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ABSTRACT 

This thesis attempts to improve the practical and effective incorporation of Smart 

Engineering Architectures into Health Monitoring Systems for civil bridges.  The 

designed Damage Diagnostic Algorithm is inspired by a reductionistic model from the 

Cognitive Psychology that describes the Human Mental Processes.   

Prior research efforts attempted to apply Artificial Neural Networks, especially 

Backpropagation, in order to perform Structural Damage Diagnosis.  However, the 

Neuro-Computing methods have a number of inefficiencies, as the lack of generalization, 

and the difficulties to collect the optimum datasets.  In this thesis, to overcome these 

problems, two innovative software components aim to improve the training and testing 

datasets for the learning algorithm.  The obtained datasets exhibit properties (e.g. 

diversity and network performance quality) that have statistical significance.  The two 

proposed procedures are not necessarily applied to the Damage Diagnostics Systems 

only, but they might be extended as a universal improvement for Backpropagation or for 

Networks that employ supervised learning, in general.   

The designed Damage Diagnostic System is tested on simulated data.  It is 

demonstrated that the method is very sensitive in detecting mild linear damage.  Two 

important advantages of the Diagnostic System are the prediction accuracy and the 

flexibility.   
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NOMENCLATURE 

Some symbols denote different variables; however they are distinguished when 

the subscripts are applied.   

Symbol                             Description   

ztrn                                 Mid-span displacement training array 

trnz��                                  Beam Acceleration Training array 

ptrn                                 Excitation load array, as measured and used for training the A-

Class Neuro-Fuzzy Network 

epred,trn                                Average prediction error of the A-Class Neuro-Fuzzy Networks 

in the prediction of the training dataset 

�pred,trn                                Average predicted damage rate 

ppred,trn                          Predicted bridge excitation 

po                                 Vibration amplitude array 

�o                                Vibration frequency array 

�'pred,j                                Corrected predicted damage rate, which is calculated with 

sampled measurements from the vehicle event j 

j                                Index that denotes the vehicle event 

Kj                                Stiffness Matrix 

epred,j                                Average prediction error of F different A-Class Neuro-Fuzzy 

Networks, for vehicle event j.  This average error is estimated 

by the B-Class Neuro-Fuzzy Network. 

F                                The amount of the pages in the A-Class ANFIS datasets, which 

equals the number of the sampling measurements during each 

passage of the moving load along the beam 

R                                The amount of the rows in the datasets for A-Class ANFIS 

Ntrn                                Size of the training dataset 

Nmax,trn                          Ceiling limit for the training dataset 

Nmin,trn                          Bottom limit for the training dataset 

zmin                                The minimum value that an element in deflection array might 

take potentially, during the service life of the bridge 



 xi 

zmax                                The maximum value that an element in deflection array might 

take potentially, during the service life of the bridge 

minz��                                 The minimum value that an element in the acceleration array 

might take potentially, during the service life of the bridge 

maxz��                                 The maximum value that an element in the acceleration array 

might take potentially, during the service life of the bridge 

z                                Element of the array z 

z��                                 Element of the array z��  

p                                Element of the array p 

z��                                 Element of the array z��  

p(t)                                Discrete value of the excitation force, at the time moment t 

pmax                                The most severe vehicle loading that the bridge might carry   

potentially, during its service life 

{pmax,1, pmax,2 …, pmax,n}  The most severe combination of the spatial vehicle loadings that  

                                bridge might carry potentially, during its service life 

po,max                                 Maximum load amplitude 

�o,max                                Maximum load frequency 

pmin                                   Minimum excitation load 

[po,min, po,max]                Interval range between the probable minimum and maximum 

load amplitude values 

[�o,min, �o,max]                Interval range between the probable minimum and maximum  

load frequency values 

Pr                                The probability function 

zΩ                                 The sample space that includes all the potential values of z 

z��Ω                                 The sample space that includes all the potential values of z��  

trne                                 Root-mean square of errors ej, calculated for the training 

dataset 

σtrn                                Variance of errors ej, calculated for the training dataset 

chke                                 Root-mean square of errors ej, calculated for the checking 

dataset 
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σchk                                Variance of errors ej, calculated for the checking dataset 

trnelim,                                 Imposed limit on the root-mean-square of errors ej, calculated 

for the training dataset 

chkelim,                                 Imposed limit on the root-mean-square of errors ej, calculated 

for the checking dataset 

lime                                 Imposed limit on the root-mean-square of errors ej 

σlim                                Imposed limit on the variance of errors ej 

S(sp)                                Array that contains the rows of the training dataset, sorted from 

the smallest to the biggest, with respect to selected array z or z��  

A=[zr, z��  po,  �o ]   Training dataset 

sp                                A binary parameter that takes the value of 1 for selected array z 

or the value 2 for selected array z��  

SQ                                Array of sorted deflection data 

Saux, Q                                Auxiliary array 

D                                Array in which the hth element represents the distance of h
th

 

element Sh,of array S from the adjacent smaller element (h-1)th 

Sh-1 

Sh                                 The h
th

 element in array SQ 

Sh-1                                 The (h-1)
th

 element in array SQ 

B                                Auxiliary matrix that is obtained during the rejection process 

nsi                                 Quantity of elements that are rejected.  This quantity equals the 

difference NTRN-Nmax,TRN 

T                                 Logical truth value 

F                                 Logical false value 

Nmim,4D                Bottom value for the size of Damage Diagnostic Decision  

Dataset 

N4D                                Size of the Damage Diagnostic Decision Dataset 

Nmax,tst                          Maximum allowable size of the testing dataset 

Ntrn                                Size of the training dataset 
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po,3D                                Load amplitude array in the Damage Diagnostic Decision  

Dataset 

�o,4D                                Load frequency array in the Damage Diagnostic Decision  

Dataset 

median                          A MatLab function that calculates the median value of an array 

IQR                                A MatLab function that returns interquartile range of an array.  

The interquantile range is defined as difference between the 

third and the first quartile. 

�                                Tolerance for the data diversity formulas 

range ([po,min, po,max])    Service range for the potential load amplitude values 

range ([�o,min,�o,max])    Service range for the potential load frequency values 
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1. INTRODUCTION  

This thesis concerns the design of an algorithm that is capable to detect structural 

damage in civil infrastructure bridges.  The algorithm, which will be dubbed Damage 

Diagnostics System throughout the thesis, is the software component of a broader Bridge 

Health Monitoring System.  This broader system integrates software and hardware, such 

as sensors and data acquisition components.   

The material of the first section is divided in three subsections.  Subsection 1.1 

lists the general features of the Damage Diagnostic System and it discusses the research 

motivation.  The same subsection justifies why this algorithmic solution is well suited for 

the damage diagnosis problem.  In Subsection 1.2, the origins for the inspiration of the 

system are traced into biological and man-made systems.  The final Subsection 1.3 is an 

overview of how the study is organized in the sections to follow.   

 

 

 

1.1. RESEARCH OVERVIEW AND RESEARCH MOTIVATION 

The rationale for the Structural Damage Diagnosis is based on the principle of the 

structural vibration testing.  The Health Monitoring System captures the vibration signals, 

as the bridge responds to excitation from various sources.  The purpose of the Diagnostic 

System is to extract information from the vibration signals concerning the damage 

condition of the bridge.  This system will identify and quantify the damage, by examining 

the shifts in the vibration signature.  This can be performed with a comparison between 

the actual vibration signal and the vibration behavior of the undamaged bridge.   

There are two options to build the vibration model of the undamaged structure.  

The first option is to develop an analytical vibration model of the structure, based on 

theoretical assumptions of the bridge physical parameters, namely the mass, the stiffness 

and the damping.  The other alternative is to create the model based on recorded vibration 

signals from the bridge that is characterized as undamaged.  Recording the signals can be 

done at any instance during the bridge service life.  At that instance, even though the 

bridge might be found to be undamaged after an inspection, it is very possible that there 
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is a deviation between the actual bridge physical parameters and the theoretical values.  

As for example, the damping might be different due to micro-cracks.  These micro cracks 

that are developed to a limited degree.   

These two models are not the same, because the analytical one is based on 

theoretical assumptions of the bridge physical parameters, while the second model is 

based on the actual state of the structure during an instance of the bridge service life.   

However, because the vibration response of a bridge depends on a multitude of 

agents and parameters, it is not practical to build an analytical model for an existing 

bridge.  For this reason, in this thesis, the Damage Diagnosis is based on a non-

parametric vibration model of the undamaged bridge that is created by the Neuro-Fuzzy 

Networks.   

These adaptive algorithms are suitable tools for the vibration-based diagnosis, 

because they satisfy its requirements, such as the need for autonomy, the dealing with 

non-linear functions, and the processing of incomplete or noisy data.  Nevertheless, the 

Neuro-Fuzzy Networks face several hurdles, as for example the lack of generalization.   

Because the Neuro-Fuzzy Nets are data-driven algorithms, their performance 

depends on the training datasets.  In addition, the Neural Nets will provide good results, 

only if the testing datasets are somehow relevant to the training dataset.  The manual 

preprocessing for collecting proper data is an additional difficulty that reduces the 

Damage Diagnostic System autonomy.  But most of all, the reliability of the system is of 

great importance, since it arrives at vital decisions concerning the bridge safety and 

operation.  Any compromise could increase the risk for human lives sacrifices or it could 

lead to financial losses by taking unnecessary actions, be that a bridge shutdown, or an 

ordered bridge inspection.   

So, as the overall performance of the Damage Diagnostic System should be 

superior and trustworthy, this thesis introduces three techniques that attempt to improve 

the use of the supervised learning algorithms.   

The first novel procedure aims to calibrate the Neuro-Fuzzy Networks and to 

remove the networks prediction error.  The two other techniques intend to collect the 

proper training and testing sets, respectively.  Both techniques aim to improve the 

performance of the intelligent algorithms.   
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This thesis is a stand-alone document, but all readers, who are interested in a 

deeper analysis of the subject, can refer to a second manuscript, which is a part of an 

extended research program for developing a Bridge Damage Diagnostic System.   

The second document is the currently unpublished Master of Science thesis in 

Civil Engineering that will be presented to the faculty of University of Missouri-Rolla by 

D. Danilatos (2008).  That thesis by D. Danilatos (2008) includes a detailed model of the 

bridge under the impact of moving loads, the derivation of the diagnostic formulas, the 

creation of the fuzzy rules, and the analysis of the Neuro-Fuzzy Architectures.  The 

manuscript is rounded off with the simulation and the analysis of the fundamental 

Damage Diagnostic System.   

From the other part, this thesis in Engineering Management introduces three 

advanced supplementary techniques to enhance the Diagnostic System’s performance.  

These three techniques give the opportunity not only to design a hybrid diagnostic system 

but also to suggest improvements and innovations for the Neuro-Fuzzy Networks, in 

general.  In this thesis, the interchangeable terms Structural Damage Diagnostic System 

or Structural Damage Diagnostic Algorithm or simply Damage Diagnostics refer to the 

subject of this thesis.   

The next subsection discusses the biological inspiration for the Damage 

Diagnostic Systems.   

 

 

 

1.2. BIOLOGICAL INSPIRATION AND INTERDISCIPLINARY INFLUENCE 

While from the one part, scientists devote themselves to discover the laws of the 

nature; from the other part, engineers keep an eye open on the natural world, groping for 

inspiration.  Numerous engineering novelties track their origins into biological 

organisms.  Mechanical inventions, like the airplane and the robots, as well as 

computational tools, like the Artificial Neural Networks and the Genetic Algorithms 

follow examples of the Nature.   

This subsection shows that the Structural Health Monitoring Systems are nature-

inspired  inventions,  as well.   The  functions  of  an  ambitious  Monitoring  System  are 
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similar to those performed by the human nervous system.  A naive description of the 

biological counterpart will illustrate the parallelism.  When nociceptive nerves in the 

skin, are activated by stimulus, they send signals through the spinal cord to the brain.  

Processing of the information is translated to appropriate perception or painful emotions.  

Various stimuli, such as mechanical, chemical, thermal, can be detected and evaluated.  If 

damage is identified, pain will act as a warning alarm and a signal for defensive reaction 

will be sent back to the muscles.  The function and the abilities of the human nervous 

system are much more complex in reality.  Nevertheless, the above short representation 

was adequate to conceptualize how and what a Bridge Health Monitoring System should 

be able to perform.   

The development of the Neuro-Computing algorithms was inspired by concepts 

and ideas from various scientific fields, like for example Biology, Linguistics, and 

Neurophysiology.  New fields of Neuro-Computing studies emerged from the 

mathematical formulation of scientific concepts.  The Artificial Neural Networks, which 

took birth from the biological studies of brain and vision, and the Genetic Algorithm, 

which were evolved from the biological theory of evolution, are two characteristic 

examples to mention.   

However, today most fields of study in Neuro-Computing are well established, so 

there is little space left to propose innovative algorithms.  As a case in point, all inspiring 

concepts from Biology seem to have been already transfused into the corps of Intelligent 

Algorithms.  Sometimes new proposed Neural Networks incorporate ideas, which 

although they look novel, they have little practical applicability.  Furthermore, the 

performance of these networks is inferior when compared to the classic backpropagation 

network.   

As the approach to scientific areas, which are traditionally related with Neuro-

Computing, is exhausted, the researchers might have to search new grounds for 

inspiration.  This thesis gets inspiration from the area of the Cognitive Psychology, in 

order to introduce a reductionistic model, which combines the Neuro-Fuzzy System with 

novel features.   

Inspiration from biological structures is productive; however, since the old days 

of  Renaissance,  the  unsuccessful  efforts  of  Leonardo  da  Vinci  to  imitate  birds,  by 



 5 

designing a flying machine with movable wings, reminds us a lesson.  Biomimicry and 

anthropomorphic engineering designs, which slavishly ape nature, as likely as not doom 

to failure.  Contrarily, research that is inspired by the natural laws is more efficient, as it 

has the potential to reveal new patterns and to develop original applications.   

 

 

 

1.3. SECTIONS ORGANIZATION 

The thesis is organized in six sections.  The next section reviews on the past 

research that concerns the Structural Damage Diagnosis, by involving soft computing 

techniques.  In addition, the Section 2 mentions fundamental concepts from the field of 

the Cognitive Psychology.  These ideas will provide us the raw material for inspiration in 

the design of novel Smart Computing Systems, later in the next section.  Moreover, 

Section 2 underscores what have not covered in the previous works and what the study’s 

needs are.   

Section 3 describes the model architecture for the proposed Damage Diagnostics 

System.  Section 4 presents a simulation experiment in order to illustrate the material of 

the preceding section.  Section 5 makes available the findings of the damage detection 

procedure that is tested on different simulated scenarios.  Finally, Section 6 summarizes 

the research findings and presents the conclusions.   
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2. LITERATURE REVIEW  

2.1. INTRODUCTION 

This section reviews previous research in the area of the Structural Damage 

Detection.  In parallel, this section draws attention to the points that require 

improvements.   

The material is organized as follows.  Subsection 2.2 reviews published papers 

that concern structural diagnosis, by using Intelligent Learning Algorithms.  After 

summarizing and assessing the previous accomplishments, Subsection 2.3 discusses some 

commonly known hurdles that are associated with the use of the Adaptive Networks.  

The thesis intends to fix these problems.  Subsection 2.4 provides a short introduction in 

the concepts of Cognitive Psychology.  These concepts provide the inspiration for 

building the Neuro-Computing model architecture for damage diagnosis, to be presented 

in the next Section 3.   

 

 

 

2.2. PREVIOUS RESEARCH FOR HEALTH MONITORING SYSTEMS 

This subsection reviews the previous research efforts in performing Structural 

Damage Detection, using Intelligent Learning Algorithms.  Taking into consideration the 

fact that this research area enlarges rapidly, the listing is unfortunately partial, and it is 

restricted to a limited number of representative papers.   

In the first reviewed paper, H. - G. Herrmann and J. Streng (1997) applied a feed-

forward Neural Network to identify damage on a planar statically determinate truss 

structure, composed by six rods.  The Artificial Neural Network (ANN) consisted of six 

input and output neurons, which were intervened by two hidden layers, each having 

twelve units.  The authors proposed a technique to enhance the network’s training and 

generalization, using pre-processing of the data by dimensional analysis, according to the 

Pi-theorem.  All data were generated by finite element analysis software.  Inputs 

consisted of nodal displacements in two directions, when outputs were the actual to 

nominal stiffness ratios of the rods.  The Optimal Brain Surgeon method by B. Hassibi et 
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al. (1992), which was incorporated, reduced the number of the hidden units, of the 

interconnections, and of the test error.   

The authors did not vary the static force applied on the truss, which might be seen 

as a limitation in practical applications.  Furthermore, an additional limitation was that 

the structure of the ANN required the number of the recorded displacements equaled to 

the number of the output structural integrity coefficients.   

Masri et al. (2000) used a multilayer feedforward network to map the excitation 

force, measured displacement, and velocity of a non-linear dynamic system to the 

system’s acceleration.  However, more useful was proved the inverse modeling from the 

response to the excitation, which was also investigated and put into practice for damage 

detection.  The input data, which fed into the Neural Network, were experimentally 

recorded accelerations and white-noise force excitation.  Outputs were numerically 

integrated velocity and displacements.  The ANN had a 9-15-10-4 topology and 

incorporated an adaptive random search technique (ARS), to deal with high-order 

systems of many parameters.  The hyperbolic tangent was used as activation function.  

The Neural Network had been trained with experimental vibrational data of an 

undamaged mechanical system, so it was able to identify the same system under damaged 

state, within a norm error ratio approximately 10-15 %.  The authors evaluated the 

network’s performance using the RMS error, to compare between the predicted and the 

recorded data.  The greater was the damage in the mechanical system, the greater was the 

difficulty experienced by the network to predict the response.  Therefore, statistical 

parameters, like the dimensional standard deviation ratio were employed to evaluate 

damage in the structure.  However, the authors pointed out that such damage indices 

might not indicate structural damage in quantitative, unique way, because the Neural 

Network used different starting weights.  The following paper suggested a novel 

procedure to overcome the difficulty.   

B. Zu and Z. Wu (2002) employed two Neural Networks to perform health 

monitoring on a four-story frame structure, excited by earthquake ground shaking.  The 

two networks had the three-layer architecture, trained by backpropagation, but they 

served different purposes.  The first Neural Network was able to predict the dynamic 

response of the healthy building structure to various seismic excitations.  To achieve the 
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task, the network was trained with the values of displacement, velocity, and acceleration, 

undergone by each floor, at time step k.  The output was the story displacement, at the 

next time step k+1.  The training process took 10000 epochs.  The neurons of the hidden 

layer were twice the number of the input neurons.  To evaluate damage, the relative root 

mean square (RRMS) error was defined.  The RRMS error correlated the tested value of 

displacement with the output of the Neural Network.  The authors proved that this 

damage index did not depended on the seismic excitation, but it corresponded to the 

structure’s stiffness.  The RRMS error of the first Neural Network was subsequently used 

as input of the next network.  The output of the second Neural Network was the stiffness 

of each story of the damaged structure.  The authors claimed that by coupling the pair of 

Neural Networks, created a parametric identification strategy.   

H. Luo and S. Hanagud (1997) developed a new Neuro-Fuzzy system, which was 

based on the steepest descent algorithm.  It is well known that this variation of back 

propagation, besides it has low learning speed; it is apt to get trapped in local minima of 

the error surface.  The authors suggest two procedures to improve the training 

performance.  First, in order to avoid stopping of the algorithm in local minima, the 

learning rate was not only controlled by the error function but also by the error change.  

Secondly, they put into practice a fuzzy controller that derived the learning rate.  The 

above-described Neuro-Fuzzy concept was able to detect delaminations and stiffness 

losses in laminate beam specimens.   

Y. Q. Ni et al. (2002) used a multilayer perceptron (MPL), where the mapping 

from input to output patterns was done using auto-association.  Two kinds of inputs were 

fed into the networks, in order to obtain different results: measured modal frequencies for 

damage identification and calculated modal flexibility for damage localization.  In all 

cases, the output was a vector of statistical parameters of the input set.  The evaluation of 

the damage was based on novelty indices, representing undamaged and damaged states.  

All the node structures that were employed had the following common characteristics, 

full symmetry of the network structure, equal number of the input and output nodes, two 

hidden layers with the same number of neurons, and fewer nodes in the hidden layer than 

in the external ones.  The authors evaluated their method by using data experimentally 
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collected from three cable-supported bridges, which serve the traffic in the new 

international airport of Hong-Kong.   

C. R. Farrar et al. (2002) underlined the importance to normalize vibration 

measurements used for the Health Monitoring of structures.  The authors mentioned the 

following three normalization procedures.  The first one was performed by subtracting 

the mean value of a vibration data series from the signal to eliminate DC offsets.  The 

second one was done by dividing by the standard deviation of the measured time history.  

The scope was to normalize the varying amplitudes.  The third procedure was the 

normalization of the measured vibration signal by the excitation input.  In the case of a 

linear structure, the normalized signal became no longer related to the excitation.   

However, apart from the primary measured excitation source, the structural 

response is also the result of a multitude of factors.  In the case that measurements of the 

various operational and environmental conditions were not available, the authors 

suggested the use of the auto-associative Neural Network, which was formed by two 

feed-forward networks, serially connected.  The researchers compiled a supervised 

network which was trained in a way that the networks output was related to the networks 

input.  The objective was to perform data reduction and cleansing.  The output values 

would be related with the measured primary source of system excitation, revealing the 

influence of the unmeasured secondary environmental parameters.  Therefore, the 

proposed technique was able to detect vibrational changes, due to damage and not due to 

the variability of the environmental conditions.  Because in investigated complex 

systems, the number of the external operational and environmental sources was unknown, 

the authors faced difficulties to define the dimensions of hidden layers in their network.  

In addition, another important drawback of the presented method was that the algorithm 

might disregard cases, where a damaged structure has the same vibration signature as a 

healthy one, under particular external conditions.   

H. W. Shenton III and X. Hu (2001) proposed a method for determining the 

location and severity of damage in a clamped-clamped beam.  The authors claimed that 

their technique could overcome several disadvantages of damage detection methods, 

which had been presented in the literature.  From the one part, it is not always feasible or 

practical to meet the requirements of static methods: applying concentrated loads on large 
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structures, creating multiple load cases, and measuring the absolute deformation.  From 

the other part, two problems of the dynamic techniques were solved; the difficulty to 

excite large civil structures to a sufficient level and the interference of environmental 

variable factors.  The method by H. W. Shenton III and X. Hu was based on the principle 

of redistribution of dead load stresses due to the presence of damage and used 

measurements of strains, slopes, or displacements.  The methodology was demonstrated 

with a simulated clamped-clamped beam and the authors believed that it has the potential 

to find application on large civil structures.  The damage detection scheme was a 

constrained optimization problem with the objective function defined as the absolute 

error between measured and analytical strains at three locations of the beam.  Unknown 

parameters were the damage location, length, and severity.  A genetic algorithm was 

implemented in order to solve the optimization problem.  The chromosome vector was 

encoded in floating point format.  New chromosomes were created either by crossover 

using convex arithmetical operators and a rate of 0.5, or by dynamic mutation, with a rate 

of 0.3 and a degree of non-uniformity equal to 2.  The authors were able to identify 

different severities of damage in alternate locations, even in the presence of noise.  The 

genetic algorithm was also successful, when was tested with a false-positive case 

scenario.  However, the drawback of the method was that it could not detect damage at 

the particular locations of the inflection points, where the strains were zero.   

L. Meyyappan et al. (2003) performed off-line analysis on vibration data that 

were monitored from a steel truss bridge.  During a controlled experiment, a vehicle 

driving at various speeds excited the structure.  Two different analysis tools were used for 

damage detection.  In both cases, the dimensionality of the vibration data was reduced, by 

selecting the peak values of the power spectrum as the characteristic feature to be 

analyzed.  The first detection approach was based on the empirical assumption that the 

ratio between the peak values of the power spectrum at two different sampling locations 

is constant, and independent of the vehicle speed.  Any discrepancy on the above 

mentioned ratio might indicate the presence and the location of damage.  With the help of 

the Fuzzy C-means technique, the investigated modal values were classified into clusters.  

Then the developed fuzzy logic decision system identified damage, by comparing the 
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clusters of the model values with the clusters of an undamaged structure.  The derivation 

of the empirical assumption was not provided.   

The second damage detection approach, which was employed by L. Meyyappan 

et al. (2003), the Backpropagation Network with Levenberg-Marquardt method in order 

to model the relationship between the vehicle speeds and the power spectrum values.  

The trained Neural Network was capable to provide the reference vibration for the 

undamaged structure.  This network had fifteen neurons in the input, in the hidden, and in 

the output layers.  The networks input was the vehicle speed, the networks output was the 

peak power spectrum value.  Different ANNs, which had the same architecture, were 

used for different sampling locations.  In order to detect damage, the recorded vibration 

was compared with the reference undamaged vibration that is predicted by the ANN.  

This learning algorithm was used for damage detection, but it did not investigate the 

damage localization and quantification problem.   

H. Adeli and X. Jiang (2006) developed a nonparametric system identification 

model.  The identification is done using the Nonlinear AutoRegressive Moving Average 

with eXogenous inputs (NARMAX) to map the nonlinear relationship between the past 

observations and the future bridge response output.  The first step in signal processing 

was the noise removal from the vibration signals, using the Wavelet Packet Transform 

Method.  The reconstructed state space concept from the chaos theory was employed in 

order to prepare the input vectors for the NARMAX approach.  The false nearest 

neighbor method was used to find the optimum dimensions for the NARMAX input 

space, which included the past bridge inputs and the past bridge outputs.  The coefficients 

of the NARMAX were estimated by a hybrid Neural Network that incorporated several 

computing concepts.  Because this was a dynamic time delay Neural Network, it was 

capable to memorize the past of the time series sensor data.  The network’s recurrent 

feedback topology consisted of an input, of a hidden and of an output layer.  The 

activation function in the hidden layer combined fuzzy logic and decomposition that was 

based on the Mexican hat wavelet.  The wavelets decomposition, which was the second 

application of wavelets in that research, facilitated the vibration data analysis by 

identifying nonlinearities in both the frequency and the time domains.  Also, the wavelets 

represented the discontinuities in the vibration signals.  In order to avoid the shortcoming 
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of the wavelets that might amplify local imprecision in the training data, the fuzzy logic 

was used.  Thus, the data were partitioned into fuzzy clustered, using the fuzzy C-means 

algorithm.  The modified Gram-Schmidt algorithm selected only the wavelets that best 

approximated the measured data and it eliminated all the rest wavelets.  The number of 

the nodes in the hidden layer was further reduced by the Akaine’s final prediction error 

criterion.  The Levenberg-Marquardt least-square algorithm estimated the parameters of 

the fuzzy Wavelet Neural Network.  By testing this method on a five-story steel frame, 

the authors reported that the system identifications had a root mean squared sum of errors 

less than 11%.  This identification method might find applications on the Structural 

Health Monitoring Systems, although the paper did not include such as examples.   

Table 2.1 and Table 2.2 provide an overview of the papers that have been 

reviewed in this section.  Most of these papers employed a particular network, namely the 

backpropagation.  Being encouraged by the research applications of the Artificial Neural 

Networks and of the Genetic Algorithms in the field of the Health Monitoring Systems, 

this research program applies the promising Adaptive Neuro-Fuzzy Inference System 

(ANFIS), which has been developed by J.-S. R. Jang (1993).  Applying the ANFIS for 

bridge damage detection is presented in the other thesis by Danilatos (2008), which is the 

second manuscript that includes the findings of this research program.  That thesis 

demonstrates that the Neuro-Fuzzy Network has the potential to exhibit advantages over 

the intelligent algorithms that have been previously tested.  Nevertheless, the Damage 

Diagnostic Algorithm takes advantage of the incorporated Neuro-Fuzzy Inference 

Systems, but also it inherits practical drawbacks from these embedded intelligent 

algorithms.  The next subsection presents certain hurdles that are related with the training 

and the testing datasets of the learning algorithms.  This thesis does not only deal with the 

damage diagnosis problem, but in parallel, it introduces methodologies that intend to 

solve   practical   drawbacks   of   the   supervised   learning   algorithms,   in   general.   
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2.3. KNOWN PROBLEMS WITH THE NEURO-FUZZY NETWORKS 

Since the Adaptive Neuro-Fuzzy Inference System involves supervised learning 

from data, the prediction accuracy and the network performance depend on the training 

dataset.  There are huge variations in “trainability” between different training subjects.  

K. Hornik, et al. (1989) demonstrated that the multilayer feedforward networks are 

universal approximators of any mathematical function.  This commonly accepted 

property of the multilayer networks is valid for the ANFIS, as well.  However, the 

theoretical capability of the learning networks to approximate any function presupposes 

the existence of an appropriate training dataset, as the lever of Archimedes is supposed to 

move the whole world, given a fixed fulcrum
5
.  In practice, the main obstruction for 

attaining the goal of the universal approximation is the difficulty to obtain éproperé and 

sufficient training data.  In the following lines, the discussion is about which properties of 

the training datasets influent the performance of the Neuro-Fuzzy Network.  These 

characteristic properties are the size, dispersion, and comprehensiveness.   

The first characteristic to be discussed is the training dataset size.  For practical 

considerations, the checking and the testing datasets are equal in size with the training 

dataset.  Therefore, growing the training set increases not only the training time, but the 

response speed of algorithm as well.  By keeping the sets as small as possible, there is 

economy in computing resources and time.  However, the influence of the decreased 

datasets on the learning quality might be degrading.  Contrarily, the probability for a 

bigger dataset to include representative and diverse data is higher.  In the search for the 

ideal size, it is important to consider the following matters.  Following a general thumb of 

rule, it is advisable that the training datasets size is greater than the number of the ANFIS 

parameters.  It has been showed that applying this rule improves the learning process.  

However, it is important to mention that the data reduction should not be done in the 

expense of the datasets dispersion and comprehensiveness.  These two training datasets 

characteristics   influence   the   ANFIS   performance,   as   it   is   discussed   below.   

                                                 

5
 To underline the theoretically unlimited mechanical advantage of levering, the great Greek engineer 

Archimedes (287–203 B.C.), once said éGive me a fulcrum point to stand and I will move the whole 

worldé.  See the Columbia World of Quotations (1996).   
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The learning process of ANFIS is based on a backpropagation network, which is 

notorious for its problem with the lack of generalization.  The system might face 

difficulties with the generalization due to several causes.   

A training dataset that includes well distributed elements, which cover 

comprehensively the data space under consideration, contributes to avoid the common 

problem with the lack of generalization.   

The common difficulty with the generalization is faced when testing data are 

outside the range of the training dataset.  In this problem, the Neuro-Fuzzy Systems fails 

to provide successful predictions for the testing data, even if the training error had been 

very small.  Therefore, the range of the potential values should be comprehensively 

represented in the training dataset, because the Neuro-Fuzzy algorithms perform some 

kind of sophisticated interpolation, among the training data.  In addition, the training data 

should be well distributed along the range of the values that the system encounters 

potentially in practice.   

In the following lines, the discussion is about how the training datasets 

characteristics influence the learning algorithms performance.  This aspect is related with 

the testing datasets.   

It is important that the learning algorithms exhibit good generalization.  This 

means that the trained networks should be capable to predict never seen before inputs.  

However, to get satisfactory generalization, it is not enough to get the proper training 

datasets.  It is needed also that the testing datasets should be drawn from the similar 

distributions as the training data.  In addition, the testing data should lie within the 

training dataset range.   

This subsection shows that the performance of the supervised learning networks 

requires that the training and the testing datasets possesses certain optimum 

characteristics.  The common practice for obtaining these datasets is done by data 

preprocessing and manipulation of the raw data.  To make the situation even more 

difficult to deal with, this data preprocessing is tedious and complicated, in most cases.   

To avoid the aforementioned difficulties, this thesis introduces two automated 

sampling procedures, one for the training and one for the testing datasets.  These 

techniques are presented in the Subsections 3.6 and 3.7.   
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Therefore, the selection of the training datasets size should balance two contrary 

goals; from the one part, the goal is to minimize the computing time and the computing 

resources and from the other part, it is desirable to keep the datasets diverse and 

comprehensive.   

 

 

 

2.4.   INSPIRATION FROM THE COGNITIVE PSYCHOLOGY 

In this subsection, fundamental concepts and principles from the Cognitive 

Psychology are introduced briefly.  Reviewing this material will provide the inspiration 

for the mathematical formulation of a hybrid cognitive model for damage diagnosis, 

which will be presented in the next section.   

The Cognitive Psychology, which is the dominant field in the contemporary 

Psychology, studies the cognition, and in particular mental processes, like for example 

the memory, the perception, and the reasoning.   

The most characteristic model in the Cognitive Psychology is the information 

processing approach, which was introduced by D. Broadbent (1958) and it was based and 

inspired by Computer Science studies.  In the information-processing model, the analogs 

of the computer and of the software are the brain, and its mental processes, respectively.  

Apparently, the fields of the Cognitive Psychology and of the Neuro-Computing are 

interrelated, so it might be hard to distinguish whether the mentioned concepts have an 

origin in the former or in the latter scientific field.  The transition of ideas between the 

two fields of study is highly beneficial for both parts.   

To begin with, two basic terms in the Cognitive Psychology are introduced, 

namely the memory, and the intelligence.   

The memory is related with the information processing mechanisms, like the 

information recording, storage, and classification, while the intelligence concerns 

processes that create links between the raw blocks of information.  An important 

principle accepted by the cognitive psychologists is that the memory is selective and that 

the brain pays attention to stimuli that have particular interest.  In this subsection, the 

presentation of the material from the Cognitive Psychology is done selectively as well, by 
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focusing on issues that interest us, even though this scientific field has become very wide, 

over the last years.   

Studying the memory is a major issue in the Cognitive Psychology.  Several 

theories have been proposed for modeling the memory.  The stage theory, which was 

initially proposed by Atkinson and Schiffrin (1968), is one of the oldest models, that 

nevertheless it is still widely accepted.  According to the stage theory, the information is 

processed in the three following stages: the sensory memory, the short-term memory, and 

the long-term memory.  Another interesting concept is the forgetting mechanism, which 

pushes out surplus information in order to avoid cluttering of the short-term memory.  

Researchers have shown that learning is more efficient when it starts after forgetting has 

taken place.  It is assumed that the short-term memory has limited capacity, while the 

long-term memory might be considered to have unlimited capacity, theoretically.   

From the other part, the second Cognitive Psychology term to be discussed is the 

intelligence.  The intelligence processes include the pattern recognition, the reasoning, 

among others.  The reasoning, which is of particular interest herein, has two main 

subcategories; the inductive one and the deductive one.  The former subcategory refers to 

the inference of a general conclusion from specific instances, while the latter is the 

inference of particular instances from a general function.   

The memory and the intelligence are treated as two distinct functions, even if they 

are usually interrelated in such a close dependence that makes them hard to separate 

them.  The operation of the intelligence is effected by the memory’s function, because the 

intelligence provides links for data that are recalled from the memory.  From the other 

part, in order to organize and to manage information, memory has to employ intelligent 

functions like for example the pattern recognition.   

All the concepts and the terms, which have been presented in this subsection, 

provide us the inspiration for developing a cognitive model in Subsection 3.3.  The 

coming  section  introduces  the  model  architecture  of  the  Damage  Diagnostic  System.   
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3. MODEL ARCHITECTURE 

3.1. INTRODUCTION 

In the previous section, the literature review gave indications that the bridge 

vibration signals reflect emerging structural damages.  Based on this principle, the current 

diagnostic algorithm is designed to extract useful information from the recorded vibration 

signals, with the ultimate purpose to identify the presence and the degree of damage in 

structural bridges.  The proposed methodology aims to overcome limitations of the past 

research efforts and to achieve a system with increased stability, robustness and 

efficiency.  This section introduces the model architecture of the Damage Diagnostic 

Algorithm.   

This section is structured in the following six subsections.  Subsection 3.2 

introduces the concept and the basic features of the Damage Diagnostic System.  The 

Subsection 3.3 presents an alternate modeling of the Diagnostic System, which is inspired 

by theories of the Cognitive Psychology.   

The remaining subsections present the components of the Damage Diagnostic 

Algorithm.  The damage diagnostics algorithm engages two classes of Adaptive Neuro-

Fuzzy Inference Systems (ANFIS), connected in series. Subsection 3.4 is devoted to the 

main characteristics of the ANFIS model.  The next subsection is concerned with the 

datasets for the supervised learning algorithms.  Finally, Subsection 3.6 studies an 

improvement procedure for sampling the training datasets and Subsection 3.7 develops a 

similar enhancement for the testing datasets.   

 

 

 

3.2. DAMAGE DIAGNOSTICS SYSTEM MODEL 

In this subsection, a detailed presentation of the Damage Diagnostic System for 

structural bridges is presented through illuminating figures.  The proposed system is 

adapted either on a real-time scheme, or it can work off-line.   

For demonstrating the diagnostic functioning, the following simple configuration 

is considered.  The Health Monitoring system consists of two parts, the hardware, and the 
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software.  The hardware includes sensors mounted on the structure, data acquisition 

systems, personal computers, and their peripherals.  Optionally, the hardware might 

include communication lines and forced excitation devices.   

Through the sensors, the Health Monitoring System monitors continuously three 

vibration parameters, namely the traffic bridge excitation p, the corresponding response 

acceleration z�� , and the deflection z.  A simple test configuration for capturing the above 

parameters might be implemented to include an incorporated weight-in-motion roadway 

scale for the traffic loads, together with an accelerometer and a displacement instrument 

placed at the bridge mid-span.  Any further details about the monitoring devices are not 

mentioned, because this thesis focuses on the algorithm development.   

Two classes of Neuro-Fuzzy Networks are embodied in the Structural Damage 

Diagnostics Algorithm.  The A-Class Neuro-Fuzzy Network maps the relationship 

between the bridge vibration response and the bridge excitation.  From the other part, the 

B-Class estimates the prediction error of the A-Class network along its input space.  The 

A-Class Neuro-Fuzzy Network is the main predictive algorithm for the Damage 

Diagnostic System.  The output of the B-Class Network is used for calibrating the results 

of the first class Networks.   

The pair of Networks, which occupies a fundamental position in the algorithm, is 

the driving power for prediction and diagnosis.  Consequently, the Neuro-Fuzzy 

Networks determine main characteristics of the Damage Diagnostics model.  Typical 

characteristics of the Neuro-Fuzzy Algorithms, like the distinctive and serial processes of 

training and testing, are also found in this model.  Therefore, the Damage Diagnosis 

algorithm inherits the characteristic training and testing phases and the supervised 

learning procedures of the Networks.   

Figure 3.1, Figure 3.2 and Figure 3.3 depict the three stages of the Damage 

Diagnosis in chronological order.  Training the Neuro-Fuzzy Networks with undamaged 

data is taking place during the two first stages, while the third stage is devoted to the 

testing of the Networks.  Each figure is detailed separately below. 

As shown in Figure 3.1, in the first stage the A-Class Neuro-Fuzzy Networks is 

trained in a supervised way using training data that have been collected, during the 

undamaged bridge state.  The detailed procedure for dataset formation will be presented  
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Figure 3.1.  Training phase for the first Neuro-Fuzzy Architecture using data from the 

undamaged bridge   

 

 

 

in Subsection 3.6.  The training dataset assembles the networks inputs ztrn, and trnz�� , along 

with the desired target outputs ptrn.  The subscript étrné denotes the training data.  The 

three arrays are clustered into F subsets, with respect to the different sampling instances i.  

Each one of the F subsets (ztrn,i, itrn,z�� , and ptrn,i) feeds a different Neuro-Fuzzy Network.   

The two main processes, which are depicted in Figure 3.2, are the A-Class Neuro-

Fuzzy Networks testing and the B-Class Network training.  The sequence of the 

processes starts with the recall of the training inputs arrays ztrn, and trnz�� .  In this phase, 

these training arrays are used for testing the A-Class Networks.  The ANFIS output is an 
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estimate of the undamaged bridge excitation ppred,trn (ztrn, trnz�� ), which is a function of the 

vibration parameters ztrn, trnz�� .  Next, the average prediction error epred,trn for the A-Class 

Neuro-Fuzzy Networks is calculated.     

In the case that the bridge structure is linear, the systems prediction error epred,trn 

provides an approximation of the predicted damage rate �pred,trn.  But, during the testing 

phase of the Figure 3.2, the testing data come from an undamaged bridge, so the damage 

rate is zero.  In that sense, when the predicted error �pred,trn departs from zero, this is due  
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Figure 3.2.  Testing phase of the A-Class Neuro-Fuzzy Architectures, by using the 

training data and training phase of the B-Class Neuro-Fuzzy Architecture   
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Figure 3.3.  Testing both Neuro-Fuzzy Networks and damage detection 

 

 

 

to systems training errors.  Therefore, in the case of the undamaged bridge, the predicted 

error epred,trn is not only a measure of the training performance, but also it indicates the 

confidence interval in the prediction of the bridge excitation ppred,trn.   

Another block of the Figure 3.2 represents the decomposition of the measured 

excitation load Pv into two components, namely the vibration amplitude po and the 

vibration  frequency  �o.    To  form  the  training  dataset  for  the  B-Class  Neuro-Fuzzy 
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Network, the two arrays po, and �o are set as inputs and also the corresponding prediction 

error array e is set as the target output.  Figure 3.2 is rounded off with the block that 

represents the training phase for the B-Class Network.   

Figure 3.3 is devoted to the damage detection and to the damage quantification, 

by employing the chain of the two classes of Neuro-Fuzzy Networks.  In Figure 3.1 and 

Figure 3.2, the bridge data were from an undamaged bridge, but during the testing phase 

in Figure 3.3, the bridge is at an unknown damage state.  The training of both classes of 

Networks has already been completed in the previous phases.  In this third phase that is 

depicted in Figure 3.3, the system analyzes the vibration parameters ztst, tstz��  and ptst that 

are captured during the bridge service life.   

The first process in Figure 3.3 is the formation of a testing dataset that includes 

enough samples for a confident and meaningful damage detecting decision.  The detailed 

procedure for the formation of this decision dataset will be presented in Section 3.7.   

The A-Class Network is presented with bridge kinetic responses, ztst(t) and 

)(ttstz�� , in order to predict the excitation load ppred,tst.  The predicted ppred,tst is an 

imaginary excitation that would be applied to the bridge at the undamaged state, in order 

to produce the actual bridge responses ztst(t) and )(ttstz�� .   

The B-Class Network, which is fed with inputs po and �o outputs the prediction 

error epred,j.  The prediction error will be used in order to adjust the first estimate of the 

damage rate �pred, and the corrected damage rate is obtained, by using the following 

formula:   
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where �'pred,j is the corrected root-mean-square predicted damage rate that is 

calculated with samplings during the vehicle event j, K is the Stiffness Matrix and �pred,j is 

the prediction error for vehicle event j, as it is estimated by the B-Class Neuro-Fuzzy 

Network. 
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For the derivation of formula (1), refer to D. Danilatos (2008).  The damage rate, 

which is calculated through the above formula, corresponds to a single vehicle event.  

The final step includes the averaging of multiple vehicle events, in order to get results of 

increased confidence.   

 

 

 

3.3. ALTERNATE MODEL FOR THE DAMAGE DIAGNOSTIC SYSTEM 

The previous subsection introduced an initial model for the Damage Diagnostic 

System.  This subsection presents a more complex and conceptual model, which stands in 

parallel to the previous one.  Presenting various models of the system in progressively 

increasing complexity facilitates the understanding of this theory.  The new model is 

inspired by Cognitive Psychology theories, which have been introduced in Subsection 

2.4.  The terms and the concepts from the Cognitive Psychology gain a different meaning 

here, as they are taken in a different context, and as a result, novel associations emerge.   

The Damage Diagnostic model is presented in three sequential phases, namely the 

training datasets formation phase, the learning phase, and finally the deductive reasoning 

phase.  The damage diagnosis is performed during the final reasoning phase; however, 

the two precedent phases are necessary for the system in order to attain its reasoning 

capability.  The three phases are depicted individually in Figure 3.4, Figure 3.5, and 

Figure 3.6.  In the following approach, the mental processes of the memory and of the 

reasoning are treated separately, as it is commonly done in the Cognitive Psychology 

treatises.   

Figure 3.4 represents the mental processes for the training datasets formation 

phase.  This phase includes the following three memory processes, namely the 

information preprocessing, the forgetting mechanism, the short-term memory function 

and the storage in the long-term memory.  These memory processes, which are depicted 

in Figure 3.4, are analogous to the three stages of the memory model that was suggested 

by Atkinson and Schiffrin (1968).  This model was mentioned in the Subsection 2.4.   

As it can be seen in Figure 3.4, the sensory stimuli, which are captured by sensors 

that  are  mounted  on  the  bridge,  flow  and get  processed  block by block, until the training  
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Figure 3.4.  Memory processes and phases from the sensory data collection to the training 

datasets formation 

 

 

 

datasets are formed.  During this phase, the data are recorded from an undamaged bridge.  

The  first  memory  module  concerns  the  data preprocessing  and  normalization  of  the 

sensory stimuli.  The second memory module concerns the elaborate information 

processing, which eventually ends with the training datasets creation.  In collaboration 

with the forgetting and with the reasoning, this short memory block has the scope to 

collect a training set that includes representative data along the desired service spectrum.  

This procedure is iterative.   

Subsection 2.4 mentioned that human brain learning becomes more efficient, 

when it follows a phase of forgetting.  In addition, this subsection underscored that the 
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short-term memory has a limited capacity, while the long-term memory is theoretically 

unlimited.  This modeling incorporates these two observations.  In Figure 3.4, forgetting 

is the metaphor for the process of data rejection.  Rejecting data of low importance is a 

part of the iterative procedures in order to create information dense training datasets.  

Data that do not meet the required standards are rejected, in order to free up space in the 

limited short-term memory.  The data rejection pushes out of memory data that do not 

contribute new information, in order to keep the data that include new interesting 

features.  Finally, the third memory module concerns the training data storage in the long-

term memory.   

In the scheme of Figure 3.4, the reasoning module simply supports the short-term 

memory, in order to evaluate the importance of the data and to facilitate the decision 

making for data rejection.  The training datasets formation, which was depicted in Figure 

3-4, will be found a detailed formulation in Subsection 3.6.  The training datasets 

formation is necessary for both the A-Class and the B-Class Neuro-Fuzzy Architectures.   

Figure 3.5 depicts the learning phase processes.  The first step in this figure concerns the 

training datasets that are retrieved from the long-term memory in order to feed the 

reasoning module.  Reasoning means the inference of a general function from the 

particular cases that are included in the training datasets.  In the case of training the A-

Class Network, the sought-after general function is the relation between the inputs z, and 

z��  and the target output p.  From the other part, in the case of training the B- Class 

Network, the sought-after general function is the relation between the two inputs po and 

�o, and the target output, which is the prediction error epred,j.  In both classes of networks, 

the general functions are expressed as information about the trained Fuzzy Inference 

System (FIS).  In Figure 3.5, the learning phase is rounded out with the long-term 

memory module that stores the FIS information.   

Figure 3.6 presents a mental processing model for the Damage Diagnosis.  At this 

phase, the bridge damage status is unknown.  In this figure, two main stages are 

distinguished.  The first stage, which includes the two top module blocks, is about the 

formation of the testing dataset, while the second stage, which is depicted in the three 

bottom blocks, concerns the damage diagnosis.  The procedures are described in detail 

below.  In the first module of Figure 3.6, the sensory data are pre-processed and  
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Figure 3.5  Learning by past cases   

 

 

 

normalized.  Then, in the next module of the short-term memory, through an iterative 

procedure, the selection of the testing data is done by considering those that are relevant 

to the previously collected training data.  The learning algorithm will have a better 

performance, if the two datasets exhibit comparable statistical characteristics.  The 4D 

method retains testing data that satisfy the above selection criterion.  Otherwise the data 

are rejected (forgetting mechanism).  This iterative procedure for creating the testing 

datasets is dubbed 4D in this thesis. The 4D method is treated in detail in Subsection 3.7.  

This procedure is similar to the iterative method for the training datasets, which was 

presented in Figure 3.4.   

The next module in Figure 3.6 concerns the deductive reasoning through ANFIS.  

The measured vibration inputs are plugged into the previously derived general function,  
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Figure 3.6  Damage detection in a mental processing model 

 

 

 

in order to get an estimation of the equivalent excitation of the undamaged bridge.  By 

comparing this estimated excitation with the actual excitation load, it is possible to 

conclude about the presence of damage.  In the final reasoning module of Figure 3.6, the 

comparison between the measured and predicted excitations is repeated for all elements 

of the dataset, and the results are averaged, in order to extract the diagnostic conclusion. 

This Subsection introduced an abstract model of the Damage Diagnostic System, 

by using Cognitive Psychology terms.  From the one part, this model is an alternate 

version of the model that was presented in the previous section.  From the other part, this 

model includes two novel components.  These two novelties, which are related with the 

function of the short memory, are procedures for the formation of the training and of the 
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testing datasets.  The short-term memory, which includes a forgetting mechanism, was 

modeled verbally and graphically in Figure 3.4 and in Figure 3.6.  The mathematical 

formulation of the short-term memory for creating the training and the testing datasets 

will be presented in the Subsections 3.6 and 3.7, respectively. 

The remaining subsections discuss the components of the Damage Diagnostic 

System, in detail.   

 

 

 

3.4. SUPERVISED LEARNING ALGORITHMS 

Subsection 3.2 mentioned that two classes of the Neuro-Fuzzy Networks are 

embedded in the Damage Diagnostic System.  Each class serves a different purpose, but 

their architecture is the same in both cases.   

ANFIS builds and analyzes a Fuzzy Inference System, whose fuzzy parameters 

are adjusted by a hybrid backpropagation network with least squares.  The type of the 

employed Fuzzy Inference System is a first-order Sugeno-type system, which was 

proposed by T. Takagi and M. Sugeno (1985), and for that reason it was named after its 

two authors.   

In this thesis, ANFIS is implemented by writing codes through the command line 

of the Fuzzy Logic Toolbox of MatLab (Fuzzy Logic Toolbox User’s Guide (1999)).  

MathWorks, Inc produces the computer language for technical computing MatLab and its 

embedded toolboxes (MatLab, release 13).   

 

 

 

3.5. DATASETS FORMAT AND CHARACTERISTICS 

The Neuro-Fuzzy Networks are driven by sensory data captured from the bridge 

dynamic system.  This subsection discusses how these data are organized in datasets.   

The Neuro-Fuzzy System requires three types of datasets, namely the training, the 

checking, and the testing datasets.  The first two types assemble data that are collected 

while the bridge is at the undamaged ('virgin') state.  On the contrary, the testing dataset 
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includes records from undamaged states and from states at which the damage increases 

progressively.   

The two first groups are used during the learning phase of the network for the 

validation of the structural model.  During this learning phase, the Neuro-Fuzzy Network 

extracts the undamaged bridge model from the training data.  The role of the checking 

dataset is to avoid learning over-fitting of the training data.  From the other part, once the 

Neuro-Fuzzy Network is trained, the testing dataset validates the bridge structural model 

and verifies the recall ability of the Network.   

At first, the discussion is about the size and about the characteristics of the 

datasets for the A-Class ANFIS.  The three datasets for the A-Class ANFIS are 

multidimensional matrices, with a size of R-by-3-by-F.  The amount of the rows R is not 

predetermined, but it depends on the iterative procedure for the training datasets 

collection.  This iterative procedure will be the subject of the Subsection 3.6.  The 

amount of the rows equals the number of the iterations, when the iterative procedure 

convergences.  Each row of the multidimensional matrices assembles a different vehicle 

event.  The three datasets have the form inputs-output.  The inputs deflection and 

acceleration are arranged in the first and the second columns, respectively.  From the 

other part, the third column includes the output excitation force.   

The datasets for the B-Class Neuro-Fuzzy Networks are R-by-3 matrices.  Again 

each row in these matrices assembles signals for a different vehicle event.  The first 

column includes the moving load amplitude data; the second column assembles the load 

frequency data, while the third column contains the error e of the A-Class Network.   

 The coming two subsections introduce the two novel procedures that perform 

automatic preprocessing, in order to collect the training dataset and the testing set.   

 

 

 

3.6.   SAMPLING PROCEDURE FOR TRAINING DATASETS 

3.6.1.  Introduction.  The proposed technique for improving the training datasets 

is dubbed MOJO in this thesis.  This procedure, which is iterative in nature, performs 

automatic data preprocessing and data screening.  MOJO process is remotely related with 
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the elaborate data processing in the short-term memory that was presented in Figure 3.4.  

The scope of the MOJO procedure is to address the problems that were mentioned in 

Subsection 2.3.  Therefore, the method aims to create datasets with increased data 

dispersion, and with limited dataset size.  These datasets should include representative 

values sampled in a wide enough spectrum.   

The principle of the MOJO procedure is explained below.  Suppose that a learning 

algorithm should be trained, so it is capable to recognize the patterns of a number of 

different objects.  Collecting the highest possible number of training examples would 

make the training dataset too big to handle.  For this way, the MOJO procedure 

assembles only a limited number of representative examples from each different category 

of objects.  In this way, the training dataset contains only the essential information in a 

compact size.   

The MOJO procedure is an iterative process that collects training data until the 

three following criteria are satisfied.  The first two criteria concern dataset properties, 

namely the dataset size and the dispersion, while the third criterion measures the 

performance of the Adaptive Neuro-Fuzzy Inference System.  The MOJO procedure is 

rounded off with a data rejection technique to remove data that prohibit the fast iteration 

of the algorithm.   

Subsection 3.6.2 provides the details about setting up and selecting the 

convergence criteria for the MOJO procedure.  Then, Subsection 3.6.3 explains the 

rejection technique.  Finally, Subsection 3.6.4 describes the MOJO method through a 

general flowchart.   

3.6.2. Convergence Criteria for the MOJO Procedure.  In this subsection, the 

three convergence criteria for the MOJO procedure are formulated.  These criteria  

concern the datasets size, the data dispersion, and the learning quality of the embedded 

Neuro-Fuzzy Systems.   

The first criterion to be discussed concerns the A-Class training datasets size.  The 

size Ntrn of the training dataset should be kept between two boundary limits.  It should not 

be bigger than the ceiling value Nmax,trn and not smaller than the bottom value Nmin,trn.   

 

Nmin,trn�Ntrn�Nmax,trn       (2) 
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The boundary values are selected by taking into consideration the following 

factors.  As a result, the ceiling value Nmax,trn depends on the available computing 

resources, but also it depends on the desired training and response time of the algorithm.  

The bottom value Nmin,trn depends on the network size, on the network topology and on 

the size of the largest input range [zmin, zmax], or [ minz�� , maxz�� ], where zmin, minz�� are the 

minimum values that any elements in the deflection or acceleration arrays might take 

potentially, during the service life of the bridge.  By analogy, the values zmax and maxz�� are 

the maximum of the aforementioned arrays.  Therefore, the bottom value Nmin,trn should 

be selected, in such a way that the training dataset contains a satisfactory number of 

exemplars.   

The second criterion for the MOJO iterations concerns the training dataset 

dispersion.  Before presenting the formulation for these criteria, the appropriate notation 

for the training datasets is introduced.   

The trainings datasets for the A-Class ANFIS are triplets (z, z�� , p) that include the 

inputs z and z�� , and the outputs p.  Because the mathematical relationship between the 

two inputs (z and  z�� ) and the output p is defined uniquely, the data dispersion of the 

variable p is considered only.  Let assume that the excitation force p(t) for each vehicle 

event is a sinusoidal function of a single frequency, so for simplicity each vehicle 

vibration signal is analyzed into two characteristic harmonic parameters, the amplitude po 

and the frequency �o.  Therefore, the training data dispersion is converted into spreading 

out samples of the parameters po and �o.  The following subsection introduces the 

methodology for spreading out these data.   

Let suppose that the technical specifications of the vehicles that are currently in 

use in the country are known.  Based on this information, the most severe loading pmax, or 

a combination of the spatial vehicle loadings  {pmax,1, pmax,2 …, pmax,n} for the bridge can 

be estimated.  Consequently, the maximum amplitude po,max and the maximum frequency 

�o,max can be calculated.  In addition, the minimum values of the excitation force pmin, of 

the amplitude po,min and of the frequency �o,min are zero or they are slightly higher than 

the         value       zero,          as         shown         in         the       following          formulas, 
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0min ≈p      , (3) 

0min, ≈op       , (4)  

0min, ≈oω      . (5) 

 

Then, the interval ranges between the probable minimum and maximum values, 

[po,min, po,max], [�o,min , �o,max] are defined.  Any random variable of po, or �o will fall in 

the above intervals and as a result, the associated probabilities are equal to one,   

 

Pr( po∈[po,min, po,max])=1  
opop Ω∈∀  ,  (6) 

Pr(�o∈[�o,min, �o,max])=1  
oo ω

ω Ω∈∀  ,  (7) 

 

where Pr is the probability function, 
opΩ  is the sample space that includes all the 

potential values of po, and 
oω

Ω  is the sample space that includes all the potential 

values of �o. 

The ranges [po,min, po,max] and [�o,min , �o,max] are divided into a number of s 

segments that have equal ranges.  Apparently, the width of each segment equals the one 

1/s fraction of the total range.  The dataset dispersion criteria are satisfied if all the s 

subsets contain the minimum desired number of data Ns, at least.   In the case that the 

value Ns takes the value 1, the formulation of the dataset dispersion criteria is given 

below: 
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where � is a positive integer that is smaller than s.   

The above two formulas concern the second convergence criterion for the MOJO 

procedure.  In detail, Formula (8) concerns the dispersion of the load amplitude po, while 

the    formula    (9)    assures    the    dispersion    of    the    load   frequency    �o    value.   
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The third criterion for the MOJO procedure concerns the learning quality of the 

A-Class Neuro-Fuzzy  System.  Four indices for the learning quality are defined below.  

The notation R is for the amount of the moving vehicles events in all datasets.  Also, each 

event has a number of F measurements, during the time that the vehicle crosses the span.  

Then, for each row j in the datasets, there are two corresponding root-mean-square 

prediction errors trnje ,  and chkje ,  for the training and checking datasets, respectively.  The 

subscript j indicates that the vehicle event takes the values j ∈  [1,…, R].  The values of 

the errors trnje ,  and chkje ,  are assembled in two sets, which are noted as { trnje , } and 

{ chkje , }.  Errors trnje , and chkje ,  indicate the confidence interval for the systems prediction.  

In other words, the errors ej are indicators of the networks capability in predicting the 

damage rate.  The smaller the error e is, and the more the error e approaches to zero, the 

better the network training and predictability are.  The two statistical parameters for the 

above two sets, namely the square-root-mean and the variance, are defined as the four 

indices for the learning quality of ANFIS.  These four indices are calculated with data 

from the bridge at undamaged state.  The indices for the learning quality consider the 

checking dataset as well, in order to cross-validate that the ANFIS avoids over-fitting the 

training data.   

The following four inequalities provide the learning quality criteria that should be 

met:  
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where trne  and �trn are the arithmetic mean and the variance of the errors ej for the A-

Class training dataset, respectively.  The values chke  and the �chk concern by analogy the 

A-Class ANFIS checking dataset.  Finally, the trnelim,  and the σlim,trn are the imposed 

limits on the root-mean-square and on the variance of the training errors ej, respectively.  

The chkelim,  and the σlim,chk are the analogue limits for the checking dataset.  The above 

formulas map each dataset into two scalar values.   

The inequalities in formulas (10) and (12) imply that the root-mean-square of the 

prediction errors should be smaller than the imposed limit lime .  From the other part, the 

inequalities in formulas (11) and (13) state that the variances are bounded by the imposed 

upper limit σlim.  The smaller the variance is, the more the prediction errors will be 

concentrated around the mean.  The above four criteria do not set boundary limits on 

separated error values, but on the two main statistical parameters of the errors set.  

Focusing on the statistical parameters provides a practical solution, that it is very helpful 

when dealing with complex and extended spaces.   

3.6.3. Rejection Process.  During the MOJO procedure, the rejection process will 

be activated, if the training dataset reaches the maximum size Nmax, but the two other  

MOJO criteria have not yet been converged.  The rejection process is the subject of this 

subsection.   

There are three variations of the rejection process.  The type I rejection will be 

activated, if the dispersion criterion for the array po is not satisfied.  This rejection 

focuses on the Euclidean distance between the elements in the po array.  From the other 

part, the type II rejection concerns the array �o.  Finally, the type III process rejects 

particles based on their Euclidean distance in both arrays po and �o.  The type of the 

rejection III will be selected, if the dispersion criterion is not satisfied for both arrays po 

and �o, or the learning quality criteria are not satisfied.  Otherwise, all the three types of 

rejections work fundamentally in the same way.  The type I rejection is presented as the 

standard theme.   

As a first step in the rejection procedure, the array p in the training data is 

replaced with the arrays of the characteristic harmonic parameters po and �o.  In this way, 

the outcome is the matrix A = [z z��  po �o].  Next, the number of the superfluous data is 
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identified.  Then, the superfluous data should be removed, in such way that the remaining 

set will be within the size limits.  The criterion for selecting the rows (z z��  po �o) that 

should be rejected is the Euclidean distance of the elements po or �o from the rest 

elements in the arrays po or �o, respectively.  The elements of the rejected triplets are 

these that are located nearest to the other data.  Therefore, the rejection is done according 

to the nearest-neighborhood approach.  As the algorithm rejects an amount of data, the 

next iteration replaces them by a new random sample.  Iterations of data rejections and 

replacements continue until the algorithm converges.   

The decision inequality for activating the rejection is given by the following rule 

 

If (Ntrn-Nmax,TRN) >0, then rejection is taking place.    (18) 

 

The methodology continues by sorting the rows of the matrix A = [z z��  po �o], 

from the smallest to the biggest, with respect to the selected array, which might be po or 

�o.   

 

S(sp)=sortrows([ zr z��  po �o],sp)  ,   (19) 

 

where A=[ zr z��  po �o] is the modified training dataset, and sp is the binary parameter that 

takes the value of 1 for selected array po or the value 2 for selected array �o.   

The approach for the data rejection from the array po or from the array �o is 

fundamentally the same.  For this reason, only the rejection with respect to the Euclidean 

distance between the elements in first array is demonstrated.  Rejecting with respect to 

the array po characterizes the type I rejection process.  Let SQ=[ po,1; po,2;… po,m-1; po,m; 

po,m+1 ;… po,n] be an array, which includes sorted elements of the array po.  Formula (18) 

holds true for this array.  An auxiliary array Saux,Q is created by adding a new element at 

the beginning of array SQ, then by shifting down all rest elements, and finally by 

removing the last element po,n from the array SQ,.  The new element is equal to po,min-

(po,max- po,min)/(Ntrn-1).  The auxiliary array takes the following format: 

 

Saux,Q={ po,min-(po,max- po,min)/(Ntrn-1); po,1; po,2;… po,m-1; po,m; po,m ;… po,n-1 } (20) 
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Next, by subtracting the array Saux from the array SQ, the array D is obtained, in 

which the h
th

 element of the array D represents the distance of the h
th

 element Sh of array 

SQ from the adjacent smaller (h-1)
th

 element Sh-1:   

 

D=SQ-Saux,Q        (21) 

 

The array D is added as a first column in the modified training dataset. The 

outcome is a matrix in the format B = [D z z��  po �o].  Next, the rows of the matrix B are 

sorted based on the array that is indicated by parameter sp.  The sorting order is from the 

smallest element to the biggest one.  Then, a number nsi is removed from the first rows in 

the sorted matrix.  This number nsi equals the difference Ntrn-Nmax,TRN.  Finally, by 

removing the first column from the sorted matrix, the outcome is the new reduced 

training dataset.   

The above description refers to the type I rejection process.  The method is 

adapted to the rejection type II or to the rejection type III, by considering the array �o or 

both arrays po and �o , respectively.  The prerequisite conditions for choosing each one 

of the three types of rejection are explained in the next subsection.  The subject of the 

coming subsection is to present the flowchart of the MOJO procedure in a graph that 

brings all the parts together.   

3.6.4. MOJO Procedure Flowchart.  Figure 3.7 depicts the flowchart for the 

MOJO procedure.  The following lines explain the consecutive steps that are undertaken 

in the flowchart.   

The MOJO procedure starts by collecting data up to the initial number Nmin, 

without any restriction.  After the minimum dataset size is reached, the iterations 

continue, but a new check loop is repeated at each new data sampling.  The check 

modules examine whether the datasets meet the desired convergence criteria or not.  If 

the criteria are met, then the procedure ends, otherwise, the samplings continue.   

However, sometimes the MOJO procedure reaches the maximum value Nmax,trn,  

without having acquired a dataset that meets the other two convergence criteria that 

concern the dispersion and learning quality.  In this dead end situation, the rejection 

process offers a solution.   
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Figure 3.7.  Flowchart for the MOJO procedure   
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In Figure 3.7, type I rejection will be activated, if formula (8) is satisfied, but 

formula (9) is not met.  In other words, the type I rejection will start, if the data in the 

array po are not divided equally into a number of s equal ranges.  In contrary, the type II 

rejection will be activated, if formula (8) is satisfied, but the formula (9) is not met.  

Finally, the type III rejection takes place in the following two cases.  In the first case, the 

formulas (8) and (9) are met for both the po and �o arrays, but the training dataset has 

exceeds the desired size limits.  In the second case, the dispersion criteria are not met for 

either the load amplitude or for the load frequency arrays.  In the Figure 3.7, the letter T 

denotes the truth value and the letter F denotes the false value.   

The coming subsection introduces a procedure that collects a testing dataset for 

the Damage Diagnostic Decision.  This procedure has several common points with the 

MOJO approach.   

 

 

 

3.7. CREATING THE DIAGNOSTIC DECISION DATASET 

This subsection introduces a procedure for building up the Damage Diagnosis 

Decision Dataset, which is written as 3D dataset or as 4D, in short.  The aforementioned 

dataset is a subset of the dataset that is used for the testing of ANFIS.  Building up the 4D 

is a procedure similar to the MOJO procedure, which was introduced in Subsection 3.6.  

This procedure iterates data sampling cycles until the two convergence criteria are met.  

The first criterion concerns the datasets size, while the second criterion concerns the data 

diversity.  In addition, the procedure includes a rejection process, which is engaged in 

order to keep the 4D within the desired size.  The mathematical formulation for the 

convergence criteria is given below.   

In the first criterion, the size of the decision dataset is defined to be bigger that the 

selected minimum size of the testing dataset Nmin,tst and for practical reasons it should be 

smaller than the size of the training dataset.   

 

Nmim,4D�N4D�Nmax,tst= Ntrn    ,   (22) 
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where Nmin,4D is the bottom value for the size of Damage Diagnostic Decision Dataset,  

N4D is the size of Damage Diagnostic Decision Dataset, Nmax,tst is the maximum size of 

the testing dataset, Ntrn is the size of the training dataset.  

The criteria for selecting the minimum value Nmin,4D are similar to those described  

in Subsection 3.6.2 for selecting the minimum size of the training dataset.   

In order to satisfy the testing dataset diversity criterion, data are collected until the 

following inequalities are satisfied:   

 

(po,min+po,max)*(1-ε)≤ 2*median(po,4D) ≤ (po,min+po,max)*(1+ε)           ,         (23) 

(�o,min+ �o,max)*(1-ε)≤ 2*median(�o,4D) ≤ (�o,min+ �o,max)*(1+ε)      ,          (24) 

po,min+range([po,min,po,max])*(1-ε)≤ min(po,4D)+2*IQR(po,4D)             ,         (25) 

min(po,4D)+2*IQR(po,4D)≤ po,min+range([po,min,po,max])*(1+ε))           ,          (26) 

�o,min +range([�o,min, �o,max])*(1-ε)≤ min(�o,4D) +2*IQR(�o,4D)       ,            (27) 

(�o,4D) +2*IQR(�o,4D)� �o,min +range([�o,min, �o,max])*(1+ε)     ,       (28) 

 

where po,3D is the load amplitude array of the Damage Diagnostic Decision (3D) dataset, 

�o,4D is the load frequency array of the 3D dataset, median is a MatLab function that 

calculates the median value of an array, IQR is a MatLab function that returns the 

interquartile range of an array, and  � is the tolerance.  The interquantile range is defined 

as the difference between the third and the first quartile.  Finally, on the above formulas 

the nomenclature terms range([po,min, po,max]) and range([�o,min, �o,max]) are the service 

ranges of the potential load amplitude values, and of the potential load frequency values, 

respectively.   

The above six formulas aim to guarantee the data dispersion for the 3D dataset.  

The scope is that the decision dataset has similar statistical characteristics as the training 

dataset.   Formulas (23) and (24) harmonize the measures of the central tendency between 

the two datasets.  The formulas (25) to (28) enforce that half of the decision data occupy 

a range that equals the half of the relevant service range.  By imposing these diversity 

restrictions, it is avoided to obtain a decision dataset that is concentrated in a very narrow 

interval of the service space.  The above criteria are weak diversity conditions compared 

to the diversity criteria imposed to the training dataset by formulas (8) and (9).  Those 
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training diversity conditions required that the training dataset included representative 

values all along the service ranges.  It would be unpractical and unnecessary to apply 

those strict dispersion conditions in the case of the 3D dataset.   

This paragraph closes the third section, which concerned with the modeling of the 

Damage Diagnostic Algorithm.  The coming section will explain this model architecture 

through a numerical application.   
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4. NUMERICAL APPLICATION 

4.1. INTRODUCTION 

Section 3 was devoted to the detailed modeling of the Bridge Damage Diagnostic 

System.  This section shows how the ideas of the previous section work in practice.  A 

numerical example sheds light into the abstract models of the Damage Diagnostic 

System.   

The material in Section 4 is organized in three subsections.  Subsection 4.2 begins 

by introducing the simulation experiment.  Then, Subsection 4.3 provides information 

about the generation of the training dataset.  The closing Subsection 4.4 presents the 

simulations for generating the testing dataset.   

 

 

 

4.2. INTRODUCING SIMULATION 

The numerical application, which is the topic of this section, is evaluated through 

Monte Carlo Simulations.  This subsection introduces the simulation experiment, by 

listing the consecutive experiment phases and the simulation characteristics.   

All formulas and procedures for the simulation experiment are embedded in a 

MatLab coded program.  The simulation is based on random processes. So each time the 

algorithm runs, it comes up with different results.  However, this does not impose a 

problem, because the function and the evaluation of the Damage Diagnostic System is 

performed by estimating mean values from several convergent randomly simulations.  

This is a standard evaluation through the Monte Carlo Simulation methodology.   

The simulation experiment is executed in six consecutive phases, namely the 

training datasets compilation through the MOJO procedure, the Neuro-Fuzzy Systems 

training, the testing datasets compilation through the 4D procedure, the Neuro-Fuzzy 

Systems testing, and finally the statistical calculation of the damage rate.   

The next of the section is devoted to the detailed presentation of the simulation 

phases that concern the training datasets compilation.   
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4.3. TRAINING DATASET GENERATION 

The MOJO procedure, which was introduced in Subsection 3.6, is an iterative 

process for sampling the training data.  This subsection provides a numerical simulation 

for the MOJO procedure.   

The training data for the A-Class ANFIS consist of two input arrays and one 

target output arrays. The target array includes values of the excitation loads that are 

sampled from various statistical distributions.  Once the excitation loads are known, the 

bridge response parameters z and z��  are calculated, through the equation of motion of 

bridge model, which is presented in D. Danilatos (2008).   

The selected bound values for MOJO procedure in our simulation experiment are 

summarized in Table 4.1.  The convergence criteria formulas and their relevant 

nomenclature have been introduced in Subsection 3.6.2.  In this table, it can be seen that 

the parameter Ns takes the value one, so each segment should include at least one 

element.  Concerning the dataset dispersion, the service range is divided into s=10.   

Figure 4.1 presents an example of a simulated multidimensional training dataset 

for the A-Class Network.  This set is the outcome of the MOJO procedure.  From the 

other part, the training dataset of the B-Class Neuro-Fuzzy Networks is a 160-by-3 

dataset.   

A segment of the B-Class training dataset is given in Table 4.2.  Each row 

represents a different vehicle event.  The two first columns include the two inputs to the 

B-Class N/F Network, while the target output is located in the third column.   

Figure 4.2 compares the time-histories for the inputs and the target output for the 

B-Class Adaptive Neuro-Fuzzy System.   

 

 

 

4.4. TESTING DATASET GENERATION 

The previous subsections dealt with the training datasets, while this one provides 

an example for the testing datasets.  

The testing and the training datasets have similar format, size and quantity.  Also, 

there exist testing datasets for the two classes of networks; similarly as it was the case  
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Table 4.1.  Bound values for MOJO procedure convergence criteria 

1) Size Criterion 

Nmin,trn  40 

Nmax,trn 160 

2) Dataset dispersion criterion 

Pmin 5.426*10
-6

 

Pmax 0.2722 

�o,min 0.0056 

�o,max 0.5556 

s 10 

Ns 1 

3) ANFIS learning quality criterion 

elim,chk 0.0012 

�lim,chk 0.0019 

elim,trn 1.20*elim,chk=0.0014 

�lim,trn 1.10*�lim,chk=0.0021 

 

 

 

with the training datasets.  However, there are two main differences between the testing 

and training datasets.   

The first difference between the two kinds of datasets concerns the bridge damage 

state.  In the case of the training data, the bridge is undamaged.  In contrast, the testing set 

includes data from the same bridge with various degrees of damage.  The second 

difference is that the two datasets are the outcome of two different iterative sampling 

procedures.  The MOJO procedure is used for the training datasets, and the 4D procedure 

is for conducting testing datasets sampling.   

Therefore, two kinds of simulations are required in order to generate the testing 

data.  The first simulation concerns the damage state development through time.  For 

different testing subsets, the damage rates take values between 0 and 8 percent.  The 
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latter simulation concerns the generation of random testing data and their sampling 

through the 4D procedure.  A numerical example about this simulation is given below.   

Once the raw testing data are generated through random numbers simulations, the 

4D procedure is applied in order to screen the data that are compiled for the damage 

diagnostic decision (3D) subsets.  As it was set down in Subsection 3.7, this procedure 

samples data triplets so the constructed 3D dataset complies with two convergence 

criteria.   
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Figure 4.1.  Training datasets for the A-Class learning network   
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Table 4.2.  Training dataset for B-Class Neuro-Fuzzy Networks 

po �o RMS error 

   

0.0081 0.0341 0.0014 

0.0556 0.0589 0.0004 

0.0359 0.1972 0.0008 

0.0380 0.4941 0.0007 

0.0445 0.3669 0.0001 

0.0047 0.1106 0.0010 

. . . 

. . . 

0.1677 0.3229 0.0000 

0.0762 0.1906 0.0000 

0.2300 0.1301 0.0000 

0.1047 0.4800 0.0002 

0.0283 0.1323 0.0006 

 

 

 

 

Figure 4.2.  Training inputs and target output for the B-Class ANFIS   
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For this simulation example, the choice is that the 3D dataset includes at least 40 

elements and it contains fewer than 160 elements.  The size criterion inequalities from the 

formula (22) are written as follows: 

 

Nmim,4D=40�N4D�Nmax,tst= Ntrn =160   ,    

 

Concerning the dataset diversity criterion, the bounds values for training data, 

which are included in Table 4.1 and the dataset diversity inequalities (23) and (28), are 

adopted accordingly.   

The outcomes of the simulation phases, which were presented in the sections 4.3 

and 4.4, are the training dataset TRN1 and the testing dataset TST1.  The Monte Carlo 

simulation provides several data realizations.  For this reason, apart from first series of 

datasets, the Monte Carlo simulation generates 19 different triplets of datasets TRN2, 

CHK2, TST2, and TRN20, CHK20, TST20.   

The coming section presents the findings concerning the damage diagnosis, and 

evaluates the systems performance.   
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5. FINDINGS 

5.1. INTRODUCTION 

The previous section introduced to the simulation experiment that is used in this 

thesis in order to investigate the proposed Damage Diagnostic System.  So far, the 

simulation that generated the training and the testing datasets is presented.  This section 

makes available the research results.  The material in this section is organized into two 

subsections, as follows.  The first subsection studies the convergence of the data 

sampling procedures.  Then, the second subsection presents the damage diagnosis results 

and the evaluation of the performance of the developed model.   

 

 

 

5.2.  CONVERGENCE STUDY 

This subsection studies the convergence of the two developed sampling 

procedures.  In particular, Subsection 5.2.1 deal with the MOJO procedure, which 

concerns training data, while Subsection 5.2.2 investigates the 4D procedure, which 

concerns the testing data.   

5.2.1. Convergence for the MOJO Procedure.  The training dataset for this  

simulation experiment is not derived as the result of a single iteration, but rather it is the  

outcome of several cycles of data samplings and data rejections, which were based on the 

MOJO procedure.  The modeling for this procedure was presented in Subsection 3.6, 

while the bound values for convergence were selected in Subsection 4.3.  This subsection 

validates the developed MOJO procedure by studying how it converges at the desired 

training dataset, after satisfying the three convergence criteria.  Each convergence 

criterion is presented in a separate subsection.   

5.2.1.1 Training dataset size criterion.  The first convergence criterion for the  

MOJO procedure concerns the training dataset size.  Figure 5.1 plots the convergence of  

the training dataset size, as a function of the accumulate number of sampled data.  During 

the data sampling, note at this figure that the training dataset size increased linearly and 

unrestricted from zero up to the maximum bound value Nmax = 160.  After having reached  



50 

 

 

Figure 5.1.  Convergence for MOJO procedure with respect to the training dataset size   

 

 

 

the maximum bound value Nmax, the rejection process was activated.  In the simulation 

that is depicted in Figure 5.1, the rejection process removed 66 elements, so the training 

dataset dropped to the size of 94 elements.  The tooth in the saw-like curve shows the 

data reduction, during the rejection process.  The data rejection kept the dataset size 

within the desired maximum value of 160 elements.  The rejected data were replaced by 

freshly sampled ones.  The MOJO procedure finished, when all convergence criteria have 

been satisfied.   

5.2.1.2   Training data dispersion criterion.  The second criterion for the MOJO  

process is related with the training data dispersion.  Recall from the Subsection 3.6.2 that  

the training dataset dispersion is secured by spreading out the two harmonic parameters 

of the excitation load, namely the amplitude and the frequency.  At the Subsection 4.3, 

the potential ranges for each of the two harmonic parameters were divided into s=10 

equal sub-ranges.  To satisfy the dispersion criteria, it was required that all the sub-ranges 

contained one element at least.   
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The following five figures, illustrate a convergence example of the MOJO 

procedure with respect to the data dispersion criterion.  At first, Figure 5.2 shows the time 

development for the dispersion of the two considered parameters.  In this figure, the Y-

axis parameter is the number of sub-ranges that contain one element at least.  The blue 

solid line depicts the dispersion with respect to the load amplitude po, while the green 

dotted line represents the dispersion of the load frequency parameter.  In the simulation 

experiment, the dispersion measures were increasing, during the sampling of the initial 

160 data.  However, when the initial 160 elements had been collected, only the amplitude 

dispersion was met, but the frequency dispersion goal had not yet reached. After this 

point, cycles of data rejections and samplings facilitated the MOJO procedure to 

convergence.   

The data dispersions with respect to the two parameters are better illustrated in the 

following four histograms, from Figure 5.3 to Figure 5.6.   From the one hand, 

histograms Figure 5.3 and Figure 5.4 depict the dispersion for the population of the 160 

 

 

 

 

Figure 5.2.  Data dispersion criteria versus time   
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initially sampled data, and from the other hand, Figure 5.5 and Figure 5.6 present the 

corresponding histograms for the convergent training dataset.  Note that the final training 

datasets, which were the result of continuous rejection-samplings cycles, contained 160 

data elements, as well.  Figure 5.3 and Figure 5.5 concern the excitation amplitude 

variable, while Figure 5.4 and Figure 5.6 deal with excitation frequency parameter.   

The following observations are made on these four figures.  First, as it should be 

expected all the histograms exhibit normal distributions.  Second, the potential ranges of 

the x-parameters are divided into ten sub-ranges by vertical red lines.  In Figure 5.3 and 

Figure 5.4, observe that some of the extreme left bound sub-ranges contain no data 

elements; this means that the dispersion criteria are not met yet.  By contrast, compare the 

previous two figures with Figure 5.5 and Figure 5.6, to find out that the convergent 

dataset is spread out in a wider area and all ten sub-ranges contain one element at least.  

In overall, the dispersion criterion reduces the theoretically infinite number of the training 

 

 

 

 

Figure 5.3.  Histogram of the load amplitude for the 160 initially sampled data elements   
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Figure 5.4.  Histogram of the load frequency for the 160 initially sampled data elements   

   

 

 

 

Figure 5.5.  Histogram of the load amplitude for the final convergent dataset   
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Figure 5.6.  Histogram of the load frequency for the final convergent dataset   

 

 

 

data that might be potentially sampled into a few values that contain most of the relevant 

information.   

5.2.1.3 Performance criteria.   The  third  category  of  the  convergence  criteria 

for the MOJO procedure concerns the learning quality of the A-Class Neuro-Fuzzy  

Networks.  These criteria establish preliminary performance indices for the Diagnostic 

Algorithm.  The learning quality criteria observe two statistical parameters of the RMS 

prediction error of the ANFIS, namely the arithmetic mean and the standard deviation.   

The following two figures depict the development of these two statistical parameters, as 

the training datasets vary through time.  Figure 5.7 shows how the mean prediction error 

develops during the training dataset samplings.  From the other part, Figure 5.8 depicts 

the time development for the standard deviation of the prediction error.    Both figures 

have the same characteristics.  The horizontal red poly-line denotes the desired upper 

bound.  The blue poly-line denotes the statistical parameter that is obtained by different 

training  datasets  during  MOJO  procedure.   From  the  other  part,  the  green  poly-line  
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Figure 5.7.  Convergence study for the average prediction error   

   

 

 

 

Figure 5.8.  Convergence study for the standard deviation of the prediction error   
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represents the statistical parameter of the corresponding checking datasets.  The x-axis 

has linear scale, while the y-axis scale increases logarithmically. 

In Figure 5.7 and Figure 5.8 observe that the prediction errors for the training 

datasets (blue lines) were lower than the desired upper bound.  In the initial phase of the 

MOJO procedure, when the training dataset contained approximately less than fifty 

samples, the prediction for the training data was very successful, while the prediction 

error for the checking dataset was very high.   This situation, which is called overtraining, 

happened because the learning system was trained with datasets that were not adequately 

diverse and large.  As the MOJO procedure moved ahead, the networks generalization 

improved, due the fact that the training dataset was larger and it included more diverse 

elements.  In Figure 5.7 and Figure 5.8, observe that the prediction errors for the training 

and for the checking datasets were tending to equalize, as the accumulative sampled data 

reached the size of 160 elements.  After this point, the MOJO procedure started to reject a 

part of the training data, in order to replace them with newly sampled ones.  This 

replacement causes a distortion on the distribution of the training dataset compared to the 

initial distribution from which both the checking dataset and the raw training data had 

been sampled.  Due to these different distributions, the prediction error for the checking 

datasets increased slightly, but nevertheless it remained below the desired goal value.   

Figure 5.1,Figure 5.2, Figure 5.7, and Figure 5.8 are directly comparable, because 

their x-axis and scale are the same.  These plots depict the time development for the two 

different convergence criteria.  By comparing these four plots, it is found that the 

convergence criteria were reached at the following sequence.  The two performance 

criteria were met, after the first 106 initial elements had been sampled.  The data 

sampling continued until the dataset assembled 160 elements, which was the ceiling 

value for the size criterion.  Because at this moment, the dispersion criterion was not met 

yet, the reduction process had been initiated.  This process removed a number of 66 

elements from the dataset.  Then, by sampling 66 additional data, the convergent training 

dataset satisfied the dispersion criteria.  The reduction-sampling cycles increased the 

datasets diversity.   

In Figure 5.7 and in Figure 5.8, the smaller the training dataset was, the better the 

prediction accuracy for the training data was.  This was due to the ANFIS overtraining 
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and as a result the network was not capable to predict previously unseen checking data.  

When the training dataset had attained the crucial bulk of about 100 elements, then the  

ANFIS was capable to predict the random checking data with an acceptable accuracy.  

The prediction accuracy for the training data remained almost unchanged, after the 

dataset had attained the moderate size of about 60 elements.  The curves for the checking 

data in Figure 5.7 and Figure 5.8 show that the ANFIS predictability was improving until 

the initial 160 elements had been collected.  After this point, there the prediction error for 

the checking datasets increased slightly. 

5.2.2. Convergence study for the testing dataset.  The procedure for generating 

a Diagnostic Decision Dataset, which was coined as the 4D procedure, was introduced in 

Subsection 3.7.  This section illustrates the convergence of a random Diagnostic Decision 

Dataset.   

The 4D procedure is an iterative process that stops when the two convergence 

criteria are met.  These criteria concern with the dataset size and with the dataset 

dispersion.  Figure 5.9 and Figure 5.10 depict the time variation of these parameters the 

dispersion of which was defined in the formulas from (23) to (28).  It is observed that the 

interquantile ranges of the two observed parameters fall within desired bounds. The two 

horizontal red lines define the desired bounds for the dispersion criteria.  The green poly-

line demonstrates the change of the dispersion indices, as the dataset size increases.  This 

poly-line swings between the bound limits horizontal lines.  In addition, note that the 

convergent dataset contains 26 elements, so its size is within the desired bounds.  The fast 

convergence of the sampling procedure is an advantage because it guarantees the early 

damage detection.   

Figure 5.11 combines information from the Figure 5.9 and from the Figure 5.10.  

The poly-line relates the interquantile range of the amplitude to the interquantile range of 

the frequency.  The beginning of this poly-line is marked with a small circle, while the 

end of this poly-line is marked with a little triangle.  The sides of the yellow quadrangle 

define the goal bounds for the dispersion criteria.  The beginning of this poly-line, which 

is marked with a small circle, represents the 20th event, while the end indicates the 26th 

event. 
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Figure 5.9.  Convergence study for the first dispersion criterion   

 

  

 

 

Figure 5.10. Convergence study for the second dispersion criterion   
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Figure 5.11.  Relating the two dispersion indices   

 

 

 

5.3. DAMAGE DIAGNOSIS 

This subsection presents the results taken from the Damage Diagnostic 

Algorithm.  As it was explained in Subsection 3.7, the algorithm makes diagnostic 

decisions that are based, not on a single vehicle event, but on a diagnostic decision 

subset.  In Figure 5.12, the red fluctuating line shows the predicted mean damage rates 

for such a random diagnostic decision dataset.  This fluctuation is a statistical 

phenomenon, which is typical in any Monte Carlo simulation.  It is assumed that during 

all these simulated vehicle events, the real damage rate remained constant at 7%, which is 

demonstrated by the blue horizontal line, in Figure 5.12.  By averaging all the predicted 

damage rates, the prediction for the damage rate has the absolute value 6.9%. 

The next Figure 5.13 depicts the average diagnostic results for different decision 

subsets.  However, because the difference between the predicted and the expected 

damage rates would be hardly distinguished, the damage rates are substituted by the 

Diagnostic Systems prediction error, which is calculated as the difference between the  
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Figure 5.12.  Real and predicted damage rates for a vehicle event   

 

 

 

 

Figure 5.13.  Absolute prediction errors   
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estimated and the expected damage rates.  In this way, a graphical representation on a 

finer scale is taken.   

The absolute prediction errors are plotted as red circles marks in Figure 5.13.  In 

the same figure, the blue star marks represent the initial estimation that is based on the A-

Class Network only, before applying any correction by using the B-Class Network.  In 

Figure 5.13, the solid horizontal line represents the ideal prediction rate, which has the 

value zero.   

This figure shows that the prediction error for the final damage rate was reduced 

considerably, compared to the initial damage rate.  However, in certain instances, this 

final prediction error took negative values, which implied that the corrective subtrahend 

quantity was more than it was required.  Using estimation results that include negative 

prediction error might lead to situations in which the structural damage goes undetected 

or underestimated.  From the other part, as shown in Figure 5.13, the prediction errors for 

the initial damage rates were quite low and practically negligible.  Therefore, it is  

 

 

 

 

Figure 5.14.  The relative prediction error versus the actual damage rate   
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Figure 5.15.  Moving average for the relative prediction accuracy versus the actual 

damage rate 

 

 

 

preferable to consider the initial damage rate rather than use the B-Class Network 

corrective action.     

From the other hand, Figure 5.14 plots the relative prediction accuracy versus the 

damage rate. Theoretically, the relative prediction rate of the undamaged structure should 

be indefinitely high. However in this figure, the relative prediction error took a high value 

that has indicative significance.  The y-axis in this figure is logarithmic.  Finally, in 

Figure 5.15, by plotting the Moving Average Convergence/Divergence function for the  

relative prediction accuracy, it is remarked that as the damage rate increased, the relative 

prediction error decreased, in an exponential decrease rate.  Therefore, the diagnosis of 

the higher damage rates in more successful, when it is compared with the diagnosis of the 

lower damage rates.     

This section presented the outcomes that were obtained through simulations of the 

Damage Diagnostic System.  The coming section will further discuss these findings.   
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6. DISCUSSION –CONCLUSIONS 

6.1. INTRODUCTION 

This thesis attempted to design a Damage Diagnostic Method for structural 

bridges.  The automatic on-line system identifies and quantifies damage by extracting 

information from vibration signals, during dynamic incidents.   

This last section summarizes the research findings and the conclusions.  The 

material is organized in three parts.  The first part, which extends from Subsection 6.2 to 

6.5, discusses separate components of the developed algorithm, while in the second part 

evaluates the overall system, in Subsection 6.6.  The third part presents the thesis 

conclusions in Subsection 6.7.   

The first systems components to be discussed are the two procedures for 

generating training and testing data, namely the MOJO and the 4D procedures.  Then, the 

following aspects to analyze include the two classes of Neuro-Fuzzy Inference Systems, 

and the statistical averaging.   

The discussion of each separate systems component is organized to include the 

following points of interest.  First, the role and the main characteristics of each 

component are underlined.  Then, the pressures to develop each special element and how 

the research goals have been attained are mentioned.  In addition, the advantages and the 

disadvantages or the limitations for each system component are presented.  Finally, the 

section closes with the evaluation of the components performance and the comparison of 

them with other similar approaches, if they are available.   

 

 

 

6.2. MOJO PROCEDURE 

The first systems component to be discussed is the MOJO procedure.  The scope 

of this procedure is to generate training datasets that satisfy the desired criteria.  As it was 

modeled in Subsection 3.6, the MOJO procedure includes iterative cycles of data 

samplings and data rejections, until all the three criteria converge.  The motivation for 

designing the MOJO procedure was cited in Subsection 2.3.   
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The main goals of the MOJO procedure are reviewed herein:   

A. Creation of a training dataset that has the ideal size and it lies within the 

desired size limits, 

B. Increasing the training dataset dispersion,  

C. Increasing the comprehensiveness of the training data across the desired data 

range, and finally  

D. Improving the systems prediction performance.   

The above goals are directly related to the convergence criteria of the MOJO 

procedure.  This thesis investigates whether the MOJO procedure cures the drawbacks of 

the Diagnostic System and whether it attains the above goals.   

First, the size of the dataset that is derived through the MOJO procedure is within 

the desired size limits that have been set down in Subsection 4.3.  The evidence on this 

conclusion can be found in Figure 5.1.  From the other part, the MOJO-generated dataset 

is comparatively smaller in size than any randomly sampled dataset that contains the 

same information intelligence.  This became clear in Figure 5.2, because the MOJO 

dataset contained 160 data versus the 226 accumulated data of the equivalent random 

dataset.  As a result, by using the MOJO-generated dataset, the need for computing 

resources is reduced, because the training datasets size is reduced.   So as only the 

selected data that include the essential necessary information are loaded into the memory, 

both the computing time and the response time are decreased.   

For this reason, Subsection 5.2.1.2 compares two training datasets, which had the 

same size.  The first dataset was derived through the MOJO procedure, while the second 

one contained randomly sampled data.  By comparing these two datasets in Figure 5.3 to 

Figure 5.6, it became clear that the MOJO-generated dataset included data that were 

better dispersed along the desired data range.   

By observing the histograms in Figure 5.3 to Figure 5.6, it is observed that both 

the initial random datasets and the MOJO-generated datasets have normal distribution 

plots.  The main deficiency of the initial datasets was that these datasets did not cover the 

outer area of the service range, while the MOJO-generated datasets covered the data 

range in a more comprehensive way.  Figure 5.4 provides the better evidence about this 

fact.   
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However, in the particular cases of Figure 5.7 and Figure 5.8, by comparing the 

dataset of the initial 160 accumulated elements with the final set of the 226 accumulated 

elements, it was found that the prediction error of the checking dataset increased slightly.  

The explanation is that the checking dataset was more similar to the initial dataset that 

contained the 160 random elements, rather than to the final dataset.  An additional 

explanation is that the rejection intends to correct the dispersion problem of the training 

dataset, only.  So, by observing the Figure 5.2, Figure 5.7 and Figure 5.8, it should not be 

a surprise that the rejection ameliorates the datasets dispersion, but it does not improve 

the performance indices.  However, when the algorithm converges, the performance 

indices are within the desired bounds.   

Concerning the data rejection, the following additional comments apply.  The 

three different types of the rejection processes reject data, by intervening on these 

particular elements that are located in information dense areas.  The rejection speeds up 

the convergence of the algorithm, by filtering out the superfluous data that do not 

contribute new information.  By rejecting these data, the indefinite augmentation of the 

training datasets is avoided.  The MOJO procedure converges fast, as it seems to be 

particularly suitable for data that are randomly sampled from normal distributions.   

Besides meeting the above goals, the MOJO procedure offers some additional 

advantages.  First of all, this procedure performs data preprocessing in an automatic way; 

so it helps to avoid difficulties that are associated with the manual data preprocessing, 

which is labor intensive task.   

The MOJO procedure prepares and improves datasets for the supervised learning 

of the Neuro-Fuzzy System. The application of the proposed approach is not necessarily 

limited to this Damage Diagnostics System, but it might be extended as a universal 

improvement of the Backpropagation Neural Networks, or of networks that employ 

supervised learning, in general.   

From the other part, the disadvantage of the MOJO procedure is that it might 

require slightly longer time in order to collect the training data.  However, the committed 

time for generating this dataset is far less than the time that is saved during the 

operational life of the Diagnostic System.  The reduction in training time does not lead in 

compromise of the training quality for the Adaptive Network, but it increases the systems 
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reliability.  The most important advantage of the MOJO-generated dataset is that it boosts 

the networks performance and it ameliorates the prediction capability of the diagnostic 

system.   

 

 

 

6.3. 4D PROCEDURE 

The 4D procedure, which is discussed in this subsection, aims to generate a 

Damage Diagnostic Decision (3D) Dataset that complies with two convergence criteria.  

Because the two criteria are contradicting, this procedure attempts to balance them.   

This procedure attempts to balance two contradicting goals.  The first goal is to 

minimize the 3D dataset size, while the second goal is to sample testing data that are 

relevant with the training data.   

The study of the 4D process in Subsection 5.2.2 demonstrated that the 4D 

procedure converged fast with respect to the two target criteria.  The normally 

distribution of the randomly sampled data boosted the 4D procedure to converge fast, 

long before reaching the maximum allowed dataset size that requires data rejection.   

The convergent 3D dataset had the following characteristics.  First, the 3D dataset 

was bigger than the minimum size.  This offered an advantage, because in this way the 

damage diagnosis decision was based on more than just a few measurements, so the 

decision reliability increased.  The 4D procedure converged when the diversity criteria 

have been met.  In all cases, the convergent 3D set was smaller in size than the training 

dataset.  In this way the detection decision was not postponed for too long, until the 3D 

set will have attained the size of training dataset, and the bridge damage is identified as 

early as possible.  Therefore, the 4D procedure balanced successfully, between the 

reliability and the prompt detection response.   

In conclusion, the above described MOJO and 4D procedures created the needed 

datasets for the proper and smooth functioning of the Adaptive Learning Network that is 

described in the coming subsection.   
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6.4. NEURO-FUZZY NETWORKS 

Two classes of Neuro-Fuzzy Networks have been used.  Their common 

characteristics, advantages and disadvantages are discussed in the following lines.   

The first discussion concerns the A-Class ANFIS.  The scope of these networks is 

to predict the excitation force that is required in order to bring the undamaged bridge on a 

certain given level of kinetic vibration.  This predicted excitation force is compared with 

the actual excitation, in order to derive the damage calculation.   

The main benefit of the A-Class ANFIS is that the avoidance of building an 

analytical bridge model.  So, there is gain in the invested time and resources, and in 

parallel there is a moderate independence from the bridge experts.  The Neuro-Fuzzy 

System does not face a problem when dealing with noisy or sparse data, either.  The 

accuracy of the network is also exceptional.  Figure 5.13 shows that the prediction error 

is very low.  An additional advantage is that the ANFIS system provided predictions 

within a reasonable amount of time.  In the case that there is a need for systems 

modifications or for the additions of new functionalities, or for changes on the type and 

on the number of inputs, then the ANFIS is capable to treat any other inputs with the 

minimum adaptations on the Networks topology and on the formulation.  This means that 

the network is plastic and flexible enough to be adapted to new conditions.   

The next discussion concerns the twin B-Class Neuro-Fuzzy System.  The 

properties and the advantages of the B-Class ANFIS are similar to the ones discussed 

above concerning the A-Class ANFIS.  So, the reader is referred to the previous 

paragraphs for a detailed analysis of the general and common characteristics of this 

systems component.  This subsection includes the remarks that apply on the B-Class 

ANFIS, exclusively.  

The scope of this second class ANFIS is to calculate the prediction error that is 

associated with the A-Class networks.  This estimation done by the B-Class ANFIS is 

used in order to correct the damage rate that is predicted by A-Class ANFIS.  In this way, 

the final subtraction outcome is a new damage rate that takes into account prior 

information on the predictive uncertainties.   

As it can be seen in Figure 5.13, the B-Class ANFIS reduced the damage rate 

error considerably.  However, in certain cases, the final predicted damage rates, which is 
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corrected by the B-Class Networks, is reduced much more than it should be and it 

becomes lower than the real value.  Therefore, it is recommended to avoid removing this 

corrective quantity that is the outcome of the B-Class Network.  In this way, the predicted 

damage might be higher that the actual damage rate; however this higher value 

calculation lies on the safety side. 

The use of the B-Class Neuro-Fuzzy system would be beneficial, if the prediction 

error of A-Class ANFIS was considerable.  But, as in our simulation example the A-Class 

ANFIS exhibited excellent performance; so the use of the B-Class system might be 

somehow unnecessary.   

 

 

 

6.5. STATISTICAL AVERAGING 

The statistical averaging aims to provide predictions that exhibit increased 

confidence and reliability.  This process is used in two occasions.  In the first case, the 

purpose is to calculate the mean damage rate of all estimations during the same vehicle 

event.  In the second case, the purpose is to average the damage rates of different vehicle 

events.   

Figure 5.12 concerns the first case, and it shows that the prediction of the damage 

rates fluctuates considerably, during the vehicle event.  It is observed that the predicted 

damage rate diverges from the real damage 7% as much as a factor of 1.8 percentage 

units.  The prediction is unstable, because the results come from the Neuro-Fuzzy 

Networks, which are trained with different datasets.  As a result, these networks exhibit 

different degrees of prediction accuracy.  However, the average damage rate for the 

vehicle event is close to the real damage rate.   

Figure 5.13 confirms that the predicted damage included a negligible error.  For 

this reason, it is worthless to use the statistical averaging or the moving average 

technique.  Such a statistical method would be used to remove spontaneous results that 

depart from the average, if the deviation from the mean predicted values was due to bad 

performance of the learning algorithms.  However, if this deviation arises due to suddenly 
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developed damage in the bridge structure, then using the statistical processes will not be 

an appropriate choice.   

 

 

 

6.6. GENERAL 

Up to the present, the Damage Diagnostic System’s components have been 

discussed.  This subsection discusses about the integrated Diagnostic System.  The scope 

of this system is to identify and quantify structural damage in civil structures.   

Below, the advantages of the Intelligent Damage Diagnostic System are 

mentioned, by focusing on two key factors that address the system itself; namely the 

prediction accuracy, and the timely systems response.   

The first key factor to evaluate is the systems prediction accuracy.  By 

considering all the damage decision datasets, the average prediction was correct in the 

99% of the cases.  It is important to mention that the average performance of the 

Intelligent Damage Diagnostic System, which was calculated through the Monte Carlo 

Simulation, had a value with indicative and not absolute importance, because it depends 

on randomly generated data.  The high degree of the prediction accuracy would guarantee 

the correct diagnostic decisions, during the bridge operation.   

The second system factor to be discussed is the time duration for the systems 

response.  The proposed diagnostic procedure consumes additional time for collecting the 

Damage Decision Sets.  These sets are completed after the passage of 20-25 vehicle 

events approximately.  From the other part, given the finalized Damage Decision Set, the 

Neuro-Fuzzy Network completes the required analysis and provides accurate results 

within a time frame of not more than a few minutes.  Therefore, as the Damage 

Diagnostic System is not only reliable but also it responds in a reasonably fast way, it can 

be incorporated into practical applications for the Health Monitoring Systems.   

Although the Damage Diagnostic System requires training data that are sampled 

from the undamaged structure, it does not need information and examples sampled from 

the damaged bridge.  The independence of the System from the damaged examples is an 



70 

 

important advantage, because the finalization of the training dataset is taking place, 

before the damage development on the structure.   

However, even if the damage cases are not available to be included in the training 

dataset, it is not employed an intelligent learning algorithm that is based on unsupervised 

learning, but on a supervised learning algorithm.  Even though ANFIS is trained with 

undamaged bridge data only, it overcomes this deficiency and it is capable to emulate 

damage diagnosis.  This becomes possible, because ANFIS is trained to recognize the 

data that belong to the undamaged state, and then the diagnostic system characterizes the 

bridge as damaged, if its structure signals exhibit deviations from the reference state.   

 

 

 

6.7. CONCLUSIONS 

The Damage Diagnostic System was tested on a simulated bridge structure that 

was excited by moving loads.  Based on the simulation experiment and the study which 

was conducted within the scope of this thesis, the following main conclusions are made.   

The Damage Diagnostic System includes four main components that are 

evaluated below.  The first component is the A-Class Neuro-Fuzzy Network that 

emulates the bridge behavior.  The second one is the B-Class Network that estimates the 

prediction error of the first class network.  The last two components are the two sampling 

procedures for obtaining the training and the testing datasets of the above mentioned 

learning algorithms.   

The proposed methodology does not require an analytical modeling of the bridge, 

as the trained A-Class ANFIS created a non-parametric model of the undamaged 

structure. When the Neuro-Fuzzy Network is compared with alternate methods, this soft 

computing paradigm exhibits considerable advantages; the remarkable accuracy, and the 

flexibility are the main advantages to mention.  The Intelligent Learning Algorithm 

ANFIS have found another successful application in the field of civil engineering.   

The B-Class ANFIS was successful in forecasting the prediction error of the A-

Class  Inference  System.    However,  including  the  B-Class  ANFIS  in  the  overall 
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Diagnostic System had disputed usefulness, because it might decrease the damage to 

greater degree than the required one.    

Concerning the two procedures for generating datasets, namely the MOJO and the 

4D procedures, the following comments apply.  By condensing the randomly sampled 

data, the MOJO procedure produced training datasets that were information dense.  From 

the other part, the 4D procedure collected testing data that were relevant to the testing 

data space.  With the contribution of the advantages that both sampling procedures 

offered, the involved Neuro-Fuzzy Networks performed in a more reliable way.   

In overall, the developed Structural Damage Diagnostic Method was very 

sensitive in detecting mild linear damage.    
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