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Discontinuous Galerkin VSIE Method for Electromagnetic Scattering
from Composite Metallic and Dielectric Structures

Yu-Yu Zhu1, Qiang-Ming Cai2, *, Runren Zhang3, Xin Cao2,
Yan-Wen Zhao1, Bin Gao1, and Jun Fan4

Abstract—In this paper, an efficient volume surface integral equation (VSIE) method with
nonconformal discretization is developed for the analysis of electromagnetic scattering from composite
metallic and dielectric (CMD) structures. This VSIE scheme utilizes curved tetrahedral (triangular)
elements for volume (surface) modeling and the associated CRWG (CSWG) basis functions for volume
current (surface) current modeling. Further, a discontinuous Galerkin (DG) volume integral equation
(VIE) method and a DG surface integral equation (SIE) approach are adopted for dielectric and
metallic parts, respectively, which allow both conformal and nonconformal volume/surface discretization
improving meshing flexibility considerably. Numerical results are provided to demonstrate the accuracy,
efficiency, and flexibility of our scheme.

1. INTRODUCTION

Numerical modeling of electromagnetic (EM) scattering from composite metallic and dielectric (CMD)
structures has applications in many areas, e.g., conformal antennas and radar cross section prediction [1].
One of the competitive methods to model CMD structures is volume surface integral equation (VSIE),
a derivative of the method of moments (MoM). In particular, the VSIE approach is more preferred for
the objects containing highly inhomogeneous dielectric medias and multiple thin dielectrics with corners
and edges, because of the efficiency and accuracy [2].

In earlier studies, VSIE is commonly discretized by RWG [3] and SWG [4] basis functions defined
on conformal planar elements. Two problems, however, restrict the VSIE application. On the one
hand, large-scale objects will generate a lot of unknowns and therefore lead into high memory and
computational time. On the other hand, the planar elements will lose curvature information and
introduce additional geometrical modeling error. Moreover, as divergence-conformal bases, RWG
and SWG require to be defined on a pair of conformal and adjacent elements and demand high-
quality conformal mesh grids to guarantee accuracy. This conformal meshing, however, is nontrivial
and sometimes impossible, especially for the CMD objects containing multiscale, high-definition, or
inhomogeneous dielectric materials [5].

To alleviate the above problems, integral equation methods, e.g., SIE [6–9], VIE [10–16, 19],
VSIE [17, 18], with nonconformal discretization have been extensively studied. In [6] and [7], by
introducing half RWG basis functions, the SIE allows nonconformal discretization in the cutting
contours. However, half RWG basis functions cannot ensure the continuity of surface current across the
cutting contours; therefore, an additional internal penalty term [7, 9] depending on the line integral over
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interactions of nonmatching meshes is introduced to enforce this continuity. To improve the capability
of modeling complex electrically large objects, the conventional D-formulation VIE (DVIE) [10], E-
formulation VIE (EVIE) [11], and VSIE with nonconformal discretization [12, 13] have been developed
for dielectric objects and composite objects. In those methods, the local basis functions, e.g., the
SWG/RWG basis function [10, 12], the piecewise constant basis [11, 19], have been adopted for expansion
and testing. However, the dyadic Green’s function in VIE [11] and VSIE [14] can raise hyper-singularity,
which needs to be addressed carefully.

In recent years, the J-formulation VIE (JVIE) in terms of equivalent polarization currents J has
been proposed for the scattering simulation of anisotropic materials [15], bi-anisotropic materials [16],
multilayered materials [17], and highly inhomogeneous materials [18], where the accuracy, flexibility, and
efficiency of the JVIE were well demonstrated. It is then preferred over the DVIE and EVIE [15, 19, 20]
due to its robustness.

Given the superiority of JVIE and a wider application range in VSIE, to extend this JVIE to VSIE
is of great importance for the CMD structures’ EM property analysis. Although the SIE and JVIE
are respectively introduced in [8, 9] and [18] to support nonconformal discretization, its combination
version, i.e., coupling the SIE with J-formulation JVIE, has not been used to construct any form of
VSIE with nonconformal discretization yet. To the best of our knowledge, this is the first time that the
coupling is applied into the VSIE to simulate CMD structures.

In this paper, we present a novel discontinuous Galerkin (DG) VSIE method (denoted DG-VSIE
here), which applies nonconformal meshes conveniently to a complex CMD target through the DG
scheme. The reason comes from the nonconformal IE based Galerkin testing process discretized
by various types basis functions and supporting various shapes of elements, which is similar to the
differential equation with DG method. In fact, the DG methods were first applied to the solution of the
differential equation (DE) method, e.g., the finite element method (FEM) [21, 22]. Then, it was extended
to the integral equation (IE) to support nonconformal meshes, e.g., IEDG [6] and DGVIE [10]. In this
DG-VSIE, the associated equivalent volume currents and surface currents are respectively expanded
by CSWG bases and CRWG bases [5], which are defined in curved tetrahedrons and curved triangles.
Different from the previous work, our DG-VSIE applies DG-JVIE and DG-SIE respectively to the
dielectric part and metallic part, through which the conformal as well as nonconformal meshes can
be used for volume and surface discretization. For this proposed DG-VSIE method, several remarks
should be given as follows: 1) by introducing half CRWG bases and half CSWG bases in this VSIE, fewer
unknowns than the conventional VSIE with CRWG and CSWG bases defined in conformal elements can
be obtained; 2) the hyper-singularity problems are avoided by the use of the vector and scaler potentials
rather than the dyadic Green’s function; 3) a new continuity term [9] is adopted in DG-SIE to enforce the
continuity of surface current across the cutting contours, which avoids the introduction of a stabilization
term relying on the line integral over interactions of nonmatching meshes; 4) in comparison with the
conventional VSIE method, the proposed DG-VSIE shows advantages in alleviating the difficulty of
mesh generation and enhancing the accuracy of geometrical modeling. Moreover, fewer unknowns and
less simulation time can be obtained by this DG-VISE than that of using nonconformal VSIE with the
constant piecewise basis functions [12].

The rest of the paper is organized as follows. Section 2 outlines the basic theories of DG-VSIE.
Several numerical results are given in Section 3 to demonstrate its accuracy, efficiency, and flexibility.
Section 4 presents a brief conclusion.

2. THEORY

2.1. Volume Surface Integral Equation (VSIE)

As shown in Fig. 1, we assume an arbitrarily shaped three-dimensional CMD structure immersed in
a homogeneous background with permittivity εb and permeability μb. This structure consisting of
an inhomogeneous dielectric object V and a metallic surface S is illuminated by an incident field
Einc(r). In the dielectric region V , permeability μ(r) = μb and the equivalent complex permittivity
εc(r) = ε(r) − jσ(r)/ω, where ε(r) and σ(r) denote respectively the permittivity and conductivity.
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Figure 1. Geometry of a composite structure consisting of an inhomogeneous dielectric object V and
a metallic surface S immersed in a homogeneous background medium.

According to the detailed description of [23], the VSIE can be formulated as

n× [jωAV (r) + ∇ΦV (r) + jωAS(r) + ∇ΦS(r) + ∇ΦC(r)] = n× Einc(r), r ∈ S (1)
JV (r)

jωεc(r)ς(r)
+ jωAS(r) + ∇ΦS(r) + ∇ΦC(r) + jωAV (r) + ∇ΦV (r) = Einc(r), r ∈ V (2)

In Eqs. (1) and (2), the vector potentials AS and AV are respectively defined as

AS(r) = μb

∫
S
JS(r′)G(r,r′)dS′ (3)

AV (r) = μb

∫
V

JV (r′)G(r, r′)dV ′ (4)

and the scalar potentials ΦS , ΦC and ΦV are

ΦS(r) = − ηb

jkb

∫
S
∇′ · JS(r′)G(r,r′)dS′ (5)

ΦC(r) = − ηb

jkb

∫
C

uc · JS(r′)G(r,r′)dC ′ (6)

ΦV (r) = − ηb

jkb

(∫
V
∇′ · JV (r′)G(r, r′)dV ′ +

∫
Sc

d

nc(r′) · (JV
1 (r′) − JV

2 (r′))G(r, r′) dS′
)

(7)

where JS(r) and JV (r) represent the equivalent surface current on S and the equivalent volume current
in V , respectively. G(r, r′) = e−jkbR

/
4πR is the Green’s function in free space, where R = |r− r′| is the

distance between the field point r and source point r′. kb and ηb denote the wave number and intrinsic
impedance of the background, respectively. Sc

d is the interface where the discontinuity of ε(r′) lies. nc

is a unit vector normal to Sc
d directed from medium 2 (with currentJ2(r)) to medium 1 (with current

J1(r)). n is the outward unit normal vector on metallic surface S, and uc is the in-plane unit normal
vectors pointing outwards. ς(r) is the ratio of electric contrast as

ς(r) =
εc(r) − εb

εc(r)
(8)

Based on the volume equivalent principle [4], the relationship among JV (r), the electric filed E(r)
and the electric flux density vector D(r) is

JV (r) = jως(r)εc(r)E(r) = jως(r)D(r) (9)

2.2. Geometrical/Current Modeling for DG-VSIE

In this subsection, the geometrical modeling and current modeling will be presented. In the geometrical
modeling, the dielectric volume and metallic surface are respectively discretized into the curved



200 Zhu et al.

quadratic tetrahedral and triangular elements, whose flexibility makes our VSIE more powerful and
attractive. According to [18], a curved quadratic tetrahedral element in physical space (x, y, z) can
be described by a second-order transformation from the reference tetrahedron in normalized parent-
coordinates (ξ1, ξ2, ξ3, ξ4). The associated shape function is

r(x, y, z) =2ξ1(ξ1 − 1)r1 + 2ξ2(ξ2 − 1)r2 + 2ξ3(ξ3 − 1)r3 + 2ξ4(ξ4 − 1)r4 + 4ξ1ξ2r5+
4ξ2ξ3r6 + 4ξ1ξ3r7 + 4ξ1ξ4r8 + 4ξ2ξ4r9 + 4ξ3ξ4r10

(10)

where ri (i = 1 ∼ 10) is the position vector of the quadratic tetrahedral element. Similarly, a curved
triangle at the metallic surface can be transformed from the reference triangle in parent-coordinates
(ξ1, ξ2, ξ3) [8], with the shape function as

r(x, y, z) = 2ξ1(ξ1 − 1)r1 + 2ξ2(ξ2 − 1)r2 + 2ξ3(ξ3 − 1)r3 + 4ξ1ξ2r4 + 4ξ2ξ3r5 + 4ξ1ξ3r6 (11)

where ri (i = 1 ∼ 6) is the position vector of the quadratic triangular element.
The current modeling process is to discretize the unknown JV (r) and JS(r) in VSIE by using basis

functions. For dielectric part, the JVIE rather than DVIE is discretized. Namely, the unknowns are
JV (r) rather than D(r). As suggested by [19, 20], since JV (r) do not necessarily satisfy any continuity
conditions, basis functions do not enforce any continuity across the element interfaces, which means that
some appropriate basis functions belonging to the L2 (square integral) space can be used to discretize
JV (r). In JVIE, for a piecewise homogeneous dielectric object, the normal component of JV (r) is
continuous in the homogeneous part of the object, which can be imposed by CSWG basis functions
fV F
n (r). For the CSWG, if ξ1 = 0, fV F

n (r) is

fV F
n (r) =

1
�V (ξ1, ξ2, ξ3)

[
∂r
∂ξ1

(ξ1 − 1) +
∂r
∂ξ2

ξ2 +
∂r
∂ξ3

ξ3

]
(12)

where �V (ξ1, ξ2, ξ3) is the Jacobian factor over a tetrahedron [18]. To model discontinuous currents
across the interface between two different media in JVIE, monopolar CSWG basis functions fV H

n (r)
defined over a single tetrahedral element can be utilized, because JV (r) has no continuity across material
interfaces. Besides, when two neighbouring nonconformal tetrahedrons or their common face does not
completely overlap, fV H

n (r) can be used to represent the JV (r) flowing across the cutting contours.
With fV F

n (r) and fV H
n (r), JV (r) can be expanded as

JV (r) =
NF

V∑
n=1

αv
nf

V F
n (r) +

NH
V∑

n=1

βv
nf

V H
n (r) (13)

where NF
V is the number of faces shared by two conformal tetrahedrons, and NH

V is the number of
tetrahedral faces associated with fV H

n (r). αv
n and βv

n are the coefficients of the corresponding basis
functions.

On metallic surface S, current JS(r) flowing within S can be expanded by CRWG basis functions
fSF
n (r). As j = 1, the CRWG fSF

n (r) can be written as

Λ1
00(r) =

1
�S (ξ1, ξ2)

[
∂r
∂ξ1

(ξ1 − 1) +
∂r
∂ξ2

ξ2

]
(14)

where �S (ξ1, ξ2) is the Jacobian factor over a triangle [8]. For the current JS(r) flowing across the
cutting contours can be approximated by monopolar CRWG basis functions fSH

n (r) defined over a
single triangular element. With fSF

n (r) and fSH
n (r), JS(r) can be expressed as

JS(r) =
NF

S∑
n=1

αs
nf

SF
n (r) +

NH
S∑

n=1

βs
nf

SH
n (r) (15)

where NF
S is the number of edges shared by two conformal triangles, and NH

S is the number of triangular
edges associated with fSH

n (r). αs
n and βs

n are coefficients of the corresponding basis functions.
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2.3. DG-VSIE Matrix Equation Based on Nonconformal Discretization

Substituting Eqs. (13) and (15) into Eqs. (1) and (2), and testing with fS
m (i.e., fSF

m and fSH
m ) and fV

m

(i.e., fV F
m and fV H

m ), the matrix equation of VSIE can be obtained as,[
ZSS ZSV

ZV S ZV V

] [
IS

IV

]
=
[

VS

VV

]
(16)

where IA denotes the unknown coefficients, and VA is the excitation column-matrix. The sub-matrix
ZAB (A or B = {S, V }) represents the contribution of the sources in domain B to the field in domain
A. With the testing functions fS

m/fV
m and basis functions fS

n /fV
n , the elements of VA can be expressed

as

V S
m =

1
jkbηb

∫
Sm

fS
m(r) ·Einc(r)dS (17)

V V
m =

1
jkbηb

∫
Vm

fV
m(r) · Einc(r)dV (18)

The elements of ZAB are

ZSS
mn =

∫
Sm

fS
m(r) ·ASn(r) dS − 1

k2
b

(∫
Sm

∇ · fS
m(r)ΦSn(r) dS +

∫
Sm

∇ · fS
m(r)ΦCn(r) dS

−
∫

Cm

(
um · fSH

m

)
ΦSn(r) dC −

∫
Cm

(
um · fSH

m

)
ΦCn(r) dC

)
(19)

ZSV
mn =

∫
Sm

fS
m(r) ·AV n(r) dS (20)

ZV S
mn =

∫
Vm

fV
m(r) · ASn(r) dV − 1

k2
b

(∫
Vm

∇ · fV
m(r) ΦSn(r) dV +∫

Vm

∇ · fV
m(r)ΦCn(r) dV −

∫
Sm

(
nm · fV H

m

)
ΦSn(r) dS −

∫
Sm

(
nm · fV H

m

)
ΦCn(r) dS

)
(21)

ZV V
mn = − 1

k2
b

∫
Vm

fV
m(r) · fV

n (r)
ςn(r)εrn(r)

dV +
∫

Vm

fV
m(r) ·AV n(r) dV

+
1
k2

b

(∫
Vm

∇ · fV
m(r) ΦV n(r) dV −

∫
Sm

(
nm(r) · fV H

m (r)
)

ΦV n(r) dS

)
(22)

where nm is the outward unit vector normal to Sm of the mth tetrahedral element. um is the in-
plane unit normal vectors pointing outwards Cm of the mth triangular element. From Eqs. (3) to (7),
potentials An and Φn are given by

ASn(r) =
∫

Sn

fS
n (r′)G

(
r, r′

)
dS′ (23)

AV n(r) =
∫

Vn

fV
n (r′)G

(
r, r′

)
dV ′ (24)

ΦSn(r) = −
∫

Sn

∇′ · fS
n (r′)G(r,r′)dS′ (25)

ΦCn(r) = −
∫

Cn

un · fSH
n (r′)G(r,r′)dC ′ (26)

ΦV n(r) = −
(∫

Vn

∇′ · fV H
n (r′)G

(
r, r′

)
dV ′ +

∫
Sc

d

nn(r′) · fV
n (r′)G

(
r, r′

)
dS′
)

(27)

Note that the divergence theorem fm · ∇Φn = ∇ · (Φn fm) − Φn ∇ · fm has been applied in
the derivation of ZAB . From Eqs. (23) to (27), it can be found that only weakly singular integrals
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are involved and can be easily addressed by existing singularity-handling methods, e.g., the Duffy’s
transform [24]. Compared to the nonconformal VSIE with constant pricewise basis functions, where the
hyper-singularity integrals are contained [11, 12], the above integrals of our DG-VSIE are much easier
to calculate. In addition, two remarks are given here. First, the traditional VSIE [23] often requires
to generate conformal meshes at the interface of different media, since the continuity condition of the
unknown functions should be enforced. However, it is very difficult to generate conformal meshes for
high contrast materials or multiscale structures. Our VSIE, fortunately, does not require to enforce
the continuity condition at the interfaces between adjacent subdomains for dielectric parts. One reason
is that the employed DG-JVIE method [10] has no continuity requirement. fV H

n (r) is used for single
elements lied on the interfaces between nonconformal or different media domains. The other reason is
that fV H

n (r) is defined over the volume, rather than on the surface, and the application of fV H
n (r) to

both nonconformal and different media domains will only generate surface charge densities, instead of
the line charge densities. This suggests that no singular field will be produced by applying fV H

n (r) to
above two sceneries. Metallic surface is discretized by fSH

n (r), as defined over single triangular elements
near the cutting contours. Because fSH

n (r) cannot ensure the continuity of JS(r) across the cutting
contours, an additional continuity term [9] is introduced to enforce this continuity in this DG-VSIE.
The electric potential generated by error electric charges can be expressed as

Φerr(r) = −jω

k2
b

N∑
n=1

∫
Cn

un · fSH
n (r′)G(r,r′)dC ′ (28)

Then, surface electric charges ∇ · JS(r) = −jωρs or line electric charges u · JS(r) = −jωρl on
metallic surface S are adopted to test the error electric potential Φerr(r) and make them equal to zero,
i.e.,

1
k2

b

∫
Cm

(
um · fSH

m

)
Φerr(r) dC = 0 (29)

1
k2

b

∫
Sm

∇ · fS
m Φerr(r) dS = 0 (30)

Physically, Eqs. (29) and (30) mean that the electric potential energy generated by the accumulated
error charges at the cutting contours vanishes. Thus, a continuity term has been used in the DG-VSIE
system to minimize the electric potential energy associate with the error charges accumulated at the
cutting contours. On the other hand, it should be pointed out that the use of half basis functions and
full basis functions for nonconformal and conformal domains will reduce unknowns to compute.

3. NUMERICAL RESULTS

In this section, numerical examples are given to validate the accuracy and efficiency of the DG-VSIE.
All the simulations are performed on a personal computer with 4.0-GHz Intel(R) Core(TM) I7-4790K
CPU. The conjugate gradient method (CGM) with an iterative tolerance 0.001 is used to solve the VSIE
equation.

3.1. Metallic Sphere with Coatings

To investigate the accuracy of this DG-VSIE method, the first example is to simulate the EM scattering
from a metallic sphere with a two-layer dielectric coating as shown in Fig. 2(b), where the relative
permittivities for the two coatings are respectively εr1 = 2.0 and εr2 = 4.0. The radius of the metallic
core sphere is 0.3 m, and the thicknesses of the first and second layers are respectively 0.03 m and 0.02 m.
The nonconformal meshing yields 7152 tetrahedrons and 1020 triangles, where the average mesh sizes
for the dielectric layers 1 and 2 are respectively λ0

/
(10

√
εr1) and λ0

/
(10

√
εr2), and for the metallic

surface elements is λ0/10. The nonconformal meshes for this structure are shown in Fig. 2(a). This
structure is illuminated by a plane wave at frequency 300 MHz. By using CSWG/CRWG bases, the
DG-VSIE results in 18184 unknowns and takes 3338 s. For comparison, the conventional VSIE employs
SWG/RWG bases in conformal planar discretization and produces 20,165 unknowns under the same
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Figure 2. Nonconformal modelling of a metallic sphere with two-layer coatings. (a) Cross-section of
the nonconformal mesh along the center plane. (b) Comparison of the bistatic RCS (E- and H-plane)
among the DG-VSIE, the traditional VSIE and the Mie series.

(a) (b)

Figure 3. (a) Geometry and (b) nonconformal discretization with curved geometrical modeling for the
composite cone-sphere target.

mesh sizes. As shown in Fig. 3, the bistatic RCS of the DG-VSIE coincides with those of the conventional
VSIE as well as the Mie series. To further measure the accuracy of this VSIE, the root mean square
(RMS) error [5, 25] of the bistatic RCS is defined here, i.e.,

RMS error (dB) =

√√√√ 1
Na

Na∑
i=1

|σcal,i − σref,i|2 (31)

where σcal,i denotes the Bistatic RCS calculated by the proposed VSIE, and σref,i is the reference results
obtained from either Mie’s series or commercial software FEKO 2017 [26]. The results calculated
by FEKO are based on the traditional conformal MoM-VSIE with RWG/SWG basis functions. Na

represents the number of sampling points. Both σcal,i and σref,i are in decibels. To illustrate the
results’ difference between our VSIE and the traditional VSIE, the average mesh sizes are respectively
set to λ0

/
(10

√
εr) and λ0/10 for the dielectric volume and metallic surface elements. In addition,
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the definition of RMS error in Eq. (31) shows that the error monotonously varies with (σ̂cal,i/σ̂ref,i),
where σcal,i = 10 log σ̂cal,i and σref,i = 10 log σ̂ref,i, implying that an increasing RMS error means a
larger difference between σ̂cal,i and σ̂ref,i. Thus, the RMS error of Eq. (31) can be used to measure
the accuracy of solutions. The RMS errors for the E- and H-plane cases for our VSIE are respectively
0.13 dB and 0.15 dB, while those for the conformal VSIE are respectively 0.12 dB and 0.18 dB. The
number of unknowns in the DG-VSIE is less than that in the conventional VSIE, while the accuracy
keeps the same level. Besides, note again that the proposed VSIE is discretized by CRWG/CSWG bases,
which are defined on curved triangular/tetrahedral elements. Although curved elements can enhance
the accuracy of geometrical modelling, the singularity integral process over the curved elements becomes
more challenging, than that of the planar elements [5]. In this example, the Duffy’s transform [24] is
adopted to address the existing singularity integrals. The singularity subtraction technique [27] is used
in the traditional conformal VISE to handle the singular and near-singular integrals to guarantee the
solution precision. Note that the near-singular integrals are not handled in this paper, which may
decrease the integral accuracy, as observed from the RMS error of the E-plane.

3.2. Composite Cone-Sphere Target

In the second example, a composite object with sharp features, including a dielectric cone of 0.5-m
height and a metallic hemisphere of 0.5 m radius, is illuminated by a plane wave Einc(r) = exe−jkbz at
300 MHz. As shown in Fig. 3(a), the dielectric cone has two parts (the relative permittivity εr1 = 2.0
and εr2 = 20.0) and is meshed independently by curved tetrahedral elements with different edge lengths,
i.e., λ0

/
(10

√
εr1) and λ0

/
(10

√
εr2) (λ0 is the wavelength in free space); the hemisphere is meshed by

curved triangular elements with the average mesh size λ0/10. The nonconformal discretization shown
in Fig. 3(b) produces 9,906 volumetric elements and 742 surface elements. In use of DG-VISE with
CSWG/CRWG bases, the total unknowns and memory usage are respectively 22,210 and 3,428 MB, and
the CPU time is 3,077 s. Fig. 4 shows good agreement between the bistatic RCS results from the DG-
VSIE with the nonconformal discretization and the traditional VSIE (38,309 unknowns and 4,112 MB
memory usage) with the conformal mesh grids in the same mesh size, which verifies the correctness
of this approach for structures with sharp features. Benefitting from the NBF technique [18], our
VSIE only requires 534 iterations to reach a relative residual of 0.001; otherwise, 813 iterations are
required. Moreover, the scattering of the composite target without the small dielectric cone part, whose
relative permittivity εr2 = 20.0, is also computed, as shown in Fig. 4. It can be found that the fine
structure involving high-contrast media indeed has important influence on the far-field results. This
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also demonstrates that the proposed VSIE can successfully capture the influence. Besides, note again
here that the use of nonconformal meshes makes the DG-VSIE a much more flexible and efficient solver
than the traditional VSIE method, especially for inhomogeneous high permittivity contrast dielectric
objects.

3.3. Microstrip Patch Antenna

A patch antenna [5] is modeled as the third example in Fig. 5 and illuminated by a plane wave
Einc(r) = exe−jkbz at 3.0 GHz. The dielectric substrate and metallic patch of the antenna are
independently meshed with an average mesh size λD/10 (λD is the dielectric wavelength) and λ0/10,
generating 916 triangles and 2,918 tetrahedrons in total. The DG-VSIE then employs 8,328 unknowns,
536 MB memory, and 603 s CPU time to compute the bistatic RCS and agrees with the results from
commercial software FEKO in Fig. 6(a). The FEKO employs the conformal VSIE based on SWG/RWG
bases and yields 9,374 unknowns, 678 MB memory usage, and 912 s CPU time.

Therefore, we can conclude that the DG-VSIE method outperforms the traditional VSIE with
a lighter computational burden. Besides, with the help of NBF technique [18], faster convergence
speed can be achieved by our VSIE to reach the iterative tolerance 0.001, compared with that of the
conformal VSIE of 1513 iteration steps. Besides, it should be noted that the direct solvers, e.g., LU
solver or Gaussian solver, are often used in conventional VSIE, mainly because slow convergence is
observed when iterative solvers are utilized to simulate multiscale and ill-conditioned CMD structures,
e.g., the microstrip antenna [23].

In order to further illustrate the accuracy and the ability of our DG-VSIE, the far-fields radiation
of the patch antenna excited by a probe with a 50 Ohm port is calculated. In the radiation process, the
simulation parameters, e.g., the working frequency, and the nonconformal mesh size are the same as the
above scattering process. Besides, the probe is represented by a small cube with the height 0.2362 cm, the
width and length 0.3 cm. A 1-V source is placed across a delta gap in each fed-edge. Fig. 6(b) compares
the normalized far-field radiation results calculated by the DG-VSIE with the reference results from
FEKO based on the traditional VSIE. Good agreement between them is observed. Based on the above
discussions, to summarize, this example demonstrates the accuracy and verification of the proposed
DG-VSIE for the scattering and radiation simulation of CMD structures.

Figure 5. Geometry and dimensions of the patch antenna simulated in [5].
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3.4. Monopole Antenna with Hemispherical Radome

The last example is a multiscale structure, including a monopole antenna placed on a metallic circle and
a two-layers hemispherical radome as shown in Fig. 7(a). For the radome, the thicknesses and relative
permittivities of the first and second inner layers are respectively τ1 = 5.0 mm and εr1 = 2 − 0.005j,
and τ2 = 5.0 mm and εr2 = 1.5 − 0.035j. The diameter D of the radome is 500 mm. The monopole
antenna of 1.0-mm radius is located at the center of a metallic circle disk, whose diameter is 800 mm.
In this simulation, this monopole antenna is represented by a small cube of the height 125.0 mm,
the width and length 4.0 mm. The average mesh sizes for the radome, monopole antenna, and circle
disk are λ0

/
(10

√
εri) (i = 1, 2), 0.005λ0, and 0.1λ0, respectively. As shown in Figs. 7(b) and (c),

the nonconformal discretization is used, which generates 4582 tetrahedrons and 560 triangles. The
excitation is a 3.0 GHz x-polarized plane wave incident along −z-axis. With the use of DG-VISE, the
resulting unknown number and memory consumption are respectively 11,646 and 1,043 MB, and the
required computational cost is 1,203 s with 904 iteration steps. As plotted in Fig. 8, bistatic RCS
obtained by the DG-VSIE agrees well with the results of FEKO. Thus, the high accuracy of the VSIE is
demonstrated. It is also evident that the DG-VSIE is superior in the scattering simulation of multiscale
antennas.
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Figure 6. Nonconformal modelling of a patch antenna. (a) Comparison of the bistatic RCS (E- and
H-plane) obtained by the proposed DG-VSIE and FEKO based the traditional VSIE. (b) Comparison
of the normalized radiation patterns (xoz- and yoz-plane) calculated by the DG-VSIE and the software
FEKO with the traditional VSIE.
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Figure 7. (a) The structure of a monopole antenna with hemispherical radome. (b) Nonconformal
discretization with curved geometrical modeling for radome. (c) Nonconformal discretization with
curved geometrical modeling for monopole antenna.
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Figure 8. Comparison of bistatic RCS of the monopole antenna with hemispherical radome in the xoz-
and yoz-plane. The results from DG-VSIE are compared with the reference results simulated by the
commercial software FEKO based on the conventional VSIE.

4. CONCLUSION

A novel DG-VSIE scheme based nonconformal discretization is presented to simulate the EM scattering
from CMD structures. By using curved tetrahedral elements and curved triangular patches for geometric
modeling and the associated CRWG (CSWG) basis functions for surface (volume) current modeling,
the DG-VIE method and DG-SIE approach are adopted for dielectric volume and metallic surface,
respectively. Thus, the conformal as well as non-conformal volume/surface discretization can be allowed
in this VSIE. Obviously, the non-conformal nature of the VSIE gives the considerable flexibility in the
meshing.

The DG-VSIE has been utilized to solve the EM scattering of a metallic sphere coated with high
contrast dielectric materials, a patch antenna, and a monopole antenna with hemispherical radome.
The associated simulation results agree well with the Mie series and/or the results obtained by the
conventional VSIE, while our DG-VSIE method requires less computational cost for the same accuracy
level than the conventional VSIE. In summary, the DG-VSIE can serve as an accurate, efficient, and
flexible alternative to the commonly used VSIE for the EM simulation of CMD structures, especially
when involving multiscale structures or high contrast dielectric media.
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16. Ylä-Oijala, P., J. Markkanen, and S. Järvenpää, “Current-based volume integral equation
formulation for bianisotropic materials,” IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3470–
3477, Aug. 2016.

17. Schols, Y. and G. A. E. Vandenbosch, “Separation of horizontal and vertical dependencies in a
surface/volume integral equation approach to model quasi 3-D structures in multilayered media,”
IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1086–1094, Apr. 2007.

18. Cai, Q.-M., Z.-P. Zhang, Y.-W. Zhao, W.-F. Huang, Y.-T. Zheng, Z.-P. Nie, and Q. H. Liu,
“Nonconformal discretization of electric current volume integral equation with higher order
hierarchical vector basis functions,” IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4155–4169,
Aug. 2017.
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