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ABSTRACT

A phenomenological theory is presented which describes
the growth or evaporation of cloud droplets containing
dissolved NaCl. The main interest is in the early stages
of growth, The Maxwell-Fuchs equation is employed with
refinements to account for the high salt concentration in
small droplets, A computer program is presented that
calculates the growth time as a function of radius for
cloud droplets nucleated with NaCl,

The growth times obtainable from the Maxwell-Fuchs
equation differ significantly from the growth times calcu-
lated using the refined Maxwell-Fuchs equation for ambient
relative humidities less than or equal to 100%, Growth
times for droplets nucleated by NaCl crystals of mass greater
than or equal to 10-1°grams should be calculated by the
refined equation presented here for virtually all ambient

vapor densitieé,
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I. INTRODUCTION

The present work provides a method for calculating
the growth rate of water drops nucleated by sodium chlo-
ride crystals. Droplet growth is considered as a steady
state diffusion process with heat transfer by means of
conduction, Near the drop's surface a diffusion-kinetic®*
condition is adopted instead of either the thermal equi-
librium condition employed in the Maxwell-Fuchs theory
or the "annihilation” condition of Smirnov (2). This
diffusion-kinetic condition is incorporated intoc the
Maxwell-Fuchs equation for drop growth by "compensating”
the transport coefficients, **

This modified Maxwell-Fuchs eguation is integrated so
that time of growth can be calculated as a function of
drop radius explicitly and implicitly through the equi-
1librium vapor pressure and compensated ccefficients,

The initial mathematical treatment of the equilibrium
vapor pressure of a water drop nucleated by NaCl was by
Kohler and Wright (4), The equation which they developed
expresses the ratio of the equilibrium vapor pressure of a
saline drop to that of a flat pure water surface in terms of
the Kelvin-Thompson equation and Raocult's law, Since the

*terminology adopted by Smirnov (1) to describe a
boundary condition near a drop®'s surface for which a
diffusion expression is equated to a uniform kinetic
expression

##gee Carstens (3)



development of the Kohler equation, a number of workers
(Cinkotoi (5), Low (6), and Orr, Hurd, and Corbet (7))
have recognized that, in general, large inaccuracies result
from using Raoult's law during the early periods of droplet
growth when high concentrations of dissolved salt are pre-
sent, To account for the high salt concentration, the
present writer adopts empirical water activity - salt
molality equations to replace Raoult's law, Surface ten-
sion and solution density, both found in the Kelvin-
Thompson expression, are rendered concentration dependent,
The growth times are calculated by an IBM 360 com-
puter, The computer program may be used in fog and cloud
studies where sodium chloride is often a nucleant and the
excess vapor density is generally small, barely accomo-
dating growth, The program may also be used for studying
droplet growth in cloud chambers and other laboratory

experiments,



ITI. REVIEW OF LITERATURE

A, The Equilibrium Vapor Pressure of a Drop

The drop equilibrium vapor pressure relates to drop
growth by providing a reference state from which the growth
rate can be determined once the degree of departure from
equilibrium made by the ambient vapor pressure is known,
Since saline drops are being examined, the equilibrium
vapor pressure equation must unite two opposing effects:
the solution effect which decreases equilibrium vapor
pressure and the curvature effect which increases it.
Kohler and Wright (4) were the first to introduce an
equation that takes these two opposing effects into ac-
count, Kohler's equation and literature containing vari-
ations of it will be reviewed since mathematical repre-
sentation of the equilibrium vapor pressure for a saline
drop is relewant to the present work.

The Kohler equation expresses the ratio of the equi-
librium vapor pressure of a saline drop to that of a pure,
flat water surface by relating Raoult’'s law (the salt
solution effect) and the Kelvin-Thompson equation (the
curvature effect). Raocult's law, which specifies the
equilibrium vapor pressure reduction occurring when a
nonvolatile salt such as NaCl is dissolved in a volatile

solvent is

P
(1.1) —p—l—“x



where x is the mole fraciion of solwvent, Py, the equi-
librium vapor pressure cover the sclulion, and Pqy _ the
equilibrium vapor pressure over pure sgolvent., This ex-
pression is valid for a flat surface such s8s a salt
scluticn and generally becomes increasingly less accurate
as the salt concentration increases,

The curvature effect, which increases the equilibrium

vapor pressure is represented by the Kelvin-Thompson

equation
(1.2) Px.a/Px,«*= exp(2M, o/RT P a) = eB/a

where a is the drop radius, Py g, the equilibrium vaper
pressure of the soclvent cver a solution which has a
curved surface, Px . the equilibrium vapor pressure of the
solvent over a solution whieh has a flat surface, M, the
molecular weight of the solvent {(water), ¢ the surface ten-
sion of the solution, R the ideel gas constant, T the abso-
lute temperature andr, the solution density.

The combinstion of {(1.1) and (1.2),

(103) Px.a/Pin' (x)exp(%a/ﬁﬂl‘pza) = (x)eB/a

gives the ratio of the equilibrium vapor pressure over a

curved salt sclution, Px, g, to that of a flat, pure water
surface. An approximation given by Fletcher (8) and used
frequently by meteorologists and cloud physicists alike is

o ] i __imM
(1.4) S(a) = Py o/Py, = 14B/a - A/a3; A 573 w0 M




where S(a) is the saturation ratio, B is defined in (1.2),
M is the molecular weight of the solute, i is the Van't
Hoff factor, and m is the molality. By inspection of (1.4)
the solution effect dominates S(a) for small drops, but

as the drop grows, curvature becomes the predominate
influence,

The Kohler equation can be regarded as the classical
equation, but due to inadequacies at high salt concentra-
tions other expressions have been devised, Orr, Hurd, and
Corbett (7) concern themselves with the various stages of
droplet growth initiated by a number of hygroscopic
nuclei, one of which is NaCl., They examine the initial
period of growth during which water vapor is adsorbed
upon the NaCl crystalline surface and the surface in turn
dissoclves, It is assumed that there are three phases;
aqueous solution, water vapor, and crystalline NaCl, and
that these three phases are in equilibrium. They employ
an equation that describes the adsorption equation of a gas
onto a free surface (one void of cracks and pores) and re-
late this equation to drop radius assuming a spherical
salt crystal. For this adsorption equation, the heat of
adsorption less the heat of condensation of gas is assumed
to be approximately equal to the surface energy of the
solid NaCl, This assumption was made because heat of ad-
sorption values were unavailable. They find very little
change in radius during the adsorption period.

The transition period, where the solute particle



completely dissolves, is treated as well as the subse-
quent free growth, The liquid film surrounding the NaCl
particle is assumed to be a homogeneous saturated solution
at equilibrium, The vapor pressure of this film is con-
trolled by the dissolved salt concentration and by the
curvature effect., The latter is described by the Kelvin-
Thompson equation, but unlike the Kohler equation the

salt influence is not represented by Raoult's law, Instead

(1.5) 1n(az/ay) ="Zr8(1/rz - 1/ry) ()

is used to obtain the activity of the solute, a, in solution
in terms of the solid solute radius, r, the surface free
energy of solute, og, the molecular weight of solute, M,
the density of solute, ¢y, the ideal gas constant, R, and
the absolute temperature, T. A reference state is assumed
such that a4 is the activity of a concentrated solution
for which rqy is extremely large. The solution vapor
pressure due to solute particle size was found from a plot
of vapor pressure versus solute activity. This wvalue
represents the solute vapor pressure lowering effect and
was substituted into (1.2) for Px,.. Then (1.2) could

be solved for the equilibrium vapor pressure of a solu-
tion drop, Px,g. The results clearly indicated that the
critical humidity, that which allows transition, decreases
for decreasing solid solute particle size. The critical
humidity asymptotically approaches 75% as the solid parti-

cle size increases, Orr et al, mention that 75% agrees



favorably with Twomey's experimental value of 75, 5%.
Since values for the vapor pressure above 6,0 molar

solutions were unknown to Orr and workers, they devised

an expression from the Gibbs-Duhem relation for extending

the curve

] B_Ab X
(1.6) in(Py */Py) zs igt%=§;7 dag (10)

where P4 ' is the partial pressure of the solvent when the
NaCl activity is ag’, Py the partial pressure of solvent
when NaCl sctivity isag, and Xg, the mole fraction of NaCl,

The Kelvin-Thompson equation with attention paid to
the solution effect describes the saline drop's growth
during the period of free grewth, that is, growth after
transition stimulated by a supersaturated water vapor
condition. This article contains good qualitative dis-
cussions on all phases of drop growth, It is also good
in that it contains comparisons of experimental and cal-
culated results, both conducted by Orr et al,

Cinkotoi*s publication (5) is relevant to the Kohler
description of solution drops. This work is concerned
with the behavior of NaCl particles in the human respira-
tory tract, The Kohler equation is adopted to relate the
water vapor pressure and salt concentration to drop diame-
ter., Empirical equations, polynomials of percentage NaCl
in solution by weight, are used to represent relative
humidity, solution density, and surface tension and vapor

pressure depression due to the dissolved salt, The last



quantity replaces Raoult's law in (1.3). There seems to
be no physical explanations offered for the pelynomial
representations of the physical parameters,

A conflict exists between Cinkotoi®s work and the
Orr et al, work with respect to the relative humidity for
which an NaCl particle begins to take up water vapor,
Cinkotoi does not consider adsorption on free surfaces as
do Orr et al. and thus finds that as the NaCl particle
size goes to zero, the relative humidity approaches infi-
nity asymptotically. As the NaCl particle size increases,
the relative humidity approaches 77-78% asymptotically.
Orr et al. considered adsorption and the effect that the
NaCl particle size has on the vapor pressure through the
nonvolatile salt effect, They found that the relative
humidity necessary to dissolve an NaCl particle decreases
with decreasing particle size, although appreciable growth
may not take place until the ambient vapor pressure in-
creases to comply with that value primarily dictated by
the Kelvin-Thompson equation,

Low (6), like Cinkotol, devises a replacement for
Raoult's law in (1.3). However, his equation is rigor-
ously derived from modern solution chemistry. The Gibbs-
Duhem equation allows Low to relate the NaCl molality
and activity coefficient to the water activity which in
turn replaces Raoult’s law., Low's work contains a rather
extensive table of water activities and calculated Van't

Hoff factors for salt molalities ranging from 0,1 to 6.0,



This is done for various electrolytes one of which is NaCl.

Keith and Arrons (11) derive an equation which de-
termines growth time as a function of drop radius., This
equation is derived without employing (1.3), although
saline drops are being studied., Growth takes place by
vapor condensation, the molecules being transferred to
the surface by diffusion., Thermal energy is removed by
conduction, The ideal gas law and the Clapeyron equation
are employed to relate the pressure, vapor density, and
change in pressure as a result of thermal fluctuations,

The vapor pressure depression due to the dissolved salt

is depicted by an empirical equation. Another empirical
equation is assumed for saturated salt solutions common

to the embryonic stages of growth, Keith and Arrons
recognize that equilibrium radii calculated by their
equations are, in general, slightly smaller than those
predicted by (1.3). They attribute the difference to the
fact that (1.3) employs Raoult's law, but overlook the con-
tribution that curvature makes to (1.3). The authors find
favorable agreement with their own experimental results
discussed fully in the same work,

Orr, Hurd, and Corbett have by far the most detailed
description of the physical processes through which the
salt particle adsorbs water, develops into a solution drop,
and grows to equilibrium size. Thelir analysis through the
transition period contains rather startling results. They
find that the NaCl crystal size determines the equilibrium
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vapor pressure because of the nonvolatile salt effect,.
Thus dissolution of small NaCl crystals can occur for much
smaller relative humidities than generally suggested by
the other works reviewed, After transition, the drop will
not grow unless the ambient vapor pressure exceeds the
elevated equilibrium vapor pressure resulting from the
drop's high degree of curvature expressed by the Kelvin-

Thompson equation,

B. Temporal Considerations of Droplet Growth

An equation will be derived which expresses growth
time as a function of drop radius, It will be derived from
the Maxwell-Fuchs theory of droplet growth. A new boun-
dary condition will be introduced that takes into account
surface kinetics; as Carstens (12) points out, the Maxwell-
Fuchs equation can be recovered by "compensating™ the
transport coefficients, Unless specifically stated other-
wise, section B follows the Carstens report cited above.

The Maxwell-Fuchs theory assumes that droplet growth
takes place by means of a steady state diffusion process
and that thermal equilibrium is maintained between vapor
and liquid at the drop’'s surface. We will be studying
isolated drops that are stationary and not ventilated.

The steady state vapor field around a pure water drop

may be represented by Fick's second law

(3.1) viom 0O
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assuming a constant diffusion coefficient. Conduction
will be the only mode of heat transport and thus the temper-

ature likewise obeys
2
(3.2) vT= 0.
The solutions to (3.1) and (3.2) are:

(3.3) o(r) = a/r(pg -~ 0o.) + o, » and

(3.4) T(r) = a/v(Tq - T + T.,

where & is the instantaneous radius (a is less than or equal
to r which is less than or equal to infinity) and the sub-
scripts * and a refer to ambient and surface values,

A steady state power balance relates the vapor density-
temperature gradients,

(3.5) KVT lm + L% | =0

where K and L are the thermal conductivity and latent heat
of condensation respectively. Equations (3.3), (3.4),
and (3.5) yield the psychrometric equation

(3.6) oz Pe = K/LD=T.

A linear representation of the temperature can be made
for the equilibrium vapor density provided the temperature
range is sufficiently narrow., Equation (3.7) represents

the empirical curve with b and ¢ constants.

(3.7) e (a)=(bT + ¢c)lg
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By making use of mass conservation, the rate of growth is

d ap
(3.8) FW4/3)xe30)) = -tma®Dzd |

where p, is the liquid density and D is the diffusion coef-
ficient of water vapor. Using (3.3), (3.6), and (3.7),

equation (3,8) becomes
2
a
(3.9) (91/2)—5% = -D(pgq - P, )

(3.10) o, = o, *+ T - r(pg-c)/b

O bT ¥C
1+ /> 1+b/Tr

(3.12) oy - p, = (1 - S)peql=)/(1+b/1).

(3.11) g =

Equation (3.8) can finally be expressed as

a2 2(S-1)peq(")/p, _ 2(S-1)pggq(=)/0,
dat 1/D + Lb/K 1/Desf

where 1/Defrs = 1/D # Lb/K. Desrp., the effective diffusion

(3.13)

coefficient, is the sum of two resistances to growth,

(3.14) 1/Dere = Rerr = Rpags * Rpeat °

Equation (3.13) is the differential form of the growth
equation., It can easily be written to give t(a) or a(t).
We wish to propose that slthough (3.13) includes the funda-
mental processes that take place in drop growth, the theory
is too naive and not entirely correct. Clearly equilibrium
cannot exist at the surface since nonequilibrium is necessary

for growth or evaporation., A better boundary condition, one
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that dees not imply equilibrium, is 2 net rate condition in
which the flux would be zsnalyzed at or near the drop‘'s sur-
face,

Smirnov (13) deriver & growth rate equation from an
analysis of net rates, Smirnov’s work is presented be-
cause it represents a more rigorous treatment of the growth
problem than the conventional theery used by meteorologists
and provides a basis for comparison to the latter., The
following assumptions =2pply to Smirnovis model: (1) we
are dealing with a grev sphere, that is, one which absorbs
and emits particles of the same kind; (2) the movement of
particles is mutually independent, From assumption (2)

particle concentratiorn, rn, and flux intensities, I, are
(3.15) n=ny+ n. + nge I =TI 4 I +1I,

where n, is the concentration of particles that have never
collided with the sphere, n,. have collided one or more
times, and n, is the concentration emitted by the sphere,
The incident intensitiecs will be denoted by M; and the
reflected by Rj. Here 1 means the number of ineffective
collisions that occurred. Fer example, M, would be the
incident flux of particles that ecocllided twice but have not
been absorbed., Relations between incident and reflected

flux sare

(3.16) Ry4y = =(1-8)Mys My = -ARjs ny = Rye(c)
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where A is the fraction of particles returning to the
sphere after at least one collision., &) is a radially
dependent function yet to be determined, and both 8 and A

are legg than one, Clearly,

n. = ; RjQ(E)

(3.17) nyp = iii 1= 55

with Rj+1 = A{(i -8 )Rj and B = fraction of particles that

are condensed. The concentration that has collided cone or

more timesg becomes

- Rya { 2) 3(1'3)M0°(5)
(3.18) np = ;1 E—0y = ToA(To)

by using the sum for a gcometric progression, The total

flux intensity of a non-emitting sphevre is

(3.19) I = I, + I, =(Mg8)/(2~-A(1-8))

o

By asguming uniform kinetic theory 2s8 goes to gero. for

the filux intensity

Mo 8

T=A(T=7 = TV

(3.20) 1im
R0

A can be determined, ¢(&Z) can be found by noting that as

8 goes to 0, n goes to n., where n, is the concentration as
£ goes to », v the velocity, and a the sphere®'s radius. The
total flux intensity for an emitting sphere can be found by
assuming at¢ = =

(3.21) I =I,+I.+1I,=0
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(3.22) n =ng+ n,.+n, =ng

rig being a constant, The relations (3.19) to (3,22) insure
that the final form of the flux will be dependent on M,,
the incident flux,

The incident flux is assumed to be the fiux of a
black sphere, one that neither reflects nor emits., The
treatment for a2 black sphere by Smirnov is one found in
neutron transpert theory. The following zssumptions are
made: (1) the particles move randemly in an infinite me-
diumg (2) scattering off the particles that make up the
medium is isotropic; {3; the velocity magnitude (v) is
constant and makes an angle &, ¢+4d® with the position vec-
tor, £, The distribution function ¥{iu ) satisfies the
steady state Boltzman equation

(3.23) u-%g + ’; %i- = ~¥ /z,+(1/2z2_:{‘?(5 aut)dy
where u =co3® ¥Y( & u)dvsinPdo is the mean number of par-
ticles in volume element dv = 4%:2df, and & is the mean
free path of particles being absorbed, The boundary condi-
tions for (3.23) are

(3.24) ¥(eg,u) =y = conetent, ¥Y(a,u) = 0, O<u<1

for a as the sphere’s radius, The concentration and flux

intensity for a unit area are

(3.25) n= Fecadan 3=v Feewdua .
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A "diffusion approximation” is employed for
(3.26) vq = ¥, + a(g) u
(3.27) ¥q = ¥Yo-c/E - cu/E%,ng = n, - 2¢c/k
by substitution of (3.26) into (3.23). By defining

.28 = dng
(3.28) 2 nd/(zdg)laza

as the extrapolation length, the unit concentration and

flux become:

- = a - L& Ne = _ dn
(3.29) ma = 1.0~ ey ! T SETERy D

where K, is the Knudsen number defined as K, = %/a. D=v%a
is the diffusion coefficient, Thus the flux intensity on
the black sphere is

(3.30) I = Mo=(4xDrn )(14K A).

Returning to the grey sphere, Smirnov solves for A, ¢,
I¢» and ng and finds that the net flux intensity on the

grey sphere is

(3.31) I =4xDr(n_-ng)/(1+a(p)Ky)

where XA(8) = A+ 4/38 -=4/3 (which results from solving for
A). Then by using the ideal gas law

(3.32) 92 . 4uprP¥ee/ T =~ =)

dt R/M, (1 + A(8Kp

where m is the mass of the sphere, p the vapor density, R
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the ideal gas constant, M,, the molecular weight of conden-
sing species, and «~, a, and s subscripts refering to
ambient, surface, and equilibrium respectively.

The grey model presented by Smirnov has one fault., It
is important to notice that the boundary condition (3.24)
is a physical absurdity, that is, Y(a,¥) = 0 cannot be a

correct condition. This is evident since

1
j= t{vkndudu

means either the flux at the surface is zero which is im-
possible or that the velocity is infinite.

Fuchs (Smirnov (14)) was the first to suggest a better
condition, It is accepted that diffusion is the appropri-
ate transport process for all molecules sufficiently dis-
tant from the surface; the only difficulty lies in analy-
zing the transport process near the drop surface. Fuchs
overcomes this difficulty by assuming that uniform kinetics
holds for a small distance away from the immediate drop
surface, This assumption, that is the employment of uni-
form kinetics very near the drop‘'s surface, while not
entirely plausible physically, makes the flux analysis much
easier to perform. Thus the boundary condition that repla-
ces Y(a ,#) very near the drop surface equates the diffusive
to the kinetic flux,

The approach taken in the present work follows Carstens
which is the same as that of Fuchs except that temperature
is included explicitly in the formulation. A sphere of
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radius a+A encloses & svhere of radius a. A is of the or-
der of a mean free path for the diffusing molecules, Flux

is analyzed at a+A by

- do 2 _ _
(3.33) D == | pnnd m(a+d) = Flux in - Flux out,

The molecules leaving the drop surface and passing though
the shell follow the kinetic thoery and thus the flux can
be described by

(3.34) Flux out = (1/B)8(Tq) V(T )e oo (T, )4wa®

where 8 is the sticking coefficient, the fraction of mole-
cules that condense on the surface, Of course, if uniform
kinetics were employed outside of a+iA, the net flux wouild
be zero which is unsatisfactory. The net flux outside of
a+ts should be D 22 . If the flux in this region is taken
to have some kinetic qualities and is described by a kine-
tic term plus ig.%g_(sign depending on flux direction), the
net flux will be the desired value, |D ?%l. The molecules
moving toward the drop will be described by

(3.35) Flux in = 4n(TaaTy=T, ) ((1/4) 0o v(T, )43 22) (ats)?

wvhen r = a + A

The vapor jump (3.36) which is found from (3.33) shows that
the vapor density

.36) oo gy=(o_ - ==t - 550
(3.36) po=ga=(o,, "eq)/(l* a ‘2‘) » g L D(1-8/2)

in the shell is not equal to its equilibrium value at the
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drop's surface,

The Maxwell-Fuchs theory may be mede to include the
above by properly modifying Deff in (3.13). The modifi-
cation is done by equating the Maxwell-Fuchs flux to the
flux described by (3.33).

{3.37) DM—F( pw'_peq(a))u'ﬂ'a - D(Dw-'ﬂa)a”(a""A)
and by (3.36),

- i 8 g - A + 1
(3.38) Dy p =D* = D/(E 2" 1

where D¥* is the compensated diffusion coefficient. A simi-
lar procedure can be carried out for the analysis of the
energy flux (see Carstens (15)) and results in a compensated

thermal conductivity

K -1, K
9 ) K* = r3 l. = -
(3.39 AP b g = ((Y-1)/(r 1)) (2 /1) gprs)

where y= Cp/Cv (the ratio of specific heats), o the accom-
modation coefficient -- a measure of how well the gas
molecules thermally "acclimate” themselves to the surface,
I the uniform kinetic flux, and R the gas constant. The

compensated effective diffusion coefficient, D* ¢y becomes

(3.40) 1/D%,pp = 1/D*+Lb/K* = 1/Dope(1 + 2/a);
L = ("B/D + 5 _Lb/K)Dges -

With the incorporation of (3. 40), equation (3.13) can
be used to describe pure water droplet growth. The non-

volatile solute influence can be incorporated into the
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"driving” term S-1 (S-1 represents departure from equili-
brium for pure, flat water surface)., The saline drop
should have the Ydriving” term of S-S(a) where S(a) is the
equilibrium curve appropriate to the salt involved.

By substitution, the integral form of (3,13) becomes

a (a+12)da

(3.81)  t(a) = (20/neq(=)Ders) s {22H02 .
O

It is clear that, in general, the pregence of S(a) defeats
the inversion t(a) to a(t). This equation is used in the
present work in a slightly altered form, one that allows
us to describe drops containing large concentrations of

dissolved salt,
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ITII. RESULTS

A, Early Stages of Growth

The most important contribution of the present work
pertains to the early stages of water droplet growth
initiated by NaCl. Previously devised computer programs
do not account for the solution effect resulting from high
NaCl concentration., The present work includes a computer
program that does account for the solution effects by
altering S(a) and D¥.¢¢ in (3.37).

The corrections made to S(a) will be discussed first,
The Kohler equation (1.3) has been represented as a product
of a curvature term (Kelvin equation) and a salt concentra-
tion term (Raocoult’s law). The two changes made to the
curvature term are the following: (1) eB/2 is expanded to

include fourth order terms in B/a, and (2) the coefficient

2Mo o
Rsz

ally dependent. This dependence is due to the fact that

B = » normally regarded as a constant, becomes radi-

surface tension ¢ and density of liquid ¢y are functions
of NaCl concentration. Representing ¢ and P, as functions

of molality, we have

(8.2) o0, = 1.0 - m/26,666

where Q(T) is constant for constant temperature and m is

the molality. The molality is defined by

(4.3) m = mass NaCl/molecular weight of NaCl
L/3 7 (a3 - (salt radius)3)/1000g.




22

assuming a spherical NaCl solid particle surrounded by
water., Equations (4.1) and (4.2) were found by curve fit-
ting to data found in Low's work (16).

The solution term in (1.3) is Raoult's law, a law
most accurate for dilute solutions., A more general way
of expressing -;-;E!f. which more accurately displays
the nonvolatile solute effect over a wider range of salt
concentrations, is

P

(4.4) -1,’_‘_:_ = ay
where ay is the activity of water, Py, , the equilibrium
vapor pressure over a solution having no surface curvature,
and Py  _ the equilibrium vapor pressure over pure water,
likewise having no surface curvature,

A number of workers have performed vapor pressure
measurements and have tabulated water activities at various
molal concentrations of NaCl. The values found in Low (6)
are probably those of Robinson and Stokes (17). This data
agrees with that of Pepela and Dunlop (18) done in 1972,
Both sets of data agree favorably with the International
Critieal Tables (19). The following empirical expressions
represent the experimental ay Vversus m curves for values

from Low, where cy, c2, and c3 are constants,
(4-5) aw =1 - cqm 0 “m=< 1.4

(4.6) ay =1 - coml/3 - cgm"/3 1.4 <m< 6.145
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(4.7) =a, = 0,75 m > 6,145

these equations, being entirely empirical, allow one to
proceed without knowledge of van't Hoff factors and acti-
vity coefficients,

The computer program substitutes values for a, into
S(a) depending on the stage of droplet growth., We may
regard the molality ranges in (4.5) - (4.7) as three
stages of growth, The "boundaries”"™ are then well defined,
and for a given salt mass, they correspond to drop radius,
Tpoundary® by (4.3). Thus for a given salt mass, the
program compares the droplet radius, a, to rpgyndary-
Through this comparison the correct vapor pressure is
assigned to S(a).

The final alteration pertains to D¥%gfe. The equili-
brium vapor density - temperature curve over a flat pure
water surface has a slope, let us say, b, The analogue

over a pure water droplet is bg. The two are related by
(4.8) bg = bS(a)

where S(a) = —-9-(%-1) = (Kelvin equation)(solution term)

fe) 3

(o}
and p (=)= DT _+ c, po (=) being vapor density of a pure
flat surface and r(a) that of a curved one. Let us omit the

subscript, d, and write the b dependent terms of D¥*,ry as
(4.9) 1/Dger = 1/D + LbS(a)/K

(4.10) ¢ = (2£,/D + ¢ LbS(a)/K)Dgps.
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Noting that S{a)/(S-S(a)) = S/(s-S(a)) - 1, the final form
of (3.41) becomes

(4,11) t(a) = {1/¢ ceq(w)Deff))aZ (a+2)da)/(s-S(a)) -
(1/p4q(=) ) ((2,Lb/KS) (a-a,) + (bL/2K)(a%-a,?)).

Equation (#.11) is the final form used in the computer
program to return time of growth as a function of drop

radius,

B. Discussion of Data

Tables I-III give comparisons of radially dependent
effects of surface tension, solution density, and compen-
sated transport ccefficient on the growth time in equation
(3.41). Columns i-4 from left to right are the salt mass
in grams, the initial radius, in centimeters, the final
radius in centimeters and the saturation ratic. The values
in columns 5-12 have been calculated from the following

expression

T(w,y.2) - T(ma,8,a)
T(a,a,a)

(5.1) (w,y.z) = times 100

where T(a,a,a) is time in equation (3.41) for whicho, o,
and H are all radially dependent, H = 1/(°eq(”)Deff)'
The notation (w,y,2z) will always correspond one to one

with (c.pz oH). If o is not equal to o(a), p -'oz(a)

L
and H=H(a), then (w,y,z) = (k,a,a). For column twelve.
Kohler means T(w,y,2) = Tkgnler+ that is, the time cal-
culated using Kohler's equation and computed using the

computer techniques adopted for (3.41). The last column
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represents the magnitude of time necessary for growth from
AO to AF (initital to final radius),

Overall it appears that the percentage of time vari-
ation increases with decreasing salt mass, However, since
the time of growth through the high salt concentration
regions is much smaller for decreasing salt masses, the
need for application of (4.11) is less for smaller parti-
cles, In the opinion of the author, growth times for
drops with salt masses less than 10’10 grams, depending
on the accuracy required, can be obtained from Kohler
curve calculations with 50% error or less, but with little
time difference as compared to (4.11) due to short growth
duration. Above 1010 grams, (4.11) should be used since
growth times are very large even for the concentrated re-
gion,

The comparison of columns 5-12 in Tables I-III allows
one to learn the relative effects ofo ,p, and Dggs ON
growth time, Columns 5-7 indicated that H or Dgfrs is about
105 times more important in controlling growth than either
<!or'pz. This implies that thermal accommodation is the
major governing factor since only the thermal parts of &
and Doesr are radially dependent. Columns 8-10 support the
theory that H is the most dominant factor of the three. A
comparison of columns 11 and 12 suggests that the role of
the solution terms in (4.11) becomes less effective as the
radius increases, and as expected the two columns approach

the same values.
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It is hoped that Tables I-III illustrate that (4.11)
should be employed for large salt crystals, while existing
Kohler calculations suffice for small crystals,
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Iv. CONCLUSION

An equation that expresses growth time as a function
of drop radius has bsen presented. This egquation can be
derived from the Maxwell-Fuchs theory provided the net rate
diffusion - kinetic boundary condition is employed instead
of the thermal equilibrium condition normelly assumed and
that the transport coefficients are redefined.

The growth rate is dependent upon the degree of de-
parture from the equilibrium saturation ratic made by the
ambient saturation ratio., The Kohler equation, an egua-
tion normally employed to express the equilibrium satura-
tion ratic condition, has been altered to account for the
large concentration cf dissolved NaCl by making the surface
tension and the solution density radially dependent, Empi-
rical equations of water activity as a function of molality
are employed instead of Raoult®s law,

A comparison of the new altered equation for growth
time (4.11) to an existing expression (3.41) shows that for
salt crystals of mass greater than 10”10 rams, the new
equation should be used. For crystals of salt mass less
than 10°1°grams in an ambient § greater than or equal to
1.0 condition, it makes little difference which
equation is used. However, to obtain the growth time for
any NaCl particle in an atmosphere containing S less than
1.0, the result of the present work (4#.11) should be em-

ployed since such drops never experience free growth or grow



to a size for which the Nall concentration is negligible,
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APPENDICES
A. Computer Program
CHMPLEX * 1€ T,DCMPLX
IMPLICIT * 16 T, DCMPLX

CZMMZN /ZANE/ WTMG,WTMV,ALPHA,BETA,PI,GAS,PR,GAMG,
1SCALE,C#gFF1 ,CZFF2, CEPF3,CLFFL

TER = 300,
PI = 3,14159
S=1.0001
CMS = 1,D-04
CC = 3000./{4.%*PI*58.45)
ADRY=(3,*CMS/(2.165%L *PI))**(1./3.)
ASAT=(CC*CMS/6.145+ADRY*ADRY *ADRY ) #%(1,/3.)
ARAZLT=(CC*CMS /1 , L+ADRY *ADRY*ADRY ) *#%(1,/3.)
AI=ADRY
AZ=100, *ARAZLT
CALL EMBRY#(AI,AZ,CMS, TER,S,T)
WRITE(3,1)T

1 FARMAT(® °*,°*TIME=',2D14.6)

STEP
END

SUBRFUTINE EMBRYZ(AI,AZ,CMS,TER,S,T)

TIME AS A PUNCTIZSN OF RADIUS USING GAUSSIAN QUADRATURE
REAL TIME

IMPLICIT REAL * 8(A-H,@-2)

DYUBLE PRECISI@N DSQRT, DEXP

REAL * 4 X,AIMAG,ABS
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CAMPLEX * 16 RS(3),RT(3),T,TI,DCMPLX
EXTERNAL TIME

COMMOBN /TAME/ CCCMS,ADRY, ASAT,ARAZLT, COFF1,CHFF2,
1CQFF3,C@#FF4,GASTER, H, ST, CL, SURF

C@MM@N /SAME/ ND

CEZMM@N /ZANE/ WTMG,WTMV,ALPHA,BETA,PI,GAS,PR,GAMG,
1SCALE,C@FF1,COFF2,CHFF3,CHAFFY

400 FZRMAT (5D14.6)

413 FZRMAT (* TRANSPZRT CHEFF: AD=',D13.6,T52, "AK=",
1D13.6//)

409 FPRMAT (°* STICKING CZEFF.(BETA) =',D13.6,T52,
1 *ACC.CZEFF,(ALPHA)=",D13.6/ * CL=*',D13.6/)

402 FORMAT(® °,°*ADRY='D14.6,2X, "ASAT=',D14,6,2X,
1 *ARAZLT=",D14.6,2X, "CMS=",D14,6)

401 FORMAT(* °*,'Af=°,D14.6,2X, 'AF=*,D14,.6,2X, 'T=",
12D14,.6,3X, *S=*,D14.6)

408 F@RMAT (* TEMP=',D13.6,T29,°'S=*,D14.8, TS50, 'PR="',
1D13.6/ °*GAMG=',D13.6//)

405 FERMAT(®' °*,*' FINAL RADIUS MUST BE LESS THAN®,
12D25,16)

READ (1,400) WTMG,WTMV,ALPHA,BETA
READ (1,400) PI,GAS,PR,GAMG,SCALE
READ (1,400) CHFF1,C@FF2,C@FF3,CHFF4
PRM=PR

T=DCMPLX(0,.D0,0.DO)

ST=S+2,

CC=3000./(4,.*PI858,.45)

CCCMS=CC *CMS

GASTER=GAS*TER
ADRY=(3,%CMS/(2,165%4 %P1 ) )**(1,/3,)
ASAT=(CC*CMS/6,.1454ADRY*ADRY *ADRY *ADRY ) *#*(1./3.)
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ARAZLT=(CCH*CMS/1 . 4+ADRY*ADRY*ADRY ) *%#(1./3.,)
WRITE(3,402)ADRY, ASAT, ARAGLT,CMS
SURF=-,144*(TER-273.16)+75.6

AD@=,001* DSQRT (1.D0/18.02+1.D0/29.D0)
ADZ=ADS/ (20.1%%(1./3.)+12.7*%(1./3.))**2
U=(GAMG-1.)/(GAMG+1.)
CONT=SCALE*U*DSQRT ( 8. *PI *WTMG/GAS ) /ALPHA
CONV= DSQRT( 2.%*PI*WTMV/GAS)/BETA
WRITE(3,408) TER,S,PR,GAMG

CALL VPDR (B,C,TER,RHEQ)

CALL COEFPA (CNLAT, AK, AD, TER, PR,GAMMA, ADG)
WRITE (3,413) AD,AK

DUM=DSQRT( TER)

CLT=AK *CONT*DUM/PR*S

CLV=AD*C@NV/DUM

DUM=1./AD + B*CNLAT/AK*S
CL=(CLV/AD+CLT*B*CNLAT/AK ) /DUM
H=RHEQ/DUM

WRITE (3,409) BETA,ALPHA,CL

SM1=S-1,

BB=(SURF#*36,.04) /(GAS*TER)

AA=,147%CMS

gﬁ%% DCUBIC (SMi,-BB,0.DO,AA,RT(1),RT(2),RT(3),DISC,
1

CALL RTSORT (RT,3,RS)
IP(AI-ARAOLT)6,3,3
3 Ag=AI
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AF=AZ
GB TH 20
IF(AI-ASAT)14,10,10

IF(AZ-ARAOLT) 3,12,12

AF=ARAOLT

Af=AT

cg T¢ 20
IF(AI-ADRY)15,15,19
A@=ADRY
IF(AZ-ASAT)17,18,18
AF=AZ

G TO 20

AF=ASAT

Gg TF 20

A@F=AI

GF T@ 16
IF(AF-A#)100,100,21
IF(S-1)22,22,24
X=RS(1)

IF(X .LE. 0) g8 Td 27

IF(AP-X)27,23,23
WRITE(3,405)RS(1)
G@ T 100
IF(ND-2)25,27,27
X=RS(2)
IF(AF-X)27,26,26
WRITE(3,405)RS(2)

35



GZ TF 100
27 A=AF
CALL DQG32(Ag,A,TIME,TI)

TI=TI-(1/RHEQ)*( (CLT*B*CNLAT)/(S*AK)*(A-AZ)+
1(B*CNLAT;?2.*AK))*(A*A-Aﬂ*A))/ Ag

T=T+TI
WRITE(3,401)Ad,AF,T,S
IF(AZ-AF)100,100,38
38 IF(AZ-ARAOLT)40,45,45
4O AZ=ASAT

AF=AZ

G& g 20
h4s IF(AB-ASAT)55,50,50
50 AZ=ARAZLT

AF=AZ

G TZ 20
55 AZ=ASAT

AF=ARAGLT

G@ TZ 20

100 C@NTINUE
RETURN
END

SUBR@UTINE DQG32(XL,XU,FCT,Y)
D@UBLE PRECISI@N XL,XU,A,B,C
C#MPLEX * 16 Y,FCT

A=, 5DO*(XU+XL)

B=XU-XL



C=,49863193092474078DO0*B
Y=,35093050047350483D~-2%( FCT( A+C)+FCT(A-C))
C=,49280575577263417D0*B
Y=Y+,8137197365452835D-2%( FCT{ A+C ) +FCT(A-C))
C=,48238112779375322D0*B
Y=Y4.12696032654631030D-1*(FCT(A+C )+FCT(A-C))
C=.46745303796886984D0*B
Y=Y+,17136931456510717D-1*(FCT(A+C)+FCT(A-C))
C=,44816057788302606D0*B
Y=Y+,21417949011113340D-1*(FCT(A+C)+FCT(A-C))
C=,42468380686628499D0*B
Y=Y+.25499029631188088D-1%(FCT(A+C)+FCT(A-C))
C=,39724189798397120D0*B

Y=Y+ ,.29342046739267774D-1 *(FCT(A+C )+FCT(A-C))
C=,36609105937014484D0*B
Y=Y+.32911111388180923D-1*(FCT(A+C)+FCT(A-C))
C=, 3315221 3346510760DO*B
Y=Y+,.36172897054424253D~1 *)FCT(A+C)+FCT(A-C))
C=,29385787862038116D0*B
Y=Y+,39096947893535153D-1*(FCT(A+C)+FCT(A-C))
C=,25344995446611470D0*B
Y=Y+,.41655962113473378D-1%(FCT(A+C)+FCT(A-C))
C=.21067563806531767D0*B

Y=Y+ ,43826046502201906D-M FCT (A+C )+FCT(A~-C))
C=.16593430114106382D0*B
Y=Y+.45586939347881942D-1*(FCT(A+C)+FCT(A-C))
C=.,11964368112606854D0*B

37
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Y=Y+,46922199540402283D-1*(FCT(A+C)+FCT(A~C))
C=.7223598079139825D-1*B
Y=Y+,47819360039637430D-1%*(FCT(A+C)+FCT(A-C))
C=,241 538328438691 58D~-1*B
Y=B*(Y+,48270044257363900D~-1%( FCT(A+C)+FCT(A-C)))
RETURN

END

FUNCTI@SN TIME(X)

IMPLICIT REAL * 8(A-H,@-2Z)
CZMPLEX * 16 TIME,TI
DIMENSI@N GB(5)

COMMOBN /TAME/ CCCMS,ADRY,ASAT, ARAGLT,C@FF1,COFF2,
1C@FF3,CHFFP4 ,GASTER, H, ST ,CL, SURF

AA=X
IF(AA-ASAT)30,10,10

@L=CCCMS/( AA*AA*AA~-ADRY*ADRY*ADRY )

SOL1=1 ,-CHFP2*(LL) **(2,/3.)-COFF3%*(QL)**(4,/3.)
SgL2=1 ,-CHFFU4*gL

IF(AA-ASAT)30,20,15

IF(AA-ARAZLT)20,25,25

Q=S@gL1

GB T8 35

Q=SgL2

Gg TB 35

Q=CgFF1

A=6.145

TEN=SURF+1 , 6*#L

38
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RH@=1 .,+0L/26,6666
BB=(36.04*TEN)/(GASTER*RHM)
GB(1)=ST-2,-Q
GB(2)=-1.*BB*Q
GB(3)=-1.%*BB*BB*Q/2,
GB(4)=-1,*BB*BB*BB*Q/6,
GB(5)=-1.*BB*BE*BB*BB*Q/24,

G=CGB(1)+GB(2)/AA+GB(3)/(AA*AA)+GB(4)/(AA*AA*AA)+GB(5)
1/(AA®AA*AA*AA))

TIME=(AA+CL)/(G*H)
RETURN
END

SUBROGUTINE VPDR(B,C,TE,RH)

TE IS TEMP. IN DEGREES K3 RH IS VAP@R DENSITY IN GMS/CC
AND B AND C ARE LINEARIZATI@N C@NSTANTS IN “RH=B*TE+C*",
RANGE: -10 Tg 29 DEG. C

IMPLICIT REAL%*8(A-H,@-2)

DYUBLE PRECISIZN DEXP
RH=L,847D-06%*(273.16/TE)**5,7373104
RH=RH*DEXP(6718.235%(1./273,16-1./TE))

C=RH-B*TE

RETURN

END

SUBR@UTINE CZEFFA (CNLAT,AK,AD,TEK,P,GAMMA,AD®)

AIR WATER VAP@R; TEK IN DEGREES K, P IN DYNES PER SQ.
CENTIMETER

IMPLICIT REAL * 8 (A-H,@-2)
AK=,1675D-06*(TEK-273.16)+.5725D-04
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AD=1013000,*(TEK**(7./4.) ) *ADZ/P
CNLAT=737 .44~ 52%TEK

GAMMA=AK/( AD*CNLAT)

RETURN

END

SUBRGUTINE DcUBIC(#,U,V,W,R1,R2,R3,DISC,IND)
#,U,V,¥ ARE INPUT CUBIC EQUATI@N CZEFFICIENTS IN
DESCENDING @RDER @F P@WERS: R1,R2,R3 ARE GUTPUT REETS
#F EQUATI@ZN; DISC AND IND ARE DISCRIMINANT AND INDI-
CAT@ZR ZF TYPE @F RZOTS

IMPLICIT REAL * 8 (A-H,#-2)

CHMPLEX *# 16 DCMPLX,R1,R2,R3,X1,X2,X3

IF(Z .EQ. 0.) G& T 80

P=U/f#

Q=V /@

R=W/¢g

gr=1./3.

A=(3,.%Q-P*P)/3.

B=( 2, #*P*P*P-9 *P*Q+27 ,%*R) /27,

D1=B*B/lL,

D2=A*A%*A/27,

DISC=D1+D2

S=DSIGN(1.DO,B)

IF(DISC) 10,20,30

PHI =DARCES( -1 .*S*DSQRT(-D1/D2))

SR=2, #*DSQRT¢-A/3.)

X1=SR*DC@S(PHI/3.)

X2=SR*DC@S(PHI/3.+2.0944)
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37

39
40

X3=SR*DCZS(PHI/3.42.%2,0944)
IND=1

IND= 13 THREE REAL UNEQUAL R@@TS
GZ T 50

SR=DSQRT(-A/3.)

X1=-2,*S*SR

X2=S*SR

X3=X2

IND=2

IND=2: THREE REAL R@@TS, TW@Z EQUAL
GZ T 50

C=-B/2.+DSQRT(DISC)
D=-B/2.-DSQRT(DISC)

IF(C) 31,33,33
C==1,%((~C)%*gT)

Gg TH 35

C=Ce*gr

IF(D) 37.39.39

D=m-1 ,%((-D)*#*gT)

GE TZ 40

D=D#*#*gT

X1=C+D

C1=-X1/2,
C2=DSQRT(3.D0)/2.%*(C-D)
X2=DCMPLX(C1,C2)
X3=DCMPLX(C1,-C2)

IND=3

b1



c
50
80
100
C
C

100
101

L2

IND=3: @NE REAL R@Z@ET, TWZ CZNJUGATE C@ZMPLEX RZETS
R1=X1-P/3.

R2=X2-2/3.

R3=X3-F/3.

RETURN

WRITE(3,100)

FPRMAT(' CQPEFFICIENT ¢F CUBED TERM IS ZER@; SZLVE
1QUADRATIC EQUATIZN®)

IND=0

IND=0: @NE REAL REQ@T = 0, TWZ CHNJUGATE COMPLEX ROFTS
R1=0.

R2=(~-V+DSQRT(V¥*V-4 DO*U*W) ) /(2,.DO*U)
R3=(-V-DSQRT(V*V-4 DO*U*W) ) /(2,.DO*U)

RETURN

END

SUBR@UTINE RTS@RT (RT,KM,RS)

GENERAL R@@T S@RT KM=# @F REFITS,RS(1)=LARGEST ROST
IMPLICIT REAL * 8 (A-H,¢-2)

CgMPLEX * 16 RS,DCMPLX,RG,RT(3)
C#MPLEX * 8 Y

REAL * 4 X,AIMAG,ABS

DIMENSI@N RS(3).,RG(3),R(3)

C@MM@N /SAME/ ND

FZRMAT(® RS°*,6D14.6)

FZRMAT(® ', 'THERE ARE M REAL R&OTS')
ND=0

K=0



10

15

20

25

30

35

DO 3 I=1,KM
Y=RT(1)

X=AIMAG(Y)
IF((ABS(X))-(1.D-14))1.2,2
K=K+1

R(X)=RT(I)

G¥ TF 3

ND=ND+1

M=KM~-ND+1

RG(M)=RT(I)

CENTINUE

IF(K-1) 45,25,4

Dg 20 I=1,K

M=I+1

IF(M-K)10,10,25

D@ 20 J=M,K
IP{R(J)-R(I))20,15.15
SAVE=R(I)

R(I)=R(J)

R(J)=SAVE

CZNTINUE

CENTI NUE

Dg 30 I=1,K
RS(I)=DCMPLX(R(I),0.DO)
IF(K-KM)35, 50,50

K=K+1

D 40 I=K,KM

43



Lo

45
50

RS(I)=RG(I)
WRITE(3,100) (RS(MM) ,MM=1 ,KM)
Gg T¢ 50

WRITE(3,101)

REUTRN

END

Alternative to DQG32:s

SUBROUTINE DQG3(XL,XU,FCT,Y)
DOUBLE PRECISION XL,XU,A,B
COMPLEX * 16 Y,FCT

A=, S*(XU+XL)

B = XU-XL

Y=,3872983*B
Y=,2777778%(FCT(A+Y)+FCT(A_Y))
Y=B*(Y+, 44404415 *FCT(A))

RETURN

END

4h
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B. Alphabetical List of Variables and Constants in Program

SUBRCUTINE EMBRYO

A = firal input radius for Gauss-Quadrature subroutine
AA = salt term in Kochler expression

AD = transport cocfficient of water, D

ADZ = constant, input to subroutine that calculates AD and AK
ADRY = droplet radius at molality greater than 6.145
AF = dummy final radius

Al = input initiasl radius into EMBRYO

AK = thermal conductivity of air, K

ALPHA = accommodation coefficient., a

Ag = dummy initial radius

ARAZLT = droplet radius, m less than or equal to 1.4
ASAT = droplet radius, 1.# less than m less than 6,145
AZ = input final radius into EMBRYO

B = glope of equilibrium vapor density - temperature curve
BB = curvature constanrt in Kohler equation, b

BETA = sticking coefficient, 8

CC = constant for calculating radius

ccecms = (CC)(CMms)

COFPF1-4 = constants of salt polyromials SOL1,SOL2

CL =2

CLT = (2,)(S)

CLV = %4

CMS = salt mass



CNLAT = latent heat of condensation

CONT = constant for calculating C.LT

CONV = constant for calculating CLV

DUM = D ¢e

GAMG = ratio of specific heats

GAS = gas constant in cgs, R

GASTER = gas constant times temperature, RT

H = (Deff)(peq("))

ND = integer numbexr of imaginary rocts to Kohler eguation
PI = =

PR = atmospheric pressure (dynes/cm?)

RS(I) = array of roots from Kohler equation

S = supersaturation ratio

SCALE = conversion constant from ergs to calories
SM1 =S - 1

ST = S + 2, to permi: common storage of S with subroutine
TIME(X)

SURF = temperature dependent surface tension
T = total time
TER = absolute temperature

TI = time interval for growth in respective regions of
interest, ie. m = 1.4 to 6,145

U = (vy-1)/(v+1)
WTMG = molecular welight of air
WTMV = molecular weight of water

X = single precision real RS(I)
SUBROUTINE VPDR

C = constant for linear BT+C
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RHEQ = equilibrium vapor density over a flat body
(for others, see list for EMBRYO)

SUBROUTINE DQG32,DQG3

A = XU = input final radius

A0 = XL, = input initial radius

TIME FCT

function subprogram that evaluates integrand
TI = Y = time interval returned to EMBRYO

FUNCTION SUBPROGRAM TIME(X)

AA = X = radial values from DQG32 or DQG3

BB = radially dependent curvature coefficient

G =S - S(a)

GB(I) = coefficients to the equation S - S(a)

OL = molality, m

Q = dummy variable = SOL1 or SOL2

RHO =p (solution density) of the liquiad

SOL1 = salt solution term for 1.4 less than m less than 6.145
SOL2 = salt solution term for m less than or equal to 1.4
TEN = o(a)

TIME = evaluated integrand
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C. Explanation of Computer Program

Subroutine Embryo calculates the time of growth for a
salt solutien droplet, The input to Embryo is the initial
radius, AI, in centimeters, the final radius, A2, in centi-
meters, saturation ratio S, salt mass CMS, in grams, and the
absolute temperature, TER. Embryo returns complex growth
time, T, in sesconds,

Embryo proceeds by first calculating a number of relevant
constants. Then the Kohler curve coefficients (see Fletcher
(4)) are fed into subroutine D cubiec which returns the exact
roots of a cubic equation. The roots (RT) are input into
subroutine RTSORT, This subroutine will handle any number
of roots by first separating the real roots from the complex
ones, arranging reals in descending order, and outputting
reals in descending order followed by complex roots, In
Embryo, from statement preceeding number 3 to statement 20,
region analysis occurs, Here AI and AZ are tested against
the radii of drops with mclalities 6.145 and 1.4 for purposes
of determining which part of the molality-activity curve
(equations (4.5) to (4.7)) is entertaining growth, The
appropriate “floating” radii (AO,AF) are assigned for each
region,

Statements 21-17 determine if the input AZ is too large
by comparing each region®'s AF to the small real root (RS).
If the radius AF is larger than the natural terminal radius,
RS, then "final radius must be less than RS” is written and
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the program terminates for the AI, AZ, However, if AF is
less than RS, A0 and AF will input into DQG3 or DQG32 (both
Gauss-Quadrature subroutines). Either subroutine may be
used depending on accuracy or computer time efficiency
desired, These subroutines input AC, AF and return TI, the
time for growth through that region or interval bounded by
AC, AF., Both subroutines call TIME(X) which evaluates the
integrand in (&4.11).

After returning to Embryo, AC and AF are compared to
AZ, If AF is less than AZ, the next region of grcewth is
addressed by reassigning new nalues for A0 and AF, This is
done by statements 38-100. The new A0 and AF values are
returned to follow the same procedure just described, The
program for given input wvalues will terminate if one of the
following is tru=zs (1) AF is less than or equal to AO, (2)
AZ is less than or equal toc AF, or {(3) AF is greater than or
equal to RS, TIME, S5, AO, AF, BETA, ALPHA, CL, AD, AK, TER,
PR, GAMG, ADRY, ASAT, and ARAOLT will bve written,

The growth region for which Embryo is most applicable
is the region characterized by large salt molalities (AI =
ADRY, AZ = 10, times ARAOLT). It will calculate the growth
times for larger drops, but this can better be done by an
existing partial fraction-analytic integral technique that
can be inserted directly after statement 55 and made to loop
back to T = T + TI. Termination will naturally occur at the
first arithmetic IF statement after T = T + TI. The best
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way of using Embxyo would be to just call Embryo for small
drops and call Kchler from the main when size sufficiently
increases. This is suggested since some difficulty has been
encocuntered in finding the largest root for appiied S values

when two real positive roots exist.



TABLE I Comparison of growth times varying surface tension, solution density, and

compensated transport coefficient for NaCl crystalline mass of 10““ grams

ems{g) AT AP S (kso,2) _(a.k,8) (#.3,%) ‘k,k,e) (k,a,k) (a,k, k) (k,k,k) KOHLER T(sec)
10°%  ag Ag Sy -.104x1073 2001077 36,900 ,711x10% 36,000 24,900 36,900 -,415 900

10°%  Ag Ag 8y -.509x10°4 L910x107% 17,430 L3A7x107" 17,430 17,477 17,030 20,870 400S

8 8

10°% A Ag 51 -.367x107% 823x10™0 .30 280x107% 8,370 6,370 8,30 9,370 10

107 Ap Ag Sy -.128x1077 24521077 25,030 .B75x1070 25,030 25,030 25,030 -12,42 107

10 Ag AR S; -.906x107% L161x10™3 7,920 .617x10™% 7,920 7,920  7.920 11.75 1o
10°% AR Ag Sp -.128x1077 .216x1077 779 .871x1070 779 779 779 776 10°
107%  ap Ag Sy -.132x1073 L252x107 23,960 .898x107" 23,960 23.960 23,960 -13.63 107

107 Ag Ag S3 -.101x1073 ,178x10"3 7,000 .686x10™% 7,000 7,000 7,000 10,755 10"

10°% g Ag Sy -.296x1077 L497x10™7 078 20181077 078 078 078 061 1010

10°%  Ap Ag S -.132x1073 ,253x1073 23,850 ,900x10™" 23,850 23,850 23,850 -13.75 107

Ag Ag S, -.102x1073 ,180x1073 6,900 .694x10°% 6,900 6,900 6,900 10,65 10

10"%  Ag Ag Sy -.64x1077 ,108x1076 78m1072 ,439x1077,783x10" 27831072 . BX10"2 -, 064 10!t
DD Gksm s il010

A
A
A = ,067cm S3 = 1,001
Ay = 6,720cm S; = 1.0001

s



TABLE II Comparison of growth times varying surface tension, solution density, and

compensated transport coefficient for NaCl crystalline mass of 16'10 grams

cms(g) AL AF 8 __{(k,a,2) _(a,k.a) (g.z,k) (X,k,5) (k,a.k) (8.k,k) (k,k.,k) KOHIER T{sec)

10“10

10‘10

10-10
10'10
10-10
10'10
10'10
10-10
10~10
10-10
10'10

10'10

Ap Ag Sy =.96x107%
Ag Ag 8y -.49x1072
Ag Ao Sy -.bx1078
Ap Ag Sz -.12x1071
Ag Ag Sp -,90x107
AR Ag Sp =.14x107
Ap As S5 =013

Ag AR Sy =.99x107%
A Ag S5 =.32x107
Ap Ag S, =.013

As Ag Sy =.010

Ag Ag Sy -.76x1075 ,13x10°% ,13x1073

Ap = .22x10’3cm
Ag = .bBX10"3cm
AR = .67210"3em
Ag = .067cm

0183 17.46 7,72
89x1072 5,13, 3hx1072
60x10°6  .23x1571, 285107
23x1071 17,46 ,228

,016 5,82 ,61x107%
,23x1075 ,21%1072 ,94x1070

,024 17,46 ,31x1072

.018 5,83 ,68x10~2
.53x10™2 077 ,22x1075

,024 17.47 ,86x1072

,018 5.84 6951072

,52x10"7

sk 2 17650
S3 = 1,001
S, = 1.0001

2,23 17,45 1747 -15,49 .13
5.2 5.4 513 833 L6
.23x1071 .23x16°1.23x10'1.2hx10"1 10“
17,45 17,48 17,47 -19,58 .16
5,51 5,82 5.82 9,74 1.2
21x10°2 ,21x10°2 776 ,57x10"2 107
17.45 17,48 17,47 -20.03 .22
5.82 5.85 5. 64 9.73 1.3

077 077 077 .06 108
17.47  17.49 17,48 -20,07 .24
5.83 5.86 5.85 9,73 2,0

bx1073 L1bx1073,13x10°2 082 107

Zs



TABLE III Comparison of growth times varying surface tension, solution density, and

compensated transport coefficient for NaCl crystalline mass of 10"16 grams

cms(g) AL AF S _(k,s.8) _(a,k.a) (a,a,k) (k,k,8) (k,a,k) (a,k,k) (k,k,k} KOHLER T(sec)

10716 ag Ap S, -.503 915 b7 s 2 3,92 45 -,026 ,002
10718 4p ag sy -39x107 L67xt0 17e L2ox1073 7 17E L7 1R 2.0
10716 ap Ag s, -1.24 247 3.5%  1.5% 0 230 6,00 Lk =334 0005
10710 g Ag Sp -.25x10°2 43x1072 194 L17x10°2 197,190,193 -.235 21.7
10716 Ay Ag 55 -1.28 2,57 3.54 (967 2.25 6.1 bbb =33.8 0008
10716 A Ag Sy 1,22 2,26 1,07 .85 153 3,33 1,92 8,60 ,0033

Ap = ,22x107%em S = 1,100

A = .43x10"5em  S3 = 1,010

Ag = .67x10%Jem  Sq = 1,001

Ag = .67x10"3cm

€S
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