum 

and copper recovery and separation are achieved by a solvent consisting of sulfuric acid 

and sodium nitrate [15]. 

The heap leaching of oxide copper ores with copper recovery from the SX/EW 

process is considered to be a low cost method. The typical operating cost is based on the 

value of the ore, mining costs, energy consumption for comminution, acid requirements, 

copper recovery and operating power costs. The potential drawbacks are SO2 emissions 

and sulfuric acid concentration. Hence, ammonia based and nitric acid based leach 

solutions are being used as alternatives. 

Crushing and grinding must be optimized as size reduction to fine particle size of 

the mineral lowers the metal recovery and iron and sulfur precipitation may occur. 

Crushing to ultra fine particles also increase the operating costs. 

1.3.2. Segregation Roasting. Segregation roasting was developed to recover 

copper from crushed magnesite bricks by J. Bear and J.F. Moresby [16]. The preliminary 

step was to crush and grind the material down to a product screened with 14 mesh 

opening. The coarse 14 mesh oversize containing 72% copper was directly fed back to 

the smelter for copper recovery without further treatment and the  undersize 14 mesh 

particle size fractions were analyzed for segregation roasting.   

The oxidation roast pre-treatment was to allow copper sulfides and copper metal 

in magnesite bricks to segregate as a mixture of sulfates and oxides. L.J. Bear and J.F. 

Moresby [16] found that at 700o C pre-roast temperature, copper successfully segregated 



 

 

7

as a sulfate. Salt and carbonaceous material was added to reduce the copper sulfate to 

copper. The segregation temperature was found to be optimum at 660 oC, which was 

considerably lower in temperature than the predicted range of 750 oC – 850 oC [16].  The 

process can recover approximately 85%-90% of copper from the refractory bricks. 

Pyrometallurgical processes have several advantages over hydrometallurgical 

processes. The energy consumption is lower for pyro-derived processes and the process 

of recovery is simple as compared with the hydrometallurgical processes. Precious metal 

recovery through roasting is more efficient than leaching as the recovery from leach 

residue is a complex process. 

1.3.3. Crushing and Grinding. Crushing and grinding are the basic operations 

under comminution techniques. Comminution is breaking down of large chunks of 

material into smaller fractions by applying compressive forces and is typically the first 

step in the recycling process of spent refractory lining as other recovery processes cannot 

handle large chunks of material. 

The metal recovery through simple crushing and grinding operations can facilitate 

an economic basis for recycling materials. Crushing applies compressive forces and 

literature [17] indicates that copper is more ductile with more strain at ultimate stress than 

materials like steel, zinc, lead and silver and for more than brittle bricks. This implies that 

copper recovery through crushing and grinding is more feasible other recovery of other 

metals.   

The initial attempts to recover copper from electronic scrap through simple 

crushing and grinding operation have been made by W. Hui, G.G. Hua and Q.Y. Feng 

[18] and a jaw crusher was used in conjunction with a roll and gyradisc crusher and the 

individual size fractions were analyzed after crushing to estimate the metal recovery from 

the printed circuit board (PCB) scrap. 

The printed circuit board scrap is quite complex due to the presence of many 

metallic components, plastics and ceramics. The evaluation of crushing and grinding 

performance indicated that compressive type crushers such as jaw crushers, roll crushers 

and gyradisc crushers cannot handle the scrap efficiently; however an impact crusher 

comminutes the scrap better. 
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Crushing and grinding operations can be effective depending upon the mechanism 

of metal penetration in secondary sources. Crushing would segregate the metallic value 

of the PCB scrap thereby recovery is possible by density separation techniques. However, 

if the recovery rates for crushing and grinding are higher, it can be developed into an 

effective metal recovery process. This is due to the fact that the process avoids the use of 

complex leach solutions, and eliminates processing steps adding economic benefits to the 

recycling program. 

 

  

1.4. OUTLINE OF THE PROJECT  

The literature review indicates that characterization of spent refractory samples to 

understand the metal penetration mechanism and prediction of possible liberation 

techniques is critical to evaluate and design recycling process.  

Segregation roasting was not considered for the present study due to lower metal 

concentration in the spent refractory linings and also because of the possibility that the 

beneficiation expenses might exceed the costs of recycling. Acid leaching was selected as 

a possible beneficiation method because of lower operating costs involved in liberating 

copper but involves secondary metal recovery steps. However, the benefits of recycling 

can be maximized if simple crushing and grinding operation would liberate high quality 

metallic product thereby eliminating secondary recovering processes. 

The main objective of the present project is to study the feasibility of metal 

liberation entrapped in spent refractory lining by crushing and grinding and recycling of 

refractory into new products. The project focuses on the following: 

• Metal recovery by crushing and grinding operation, followed by selective 

screening.  

• Recovery of the crushed lining and prepare re-usable castables for low duty 

applications. 

• Bond Work Index testing to evaluate the energy requirements for crushing and 

grinding operations and provide possible suggestions for industrial process 

design. 
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• Industrial process design and scale up for the recovery process and 

recommendations based on energy calculations using Bond Work Index and 

METSIM software. 

• Analyze the cost benefits involved in recovery of materials from spent linings and 

provide cost based recommendations. 
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2. EXPERIMENTAL STUDY OF COPPER RECOVERY 

2.1. EXPERIMENTAL PROCEDURE 

A brass producer uses six types of high alumina and alumina silicate refractories 

for copper melting, four in the inductors, one in the furnaces and one in the troughs. 

Spent refractory linings from the melting furnaces represent 80% of the annual tonnage 

of refractories that are landfilled by this company. Spent refractory samples from the six 

different refractory types were obtained from the brass producer and characterized for 

metal content and size and shape of the trapped metal.  Samples were acid leached 

initially and at various stages of the recycling process to determine the metal content.  

Various crushing and grinding techniques and sequences were used to liberate the metal 

and facilitate separation of the metal from the refractory.  

2.1.1. Characterization of spent linings.  Six different types of refractory used 

for the various applications in the brass melting process were designated as refractory A, 

B, C, D, E, and F as summarized with chemical compositions in Table 2.1. 

 

  

Table 2.1. Chemical composition of different linings. 

Chemical Composition (wt. %) 
Type Usage 

Alumina Silica Silicon 
Carbide 

Titania Magnesia 

A Inductors 71.1 9.60 16.0 2.4 NA 

B Inductors 91.9 2.50 NA NA 4.4 

C Inductors 76.3 7.10 11.6 3.0 NA 

D Furnaces 61.5 33.0 0.00 2.0 NA 

E Troughs 95.0 NA NA NA NA 

F Inductors 70.8 10.0 6.80 2.3 NA 

NA = not available 

  

 

The chemical compositions were obtained from the material datasheets of 

refractory manufacturers provided by the brass producer. The alumina based refractories 
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were most likely prepared from bauxite ores. Types A and D are rammable refractories 

and type B, C, E and F are castable refractories. Inductors have varying amount of silicon 

carbide indicating that the refractories used in inductors are subjected to more corrosive 

environment than the furnaces. Troughs are lined with higher alumina refractory to 

withstand the abrasive conditions in the distribution channels. The representative lining 

samples were subjected to macro and micro-characterization to understand the nature of 

the metal penetration, the thickness of the hot face, and determine the nature of metal 

penetration. 

2.1.1.1 Macro-characterization. The aim of macro-characterization was to 

analyze the hot face of the lining samples, its condition and provide a rough estimate of 

the thickness of the penetrated layer. The samples have distinct discoloration across the 

section indicating wear and erosion by the hot metal and also possible metal penetration. 

The thickness of discolored layer from hot face was measured and is defined as the 

penetrated layer (see Figure 2.1). Table 2.2 lists the thickness of the penetrated layer and 

the number of test samples analyzed. The macro photographs of the test samples (see 

Figure 2.1) show the penetrated layer separating the reacted region near the hot face from 

the passive region near the cold face of the spent linings. 

 

 

Table 2.2. Macro-characterization results for each refractory type. 

Penetration of Samples 
Description 

Number of samples Average penetration 
(cm) 

A 4 2.9 ± 0.7 

B 6 4.0 ± 1.1 

C 7 3.5 ± 1.3 

D 7 1.0 ± 0.4 

E 5 0.7 ± 0.3 

F 2 0.7 ± 0.5 
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Figure 2.1. Macro photos of samples from six types of refractory linings, A through F. 
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The hot face in samples E and F do not appear to have high metal penetration and 

the thickness of hot face is much less when compared to the other refractory types (see 

Table 2.2).  Since the penetration layer is not significant, copper content would be 

negligible possibly eliminating the refractories E and F from being recycled. Refractories 

A, B, and C had significantly more penetration than the other refractory types. Since all 

three refractory types were used in inductors, it can be inferred that the inductor linings 

would have higher metal content than the lining used in furnaces and troughs. The 

melting furnaces used by the brass producer are channel induction furnaces rather than 

coreless. The channel induction furnace consists of steel shell lined with refractory 

materials and an inductor attached to it. A channel connects the main body with the 

inductor. Therefore, the advantage of channel induction furnaces is that the A, B and C 

inductor linings can be individually detached and recycled.  

2.1.1.2 Micro-characterization.  The penetrated layer for one sample from the 

type C castable type refractory and one sample from type D rammable type refractory 

were cross-sectioned and examined with Scanning Electron Microscopy (SEM) (see 

Figure 2.2) Hitachi S570.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. SEM micrographs of samples from a) type C castable refractory at the metal-
ceramic interface illustrating that there is physical wetting of ceramic matrix by brass and 
b) type A rammable refractory illustrating particles (~ 1µm)  wetting the ceramic matrix. 
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In Figure 2.2, metal penetration into the cracks developed in the refractory was 

observed for both rammable and castable samples. The absence of an intermediate layer 

at the metal-ceramic interface in the micrographs (see Figure 2.2) of samples from C and 

A type refractories indicate that there is no reaction between the entrapped metal and the 

ceramic matrix. Brass particles (~ 1µm) were also identified using Energy Dispersive 

Spectroscopy (EDS) analysis.  

The brass penetrated into the cracks developed in the refractory lining forming 

elongated strips. Since the metallic strips are physically wetting the refractory matrix, it is 

expected that crushing and grinding technique could liberate the strips and subsequent 

screening can separate the liberated brass strips from the lining samples. However, for the 

crushing and grinding procedure to yield maximum benefits, it is necessary to evaluate 

the total copper present in the penetrated layer. Acid leaching was used to dissolve all of 

the copper in the lining followed by x-ray fluoroscopy to analyze the total copper content 

in the lining samples. 

Since it was difficult to analyze the total brass content in the spent linings, copper 

content was analyzed using acid leaching procedure and XRF analysis. The brass strips 

that are crushed and screened are weighed and multiplied by 0.9 to convert the brass 

content to copper content. The estimation that brass contains 90% copper was based on 

the information supplied by the brass producer. The total metal content (brass) in the 

spent linings is 1.1 times the analyzed copper content in all the results provided in the 

subsequent sections. 

2.1.2. Acid Leaching Procedure. Separating and recovering the metal entrapped 

in the refractory can provide economic benefits if the revenues from the recovered 

materials and products exceeds the cost to process. The percentage of metallic content 

and the type of metal are major factors determining the overall economic feasibility of the 

recycling program. Hence, determination of copper content in the test samples was 

critical. 

An acid leaching procedure was defined by sequence of steps: 

• Standard solutions of 2.5g, 5g, 7.5g and 10g Cu/300ml of solution were prepared 

to calibrate X-Ray Fluoroscopy (XRF) and a calibration curve was developed for 

further analysis. 
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• Cross sectioned lining sample using wet diamond saw and multiple cuts to obtain 

10 ± 2 grams of sample from the penetrated layer.   

• Crush the sample using cup and pestle (10 grams). 

• Add crushed sample to 300 ml of acid solution with 10 % HNO3  and 10 % 

H2SO4 in a 500ml beaker. 

• The beaker is placed on magnetic stirrer and stirred for 24 hours at room 

temperature. 

• The test solutions are analyzed using XRF and intensity values plotted on the 

calibration curve to determine the copper content in solution. 

 

The concentration of leach solution was optimized by trial and error. The first trial 

used 5% HNO3 and 5% H2SO4 and the second trial concentration of 10% HNO3 and 10% 

H2SO4.As illustrated in Figure 2.3, the trial with 5% HNO3 and 5% H2SO4 acid 

concentration could not leach out all the copper present in the crushed sample for the first 

leaching experiment. The solid to liquid ratio in acid leaching is generally maintained at 

1:6 [12] and hence, the acid concentration was increased to 10% HNO3 and 10% H2SO4. 
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Figure 2.3. Test results for two different acid concentrations to develop acid leaching 
procedure. 
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When a small amount of copper dissolves, the overall concentration of the 

solution drops significantly and subsequent reaction is limited because of low strength of 

the overall solution. Hence the solution was supersaturated with the mixture of two acids 

which have different solubility limit for copper dissolution. Literature studies [12] reveal 

that nitrogen species dissolve copper rich aggregates better than the sulfur species; hence 

a combination of the two acids was considered for the acid leaching experiments (see 

Figure 2.4).   
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Figure 2.4. XRF calibration curve generated from copper standard solutions.    

 

 

The X-ray fluorescence method determines the copper content in the solution. The 

XRF was first calibrated with a base leach solution with 0g copper and a calibration 

curve (see Figure 2.4) was obtained using standard solutions of 2.5g, 5g, 7.5g and 10g 

Cu/300ml of solution. The subsequent test samples were analyzed and superimposed on 

the calibration curve to calculate the percentage of copper present in the test samples.  
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2.1.3. Metal Liberation by Comminution.  Based on the SEM analysis, brass 

penetrates through the cracks in the refractory and physically wets the refractory layer 

making a simple crushing operation possible to crack the brittle refractory layer while the 

ductile brass undergoes deformation thereby facilitating liberation by screening. A 

crushing procedure was developed at the laboratory scale with different gap settings for 

metal liberation, screening the elongated brass strips and subsequent estimation of copper 

retained in each particle fraction by acid leaching.  

There are two gap settings for crushers defined as open side setting and closed 

side setting. The open side setting is the maximum gap or entrance for incoming feed 

material. The closed side setting is the gap for exit of crushed product (see Figure 2.5). 

For closed side setting in the laboratory jaw crusher, the maximum gap was 50mm and 

minimum gap was 5mm.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Jaw crusher showing the open side gap setting and closed side gap setting.   
 

 

The crushing procedure described in the flowsheet (see Figure 2.6) was developed 

for the laboratory scale experiments10grams of each size fraction of the crushed lining 

was acid leached and analyzed by XRF. The obtained copper values were extrapolated 

for the entire crushed lining (see Figure 2.9 b). The material retained at 16mm mesh size 

is the amount of brass that is effectively screened as strips. 

Closed side setting Open side setting 
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Figure 2.6. Flow chart for developed crushing and grinding circuit.  

 

 

The laboratory crushing procedure for the spent lining samples is described. 

• The lining samples were initially crushed with a hammer to accommodate the 

maximum open side setting (90mm) of the laboratory jaw crusher. 

• The preliminary crushed material was then fed into jaw crusher with 50mm closed 

side gap setting for first stage of crushing.  

• For the second stage jaw crushing, the closed side gap setting was 5mm. 
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• After the double stage jaw crushing, the product was sieved using a 16mm mesh 

opening to screen out the brass strips (product 1a). 

• The remaining lining was fed into a roll crusher with a 2.5mm gap setting 

between the rolls for first stage roll crushing. 

• For second stage roll crushing, the gap between the rolls was set at 0.7mm.  

• The crushed product was sieved from 2.8mm through 0.1mm and a pan in a 

vibratable sieve shaker. 

• The over-sized particles from each sieve were collected and 10 grams of sample 

representative of each size fraction was analyzed for copper content by the acid 

leaching procedure. 

 

 

2.2. RESULTS AND DISCUSSION 

2.2.1. Copper Content in Penetrated Layer. Two test specimens from each 

refractory were cut along the penetrated layer, and samples from penetrated layer were 

acid leached and analyzed for copper content using XRF. The results are summarized in 

Table 2.3. 

 

 

Table 2.3. Copper content in penetrated layer of test samples. 

Refractory 
type Usage Cu average (wt. %),  

in penetrated layer 

A Inductors for holders 24.1 ± 5.4 

B Inductors 4.5 ± 1.8 

C Inductors 45 ± 10 

D Furnaces 9.3 ± 3.5 

E Troughs 0 

F Inductors 15.9 ± 3.3 
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The refractory type ‘E’ used for distribution channels did not appear to have any 

metal penetration although the samples appeared to have undergone wear, confirming the 

observations made in the macro-characterization and hence was not the focus for further 

studies. Although the ‘F’ type refractory had significant metal penetration it was also 

discarded from further studies due to the fact that the brass company did not have 

sufficient samples for analysis. Samples from refractory type A and C have significant 

metal penetration and hence these refractories are considered as potential materials to be 

recycled.  

2.2.2. Brass Morphology in Spent Refractory Linings.  The product from the 

crushing operation was analyzed for brass morphology using SEM. Three types of brass 

morphology were identified in the spent linings (see Figure 2.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 2.7. SEM micrographs of C type refractory showing a) type 1 - elongated brass 
strips b) type 2 - brass particles (~ 1µm) wetting the refractory matrix and c) type 3 -thin 
metal foils. 
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Metal penetration is inevitable in melting operations. However, the extent of 

penetration determines the economic feasibility of recycling. The extent of metal 

penetration cannot be observed by chemical analysis or X-ray diffraction. SEM studies of 

the samples from spent linings predict the extent of metal penetration. 

Brass penetrates into the cracks of the refractory lining samples forming 

elongated copper strips. The metallic strips that are formed determine the extent of metal 

penetration into the refractory lining. The brass strips defined as type 1 can be recovered 

by simple crushing and grinding followed by mechanical separation by screening. Brass 

particles wetting the monolithic refractory are defined as type 2 and thin metal foils 

attached to the refractory particle are defined as type 3. The type 2 and type 3 can only be 

recovered by chemical leaching.  

The characterization of the entire lining samples would help to estimate the total 

copper that can be liberated from the spent linings. Table 2.4 summarizes the 

characterization results for entire lining samples. 

 

 

Table 2.4. Estimated % copper in the entire linings. 

Refractory 
type 

Annual % 
of refractory 

landfilled  

Cu average (wt. 
%) in 

penetrated layer 

Average 
thickness of  
Penetrated 
layer (cm) 

Average 
lining 
sample 
width 
(cm) 

Estimated 
Copper in 

linings 
(wt. %) 

A 2.3 24.1 ± 5.4 2.9 ± 0.7 12.2 ± 2.2 6 

B 1.0 4.5 ± 1.8 4.0 ± 1.1 8 ± 1.6 2.2 

C 9.8 45 ± 10 3.5 ± 1.3 26 ± 2.5 6 

D 81.7 9.3 ± 3.5 1.0 ± 0.4 13 ± 0.9 0.8 

E 2.7 0 0.7 ± 0.3 4.2 ± 0.4 - 

F 2.5 15.9 ± 3.3 0.7 ± 0.5 4.5 ± 0.3 2.4 

 

  

The estimated percentage of copper was calculated from the total copper present 

in the penetrated layer and extrapolating the results for the entire lining sample. The 
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estimated copper percentage was used as a basis for further studies. The refractories used 

in A, B and C inductor furnaces show significant metal penetration and are favorable for 

recycling. However, these linings only represent ~14% of the total spent refractories 

which is comparatively less significant than the type D refractory which represents ~80% 

of the material landfilled. Although type F refractory samples were not considered for 

further studies because of insufficient samples for analysis, the characterization results 

indicate significant metal penetration and it could be a potential material to be recycled.    

The type D refractory appears to have a much lower metallic content based on the 

characterization results from Table 2.4. However, ~80% of the annual refractory 

landfilled constitutes type D refractory linings. Therefore, new samples of type D 

refractory were collected from the brass producer to better represent the material. The 

new samples were designated as D2 and were macro-characterized for thickness of 

penetrated layer. Visual examination of  samples from D2 type refractory indicate 

presence of brass strips (see Figure 2.8) with average thickness of penetration of 3.9 ± 0.4 

cm indicating the possibility of higher metal penetration than samples from D type 

refractory. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2.8. Macro-photos of a) D type refractory and b) new D2 type refractory samples.  
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2.2.3. Total Copper in Lining Samples. Two lining samples from A, B, C, D 

and D2 type refractories were crushed, leached and analyzed for total copper content 

using XRF (Figure 2.9). The tabulated test results and individual analysis are provided in 

Appendix A.  

 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9. a) Particle size distribution of crushed samples (error ~7%) and b) distribution 
of total copper content at each particle size fraction in crushed lining (error ~8%).  
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Figure 2.9 summarizes the particle size distribution for each of the crushed 

samples and Figure 2.9b illustrates the distribution of copper at each size fraction. The 

material retained at 16mm mesh is the amount of copper that is effectively screened as 

strips. The three inductor samples from A, B and C have copper content of 2.1%, 2.5% 

and 3% respectively ( see Figure 2.9b)  as expected from the characterization indicating 

that the inductor linings are potential material to be recycled.    

The particle size distribution and copper distribution for type C refractory indicate 

that 90% of the copper in the spent lining is present as oversize in the 16mm size fraction 

(see Figure 2.9b). However, for type A and B type refractory, copper is widely distributed 

in subsequent fine size fractions. Screening of copper (wt. %) at each subsequent fine size 

fraction depends on the amount of crushed lining attached to the copper particles (see 

Figure 2.9a). The copper from +2.8mm and +2mm size fractions in type A and B 

refractory samples can be screened. Therefore, the screening procedure can be modified 

based on the copper distribution in each size fraction for effective separation.  

The type D refractory has lower copper content than the inductors in agreement 

with the characterization results. However, the new spent lining samples of type D2 show 

significant metal penetration and was much higher than the inductor linings. The particle 

size distribution and copper distribution for type D2 refractory indicate that majority of 

copper is present as oversize in 16mm and 2.8mm size fraction (see Figure 2.9) making it 

favorable for recycling. For further understanding of the screen procedure, the cumulative 

copper present in each refractory lining was summarized in Figure 2.10. 

For type D refractory in Figure 2.10, the percentage of copper present as oversize 

in 2.8mm size fraction constitute 85% of the total copper present in the lining samples 

and changing the screening procedure from 16mm mesh size to 2.8mm would recover 

85% of the total copper. Similarly for type A refractory, screening with 2mm mesh 

opening would recover 60% of copper. As discussed earlier, all the results were reported 

as total copper content in the spent linings, the total metal content however, is 1.1 times 

higher than the reported values and precious alloying elements present in brass would add 

more value to the recycling process. 
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Figure 2.10. Cumulative copper distributions after crushing for all the lining samples at 
each specified size fraction (error ~10%). 

 

 

In Figure 2.10, it is observed that there is wide distribution of copper in the type 

D2 refractory samples at each size fraction. However, ~75% (by weight) of total copper 

present in the lining sample is present at 2mm size fraction as oversize with ~25% (by 

weight) of the total crushed lining. Hence, changing the screening procedure using 2mm 

mesh opening instead of 16mm mesh opening would recover 75% of total copper. The 

results for recovered copper by screening and copper content by acid leaching for each 

refractory lining are tabulated in Table 2.5. The Table 2.5 summarizes the recovered 

copper and copper content obtained by chemical leaching. ~90% of total copper in type C 

refractory is present as strips which can be recovered by screening. From Table 2.5, the 

type A and B refractories have ~45% recovered copper in brass strips however, suitable 

screening procedure could liberate ~60% of copper. 
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Table 2.5. Copper distributions in the crushed refractory linings. 

wt.% Copper in Lining 
Type of 

Refractory Recovered 
strips 

(+16mm) 
Chemical leached Total Copper 

in lining 

A 2.1 ± 0.5 5.8  ± 1.2 7.9 ± 1.7 
B 2.5 ± 2.5 4.3  ± 2.3 6.8 ± 4.8 
C 3 ± 0.2 0.5  ± 0.1 3.3 ± 0.3 
D 0 0.5  ± 0.4 0.5  ± 0.4 
D2 10.3 ± 5.8 16.3  ±  4.7 26.6 ± 10.5 

   

 

The test samples representative of all the types of refractory linings landfilled 

every year have been analyzed for copper content. The separated brass strips were copper 

rich (85% to 90% Cu) and the average copper content in the test samples were 

summarized in Figure 2.11. The results for type D refractory had significant variation in 

the two sets of samples. The two samples were analyzed with X-ray diffraction (see 

Figure 2.12) to understand the cause for increased metal penetration. 
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Figure 2.11. Average copper present in test samples of different refractory types. 
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Figure 2.12. XRD patterns generated for samples from a) D type refractory b) D2 type 
refractory c) D2 type refractory indicating the presence of spinel phase. 

 

c) 

b) 

a) 



 

 

28

In Figure 2.12, spinel phase was identified at ~31 and 37 degrees and this peak 

was absent in the Figure 2.12a indicating the possibility of wetting of alumina by copper 

alloy for samples from D2. The alloying additions of Mg and Mn produce spinel type 

phase at the interface between the copper melt and the refractory layer thereby breaking 

the matrix of the refractory layer [19-22]. Numerous studies have indicated that alloy 

additions of titanium, tin, magnesium and manganese have pronounced effect on wetting 

characteristics of alumina by copper [19-22]. The Cu-Mg/Mn alloys especially have 

significant effect on the wetting characteristics. The spinel MAl2O4 (where M = Mg or 

Mn) formed would continuously react with Al2O3 until equilibrium is attained, 

considerably damaging the refractory matrix and facilitating increased metal penetration 

in the refractory lining [22]. Therefore, increased metal penetration in samples from D2 

refractory was attributed to the spinel formation. 

 The copper content analyzed by crushing and grinding followed by chemical 

leaching indicate that majority of the copper was present as brass strips in the refractory 

lining and 65% to 95% copper rich product can be effectively recovered. The secondary 

recovering methods were effective in recovering 100% of copper present in the lining 

samples but the expenses incurred might exceed the benefits of recycling. 

 For refractory types A, B, and C used in inductors, the total copper content (wt.%) 

screened using 16mm mesh was found to be 2.1%, 2.5% and 3% respectively, indicating 

significant metal penetration. Hence, the inductor linings are potential materials for 

recycling. However, the refractory type D used for furnaces had varied results but 

considering the fact that the brass producer has maximum tonnage (five million pounds) 

of this type of lining landfilled every year, it can be a potential material to be recycled.  
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3. PROCESSING OF NEW REFRACTORY CASTABLES USING SPENT 
LINING 

3.1. BACKGROUND ON CASTABLES 

Refractory castables comprise a major group of monolithic refractory and have 

supplanted shaped refractories in most of the applications because of superior properties 

and ease of installation. The mix of the castable varies from simple mixes with one binder 

to complex multi-phase and blends of novel materials to target specified applications.  

Refractory castables are comprised of aggregate/refractory grains, matrix components, 

binders and admixtures [23].  Most of the castable blends are either hydraulic or chemical 

set with water as the most common setting agent. The most common binder is calcium 

aluminate cement available in various grades depending on the percentage of alumina. 

The alumina and alumino-silicate refractory castables are classified based upon 

the cement content in the castable. Conventional castables (> 2.5% CaO), low cement 

(1.0 - 2.5% CaO), ultralow cement (0.2 – 1% CaO) and no cement (< 0.2% CaO) 

castables form the classification. The admixtures are novel additions to impart special 

properties to the castable. SiC is sometimes incorporated in the castable blend as an anti-

wetting component to facilitate the use of certain melt alloy compositions in the furnace. 

The preparation of refractory castable includes mixing and blending, drying/curing and 

firing. The particle size distribution has a major impact on the properties of the castable. 

3.1.1. Particle Size Distribution. Comminution processes result in a continuous 

particle size distribution and hence can be used to process new castables. The fine 

particles fill up the voids between large size particles [24]. A discrete particle size 

distribution cannot attain maximum density as the volume of the voids to be filled cannot 

be completely filled by cement and silica fume (typically -90 microns). The void area or 

porosity of the castable would increase as a function of the decreasing ratio between the 

largest diameter particles (DL) and the smallest diameter particles (DS).  

Highly dense castables are prepared by ‘fill out’ which essentially implies that 

certain fillers/modifiers are used to obtain dense packing of particles. Many mathematical 

models have been developed [25-27] and three major distribution principles for the 

particle size distribution of the aggregates are proposed which are Andreasen distribution 

(equation 1.1), Furnas distribution (equation 1.2) and Funk-Dinger model (equation 1.3) 
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for crowded particulate suspensions. All the three principles define particle size 

distribution in terms of largest particle diameter against cumulative percent finer than 

(CPFT).  
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Where D - diameter of the particle 

           DL - diameter of largest particle 

           DS - diameter of smallest particle 

           n - distribution modulus 

 

The Funk-Dinger model is a modified Furnas equation, where the distribution 

modulus n = log r; r is defined as the ratio between two consecutive sieve opening sizes 

and is most widely used for a sequence of comminution and sieve analysis operations.   

The Andreasen distribution does not define the smallest particle diameter and 

maximum density is attained by adding smaller particles which fill the void area. 

However, the Furnas distribution introduces the smallest particle size diameter and 

calculates the maximum allowable porosity for a defined DS/DL ratio. As the DS/DL ratio 

decreases, the particle size distribution becomes wider thereby filling all possible voids 

(1.1) 

(1.2) 
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and achieving maximum density attainable by particulate materials. The distribution 

modulus (n) was found to be 0.37 [27] for maximum packing, allowing blend suppliers to 

calculate particle size distribution for specified porosity levels. This is particularly useful 

in recycling of spent refractory linings, as the crushed lining is subjected to particle size 

analysis and the particle size distribution is calculated to process a new castable blend 

incorporating all of the crushed particles. 

 The rheological factors determining the flow properties of the castable do not 

conform to the calculated mathematical factors and more often a factor of 0.21 is used in 

industries. Since the porosity levels increase with this packing factor, industrial particle 

size distribution generally follows bimodal or multi-modal distributions wherein micron 

and submicron size additives are added to fill out the pores in the castable, improving the 

overall performance of the castables.  

3.1.2. Curing and Firing. The blend or mix of aggregates, binders and 

admixtures can be either chemically set or hydraulically set. The type of bonding agents 

used in castables have been increasing and many new types have been developed 

including non-cement bonds such as hydratable alumina, clay, silica and alumina gels, 

and chemical bonds such as phosphates and alkali silicates with each binder attributing 

special properties depending on the application. 

The present study uses calcium aluminate cement as the binding agent for a 

proper blend of spent lining and fresh virgin lining aggregate. The binding mechanism of 

calcium aluminate has been investigated and reported [22]. The principal hydrating phase 

is calcium monoaluminate- CaO.Al2O3 or CA. CA upon addition of water changes to 

C3AH6 which is the stable hydratable phase with curing temperatures above 35o C. 

However, lower temperatures are not favorable as CA would form metastable hydrates 

which upon further heating would convert back to stable C3AH6, but the conversion is 

accompanied by phase volume shrinkage leading to a weak bond. 

Dehydration takes place during the curing stage and generally in the temperature 

range of 210-315o C. The curing time is generally long as the smaller size fractions which 

are used to attain maximum density delay the dehydration process. Finally, after curing 

the castables are fired to gain significant strength and wear resistance. The firing 
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temperature is selected as the temperature at which the refractory has maximum modulus 

of rupture. 

3.1.3. Processing of Castables from Spent Refractory. The crushed lining 

material of type C refractory obtained after crushing and screening to remove metal was 

used for processing of new castables. The particle size distribution of the blend influences 

the properties and performance of castables. The crushed lining has a continuous particle 

size distribution but the distribution does not follow the mathematical distribution models 

discussed in Section 3.1.1. A small crucible mold was designed for castable preparation 

(see Figure 3.1).The top plunger of the mold was designed to moderately ram the castable 

mix for achieving better densification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Crucible mold design for processing castables from virgin and crushed spent 
lining. 
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Virgin refractory castable mix of type C (see Table 2.1 in Section 2.1) was 

obtained from industry for a base line comparison with crush refractory lining of type C. 

The material datasheet for the virgin castable mix is provided in Appendix B. 

 

  

3.2. EXPERIMENTAL PROCEDURE 

Initial trials were done to understand the particle size distribution of the virgin 

refractory mix and determine the optimum particle size distribution based on the 

theoretical model. Sieve analysis of the virgin mix indicated that the castable aggregate 

distribution was a multi-modal distribution. 

The initial trial used the virgin refractory mix with 5-6% water and the castable 

was found to be porous as shown in Figure 3.2. Porosity was due to the fact that the 

diameter of largest particle was greater than one-third of the wall thickness. 

Normalization is the process of screening the undesired large diameter particles and 

extrapolating the remained particle size distribution such that the distribution modal is not 

disturbed. After the first trial, the refractory mix was normalized such that the maximum 

particle diameter was restricted to 2.3mm and with the normalized particle size 

distribution (see Figure 3.3), a new castable was prepared (see Figure 3.2 b). The 

tabulated particle size distribution is provided in Table C.1 in Appendix C.   

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.2. a) Porous castable prepared from virgin castable mix b) dense castable 
prepared from normalized castable mix of type C refractory. 

ba) 
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Figure 3.3. Particle size distribution for virgin mix and normalized virgin mix plotted 
with cumulative percent finer than (CPFT) against size fraction in micrometers. 

 

 

To compare the performance of castables prepared from crushed spent lining with 

the virgin lining material, three different blend compositions were analyzed along with 

virgin refractory for testing their performance. The different blend compositions tested 

were listed in Table 3.1. 

The particle size distribution of the castables followed the normalized virgin mix 

distribution. The silica fume was added to the crushed lining to achieve increased density.  

The percentage of silica flour to be added was selected to keep the total silica content of 

the entire lining to be in the same chemical composition range as prescribed by the 

refractory material supplier. Secar 51 grade cement was also selected to keep the total 

alumina content consistent with the prescribed chemical composition of the refractory 

supplier.  
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Table 3.1. Blend compositions for different castables. 

Castable wt.% 
Virgin 

wt.% 
Spent 
Lining 

wt.% 
cement 

wt.% 
Silica 
Flour 

1 100 0 0 0 
2 90 9 0.5 0.5 
3 50 45 2.5 2.5 
4 0 90 5 5 

 

 

 

 The experimental procedure was set up for testing the processed castables as 

described below: 

• Determine the particle size distribution of the virgin material. 

• Screen the large diameter particles such that the largest particle diameter was 

2.3mm and normalize the particle size distribution. 

• Add calcium aluminate Secar 51 grade cement (5% maximum) as the binding 

agent. 

• Add silica flour (-90 microns) as described in Table 3.1 to adjust the percentage 

of fine size fraction and also maintain the chemical composition.  

• Cure at 210o C for 12 hours. 

• Fire at 1200o C for 6 hours and cool to room temperature. 

• Test at 1200o C for 48 hours by adding a mixture of 75% copper and 25% carbon 

to fill 75% of volume of the crucible (carbon to avoid oxidation of copper). 

 

 

3.3. RESULTS AND DISCUSSION 

Figure 3.4 illustrates the castables before firing, after firing at 1200 oC and after 

testing for 48 hours at 1200 oC.  
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  a) Before Firing                                 b) After Firing                c) after 48 hours testing 

 

 

 

 

 

    Castable 1 

 

 

 

 

 

Castable 2 

 

 

 

 

Castable 3 

 

 

 

 

 

Castable 4 
 
Figure 3.4. Macro photographs of all four castables a) before firing b) after firing c) after 
testing for 48 hours. 
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The castable crucibles were fired at 1200 oC and then filled with 75% copper and 

25% carbon powder to test the ability of each blend to prevent copper penetration and 

survive for 48 hours at 1200 oC. The firing cycle was designed based on the ASTM C 401 

standard for regular castables.  

The macro photographs of the castables 3 and 4 (see Figure 3.4) after firing at 

1200 oC for 6 hours have significant surface growth because of scab formation. The scabs 

are formed due to the oxidation of copper present in the brass particles of crushed spent 

lining. However, there was no scab formation in castable 2 which has 9% of the crushed 

spent lining indicating the possibility of using the castable 2 for low duty applications. 

The macro photographs of the four castable crucibles after testing for 48 hours 

(see Figure 3.4) have no noticeable change with regard to copper oxidation in the lining, 

indicating that the entire copper present in the crushed lining was completely oxidized 

during the firing stage. However, there is noticeable discoloration in castables 3 and 4 

indicating the possibility of copper penetration. 

Cross-sectional samples were taken from the bottom of the castable crucibles (see 

Figure 3.5) and analyzed using stereoscope for possible metal penetration (see Figure 

3.6). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Macro photograph of castable 4 indicating the location of all cross-section 
samples. 
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Figure 3.6. Stereoscope cross-section images from hot face to cold face of a) castable 1 – 
virgin blend b) castable 2 - ‘90-10’ blend c) castable 3 – ’50-50’ blend and d) castable 4 – 
blend of crushed spent lining. 
  

 

 

Figure 3.6 illustrates the cross-section images from hot face to the cold face. 

Copper penetration could not be observed from the stereoscope images for the four 

castables. Hence, the cross-section samples were analyzed for the hot face using optical 

microscopy (see Figure 3.7).  

The walls of the crucibles have also been analyzed along with the cross-sectional 

samples. The cross-section of the wall of the crucibles did not yield significant results 

with respect to the metal penetration and hence the cross-section samples were analyzed 

for metal penetration. 

 

a) b) 

c) d) 

Hot Face 
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Figure 3.7. Optical micrographs of hot face of four types of castables showing no metal 
penetration after 48 hours of testing a) Castable 1, b) Castable 2, c) Castable 3, d) 
Castable 4. 

 

 

No metal penetration was found for castable 1 and 2. The macro-photos also 

showed no copper oxidation after firing for castable 2 (90% virgin-10% crushed lining). 

Therefore, the mix 2 can be used as a back up layer in the melting furnaces. However, 

copper penetration of ~11% of the cross-section thickness for castable 3 and ~13% for 

castable 4 was observed. Hence, for further studies, the crushed lining can be pre-fired to 

oxidize the copper or can be chemically leached to remove the copper, and then use the 

spent lining for preparing castables.    

b) 

d) c) 

a) 

Copper 
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4. INDUSTRIAL PROCESS DESIGN AND SCALE UP 

4.1. PROCESS DESIGN 

An industrial scale up model was developed to summarize the economic costs and 

benefits of refractory recycling and provide a method for achieving optimum benefits. 

The present section discusses the method of developing the economic model to design 

and scale up the process to industrial operations using METSIM version 15.12 software. 

The METSIM software provides models to analyze different comminution 

techniques, the power draw for each process, and gives comprehensive data on the 

particle size distribution obtained from each operation. The software has to be backed by 

preliminary data to design a comminution flow chart. The Bond Work Index (Wi) and 

dimensions of the process equipment are important parameters for designing the flow 

chart. Bond [28, 29] defined work index as a comminution parameter used to calculate 

the energy consumed or expended in grinding the feedstock to 80% passing of specified 

product particle size. The Bond Work Index test is used to evaluate the grindability of 

feedstock based on the Bond’s [29] third theory of comminution given in equation 4.1 

 

 

 

                                            
F
W

P
W

W ii 1010
−=                                                  4.1 

 

 

Where W - work input in kWh/short ton,  

           Wi - work index calculated by Bond Work Index test 

           P - 80% passing product particle size and 

           F - 80% passing feed particle size 
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4.1.1.  Bond Work Index Test Procedure.   The test is a measure of the 

grindability of the feedstock. A short description of the standard test procedure [30]: 

• Crush dry feed to 100% passing 3.3mm mesh. 

• Calculate packed density and 700ml constant feed for ball mill bond work index 

test. 

• Sample using splitting techniques to obtain a representative feed from the crushed 

lining. 

• Sieve analysis of the feed to understand the particle size distribution and calculate 

80% passing feed particle size. 

• Run the mill for 50 revolutions and re-circulate the over-size feed to the mill 

thereby maintaining constant volume of 700ml. 

• Repeat the test process until steady state is attained for atleast the last two periods. 

Steady state is obtained for 250% recirculating load. 

• Calculate the net product produced per mill revolution of grindability of product 

(Gpr). 

• Sieve product and 80% passing product particle size is calculated. 

The work index is calculated using Bond’s formula for Work Index given in 

equation 4.2 
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Where P1 – micron size at which grindability test was conducted,  

           Gbp – Grindability value,  

           P -80% passing product size in microns and  

           F- 80% passing feed size in microns 
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4.1.2. METSIM Design. METSIM software was used to evaluate the power draw 

for the comminution operation and optimize the design for using various crushing and 

grinding equipment. The software calculates particle size distribution for the type of 

crushing and grinding equipment based on the input parameters such as open side setting, 

closed side setting and throw of crushing equipment and mill diameter, critical mill speed 

for ball mill equipment. The METSIM help files for the equipment used in the design and 

required parameters for the working of the design are briefly described in Appendix D. 

The particle size distributions obtained from the model were used to calculate the particle 

size distribution for processing new refractory castables. 

 

 

4.2. BOND WORK INDEX TEST RESULTS  

A sample splitting technique was used to select a representative feed sample and 

to test the grindability of the spent lining. The initial feed stock of type A refractory was 

crushed to less than 3.3mm and taken as feed for analysis. The as-received type A 

refractory lining sample used in the inductors was taken as a representative sample for the 

six types of refractory as the chemical composition for inductor linings was similar. The 

packed density of the crushed spent lining feed was calculated to estimate 700ml volume 

of material for analysis. Particle size analysis of the feed was done by vibratable sieve 

shaker to calculate the 80% passing feed particle size. The product size was selected 

based on the minimum copper globule size estimated from the SEM image of the feed 

material. The 80% passing product size was taken as 106 µm which was the minimum 

copper globule size as measured from SEM. The Bond Work Index test was performed 

sequentially on the crushed lining without screening out the copper. The preliminary 

calculations are: 

• Lab Mill Feed = 1.709 g/cm3   equivalent to 1196.3g (700cc) in mill. 

• Ideal Potential Product = 341.8 g. 

• Average of last 2 periods = 247% circulating load. 

• Grindability at 106 microns = 0.745 net grams per revolution. 

The test reached steady state in fifth, sixth and seven periods. The graph between 

the net grams per revolution against number of period was plotted as shown in Figure 4.1. 
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  Figure 4.1. The net grams per revolution plotted against period number showing steady 
state for fifth, sixth and seventh period. 

 

 

 

The results for the Bond work index are tabulated in Table 4.1. The feed, product 

and circulating load size distribution were illustrated in Figure 4.2.  The bond work index 

Wi was calculated from equation 4.2 and was found to be 21.2 kWh/st.  

 

Table 4.1. The BWI test results for crushed lining 

Period 
Revolutions 

of Mill 

Grams of 

Product 

Grams in 

Feed 

Net grams 

Produced 

Net grams 

per 

revolution 

1 70 164.4 78.2 86.20 1.23 

2 269 278.0 11.0 267.0 0.99 

3 327 275.2 18.3 256.9 0.78 

4 410 323.0 18.0 305.0 0.75 

5 432 343.9 21.4 322.5 0.74 

6 427 345.7 22.5 323.2 0.75 
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Figure 4.2. The particle size distribution of feed, circulating load and product 

 

 

The particle size distribution determines the amount of power drawn by the ball 

mill. An increase in the 80% passing product decreases the power draw of the process as 

it requires less grinding action. 

 

 

4.3.  METSIM PROCESS DESIGN  

The comminution operations are energy intensive and therefore the energy 

requirements might inhibit recycling benefits. The energy expended for liberation of 

copper from the spent lining was considered as a crucial parameter. The other important 

economic parameters are the cost of liberated copper and the cost to landfill. The cost of 

landfill for specific refractory type is constant; however, the cost of copper is variable 

thereby the economics of the recycling process can be evaluated depending on energy 

consumption and copper scrap cost for the present model. To relate energy consumption 
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to cost benefits, the Bond work index was used to design the energy requirements for 

crushing and grinding of the large refractory pieces to smaller fractions. 

The METSIM model was an attempt to optimize the energy consumption for 

maximum copper yield from lining material with minimal energy and to also obtain 

particle size distribution which can be used to prepare and process new refractory 

castables. The preliminary model was used to compare the energy expended to crush the 

feed into the required product 80% passing size and also a particle size analysis for the 

two primary crushers - jaw crusher and cone crusher. Preliminary studies were done by 

modeling flow charts using a jaw crusher (CRJ) and roll crusher (CRR) and ball mill 

(MLB) and screen (SCK) in sequence. The flow sheet for “jaw crusher and ball mill” 

operation is illustrated in Figure 4.3. The “cone crusher and ball mill” model was 

designed similar to the Figure 4.3 except for the replacement of jaw crusher and roll 

crusher with a cone crusher. The mass flow rate for all the models was taken as 10 metric 

ton/ hr. The sequence of operations is connected with lines which are called streams. 

 

 

 
Figure 4.3 METSIM grinding circuit (Jaw crusher model) for calculation of comminution 
energy for refractory lining showing mass flow rate and P80 for respective streams 

1705µm 
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In Figure 4.3, there are numbers along the exit of each stream. The numbers 

represent the mass flow rate 10 tons/hr and P80 of the mass passing through the stream. 

The oversize material after screening has higher P80 (1705 µm) because the coarse 

particles from the ball mill and roll mill are screened and constitute much lower 

percentage of the entire material. The jaw crusher model has input parameters of 160mm 

open side setting and 155mm throw. The dry grinding factor for the circuit was taken as 

1.3 as defined by the METSIM software and energy expended to crush the feed was 

calculated for 106 µm, 250 µm, 500 µm, 750 µm and 1000 µm product 80% passing 

particle sizes. The parameters for ball mill are driven by industrial specifications [33]. 

The details of crusher and ball mill and the model results were tabulated in Table 4.2. 

 

 

Table 4.2 Power Draw and Dimensions for the Process Design and Scale up model 

P80                     
(µm) 

Crusher Power 
Draw (kW) 

Ball Mill 
Diameter (m) 

Ball Mill 
Length (m) 

Ball Mill 
Power Draw 

(kW) 
Jaw CR+Ball 

Mill         
1000 27.925 2.00 1.10 53.898 
750 27.925 2.12 1.17 67.070 
500 27.925 2.37 1.15 90.175 
250 27.925 2.37 1.88 147.269 
106 27.925 2.75 2.15 253.629 

Cone CR+Ball 
Mill      
1000 23.432 2.00 1.55 96.890 
750 23.432 2.12 1.52 111.01 
500 23.432 2.37 1.38 136.715 
250 23.432 2.37 2.10 207.55 
106 23.432 2.75 2.27 334.068 

DS Jaw CR      
400 15.780 na na na 
624 17.110 na na na 
680 17.780 na na na 
780 19.670 na na na 
870 31.050 na na na 
na – not available 
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To compare the power draw and particle size distribution between a jaw crusher 

and cone crusher, a similar model was created for a cone crusher. The power draws for 

screening and mechanical separation were minimal with respect to the power draw of the 

comminution operation and hence were neglected for energy calculations.  

A third model was developed with a double stage jaw crusher excluding the ball 

mill and roll crusher. The flow chart for the double stage jaw crusher model is illustrated 

in Figure 4.4. 

 

 

 

 
Figure 4.4.  Process flow chart developed in METSIM for double stage jaw crusher 
 
 
 
  

 

The double stage jaw crusher (CRJ) would eliminate the use of ball mill. Since, 

the ball mill is energy intensive as found from Table 4.2; the double stage jaw crusher 

would result in significant economic benefits. A double stage jaw crushing operation with 
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screens (SCK) in between the two crushing operations would allow control over the 

particle size distribution. 

 

 

4.4. RESULTS AND DISCUSSION 

The jaw crusher and gyratory crusher are primary crushing equipment with the 

ability to handle large chunks of material, in comparison to the cone crusher which is a 

secondary crusher with a relatively smaller opening size and cannot handle large chunks 

as compared with the primary crushers. Hence, the energy consumption for the cone 

crusher model was higher when compared with the energy consumption for a jaw 

crusher. Also, the jaw crusher is economical when the feed rate is less than 187.5 tons per 

hr [32].For further optimization of the energy consumption; the characteristics and 

importance of the ball mill were considered. 

The ball mill is a grinding mill for reducing the size of the coarse feed from 

crushers to finer micron size product material and has maximum energy utilization in the 

model. For the present application, the fraction of fine particles was not required for 

metal liberation; however the finer size fraction is critical for processing new refractory 

castables. Also the ball mill is an expensive capital investment for processing material 

with a low feed rate. Hence, a double stage jaw crusher model was developed in 

METSIM and the power draw was calculated (see Figure 4.4).  

The double stage jaw crusher model was restricted by P80 (product 80% passing) 

particle size from 870 µm to 400 µm. The energy consumption from all three models is 

summarized in Figure 4.5. 

The particle size distribution from a double stage (DS) jaw crusher model was 

compared to the theoretical particle size distribution used in Chapter 3 Section 3.1 are 

illustrated in Figure 4.6. Theoretical particle size distribution and the particle size 

distribution obtained through METSIM models are different in comparison with the 

industrial distribution and therefore, fines are incorporated to fit the industrial particle 

size distribution. 
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Figure 4.5 Comparison of three models based on the energy expended to crush to a 
specified product 80% passing  
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Figure 4.6 Particle size distributions obtained from double stage (DS) jaw crusher model 
compared with optimal distribution 
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In the Figure 4.6, the percentage of fines generated in a double stage jaw crusher 

as per the METSIM model was found to be much higher than the other models 

developed. The ‘DS Jaw + Roll CR Exp’ was the particle size distribution obtained 

experimentally which does not comply with the theoretically developed model. 

Therefore, fines have to be added to the product obtained by crushing and grinding to 

build a multi-modal distribution suitable for preparing new castables. The industrial 

multi-modal distribution is quite complex [34] and cannot be match fit with the simple 

theoretical models developed. Hence, based on the industrial design, fines have to be 

incorporated to achieve good castable properties. 

However, a double stage jaw crusher utilizes lower energy than other 

comminution operations. Hence, it is recommended that double stage jaw crusher 

liberates the entrapped metal and the crushed lining that is obtained can be added to a fine 

distribution mix to prepare new castables. The total cost benefits to recycle all the 

materials from the spent refractory lining were evaluated. 

The economics of the model results were evaluated using a cost analysis function. 

The constants used in the value analysis were the cost of brass scrap - $0.88/lb (25 % of 

value of copper), cost of landfill - $18/ton, cost of cement - $0.31/lb, cost of fresh 

refractory mix - 0.51$/lb and cost of electricity - $ 0.12/kWh. The net value was 

calculated assuming that 3% of secondary brass can be liberated from the spent refractory 

lining. 

The costs involved for the entire recycling program are estimated as defined by 

the net value cost analysis function. 

Net value, $/ton = + (Cost of landfill per metric ton, $/ton) 

+ (Metal recovered, mt/hr)*(Scrap price, $/mt) - (Energy consumed, 

kW/hr)*(Electricity cost, $/kWh) – (cost of raw materials, $/ton) = $34.5 / ton 

The cost benefits of recovering all materials and recovering only brass from spent 

furnace linings are tabulated in Table 4.3. The cost benefits of recovering only brass are 

higher than recovering all materials. The difference can be attributed to the higher prices 

of brass which adds value to recovery of only brass and higher prices of cement which 

decrease the value of recovering all of the materials from spent linings.  
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Table 4.3. Cost savings for different recycling alternatives 

Parameter 
Economic Benefits 

($/ ton) 

Landfill all materials -18 

Recovery of all materials +34.5 

Recovery of only brass +40.2 
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5. CONCLUSIONS 

The six types of refractory lining samples have been macro-characterized and 

micro-characterized for preliminary understanding of the samples. SEM/EDS 

characterization was used to analyze the shape, size and form of brass in the spent lining 

samples. Based on the SEM/EDS results, copper was physically wetting the lining as 

there was no reaction at the interface between copper and the refractory matrix. 

Brass morphology was determined to be of three different types-strips, globules 

and wetted layer as thin foils on the ceramic matrix. The formation of strips facilitates 

liberation of metal from the ceramic matrix by simple crushing and grinding operation. 

Copper content in the samples was determined by acid leaching followed by 

quantification with X-ray fluoroscopy. 

The brass strips were separated after crushing operation by screening. The 

separated strips rich in copper (~90%) can be directly remelted. Two stage crushing and 

grinding operation liberates 65% to 90% of copper in lining samples. Variation of 

metallic content in lining samples can be attributed to the alloy chemistry. Alloying 

elements that have higher wetting angles with alumina create cracks in the refractory 

lining facilitating increased metal penetration. 

The crushed lining was blended with the virgin refractory mix obtained from 

refractory industry and new refractory castables have been processed. The 50%virgin – 

50% crushed lining blend can be used as refractory mortar mix, while the 90% virgin – 

10% crushed lining blend can be used for back up lining in furnaces and for lining low 

duty application furnaces. 

The Bond work index test was used to calculate the energy requirements for 

comminution of the spent lining samples. The lining samples are hard due to the presence 

of ductile brass in brittle ceramic matrix thereby increasing the power drawn by the 

comminution operations. Finally, process design model was developed in METSIM 

analysis software to summarize the cost savings by recycling the spent refractory linings. 

The Bond work index was used as input parameter for developing value-based model for 

industrial scale up and thereby evaluating the underlying cost benefits of recycling the 

spent furnace linings. A value-based model was developed to understand the economics 
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of recovering only brass and recovering all materials. Although, the economic benefit of 

recovering only brass is higher, the value of new castables processed from the spent 

lining can add significant value to recovering all materials.  

 

 

 

 

 

 



 

 

54

6. FUTURE WORK 

Sorting the A, B and C samples which constitute ~13% of the total annual 

percentage of refractory landfilled, would effectively recover ~70% of the total metallic 

content entrapped in all of the spent refractory linings. Samples from type D refractory 

can also be sorted based on visual inspection. The sorting procedure with visual 

inspection can effectively recover ~90% of the entrapped metal. 

The crushed spent linings can be pre-fired to convert copper to copper oxide and 

the entire mix can be fired to stabilize copper as copper oxide or form copper based 

spinels (with copper forming solid solution with the spinel). The spinels have higher 

working temperatures and can be explored as potential applications for recycling the 

crushed product. 

Based on the METSIM models, a cone crusher with adjustable open side setting 

or jaw crusher with roll crusher are to be studied in detail for economical capital 

investment. Crushing the spent furnace linings to crushed product with intermediate 

screening steps can maximize metallic yield. 
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APPENDIX A 

 

TABULATED RESULTS OF TOTAL COPPER FOR EACH LINING TYPE  
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Table A1. Summary of results for total Copper present in ‘A’ type refractory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test-1 Test-2 

Sieve size 
Size in 

Microns 

Weight 

Retained 

(in g) 

Total copper  

(in g) 

Weight 

Retained 

(in g) 

Total 

copper   

(in g) 

Copper 

Strips 
 90.90 86.35 109.0 103.55 

7 2800 210.30 127.41 176.1 68.99 

10 2000 244.10 61.27 221.3 18.36 

14 1400 609.50 67.87 585.6 31.80 

28 589 1821.8 97.93 1489.2 38.95 

60 250 1005.0 30.70 750.6 13.83 

140 106 628.70 07.95 448.5 04.18 

Pan -106 764.00 00.00 560.3 0.00 

Product 3  5283.4 393.13 4231.6 176.11 

Total  5374.3 479.48 4340.6 279.66 

      

Total Cu in lining,%     

liberated 

strips 
  1.60  2.39 

leached   7.45  4.16 

Total   9.05  6.55 

Average    7.9  
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Table A2. Summary of results for total Copper present in ‘B’ type refractory 

Test-1 Test-2 

Sieve size 
Size in 

Microns

Weight 

Retained  

(in g) 

Total 

copper   

(in g) 

Weight 

Retained  

(in g) 

Total 

copper   

(in g) 

Copper  

Strips 
 00.00 00.00 58.44 55.51 

7 2800 92.40 40.08 50.4 25.77 

10 2000 280.3 9.70 99.7 12.68 

14 1400 550.4 3.75 244.3 9.48 

28 589 886.9 6.88 396.8 9.05 

60 250 413.3 2.64 184.5 2.34 

140 106 243.3 1.99 109.8 0.32 

Pan -106 304.5 1.04 162 00.00 

Product 3  2771.1 66.11 1085.5 59.68 

Total  2771.1 66.11 1143.94 115.20 

      

Total Cu in lining, %      

liberated strips   0  5.1 

leached   2.4  5.5 

Total   2.4  10.6 

Average    6.5  
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Table A3. Summary of results for total Copper present in ‘C’ type refractory 

Test-1 Test-2 

Sieve size 
Size in 

Microns

Weight 

Retained  

(in g) 

Total 

copper   

(in g) 

Weight 

Retained  

(in g) 

Total 

copper   

(in g) 

Copper 

Strips 
 103.0 97.85 53.40 50.73 

7 2800 63.28 11.49 25.74 11.47 

10 2000 210.18 00.00 103.0 2.05 

14 1400 640.46 00.00 379.66 00.00 

28 589 1079.1 00.00 736.4 00.00 

60 250 466.77 00.00 366.3 00.00 

140 106 229.86 00.00 179.4 00.00 

Pan -106 283.13 00.00 219.1 00.00 

Product 3  2972.78 11.49 2009.6 13.5 

Total  3075.78 109.3 2063 64.2 

      

Total Cu in lining, %      

liberated strips   3.18  2.46 

leached   0.38  0.67 

Total   3.5  3.1 

Average    3.3  
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Table A4. Summary of results for total Copper present in ‘D’ type refractory set 1 

Test-1 Test-2 

Sieve size 
Size in 

Microns
Weight 

Retained 

(in g) 

Total 

copper    

(in g) 

Weight 

Retained 

(in g) 

Total 

copper    

(in g) 

Copper 

Strips 
 00.00 00.00 00.00 0.00 

7 2800 39.10 9.32 06.66 3.09 

10 2000 217.7 00.00 28.40 0.00 

14 1400 325.8 0.87 264.6 0.00 

28 589 434.9 3.07 679.0 0.00 

60 250 216.9 0.69 395.8 0.00 

140 106 141.2 00.00 261.2 0.00 

Pan -106 163.4 00.00 230.5 0.00 

Product 3  1539 13.97 1866.16 3.09 

Total  1539 13.97 1866.16 3.09 

      

Total Cu in lining, %      

liberated strips   0  0 

leached   0.9  0.16 

Total   0.9  0.16 

Average    0.5  
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Table A5. Summary of results for total Copper present in ‘D’ type refractory set 2 

Test-1 Test-2 

Sieve size 
Size in 

Microns 

Weight 

Retained   

(in g) 

Total 

copper    (in 

g) 

Weight 

Retained   

(in g) 

Total 

copper   

(in g) 

Copper 

Strips 
 315.2 299.44 308.8 293.36 

7 2800 626.2 355.75 319.7 165.2 

10 2000 389.6 116.5 115 42.25 

14 1400 879.2 107.02 196.1 34.9 

28 589 1741.6 132.5 399.4 47.02 

60 250 1013.7 49.9 251.6 22.5 

140 106 637.3 24.77 176.9 12.05 

Pan -106 732.7 11.35 205.6 7.44 

Product 3  6020.3 797.79 1664.3 331.36 

Total  6335.5 1097.23 1973.1 624.72 

      

Total Cu in lining,%     

liberated 

strips 
  4.73  14.87 

leached   13.25  19.9 

Total   17.98  34.77 

Average    26.6  

 

 

 

 

 
 

 



 

 

61

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

 

MATERIAL DATASHEET FOR TYPE C VIRGIN REFRACTORY 
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The type C refractory is a high purity, bauxite base, low moisture, low cement 

castables used for lining the channel inductor furnaces melting copper based alloys. The 

castable combines its high alumina base with SiC to provide high strength and low 

porosity. 5 % to 5.5% is the typical water content for type C refractory castables. The 

chemical analysis is: 

Al2O3 – 73.8% to 78.8% 

SiO2 – 6.35% to 7.85% 

SiC – 9.6% to 13.6% 

TiO2 – 1.85 % to 2.35% 

 

 The cold crushing strength of 13.3 N/mm2 is highest at ~1200 oC and decreases at 

higher temperatures. 
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APPENDIX C 

 

PARTICLE SIZE DISTRIBUTION FOR PROCESSING NEW CASTABLES 
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Table A6. Particle size distribution for original virgin blend and normalized distribution 
for processing new Castables 

Particle Size (microns) Virgin distribution (%) Normalized distribution 
(%) 

-90 6.3 10.5 

90 4.5 7.5 

106 1.5 2.4 

150 1.2 2.0 

210 0.95 1.5 

250 0.6 1.1 

300 2.2 3.7 

425 1.7 2.8 

600 3.0 5.0 

840 2.0 3.3 

1000 2.5 4.3 

1180 2.2 3.7 

1400 4.06 6.7 

1700 3.9 6.5 

2000 6.7 11.18 

2360 16.5 27.5 

2800 7.9  

3350 10.5  

4699 20.0  

6680 1.3  

 100.0 100.0 
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APPENDIX D 

 

METSIM HELP FILES  
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D.1 METSIM HELP FILES 

  METSIM software is developed to design and analyze industrial extraction 

processes for metal liberation. METSIM v. 15.12 allows designing process flow chart for 

comparing the power draw capabilities of commonly used industrial comminution 

equipment and optimize the industrial design and subsequent scale-up. It calculates 

power draw and also provides comprehensive particle size analysis for each type of 

equipment but requires preliminary data on the type of material to be used, the Bond 

Work Index, the initial particle size, flow rate based on different possible model 

calculation options. The present section lists the principle of operation of cone and jaw 

crushers and ball mill, the model calculation options, the power draw equation and finally 

the results of the process design. 

D.1.1. Crusher (Cone-CRC, Jaw-CRJ). This module does not size equipment; it 

estimates crusher product particle size distribution.   

The CRC unit module is based upon equations derived from regression analyses 

of screen analysis data of crusher tests performed by the USBM and used by various 

crusher manufactures.  This data is reasonably accurate for normal hard rock of a massive 

nature but may not apply to salty material. 

The module may be used with parameterization calculation option if plant data are 

available. The parameterization routine uses the algorithms and methodology developed 

by CANMET (Canadian Center for Mineral and Energy Technology). Once 

parameterization has been completed or if the CANMET constants are already known, 

then the CANMET option may be used without running parameterization. 

Input data is entered via the Parameters input data screen: 

CS - Closed side setting:  The distance between the cone and the side of the crusher when 

the cone is as closest to the sidewall, this measurement is taken at the choke or discharge 

point.  This is a required parameter.  The cone crusher uses the closed side setting in its 

calculations. 

TH - Throw:  The distance the cone can move away from the sidewall.  This is a required 

parameter. 
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OS - Open side setting:  The distance between the cone and sidewall of the crusher when 

the cone is furthest away from the wall taken at the choke point.  The open side setting is 

a sum of the closed side setting and the throw.  This is calculated based on the closed side 

setting and the throw. 

CO – There are three calculation options. 

CO=0 - Parameterization 

CO=1 - CANMET 

CO=2 – Empirical 

  The model used for the process design is empirical. The Crushing Power Draw 

estimation is based on the following equation  (from SME-Mineral Processing Handbook, 

Volume 1, S.W. Mudd Series, Page 3B-40) 

HP/ short ton =   (WI * ((F80)0.5- (P80)0.5) * F) / ((F80)0.5* (P80)0.5) 

Where, 

 WI = Work Index 

F80 =  feed 80% passing size in microns 

P80 =  product 80% passing size in microns 

F = crushing factor, based on experience, which is 0.75 for primary crushing and 1.0 for 

secondary crushing 

  The jaw crusher and the roll crusher are also based on the same principle. 

However, for roll crusher, the length of the rolls, the roll diameter is to be specified. 

The throw for the cone and jaw crusher is set to industrial maximum of 7 inches. 

  D.1.2. Mill Ball – MLB.   It can simulate single or multiple parallel ball mills.                               

There are three distinct calculation modes, which can be used in the ball mill: 

Mode 1 – Simulation using Bond’s Formula 

Mode 2 – Parameterization 

Mode 3 – Herbs Kinetic Model 

The present model used the Mode 1 which uses Bond’s formula as described. 

Mode 1 – Simulation using Bond’s Formula: The following options apply: 

CO=1 Bond Inside Length. The mill inside length is input and the model 

calculates predicted product P80 
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CO=2 Bond Product P80. The mill circuit product P80 is input and the model 

estimates the optimum mill length. 

CO=3 Bond Discharge D80. The mill discharge product D80 is input and the 

model estimates the optimum mill length.  

Calculation options 1, 2, and 3 are based only on Bonds method.  Calculation 

option 2 uses Bonds original method while 1 and 3 are modifications of this. 

The mill is calculated in two stages.                                              

1 - Bond's equations are used to determine the mill size and particle 80% passing 

size.                                                                              

2 - Selection and breakage functions are used to calculate the complete product 

particle size analysis. 

This two-stage calculation method was developed in 1981 and is reasonably 

accurate where only a Bond Work Index is known.  If plant data is available, the open 

circuit design factor (OF) and the selection and breakage function coefficients can be 

adjusted to match actual plant data. (A discussion of the Bond formulas can be found in 

Chapter 23 of "Design and Installation of Comminution Circuits" published by the 

AIME). 

Bond's equations are presented below.  The normal ranges of values for grinding 

coefficients are: 

 BE    = 0.50 to 2.00       (1.0)   (recommended) 

 AA[1] =  0.40 to 2.00       (1.1) 

 AA[3] =  1000 to 4000       (1600) 

 AA[2] =  0.70 to 1.10       (0.9) 

    AA[4] =  1.00 to 4.00       (3.00) 

These values are incorporated in the design model for process design and power 

draw calculations. 

The efficiency factors for grinding operation are as described below. 

E1 = 1 for wet grinding 

E1 = 1.3 for dry grinding 

E2 = OF = 1.2 for 80 percent passing reference size 
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