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ABSTRACT 

A phenomenologica1 theory is presented which describes 

the growth or evaporation of cloud droplets containing 

dissolved NaCl. The main interest is in the early stages 

of growth. The Maxwell-Fuchs equation is employed with 

refinements to account for the high sa1t concentration in 

small droplets. A computer program is presented that 

ca1culates the growth time as a :function of radius for 

cloud droplets nucleated with NaCl. 

The growth times obtainable from the Maxwe11-Fuchs 

equation differ significantly from the growth times ca1cu

lated using the refined Maxwell-Fuche equation for ambient 

relative humidities less than or equal to 10<>,b. Growth 

times for droplets nucleated by NaCl crystals of maas greater 

than or equal to 10-10grama should be calculated by the 

refined equation presented here for virtually a11 ambient 

Yapor den■i ti••• 
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I. INTRODUCTION 

The present work provides a method for cal.culating 

the growth rate of water drops nucl.eated by sodium chlo

ride crystal.a. Drop1et growth is considered as a steady 

state diffusion process with heat transfer by means of 

conduction. Near the drop's surface a diffusion-kinetic* 

condition is adopted instead of either the thermal. equi

librium condition employed in the Maxwe1l.-Fuchs theory 

or the •annihilation• condition of Smirnov (2). This 

dif:ruaion-kinetic condition is incorporated into the 

Maxwell.-Fuchs equation for drop growth by "compensating• 

the traneport coefficients.** 

This modified Maxwel.1-Fuchs equation is integrated so 

that time of growth can be calculated as a function of 

drop radius explicitly and impl.ioitl.y through the equi

librium vapor pressure and coapensated coefficients. 

The initial mathematical. treatment of the equilibrium 

vapor pressure of a water drop nucleated by NaCl was by 

Kohler and Wright (4). The equation which they developed 

expresses the ratio of the equil.ibriu■ vapor presaure of a 

saline drop to that of a fl.at pure water surface in terms of 

the Kel.vin-Thompaon equation and Raoult's law. Since the 

•terminology adopted by Smirnov (t) to describe a 
boundary condition near a drop's surface for which a 
diffusion expression is ••uated to a uniform kinetic 
expression 

**see Caratena ()) 



development of the Kohler equation, a number of workers 

(Cinkotoi (5), Low (6), and Orr, Hurd, and Corbet(?)) 
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have recognized that, in general, large inaccuracies result 

from using Raoult's law during the early periods of droplet 

growth when high concentrations of dissolved salt are pre

sent. To account for the high salt concentration, the 

present writer adopts empirical water activity - salt 

molality equations to replace Raou1t's law. Surface ten

sion and solution density, both found in the Kelvin

Thompson expression, a.re rendered concentration dependent. 

The growth times are calculated by an IBM J60 com

puter. The computer program may be used in fog and cloud 

studies where sodium chloride is often a nucleant and the 

excess vapor density is generally small, barely accomo

dating growth. The program may also be used for studying 

droplet growth in cloud chambers and other laboratory 

experiments. 



II. REVIEW OF LITERATURE 

A. The Equi1ibrium Vapor Pressure of a Drop 

The drop equi1ibrium vapor pressure re1ates to drop 

growth by providing a reference state from which the growth 

rate can be determined once the degree of departure from 

equilibrium made by the ambient vapor pressure is known. 

Since sa1ine drops are being examined, the equi1ibrium 

vapor pressure equation must unite two opposing effects, 

the so1ution effect which decreases equi1ibrium vapor 

pressure and the curvature e1'f'ect which increases it. 

Kohler and Wright (4) were the first to introduce an 

equation that takes these two opposing effects into ac

count. Koh1er•s equation and literature containing vari

ations of it wi11 be reviewed aince mathematica1 repre

sentation of the equi1ibriwa vapor pressure for a sa1ine 

drop is re1evant to the present work. 

The Kohler equation expr••••s the ratio of' the equi

librium vapor pressure of a sal.ine drop to that 01' a pure, 

f'1at water surface by relating Raou1t's 1aw (the salt 

solution effect) and the Ke1v1n-Thoapson equation (the 

curvature effect). Raou1t's law, which specifies the 

equilibrium vapor pressure re~uction occurring when a 

nonvolati1e sa1t such as NaC1 is disso1ved in a volati1e 

solvent is 

(1.1) 
p 

x,. 
p 

1•• 
• X 
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where xis the mo1e fraction of solvent, Px the equi-
, 00 

librium vapor pressure over the so1ution, and P1,~ the 

equilibrium vapor pressure over pure solvent. This ex

pression is valid for a flat surface such as a salt 

solution and general.1y becoaes increasingly 1ess accurate 

as the salt concentration increases. 

The curvature e:f:fect, which increases the equil.ibrium 

vapor pressure is repn:sen~ed by the Kelvin-Thompson 

equation 

where a is the drop radius, Px,a the equil.ib.rium vapor 

presaure o~ the solvent over a solution which has a 

curved surface. Px,• the equilibrium vapor pressure of the 

solvent over a solution which ha■ a f'la't surface, M0 the 

molecul.ar weight of the sol.vent (water), o the surface ten

sion o~ the solution, R the icleal. gas constant, T the abso

lute te•perature and Pt the ■elution density. 

The combination of (1.1) and (1.2). 

gives the ratio or ~h• equi11brium vapor pressure over a 

curved ea1t so1ution. Px,a• to that of a f1at. pure water 

surface. An approximation given by P1etcher (8) and used 

frequently by meteorologists and cloud physicists alike ia 
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where S(a) is the saturation ratio.Bis defined in (1.2), 

Mis the mo1ecu1ar weight of the solute, i is the Van•t 

Hoff factor. and mis the mo1a1ity. By inspection of (t.4) 

the so1ution effect dominates S(a) for sma11 drops, but 

as the drop grows. curvature becomes the predominate 

inf1uence. 

The Kohler equation can be regarded as the c1assica1 

equation. but due to inadequacies at high salt concentra

tions other expressions have been devised. Orr, Hurd, and 

Corbett (7) concern themselves with the various stages of 

drop1et growth initiated by a number of hygroscopic 

nuc1ei. one of which is NaCl. They examine the initial 

period of growth during which water vapor is adsorbed 

upon the NaCl crysta11ine surface and the surface in turn 

disso1ves. It is assumed that there are three phases, 

aqueous solution, water vapor. and crystalline NaCl, and 

that these three phases are in equi1ibrium. They employ 

an equation that describes the adsorption equation of a gas 

onto a free surface (one void of cracks and pores) and re-

1ate this equation to drop radius assuming a spherical 

sa1t crysta1. For this adsorption equation, the heat of 

adsorption less the heat of condensation of gas is assumed 

to be approximate1y equai to the surface energy of the 

so1id NaC1. This assumption was made because heat of ad

sorption values were unavai1able. They find very little 

change in radius during the adsorption period. 

The transition period, where the solute particle 
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complete1y dissolves, is treated as we11 as the subse

quent free growth. The liquid film surrounding the NaC1 

particle is assumed to be a homogeneous saturated solution 

at equilibrium. The vapor pressure of this film is con

tro1led by the disso1ved salt concentration and by the 

curvature effect. The 1atter is described by the Kelvin

Thompson equation, but unl.ike the Kohler equation the 

sa1t influence is not represented by Raou1t's 1aw. Instead 

is used to obtain the activity of the so1ute, a, in so1ution 

in terms of the solid soiute radius, r, the surface free 

energy of solute, cr 8 , the mo1ecu1ar weight of so1ute, M, 

the density of solute, 0 8 , the idea1 gas constant, R, and 

the abeo1ute temperature, T. A reference state is assumed 

auoh that a1 is the activity of a concentrated solution 

for which r 1 is extremely large. The so1ution vapor 

pressure due to solute particle size was found from a p1ot 

of vapor pressure versus so1ute activity. This va1ue 

represents the solute vapor pressure lowering effect and 

was eubs~ituted into (1.2) for Px,~• Then (1.2) could 

be solved for the equilibrium vapor pressure of a solu-

tion drop, Px,a• The results c1ear1y indicated that the 

critica1 hWllidity, that which al.lows transition. decreases 

for decreasing solid so1ute particle size. The critica1 

humidity asymptotica1ly approaches 7S~ as the solid parti

cle size increases. Orr et al.. mention that 75~ agrees 



favorably with Twomey'e experimental value of 75.S~. 

Since values for the vapor pressure above 6.o molar 

solutions were unknown to Orr and workers, they devised 
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an expression from the Gibbs-Duhem relation for extending 

the curve 

(t.6) (10) 

where Pt ' is the partial pressure of the sol vent when the 

NaCl activity is Pt the partial pressure of solvent 

when NaCl activity isas, andxs, the mole fraction of NaCl. 

The Kelvin-Thompson equation with attention paid to 

the solution effect describes the saline drop's growth 

during the period of free ~ftht that is, growth after 

transition stimulated by a supersaturated water vapor 

condition. This article contains good qualitative dis

cussions on a11 phases of drop growth. It is also good 

in that it contain• comparisons of experimental and cal

culated results, both conducted by Orr et al. 

Cinkotoi•s pub1ication (5) is relevant to the Kohler 

description of solution drops. Thia work is concerned 

with the behavior of NaCl partic1es in the human respira

tory tract. The Kohler equation is adopted to relate the 

water vapor pressure and salt concentration to drop diame

ter. Empirical equations, polynomia1s of percentage NaCl 

in solution by weight. are used to represent relative 

huaidity, solution density, and sur~ace tension and vapor 

pressure depression due to the dissolved sa1t. The last 



quantity replaces Raoult's law in (t.J). There seems to 

be no physical explanations offered for the pGlynomial 

representations of the physical parameters. 

A conflict exists between Cinkotoi's work and the 
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Orr et al.. work with reapect to the relative humidity for 

which an NaCl particle begins to take up water vapor. 

Cinkotoi does not consider adsorption on free surfaces as 

do Orr et al.. and thus finds that as the NaCl particle 

size goes to zero, the relative humidity approaches infi

nity asymptotically. As the NaCl particle size increases, 

the relative humidity approaches 77-78% asymptotical.ly. 

Orr et al. considered adsorption and the effect that the 

NaCl particle size has on the vapor pressure through the 

nonvolatile salt effect. They found that the relative 

humidity necessary to dissolve an NaCl particle decreases 

with decreasing particle size, although appreciable growth 

may not take place until the ambient vapor pressure in

creases to comply with that va1ue primarily dictated by 

the Kelvin-Thomp■on equation. 

Low (6). like Cinkotoi, devises a replacement for 

Raoult's law in (1.)). However, his equation is rigor

ously derived from modern solution chemistry. The Gibba

Duhem equation allows Low to relate the NaCl molality 

and activity coefficient to the water activity which in 

turn replaces Raoult's law. Low•s work contains a rather 

extensive table of water activities and calculated Van't 

Hoff factors for salt molalities ranging from 0.1 to 6.o. 
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This is done f'or various electrol.ytes one of' which is NaCl.. 

Keith and Arrons (11) derive an equation which de

termines growth time as a f'unction of drop radius. This 

equation is derived without employing (1.3), al.though 

saline drops are being studied. Growth takes place by 

vapor condensation, the molecules being transferred to 

the surface by diffusion. Thernaa1 energy is removed by 

conduction. The ideal. gas l.aw and the Cl.apeyron equation 

are empl.oyed to relate the pressure, vapor density, and 

change in pressure as a resu1t of' thermal. f'l.uctuations. 

The vapor pressure depression due to the dissolved salt 

is depicted by an empirical equation. Another empirical. 

equation is assumed for saturated sal.t sol.utions common 

to the embryonic stages of' growth. Keith and Arrons 

recognize that equil.ibrium radii ca1culated by their 

equations are. in general, sl.ightl.y ■mal.l.er than thoae 

predicted by (1.)). They attribute the difference to the 

fact that (1.3) emp1oys Raouit•• l.aw, but overl.ook the con

tribution that curvature make■ to (1.J). The authors find 

favorable agreement with the~r own experiaental resul.ts 

discussed :fully in the same work. 

Orr, Hurd, and Corbett haTe by far the most deta11ed 

description of' the physical processes through which the 

ealt particle adsorbs water, develops into a solution drop, 

and grows to equilibrium size. Their analysis through the 

transition period contain• rather start1ing reau1ts. They 

~ind that the NaCl crystal size determines the equi1ibriwn 
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vapor pressure because of the nonvolatile salt effect. 

Thus dissolution of small NaCl crystals can occur for much 

smaller relative humidities than generally suggested by 

the other works reviewed. After transition, the drop will 

not grow unless the ambient vapor pressure exceeds the 

elevated equilibrium vapor pressure resulting from the 

drop•s high degree of curvature expressed by the Kelvin

Thompson equation. 

B. Temporal Considerations of Droplet Growth 

An equation will be derived which expresses growth 

time as a function of drop radius. It will be derived from 

the Maxwell-Fuchs theory of droplet growth. A new boun

dary condition will be introduced that takes into account 

surface kinetics; as Carstens (12) points out, the Maxwell

Fuchs equation can be recovered by "compensating" the 

transport coefficients. Unless specifically stated other

wise, section B follows the Carstens report cited above. 

The Maxwell-Fuchs theory assumes that droplet growth 

takes place by means of a steady state diffusion process 

and that thermal equilibrium is maintained between vapor 

and liquid at the drop's surface. We will be studying 

isolated drops that are stationary and not ventilated. 

The steady state vapor field around a pure water drop 

may be represented by Fick's second law 

(J.1) 
2 

V p • 0 
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assuming a constant di:f'f'usion coe:t.ficient. Conduction 

will be the only mode of heat transport and thus the temper

ature likewise obeys 

(J.2) 
2 

VT= O. 

The solutions to (J.1) and (J.2) area 

P (r) • a/r(pa - "•) + "• , and 

(J.4) T(r) • a/r(Ta - T.) + T .. , 

where a is the instantaneous radius (a is less than or equal 

tor which is less than or equal. to infinity) and the sub

scripts • and a re:t'er to ambient and surface values. 

A steady atate power ba1ance relates the vapor density

temperature gradient■, 

K VT I r-a + LDVP lr•a • o 

where Kand Lare the thenal. conductivity and latent heat 

o:r condensation reapectiveiy. Equations (J.J). ().4). 

and (J.5) yield the paychroaetrlc equation 

A linear representation of the temperature can be made 

for the equilibrium vapor den■ity provided the temperature 

range is eu:t:ticiently narrow. Equation ().7) represent• 

the empirica1 curve with band c conatanta. 

C3.?) P ( a)• ( bT + c) I a 
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By making use of mass conservation. the rate of growth is 

(J.8) 

where Pi is the liquid density and Dis the diffusion coef-

ficient of water vapor. Using (3.3). (J.6). and (J.7). 

equation (3.8) becomes 

(J.9) 

(J.10) 

{J.11) 

(J.12) 

da2 
( P,t/2)- • -D(P a - P_) 

dt 

Pa - P. ... rT - r(p 8 -c)/b 

P,. + bT_+c 
Pac: 

l+r/b t+b/r 

Pa - P,. :a (1 - S)Peq<-)/(t+b/r). 

Equation (J.8) can fina1ly be expressed as 

.<!! 2 = 2 ( s-1 ) P eg C .,. ) / P, • 2 ( s-1 ) Pe Q { 00 ) / P & 
dt t/D + Lb/K 1/Deff 

where 1/Deff • 1/D + Lb/K. Def'f'• the ef'fective d.i:ff'usion 

coef'ficient, is the sum of two resistances to growth, 

Equation (3.1)) i• the differentia1 fora of the growth 

equation. It can easi1y be written to give t(a) or a(t). 

We wish to propose that although (3.13) includes the funda

aente.1 processes that ~alee p1ace in drop growth, the theory 

is too naive and not entirely correct. C1ear1y equilibrium 

cannot exist at the surface since nonequi1ibrium la necessary 

for growth or evaporation. A better boundary condition, one 
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that does not imp1y equilibrium, is a net rate condition in 

which the :flux would be ane.1ysed at or near the drop's sur

face. 

Smirnov (13) deri ves a growth rate equation :from an 

analysis of net rates. Smirnov•s work ie presented be

cause it represe nts a mor e rigorous treatment o'f: the growth 

prob1em 'than the conventiona1 theory used by meteorol.oglsts 

and provides a basis for co•parison to the latter. The 

:followir..g assumptions app.ly to Sairnov•s model.a (1) we 

are dealing with a grey s phere, that is, one which absorbs 

and eml ts partic1es of 'the aame kind.a (2.) the movement of 

partic1es is mutual.1y independent. FrOJII\ assumption (2) 

particle concentration, n , and f'l.ux intensities, I, are 

where n 0 is the concentration of partic1es that have never 

collided with the sphere, nr have co1lided one or mere 

times, and n
9 

la the concentration emitted by the sphere. 

The lnciden~ in~enaiti.cs wi11 be denoted by Mi and the 

refiected by R1 • Here i mean• the number of ine:tfective 

co1lision■ that occurred, Fer examp1e. M2 wou1d 'be the 

incident flux of particles tba:t collided twice but have not 

been absorbed. Relations between incident and reflected 

f'1Wt are 
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where A is the fraction of partic1es returning to the 

sphere after at least one co11ision. ~( ~) is a radia1ly 

dependent function yet to be determined, and both a and A 

are 1esa than one. Clear1y, 

{3.17) 
co 

r n. = 
i=1 1 

00 

t Rj· ~( ~) 
j=t 

with Rj+t = A(i ~e )Rj and S= fraction of partic1es that 

are condensed. The conc:entration that has co1lided one or 

more times becomes 

(3.18) 

by usLng the sum for a geometric progression. The total 

f1ux intensity of a non-emitting sphere is 

().19) 

00 -since Io c::: Mo• I = r r M 
i=l i + i~Ri• and 111+1 ZII A( i -e >•1• 

By ae ~ming uni f'crm kinetic theory ass goes to zero. for 

the :flux intensity 

().20) l.i llo 8 • • 2 B a...!1 1-I( 1- B T a v ""° • 
A can be determined. ~(t} can be found by noting that as 

a goes too. n goes to ?'lo:,, where n_ is the concentration as 

t goes to•• v the vel.ocity. and a the sphere•s radius. The 

tota1 flux intensity for an emitting sphere can be found by 

assuming at t,. • 
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n 8 being a. constant. 'l'he re1ations (J.19) to (3.22) insure 

that the fina.1 form of t he f1ux will be dependent on M0 , 

the incident flux. 

The incident f1ux is assumed to be the flux of a 

b1ack sphere,, one that neither reflects nor emits. The 

treatment f'or a black sphere by Smirnov is one :found in 

neutron transport theory. The following assumptions are 

madea (1) the particles move random1y in an infinite me

dium,, ( 2) scattering o:ff the partic1es that make up the 

medium is isotropic; (J) the velocity magnitude (v) is 

constant and makes an angle &, 0+de with the position vec

tor, ~ . The dietributio::1 function 1!'( ~ ,ti ) satisfies the 

steady s"t;ate Bo1tzman equation 

(J.23) 

where µ =cos 8, 'f ( t. µ)dvsirt3 d a la the mean nu.mber of' par

ticles in volume e1ement dv • 4•~2dt, and tis the mean 

~ree pa~h of partic1es being absorbed. The boundary condi

tions ~or (3.23) are 

(3.24) ,,( r., JJ) • 'J.' :::i conatant, Y (a,µ) =- o, 0.::_µ~1 
co 

for a as the sphere's radius. !he concentration and f1ux 

intensity ~or a unit area are 

(J.25) 



A •di~tusion approximation• is emp1oyed for 

by •ubsti-tution o:f (J.26) into (3.23). By defining 

as the extrapo1ation 1ength, the unit concentration and 

:f1ux become, 

16 

( -.t 29) l\,a • n (1 - a ) j • --v.tan. • -D dnd 
J• --u • t (1+ lkn) s JtZ(t+ AKJ n-

where Kn is the Knudsen nwnber defined as Kn = t/a. D• v9/a 

is the diffusion coefficient. Thus the f1ux intensity on 

the b1ack sphere is 

Returning to the grey sphere, Smirnov sol.vea for A, • , 

Ie• and lle and finds that the net flux intensity on the 

grey sphere is 

where A( S) • A + 4/J B -4/3 ( which resul ta from sol. ving for 

A). Then by using the ideal gas l.aw 

().)2) 

where mis the aaes of the sphere, P the vapor density, R 
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the ideal gas constant, My the mo1ecular weight of conden

sing species, and m, a, ands subscripts refering to 

ambient, eurlace, and equilibrium respectively. 

The grey mode1 presented by Smirnov has one fau1t. It 

is important to notice that the boundary condition (J.24) 

is a physica1 absurdity, that is, 'l'(a,l-1) = O cannot be a 

correct condition. This is evident since 

1 
j = V 1 11' (a, ll) µ d 1..1 

-1 

means either the flux at the surface is zero which is lm

possib1e or that the ve1ocity ls infinite. 

Fuchs (Smi.rnov (14)) was the first to suggest a better 

condition. It ls accepted that diffusion is the appropri

ate transport process for a11 mo1ecu1es sufficient1y dis

tant from the surface, the onl.y difficulty 1ies in analy

zing the transport process near the drop surface. Fuchs 

overcomes this dlf~icu1ty by aaaumlng that uniform kinetics 

holds for a sma11 distance away from the immediate drop 

surface. Thia aaewnption, that i• the eaployaen~ of uni

fora kinetics Tery near the 4rop•• surface, whi1• not 

entire1y p1auaib1e phyaica11y, makes the f1ux anal.ysie much 

easier to perform. Thus the boundary condition that repla

ces '1'( a ,1&) very near the drop aurface equates the dif:tueive 

to the kinetic f1ux. 

The approach taken in the present work ~ol1ows Carstens 

which is the same as that of Fuchs except that temperature 

la included explicitly in the formulation. A sphere of 



radius a+ll enc1oses a ~phere of radius a. ~ is of the or

der of a mean free pa.th for the dif~using mo1ecules. Flux 

is analyzed at a·+A by 

(3.33) D dp I w4(a+ll) 2 = F1ux in - Fl.we out. 
dr r=a+ 

The molecules leaving the drop surface and passing though 

the shell follow the kine~ic thoery and thus the :flux can 

be described by 

where a is the sticking coe:f':ficient, the :fraction of mole

cules that condense on the surface. 0~ course, i:f uniform 

kinetics were employed outside o:f a+6, the net flux wo•ld 

be zero which is unsatisfactory. The net flux outside of 

a+A should be D !e... If the flux in this region is taken a r • 
to have some kinetic qualities and is described by a kine-

tic term plus ~ ~ ( sign depending on :flux direction) , the 
2 w 

net flux will be the desired value, ID :~1. The molecules 

moving toward the drop will. be described by 

{J.J5) Fl.we in= 4w(Ta,Ta-Teq)((1/4)pav(Ta)a2+; i~)(a~) 2 

when r = a + fl 

The vapor jWllp (3.J6) which is found from (J.)J) shows that 

the vapor density 

in the shel.l. is not equal to its equilibrium va1ue at the 
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drop's sur:f'ace. 
1rhe Maxwe11-Fuchs theory may be made to include the 

above by properly modifying Deff in (J.tJ). The modifi

cation is done by equa~ing the Maxwe11-Fuchs flux to the 

f1ux described by (3.33). 

and by ( J . )6) , 

D = D* = D/(1-~+ 1) 
M-F a a+A 

where D* is the compensa ted dif:fusion coefficient. A simi-

1ar procedure can be carried out for the analysis 0£ the 

energy f1ux (see Carstens <1,)) and results in a compensated 

therma1 conductivity 

epecific heats), o the accom

modation coe:tficient -- a measure o'f' how wel.l. the gas 

molecu1ea thermal.1y •acclimate• themselYea ~o the aurfaee, 

I the unif'orm kinetic flux, an4 R the gas constant. The 

compensated effective dif:f"usion coef'ficient, D*eff becomes 

().40) 1/D*e:r:r • 1/D*+Lb/X* = t/D8 :r:r(1 + l/a)s 

t. = ( ta/0 + £ a Lb/K)Deff • 

With the incorporation of (J. 40), equation ().t)) can 

be used to describe pure water droplet growth. The non

vo1ati1• solute influence can be incorporated into the 
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"driving• term s-1 (S-1 represents departure from equi1i

brium for pure, flat water surface). The sa1ine drop 

shoul.d have the "driving" term of S-S(a) where S(a) is the 

equi1ibrium curve appropriate to the sa1t invo1ved. 

By substitution, t he integral. form of (J.tJ) becomes 

( J.41) { ) ( _ / ( ) ) a ( a+ t) da 
t a = nv neq • De:f':f lo s-s(a} • 

It is clear that, in gen~ral.. the presence o:f S(a) defeats 

the inversion t(a) to a(t). This equation is used in the 

present work in a sl.ight1y a1tered :form, one that al.1ows 

us to describe drops contailling large concentrations of 

disso1ved sa1t. 
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III. RESULTS 

A. Ear1y Stages of Growth 

The most important contribution of the present work 

pertains to the ear1y stages o:f water drop1et growth 

initiated by NaC1. Previous1y devised computer programs 

do not account for the solution e:f:fect resu1 ting :from high 

NaCl concentration. The present work includes a computer 

program that does account for the solution effects by 

altering S(a) and D*e:ff in (J.J7). 

The corrections made to S(a) wi11 be discussed first. 

The Kohler equation (1.J) has ·been represented as a product 

of a curvature term (Kelvin equation) and a sa1t concentra

tion term (Raou1t's law). The two changes made to the 

curvature term are the following, (1) eB/a is expanded to 

include :fourth order terms in B/a, and (2) the coe:f:ficient 

B = 2Mo a • normally regarded as a constant, becomes radi-
RTp 1 

ally dependent. This dependence is due to the fact that 

surface tension o and density of liquid Pt are functions 

o:f NaCl concentration. Representing O and P1 as functions 

o~ molality. we have 

(4. 1) a= Q(T) - 0.60m 

{4.2) Pt= 1.0 - m/26.666 

where Q{T) is constant for constant temperature and mis 

the mo1a1ity. The mo1a1ity is defined by 

(4.J) m = mass NaCl/molecular weight of NaCl 
4/J lf { a3 - ( salt radius) J) /LOOQg. 
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assuming a spherica1 NaC1 so1id partic1e surrounded by 

water. Equations (4.1) and (4.2) were found by curve fit

ting to data found in Low's work (16). 

The so1ution term in (1.J) is Raou1t's 1aw, a 1aw 

most accurate for di1ute so1utions. A more genera1 way 
p 

of expressing P~:: , wt\ictl more accurate1y disp1ays 

the nonvo1ati1e so1ute effect over a wider range of sa1t 

concentrations, is 

(4.4) 

where aw is the activity of water, Px. GO the equi1ibrium 

vapor pressure over a so1ution having no surface curvature, 

and P1, • the equi1ibrium vapor pressure over pure water, 

1ikewise having no surface curvature. 

A number of workers have performed vapor pressure 

measurements and have tabu1ated water activities at various 

mo1al concentrations of NaCl. The values found in Low (6) 

are probably those of Robinson and Stokes (17). This data 

agrees with that of Pepe1a and Dunl.op (18) done in 1972. 

Both sets of data agree favorably with the International 

Critiaal. Tables (19). The fo11owing empirica1 expressions 

represent the experimental aw versus m curves for values 

from Low, where c1 , c2, and c3 are constants. 

1 • 4 < ID < 6 • 145 
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(4.7) 8w = 0.75 m > 6.145 

these equations, being entirely empirica1, allow one to 

proceed without know1edge of van't Hoff factors and acti

vity coefficients. 

The computer program substitutes va1ues for aw into 

S(a) depending on the stage of drop1et growth. We may 

regard the molality ranges in (4.5) - (4.7) as three 

stages of growth. The "boundaries" are then we11 defined, 

and for a given sa1t mass, they correspond to drop radius, 

Xooundary• by (4.J}. Thus for a given sa1t mass, the 

program compares the droplet radius, a, to rboundary• 

Through this comparison the correct vapor pressure is 

assigned to S(a). 

The fina1 alteration pertains to D*eff• The equili

brium vapor density - temperature curve over a flat pure 

water surface has a slope, let us say, b. The ana1ogue 

over a pure water droplet is bd• The two are related by 

where S(a) • e<•> • (Kelvin equation)(solution term) 
Po (oo) 

and p
0

( •) • b T ~ + c, Po ( 00 } being vapor density of a pure 

flat surface and P(a) that of a curved one. Let us omit the 

subscript, d, and write the b dependent ten. of D*eff as 

(4.9) 1/Deff = 1/D + LbS(a)/K 
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Noting that S(a)/(S-S(a)) c S/(S-S(a)) - 1, the fina1 form 

of (J.41) becomes 

Equation (4.11) is the :fina1 form used in the computer 

program to return time o f growth as a function of drop 

radius. 

B. Discussion of Data 

Tab1es I-III give comparisons of radia11y dependent 

effects of surface tension, eo1ution density, and compen

sated transport coeffici ent on the growth time in equation 

(3.41). Co1umns 1-4 from 1ef't to right are the sa1t mass 

in grams, the initial. radiua, in centimeters, the fina1 

radiua in centimeters and the saturation ratio. The va1ues 

in co1umns S-12 have been ca1cu.1ated from the fo11owing 

expression 

(5.t) (w,y,z) = T(w,y,s) - T(a,a,a) times 100 
T·(a,a,a) 

where T(a,a,a) is time in equation ().41) for which a • pt• 

and Hare a11 radia11y dependent. H • 1/(?8 q(.)D8 :rfl• 

The notation (w.y,z) wi1l a1ways correspond one to one 

with (a.p
1

,H). If ois not equa1 too(a), p
1

-i,,.(a} 

and H•H(a), then (w,y,z) = (k,a,a). For co1umn •••1v~. 

Kohler means T(w,y,z) a TKoh1er• that ia, the time ca1-

cu1ated using Kohler•s equation and coaputed using the 

computer techniques adopted for (J.41). The 1aet co1umn 
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represents the magnitude of time necessary for growth from 

AO to AF (initita1 to fina1 radius). 

Overa11 it appears that the percentage of time vari

ation increases with decreasing salt mass. However, since 

the time of growth through the high salt concentration 

regions is much sma11er for decreasing sa1t masses, the 

need for application of (4.11) is less for smaller parti

c1es. In the opinion of the author, growth times for 

drops with sa1t masses less than 10-10 grams, depending 

on the accuracy required, can be obtained from Kohler 

curve ca1culations with 5°" error or 1ess. but with 1ittle 

time difference as compared to (4.11) due to short growth 

duration. Above 10-10 grams, (4.11) should be used since 

growth times are vecy 1arge even for the concentrated re

gion. 

The comparison of co1umne 5-12 in Table■ I-III allows 

one to learn the relative effects of a , p 1 and Deff on 

growth time. Columns 5-? indicated that Hor Deff is about 

105 times more important in contro1ling growth than -~~•r 

a or P • 
.t 

This implies that ~heraal acco111J11odation is the 

major governing factor since only the therma.1 parts oft 

and Deff are radially dependent. Columns 8-10 support the 

theory that His the most dominant factor of the three. A 

comparison of columns 11 and 12 suggests that the role of 

the solution terms in (4.11) becomes less effective as the 

radius increases, and as expected the two columns approach 

the same va1uee. 
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It is hoped that Tables I-III illustrate that (4.11) 

should be employed for large salt crystals, while existing 

Kohler cal.cu1at~on• suffice for s■a11 crystals. 
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IV. CONCLUSION 

An equation that expresses growth time as a :function 

of drop radius has been presented. This equation can be 

derived f'rom the MaxweJ.1-Fuchs theory provided the net rate 

diffusion - kinetic boundary condition is emp1oyed instead 

of the thermal equilibrium condition norma11y assumed and 

that the transport coe:f:ficiente are redefined. 

The growth rate is dependent upon the degree of de

parture from the equilibrium saturation ratio made by the 

ambient saturation ratio4 The Kohler equation, an equa

tion normally employed to express the equi1ibriwn satura

tion ratio condition, has been al -ter.ed to account for the 

large concentration of disao1ved NaCl by malting the surface 

tension and the soiution density radially dependent. Eapi

rical equa-ti ons of water aoti Yi ty as a :function of m.olali ty 

are employed instead of Raouit•a law. 

A comparison of the new altered equation ,or growth 

time (4.11) to an existing expreaaion ().41) shows that for 

sa1t cryeta1s of mass greater than 10-10graas. the new 

equation should be used. For ceyatal.• of sal.t aa•• 1ees 

than 10-t0graas in an ambient S greater than or equal "to 

1.0 condition, it makes little di~f'erence whi.cb 

equation is used. However. to obtain the growth tiae ~or 

any NaCl partic1e in an atmosphere containing S less than 

t.o. the resu1t o~ the present work (4.11) should be••

ployed since such drops never experience free growth or grow 
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to a size for which the NaCl. concentration is negligible. 
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APPENDICES 

A. Computer Program 

CJD{PLBX * 16 T,DCMPLX 

IMPLICIT* 16 T, DCMPLX 

ciMMjdN /ZANE/ WTMG,WTMV,ALPHA,BETA,PI,GAS,PR,GAIVG, 
1SCALE,C~F1,C¢FF2,C¢PF).C-FF4 

TER = JOO. 

PI • J.14159 

s-1.0001 

CMS• 1.D-04 

CC• J000./(4.*PI*58.4S) 

ADRY-=(). *CNS/( 2. t6.5*4. *PI))**( 1 ./). ) 

ASAT•(CC*CMS/6.t45+ADRY*.ADRY*ADRY)**(1./).) 

ARA,elLT•(CC-CMS/t.4+ADRY*ADRY*ADRY)**(t./J.) 

AI=-ADRY 

AZ•lOO.*ARA.-LT 

CALL EIIBRY,d(AI,AZ,CMS,'l'ER,S,T) 

WRITE(), 1 )T 

1 PJdRMAT(' '••TIME'=•, 2D14. 6) 

ST/IP 

END 

SUBR,ffflTINE EMBRY¢(AI,AZ,CJIS,TER,S,T) 

32 

C TIME AS A PUNCTI~N OF RADIUS USING GAUSSIAN QUADRATURE 

C REAL TIME 

IMPLICIT REAL* 8(A-H,¢-z) 

D,dtJBLE PRECISijlN DSQRT,DEXP 

REAL * 4 X,AIMAG,ABS 



c,MPLEX * 16 RS{J),RT(J),T,TI,DCMPLX 

EXTERNAL TIME 

c,S~N /TAME./ CC CMS ,ADRY ,ASAT ,ARA,9'LT, c.,(SFF1 ,C/6FF2, 
1Cj1FFJ,C1FF4,GASTER,H,ST,CL,SURF 

Cy>'MM,0N /SAME/ ND 

c,MN'i,N /ZANE/ WTMG,WTMV,ALPHA,BETA,PI,GAS,PR,GAMG, 
tSCALE,C~FF1,C~FF2,C~FFJ,C~FF4 

400 F~RMAT (5D14.6) 

413 F~RMAT (• TRANSP~RT c,EFFa AD=•,01J.6,T52,'AK=•, 
1D1J. 6//) 

409 Fj$RMAT ( • STICKING CdEFF. (BETA) =• ,D1J.6,T52, 
t'ACC.Cg.EFF.{ALPHA)=',DtJ.6/' CL=',DtJ.6/) 

402 FJ6RM.AT{ • ', 'ADRY='Dt4.6,2X, 9 ASAT=· ,D14.6,2X, 
1'ARA.fdLT=•,Dt4.6,2X,'CMS=•,Dt4.6) 

401 Fj{RMAT(' ', •AJ!=• ,D14.6,2X, 'AF=' ,D14.6,2X, 'T=', 
12D14. 6, JX, 'S=' , D14. 6) 

408 FftRMAT ( • TEMP=',D1J.6,T29,'S=',Dt4.8, T50,'PRa', 
1D1J.6/ •GAMG=',DtJ.6//) 

405 F~MAT(' •,• FINAL RADIUS MUST BE LESS THAN', 
12025. 16) 

READ {t,400) WTMG,WTMV,ALPHA,BETA 

RE.AD (t,400) PI,GAS,PR,GA.MG,SCALE 

READ (1,400) c,tSFF1, C{IFF2, C9/FFJ, ctilFF4 

PRM=PR 

T•DCMPLX(O.DO,O.DO) 

ST=S+2. 

CC•J000./(4.*PI8S8.45) 

CCCMS=CC *CMS 

GASTER-=GAS*TER 

ADRY•(J.*CMS/(2.165*4.*PI))**(t./J.) 

ASAT•(CC*CMS/6.t45+ADRY*ADRY*ADRY*ADRY)**(t./J.) 

JJ 



ARA,LT=(CC-CMS/t.4+ADRY*ADRY*ADRY)**(1./J.) 

WRITE(J.402)ADRY,ASAT,A~LT,CMS 

SURF•-.t44*(TER-27J.16)+75.6 

ADi=.001* DSQRT (1.no/18.02+1.00/29.00) 

AD0•AD'/ (20.1**(1./J.)+12.7**(1./J.))**2 

U=(GAMG-t.)/(GAMG+l.) 

C.tfNT=SCALE*U*DSQRT( 8. *PI*WTMG/GAS)/ALPHA 

C~NV= DSQRT( 2.*PI*WTMV/GAS)/BETA 

WRITE(J.408) TER.S,PR,GAMG 

CALL VPDR (B,C.TER,RHEQ) 

CALL C'1'EFPA(CNLAT.AK.AD.TER,PR.GAMM.A,ADO) 

WRITE (J,413) AD,A.K 

DUM•DSQRT(TER) 

CLT•AK*C~N'l'*DUM/PR*S 

CLV=AD*C/dNV/DUM 

DUM=1./AD + B*CNLAT/AK*S 

CL•(CLV/AD+CLT*B*CNLAT/AK)/DUM 

H•RHEQ/DUM 

WRITE (J,409) BETA,ALPHA,CL 

SMt•S-1. 

BB•(SURP*J6.04)/(GASil-TER) 

AA•. t 47*CMS 

CALL DCUBIC (SMt.-BB,O.DO,AA,RT(1),RT(2).RT(J).DISC, 
!IND) 

CALL RTS~RT (RT,J,RS) 

IP(AI-ARMLT)6,J,J 

J ~=AI 



AF=AZ 

G~ T,C 20 

6 IF(AI-ASAT)14,10,10 

10 IF(AZ-AILUSLT) 3,12,12 

12 AF=ARMLT 

AJ1=AI 

Gt/ Tf/ 20 

14 IF(AI-ADRY)15,15,19 

15 Ajt=ADRY 

16 IF(AZ-ASAT)l?,18,18 

17 AF=AZ 

GS, T/J 20 

18 AF•ASAT 

Gfl T/6 20 

19 .A.f/=AI 

Gfl T, 16 

20 IF(AF-A;}t00,100,21 

21 IF(S-1)22,22,24 

22 X-=RS(t) 

IF(X .LE. 0) Gi1 T0 27 

IF(AP-X)27,2J,2J 

2J WRITE(J,405)RS(t) 

G/6 TJ' 100 

24 IF(ND-2)25,27,27 

25 X•RS(2) 

IF(AF-X)27,26,26 

26 WRITE(J,405)RS(2) 

JS 



Gjlf Tjt1 100 

27 A=AF 

CALL DQG32(AJt1,A,TINIE,TI) 

TI =TI - { 1 /RHEQ) * ( ( CLT*B *CNLA T) / ( S *AK)* (A-~)+ 
t(B*CNLAT/(2.*AK))*(A*A-.Alf*A)) 

T=T+TI 

WRITE(J,40t)Ai,AF,T,S 

IF(AZ-AF)100,100,J8 

J8 IF(AZ-ARJ,,dLT)40,45,45 

40 M=ASAT 

AF=AZ 

G* T¢ 20 

45 IF(.,\J5-ASAT)55,S0,50 

50 A-=~LT 

55 

100 

AF=AZ 

G~ Tf' 20 

AJ$=ASAT 

AF=ARAJ6.I,T 

G~ TfiJ 20 

Cfl'NTINUE 

RETURN 

END 

SUBRJIUTINE DQGJ2(XL,XU,FCT,Y) 

Dfa\JBLE PRECISijffi XL,XU,A,B,C 

CJl/MPLEX * t6 Y,FCT 

A=.SDO*(XU+XL) 

B•XU-XL 

36 



C=.49863t9J092474078DO*B 

Y=.3509305004735048JD-2*(FCT(A+C)+FCT(A-C)) 

C=.492805755?726J417D0*B 

Y=Y+.81J71973654528J5D-2*(FCT(A+c)+FCT(A-C)) 

C=.482J8t12779375J22DO*B 

Y=Y+.t26960J26546Jt0JOD-1*(FCT(A+C)+FCT{A-C)) 

C=.46745JOJ?96886984DO*B 

Y=Y+.17tJ69Jt4565t0717D-1*(FCT(A+c)+FCT(A-C)) 

C=.448t605?788J02606DO*B 

Y=Y+.2141794901111JJ40D-1*{FCT(A+C)+FCT(A-C)) 

C=.42468J80686628499D0*B 

Y=Y+.2S4990296Jtt880880-t*(FCT(A+C)+FCT(A-C)) 

C•.J9724t89798J97120D0*B 

YsY+.29J4204673926?774D-t*(FCT(A+C)+FCT(A-C)) 

C•.J66091059J7014484DO*B 

Y•Y+.J291111tJ88t8092JD-t*(FCT(A+C)+FCT(A-C)) 

c-.,,t522t,346St0760DO*B 

Y•Y+.J6t728970544242SJD-1*)FCT(A+C)+FCT(A-C)) 

C•.29J8S7878620J8tt6DO*B 

Y•Y+.J909694?89J5J515JD-1*(FCT(A+C)+FCT(A-C)) 

C•.25J449954466tt470DO*B 

Y•Y+.4t65596211347JJ78D-t*(FCT(A+C)+FCT(A-C)) 

C•.2106?56J8065Jt?67DO*B 

Y•Y+.4J826046502201906D-!(FCT(A+c)+FCT(A-C)) 

C=.t65934J0114t06J82DO*B 

Y=Y+.45586939J4?88t942D-1*(FCT(A+c)+FCT(A-C)) 

C=.1t964J68tt2606854DO*B 

37 



Y=Y+.4692219954040228JD-1*(FCT(A+C)+FCT(A-C)) 

C=.72235980791J9825D-t*B 

Y=Y+.47819)600J96J74JOD-1*(FCT(A+C)+FCT(A-C)) 

C=.241538J284J869158D-1*B 

Y=B*(Y+.48270044257J6)900D-t*(FCT(A+C)+FCT(A-C))) 

RETURN 

END 

FUNCTI,fJN TIME(X) 

IMPLICIT REAL* 8(A-H,Jif-Z) 

CJllMPLEX * 16 TIME,TI 

DIMENSI}6N GB(5) 

C,eflO\fSN /TA.MF./ CCCMS,ADRY,ASAT,~LT,C,RJFF1,Cj!JFF2, 
1C-FFJ,C~FP4,GASTER,H,ST,CL,SURF 

AA•X 

IF(AA-ASAT))0,10,10 

10 fcll,-CCCMS/(AA*AA*AA-ADRY*ADRY*ADRY) 

S~Lt•t.-C,PP2*(~L)**(2./J.)-CpFFJ*("L)**(4./J.) 

8,fll,2•1.-C/4PF4*9/L 

IF(AA-ASAT})0,20,15 

15 IF(il-ARA"1,T)20,25,25 

20 Q•S11:Lt 

GJS T~ JS 
25 Q•Srtl,2 

G- T,d JS 
JO Q-Cfff'Fl 

flL•6.145 

35 TEN•SURF+t.6*jll, 

J8 



J9 

RH¢.-t.+OL/26.6666 

BB=(36.04*TEN)/(GASTER*RH¢) 

GB(t)=ST-2.-Q 

GB(2)=-1.*BB*Q 

GB(J)=-1.*BB*BB*Q/2. 

GB(4)=-t.*BB*BB*BB*Q/6. 

GB(5)=-t.*BB*BB*BB*BB*Q/24. 

G=GB(t)+GB(2)/AA+GB(J)/(AA*AA)+GB(4)/(AA*AA*AA)+GB(5) 
1/(AA*AA*AA*AA)) 

TIME=(AA+cL)/(G*H) 

RETURN 

END 

SUBR,eUTINE VPDR(B,C,TE,RH) 

C TE IS TEMP. IN DEGREES Ki RH IS VAP~R DENSITY IN GMS/CC 
C AND B AND C ARE LINEARIZATI/JN CJl'NSTANTS IN "RH=B*TE+C". 
C RANGEa -10 T, 29 DEG. C 

IMPLICIT REAL*8(A-H,J-Z) 

D~UBLE PRECISI~N DEXP 

RH=4.847D-06*(27J.t6/TE)**5.7J7J104 

RH=RH*DEXP(67t8.2J5*(1./27J.16-t./TE)) 

C=RH-B*TE 

RETURN 

END 

SUBR¢}TINE CtEFFA (CNLAT,AK,AD,TEK,P,GAMMA,AD~) 

C AIR WATER VAPfmi TEK IN DEGREES K, PIN DYNES PER SQ. 
C CENTIMETER 

IMPLICIT REAL* 8 (A-H,,-Z) 

AK=.1675D-06*(TEK-27J.16)+.5725D-04 



AD=101JOOO.*(TEK**(7./4.))*AD%/P 

CNL.AT=737.44-.52*TEK 

GAMMA.=AK/(AD*CNLAT) 

RETURN 

END 

SUBRJruTINE DCUBIC(,,U,V,W,Rt,R2.R3.DISC,IND) 

40 

C ¢,u,v,w ARE INPUT CUBIC EQUATI¢N C~EFFICIENTS IN 
C DESCENDING -RDER ~F P/dWERS1 R1,R2.R3 ARE .¢l.JTPUT Rl1/IJTS 
C jlF EQUATI.f6Ns DISC AND IND ARE DISCRIMINANT AND INDI-
C CATf6R /6F TYPE /6F RJ5¢Ts 

IMPLICIT REAL* 8 (A-H,~-Z) 

c.e!MPLEX * 16 DCMPLX,Rt.R2,RJ,x1.x2,x3 

IF(i .EQ. O.) Gi Ti 80 

P=U/j$ 

Q•V/-

R•W/; 

Jtr•t ./3. 
A•().*Q-P*P)/3. 

B•(2.*P*P*P-9.*PitQ+27.*R)/27. 

Dt•B*B/4. 

D2•A*A*A/2?. 

DISC•Dt+D2 

S•DSIGN(t .DO,B) 

IF(DISC) 10.20.30 

10 PHI•DARCiS(-t.*S*DSQRT(-D1/D2)) 

SR•2.~DSQH,-A/).) 

Xt•SR*DCfl's(PHI/3.) 

X2•SR*DC~(PHI/J.+2.0944) 



XJ=SR*DC0S(PHI/J.+2.*2.0944) 

IND=t 

C I ND= 1 1 THREE REAL UNEQUAL RfljlTS 

Gfl Tfl 50 

20 SR=DSQRT(-A/J.) 

Xt=-2.*S*SR 

X2=S*SR 

XJ•X2 

IND•2 

C IND=21 THREE REAL Ri4Jl}TS, TWfl EQUAL 

GfJ Tf4 50 

JO C•-B/2.+DSQRT(DISC) 

D=-B/2.-DSQRT(DISC) 

IF(C) 31 ,JJ,JJ 

31 C=-1.*((-C)**JilT) 

G, TJI 35 

33 C-C**IIT 

)5 IF(D) J7,J9,J9 

J? D•-t.*((-D)**J?IT) 

GJJf Tf4 40 

39 D•D**J6T 

40 Xt-C+D 

Ct•-Xt/2. 

C2•DSQRT(J.D0)/2.*(C-D) 

X2•DCMPLX(Ct,C2) 

XJmOCMPLX(C1,-C2) 

IND•J 

41 



C I ND=J a ,0NE REAL RJ5¢T, TW¢ C,0NJUGATE C/dMPLEX R¢gfrs 

50 Rt=Xt-P/3. 

R2=X2-P/J. 

RJ=XJ-P/J. 

RETURN 

80 WRITE(J,100) 

100 FSfRMAT(' C~FFICIENT iF CUBED TERM IS ZER¢; siLVE 
!QUADRATIC EQUITI~N') 

IND=0 

42 

C I ND=0 a ,0NE REAL R~(/r = 0, TWJ6 c.t5NJUGATE c.dMPLEX RPltrs 
Rt=0. 

R2=(-V+DSQRT(V*V-4.D0*U*W))/(2.DO*U) 

RJ=(-V-DSQRT(V*V-4.D0*U*W))/(2.D0*U) 

RETURN 

END 

SUBRjtUTINE RTS,RT (RT,KM,RS) 

C GENERAL R,~ S¢RT KM=# /dF RiiTS,RS(1)=LARGEST RdiT 
IMPLICIT REAL* 8 (A-H,~-Z) 

C~LEX * t6 RS,DCMPLX,RG,RT(J) 

Cf6MPLEX * 8 Y 

REAL * 4 X,AIMAG,ABS 

DIMENSI~N RS(3),RG(J),R(3) 

C~N /SAME/ ND 

100 F¢RMAT(' RS',6D14.6) 

101 Ffl$RMAT{' ', 'THERE ARE Nlf REAL RC1(11'S') 

ND=0 

K=0 



DO J 1=1.KM 

Y=RT(t) 

X=AIMAG(Y) 

IF{(ABS(X))-(t.D-14))1.2~2 

1 K=K+1 

R(K)=RT(I) 

G, T/4 3 

2 ND•ND+t 

M•KM-ND+1 

RG(M)=RT(I) 

3 C jtNTI NUE 

IF(K-1) 45,25,4 

4 Dfl 20 I•t ,K 

MzI+t 

IF(M-K)t0,10,25 

10 n, 20 J•M,K 

IP(R(J)-R(I))20,15,15 

15 SAVE•R(I) 

R(I )=R(J) 

R(J)-=SAVE 

20 CjlNTINUE 

25 CJ6N'l'I NOE 

DJ6 30 I::st ,K 

30 RS(I)•OCMPLX(R(I),o.oo) 

IF(K-KM)35,50,SO 

35 K=K+1 

Ojf 40 I-WC.KM 



40 RS(I)=RG(I) 

WRITE(3,100)(RS(MM),MM=1,KM) 

G/i T/t 50 

45 WRITE(J,101) 

50 REUTRN 

END 

A1ternative to DQG32• 

SUBROUTINE DQGJ{XL,XU,FCT,Y) 

DOUBLE PRECISION XL,XU,A,B 

COMPLEX* t6 Y,FCT 

A•.5*(XU+XL) 

B = XU-XL 

Y=.J87298J*B 

Y•.2777778*(FCT(A+Y)+FCT(A__Y)) 

Y•B*(Y+.44~4444*FCT(A)) 

RETURN 

END 

44 
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a. A1phabetical List of Variab1es and Constants in Program 

SUBROUTINE EMBRYO 

A= :ri~.al input radius for Gauss-Quadrature subroutine 

AA= sa1t term in Kohler expression 

AD • transport OO{;·:f:ficient of water, D 

AD¢ ::s constant, input to subroutine that ca1cu1ates AD and AK 

ADRY = drop1et radius at mol.a1ity greater than 6.145 

AF c dummy final radius 

AI a input initial radius into EMBRYO 

AK• thermal. conductivity of air, K 

ALPHA• accommodation coefficient, a 

Ai• dummy initia1 radius 

ARA.ftl,T • dropl.et radius, m l.eas than or equa1 to 1.4 

ASAT = drop1et radius, 1.1-1- l.eae than rn l.ess than 6.14.S 

AZ• input 1'inal radius into EMBRYO 

B • el.ope of equi1ibrium vapor density - temperature curve 

BB• curvature constant in Kohl.er equation, b 

BBTA = atJ.cking coefficient• B 

CC= constant for cal.cul.ating rad~us 

CCCMS s (CC)(CMS) 

COPl't-4 • constants of sal.t polynomia1s S0Lt,SOL2 

CL • .t. 

CLT • ( 1 a ) ( S ) 

CLV = 16 

CMS• sa1t mass 



CNLAT = latent heat of condensation 

CONT - constant for calculating CLT 

CONY= constant for calculating CLV 

DUM = Deff 

GAMG = ratio of specific heats 

GAS= gas constant in cgs, R 

GASTER= gas constant times temperature, RT 

H = (Deff)(Peq(m}) 
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ND• integer number of imaginary roots to Kohler equation 

PI = .,., 

PR - atmospheric pressure (dynes/cm2 ) 

RS(I) = array of roots from Koh1er equation 

S • supersaturation ratio 

SCALE c conversion constant from ergs to calories 

SMt • S - 1 

ST• S + 2, to perm.it common storage of S with subroutine 
TIME(X) 

SURF= temperature dependent surface tension 

T • tota1 time 

TER • absolute temperature 

TI= ~ime interval. for growth in respective regions of 
interest, ie. m = 1.4 to 6.145 

U = (Y-1)/(Y+t) 

WTMz = mo1ecular weight of air 

WTMV = mo1ecu1ar weight of water 

X • sing1e precision real RS(I) 

SUBROUTINE VPDR 

C • constant for linear BT+C 



RHEQ = equilibrium vapor density over a f1at body 

(for others, see 1ist for EMBRYO) 

SUBROUTINE DQGJ2,DQGJ 

A= XU= input final. radius 

AO= XL= input initia1 radius 

TIME= FCT = function subprogram that eva1uates integrand 

TI= Y - time interval returned to EMBRYO 

FUNCTION SUBPROGRAM TIMECX) 
AA= X = radial values from DQGJ2 or DQG3 

BB= radial1y dependent curvature coefficient 

G = S - S(a) 

GB(I) • coefficients to the equation S - S(a) 

OL = mo1a1.ity, m 

Q = dummy variable= SOL1 or SOL2 

RHO sp (so1ution density) of the liquid 

4? 

SOL1 = sa1t solution term for t.4 1ess than m 1ess than 6.145 

SOL2 = sal.t so1ution term form 1ess than or equal to t.4 

TEN :a a( a) 

TIME= eva1uated integrand 
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c. Exp1anation o::f Computer Program 

Subroutine Embryo calcu1ates the time of growth for a 

sal.t soiuticn droplet. The input to Embryo is the initia1 

radius, AI, in centimeters, the fina1 radius, A2, in centi

meters, saturation ratio S, sal.t mass CMS, in grams, and the 

abso1ute temperature, TER. Embryo returns comp1ex growth 

time, T, in seconds. 

Embryo proceeds by first ca1eu1ating a number of re1evant 

constants. Then the Kohler curve coefficients (see Fletcher 

(4)) are fed into subroutine D cubic which returns the exact 

roots of a cubic equation. The roots (RT) are input into 

subroutine RTSORT. This subroutine will. handle any number 

o~ roots by first separating the rea1 roots ~rom the c01Dplex 

ones. arranging reals in descending order, and outputting 

reals in descending order followed by complex roots. In 

Embryo, from statement preceeding number 3 to statement 20, 

region analysis occurs. Here AI and AZ are teated agalnat 

the radii of drops with molal.ities 6.145 and 1.4 for purposes 

of determining which part of the mo1al.ity-activity curve 

(equations (4.5) to (4.7)) 1■ entertaining growth. The 

appropriate •f1oating• radii (AO.AF) are assigned for each 

region. 

Statements 21-17 determine if the input AZ is too 1arge 

by comparing each region's AF to the sma11 rea1 root (RS). 

If' the radius AF is 1arger than the natural tendna.1 ~diu■• 

RS, then •final radius must be :Lesa than RS• is written and 
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the program terminates for the AI, AZ. However. if AF is 

less than RS, AO and AF will. input into DQGJ or DQGJ2 (both 

Gauss-Quadrature subroutines). Either subroutine may be 

used depending on accuracy or computer time efficiency 

desired. These subroutines input AO, AF and return TI, the 

time for growth through that region or interval bounded by 

A.O, AF. Both subroutines call TIME(X) which eval.uates the 

integrand in (4.11). 

After returninrr to Embryo, AO and AF are compared to 

AZ. I:f AF is less than AZ, the next region of growth is 

addressed by reassigning new na1ues for AO and AF. This is 

done by statements 38-100. The new AO and A.F val.ues are 

returned to :follow the same procedure just described. The 

program for given input values will terminate if one o:f the 

foll.owing is true, (t) AF is less than or equal. to AO, (2) 

A.Z is less than or equal. to AP. or {J) AF is greater than or 

equal to RS. TIME, S, AO, AF, BETA, ALPHA, CL, AD, AK, TER, 

PR, GAMG, ADRY, ASAT, and ARAOLT wi11 be written. 

The growth region for which Embryo is most app1icab1e 

is the region characterized by l.arge sa1t mo1a1ities (AI• 

ADRY, AZ= 10. times ARAOLT). It wi11 calcu1ate the growth 

times for larger drops, but this can better be done by an 

existing partial :fraction-analytic integra1 technique that 

can be inserted direct1y after statement 55 and made to loop 

back to T = T + TI. Termination wi11 natura11y occur at the 

first arithmetic IF statement after T = T + TI. The best 
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way of using Embryo wou1d be to just ca.l.1 Embryo for sma11 

drops and ca1l. Kohler :from the main when size suf'f'icient1y 

increases. This is suggested since some dif'ficu.1ty bas been 

encountered in :findinc:; the l.argest root for app1.ied S values 

when two real. positive roots exis1;. 



TABLE I Comparison of growth times varying surface tension, solution density, and 

compensated transport coefficient for NaCl crystalline mass of 10-4 grams 

cms(g) AI !f_ _§_ (k,atllL (a,k,a)_ {~,a,k) (k,k,aJ i,k,.a,kJ {a,k,k) {k,k,k} KOHLER T(sec} 

10-4 

10-4 

10·4 

10·4 

10·4 

10·4 

10·4 

10·4 

10·4 

10·4 

10·4 

10·4 

AD As s1 -.104x10-3 .2oox10-3 36,900 .?1tx10-4 36. 900 :,6. 900 36,900 -.415 900 

As AR s1 -.509x10-4 ,91ox1a-4 17. 430 . J47x1 o-t: 17.430 17,4)-;; 17.430 20,870 4000 

~ 6 -8 6 -8 ~ . ... ( ~ 
,., 

AR Ao Si -.3 ?x!O . 2JxtO •• 1 70 ''?~Ox1 0 ._, 8.J?O 8 1?"' 8,370 9.370 10° \_. . _) . -· ... .. . .. . • .,, ' J 

Ao As s2 -.128x10·3 .245x10-J 25,0JO .8?5x10-J 25,CJO 25,030 25.030 -12,42 103 

As AR S2 -.906x10·4 .161x10-J 6 -4 7,920, 1?x10 7,920 7,920 ?.920 11.75 104 

AR Ao S2 -.128x10·7 .216x10-1 ,779 ,871x10·8 ,719 ,?79 .779 ,776 109 

A0 As s3 -.1)2xto-3 .252x10-J 2J,960 .898Y10-4 2J.960 23.960 23,960 ... 13.63 103 

As AR S3 -.101x10-J .1?8x10·3 1.000 ,686x10·4 7,000 7.000 7.000 10.755 104 

AR Ao s3 -,296x10·7 ,497xio-7 . 01a . 2out1 o·7 ,078 .078 .078 .,061 1010 

A0 Ag S4 -.132x10·3 ,253x10-J 23,850 ,9oox10·4 2J.850 23,850 23,850 ·13,75 103 

As AR s4 -.102x10·3 .1aox10-J 6,900 ,694xio-4 6,900 6,900 6,900 10.65 104 

AR Ao S4 -,644x10·7 .108x10-6 .78)c!.o-2 ,4J9xto-7. ?8Jx10·2,?8JX10-2 ,'mx10·2 -.064 1011 

Ao= ,022cm 
As • ,04)cm 
AR• ,067cm 
Ao= 6,720cm 

\J\ 
~ 



TABLE II Comparison of growth times varying surface tension, solution density, and 

compensated transport coefficient for NaCl crystalline mass of 10-10 grams 

cms(g) AI AF...§_ !lsal1iL (11k1§} { i1 ~1kl .lk1k1aL Lk' a a kl ( a I k I k) 1k1k.tki KOHLER T{-sec} 

10•10 6 -2 An As s1 - • 9 x1 o - .0183 17,46 7,72 2 2~ 
~ • . .J 17 . . 45 1?.47 -15.49 .1J 

1 o-10 As AR S1 -.49x10·2 • 89x10-2 5,13 . 34x1 n-2 5.12 5.1 1~ 5.13 8.J3 .6 

10·10 AR Ao S1 -.41x10·6 .69x10·6 2 ~-1 28 ... 6 • 3x1 ,J , Xi 0 .2Jx10-1 ,23x1 0-t.23x10·1,24x10-l 104 

10-10 Ao As s2 -.12x10·1 .2Jx10-1 1?.46 .228 17.45 17,48 17,4? -19,58 . 16 

10·10 As AR S2 -.90x10 -2 . 016 S.82 .61x10·2 5. 81 5.82 5.82 9.74 1.2 

10•10 4 -5 AR Ao S2 -.1 xtO ,2Jx10·5 .21x10-2 .94x10-6 .21x10-2 .21x10·2 ,776 ,57xto""2 105 

10•10 An As S3 -.01J ,024 17.46 • 31X10•2 17.45 17.48 17.47 -20.03 .22 

10•10 As AR S3 -,99x10 -2 , 018 5,83 .68x10-2 5,82 s.as 5.84 9.?J 1.3 

10•10 AR Ao S3 -,32x10-5 .5Jx10·5 ,077 .22x10·5 .077 .077 .077 .06 106 

10-10 Ao,¼ S4 -,013 .024 17 ,47 ,86x10-2 1?.47 17.49 1?.48 -20.07 .24 

10·10 As AR S4 -,010 .018 5.84 ,69x10·2 s.a, 5,86 5,85 9.7) 2.0 
10·10 AR Ao S4 -.?6x10·5 .1Jx10•4 .1)x1o·J .52xto-5 .14x1o·J .14x10-J.1Jx1o·J ,082 107 

Ao• .22x10·3cm St• 1.100 
As a ,4Jxto·J

3
cm S2 = 1.010 V\ 

AR• ,6?x10· cm S3 = 1,001 N 

Ao• .o6?cm S4 :z 1. 0001 



TABLE III Comparison of growth times varying surface tension, solution density; and 

compensated transport coefficient for NaCl crystalline mass of 10-16 grams 

cms(g} Al M. ..§.. ,k1i11n} {a1k1~J (a.a.k) (kJ,k.a) fr~...Jtl {a.k.kl 1kJk,k.} KOHLE~ T(sec) 

t c·16 Ar; As s1 -.908 1.79 3.54 7.51 2,61.i, _5.31 1}. 16 -?'' 26 ... '1. Af';vf"\ 1, 
• V ', .· 'Y 

1. 0-16 As AR s1 -.503 .915 L~. 77 .)46 5.24 3.92 !l 1}~ . . .) -.026 ,002 

10·16 -1 .67x1o·J 1.74 ,2?x1o·J 1.74 1.74 1. ?l~ 1. 7t: "l /'• AR Ao S1 -.J9x10 - t.., V 

10·16 1D As S2 -1.24 2,47 J,54 1,54 2.Jo 6,01 4,4 -31 4 .... ,0005 

10-16 Ag AR S2 -1.05 1,9:3 ,5J .731 .51 2,44 1.25 7,7? .003 

10·16 AR Ao S2 -.25x10·2 ,4Jxio-2 ,194 ,17xto-2 ,197 .190 ,193 -.235 21.? 

10-16 Ao Ag SJ -1.28 2.57 3,54 .967 2,25 6.11 4.44 -33.8 .0008 

10·16 As AR S3 -1.22 2.24 1,07 ,851 .153 3,JJ 1.92 8,60 .0033 

\J\ 
\.A) 
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